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A B S T R A C T   

Spectral detection of the N uptake of wheat is a widely used method, as it is non-destructive, rapid and cost- 
efficient. However, to date, agronomically supported spectral detection limits have not been sufficiently 
described. Concurrent statistical measures such as R2, RMSE, or MAE do not fully satisfactorily address the 
agronomical relevance, bearing in mind that sensing is frequently carried out in either very low or excessively 
high nitrogen fertilization applications, which may not be indicative of current farming practice. This study, 
therefore, evaluates regression models of spectral indices in capturing N uptake using hyperspectral ground- 
based and multispectral unmanned aerial vehicles (UAV) based on data sets covering several years, sites, vari
eties, and developmental stages of wheat (Triticum aestivum L.). The results suggest that solely adopting 
commonly used statistical measures is not sufficient for an agronomic evaluation. Whereas the common statis
tical measure R2 is essentially influenced by differentiating N uptake, which primarily occurs at later stages of 
development, the use of further statistics such as RMSE and MAE averages the error and should be extended by 
self-set confidence intervals based on agronomical decisions. For these studies, we therefore defined an appro
priate error interval of ± 15 kg N uptake ha− 1 up to BBCH 50, with a probability of at least 80%. Interval limits 
may be narrowed for earlier developmental stages and wider for later ones. Extreme N levels in field trials can 
bias models and should be limited to N-fertilization ranges that are indicative of the current practice in a given 
region, so as not to overemphasize the extremes. Differentiation of biomass was revealed to be more crucial than 
that of N content in detecting N uptake. Essentially, both terrestrial- and UAV-based sensing were equally well 
suited, with combinations of the REDEDGE and NIR bands being particularly effective for detecting the N uptake 
of wheat. Agronomically based detection limits should be considered besides common statistical measures in the 
spectral assessment of wheat N uptake.   

1. Introduction 

Wheat is one of the world’s key cereal crops, along with rice and 
corn. Since wheat production is often limited by the availability of ni
trogen (N), it frequently requires additional N-fertilization (Ladha et al., 
2005). Although N plays a major role in the yield and quality of crops 
(Robertson and Vitousek, 2009; Barmeier et al., 2017; Prey et al., 2019a. 
b), some of the nitrogen used is lost to the air, water, and land, where it 
can cause both environmental and human health problems (Galloway 
et al., 2008). It is therefore important to minimize nitrogen losses by 
optimizing the process of N-fertilization. 

N-fertilizer requirements are often determined on the basis of ex
pected grain yields. Although Delogu et al. (1998) showed that both pre- 

and post-heading N uptake correlate closely with yield, the N uptake 
prior to anthesis benefits the grain N uptake and yield (Prey et al., 
2019a,b; Ding et al., 2021). Recording N uptake during vegetation is 
therefore a key aspect of decision making concerning N-fertilization. 
N-fertilization can differ in terms of the absolute rate, splitting and 
application time (Darwinkel, 1983). In Western Europe, the overall 
quantity of N is typically divided into three splitting applications, which 
are applied approximately at tillering (BBCH 20–29) and at the begin
ning and the end of stem elongation (BBCH 30–39) (Swarbreck et al., 
2019; BBCH is the abbreviation of „Biologische Bundesanstalt, Bun
dessortenamt und CHemische Industrie“; Meier, 2018). 

There are several methods of assessing a plant’s N requirements. At 
the beginning of vegetation, the additional N-fertilization demand is 
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calculated on the basis of the mineral nitrogen (nitrate-N + ammonium- 
N, “Nmin”) already present in the soil (Heinemann and Schmidhalter, 
2021). During vegetation, the plant itself is often used as an indicator, a 
common major method being the optical, non-destructive detection of 
the plant canopy’s reflectance signature (Olfs et al., 2005; Li et al., 2014; 
Ali et al., 2017). The main measurement range of the sensors is between 
wavelengths of 400 nm and 1000 nm. Within this range, the vegetation 
displays a typical reflection signature, controlled in the visible wave
length range (400–700 nm) by the absorption of pigments (mainly 
chlorophyll a at 430/660 nm and chlorophyll b at 450/640 nm, plus 
other pigments such as carotenoids and xanthophylls at 450 nm) and in 
the near-infrared range (700–1100 nm) by reflection processes in the 
foliar layers (Lilienthal, 2014). Since N-fertilization affects the plant’s 
aforementioned physiological parameters, the N supply, for example, for 
wheat, lends itself well to spectral recording (Fitzgerald et al., 2010; 
Mistele and Schmidhalter, 2010; Prey and Schmidhalter, 2019). 

Many spectral indices are available for the detection of nitrogen 
traits in wheat, each differing in the spectral range (visible, red edge, or 
near-infrared) as well as in the wavelengths used (normalized differ
ence, simple ratio, or red edge inflection point) (Prey et al., 2020). Both 
ground-based vehicles (Mistele and Schmidhalter, 2010; Erdle et al., 
2011), and, since recently, unmanned aerial vehicles (UAV) (Gnyp et al., 
2016; Chen et al., 2019; De Souza et al., 2021) have been shown to be 
suitable carriers of spectral sensors. The advantages of UAV’s over 
ground-based systems is that they enable measuring without disrupting 
the surface, they can capture spatial information simultaneously, and 
they are able to generate high-resolution images (Aasen and Bolten, 
2018). 

The amount and timing of individual split applications of nitrogen 
are often decided on the basis of the farmer’s experience. For example, 
high yield expectations in the 7–10 t ha− 1 range necessitate an absolute 
nitrogen demand of 215–250 kg N ha− 1 (Lfl, 2018). This absolute 
amount can be divided into split applications that are approximately 
within the 40–90 kg N ha− 1 range. Both planned absolute and split 
application N-fertilizer rates can be modified during the growing season 
on the basis of changes in N uptake. Under these high-yield conditions, N 
uptake has a wide measuring range across the growing season, extend
ing from less than 50 kg N ha− 1 to more than 250 kg N ha− 1. In-season 
spectral measurements can be performed from tillering throughout the 
season, providing useful information on which to base decisions (Erdle 
et al., 2011; Li et al., 2014; Elsayed et al., 2018). If spectral measure
ments are used to determine the N uptake, the limits of the method’s 
detectability must be taken into account. This not only impacts on the 
evaluation of the N uptake, it also influences impending N-fertilization 
decisions. 

To determine the measurement quality of spectral sensors used for N 
uptake, nitrogen increase experiments are commonly performed. These 
require a priori determined N levels. To achieve a clear effect of the 
dependent factor N uptake, large differences between N levels are often 
chosen (Feng et al., 2015; Guo et al., 2018; Zhang et al., 2021). These N 
levels exceed the N fertilization range that is customary in practice in 
some cases to a significant degree. To determine the measurement 
quality, regressions between the dependent (e.g. N uptake) and the in
dependent (e.g. spectral indices) variables are calculated and evaluated 
with the coefficient of determination (R2). This raises the question as to 
the context in which the a priori defined N levels influence R2 and 
whether the assessment of R2 is crucial for the evaluation of the mea
surement quality. The detection quality of spectral sensors is another 
important factor in the range crucial for agricultural applications. 

N uptake is the product of the N content and the dry weight of the 
aboveground biomass (DW). For many spectral indices, biomass is a 
crucial parameter (Mistele et al., 2004). However, many studies indicate 
that the detection of N content by spectral means is much less effective 
(Erdle et al., 2011; Lilienthal, 2014; Elsayed et al., 2018). Better un
derstanding the potential for the spectral detection of N uptake using 
commonly applied indices requires information on the spectral 

detectability of both N content and aboveground biomass (DW), as well 
as the interaction between them, particularly in terms of the plant 
growth for the specific year. 

The nitrogen nutrition index (NNI) was created to better understand 
the respective plant nitrogen supply. The NNI is the quotient of the 
current (Nact.) and critical (Ncrit.) N content (% of dry matter). Nact. is the 
measured N content of the plant samples under investigation. Ncrit. is the 
threshold value of the N content derived by Justes et al. (1997) and 
depends on the aboveground biomass (in the range 1.55–12 t ha− 1), 
below which N deficiency leads to reduced biomass production. NNI 
values ≥ 1 indicate a current N content that does not impede biomass 
growth, whereas values < 1 indicate limited biomass production due to 
currently insufficient N content (Justes et al., 1997; Mistele and 
Schmidhalter, 2008). 

This study uses data taken from a newly established field trial 
(Experiment 1) in conjunction with published data (Experiments 2 and 
3) to assess the influence of location, weather conditions, varieties, and 
spectral sensor types. 

Using three different data sets (Experiments 1–3), the study aims, at 
the canopy level for wheat, (i) to compare different statistical measures 
of goodness by which to evaluate the model performance, (ii) to examine 
the limitations of the spectral detection of N uptake, and (iii) to assess 
the influence of the a priori determined N levels on the coefficient of 
determination (R2). In addition, Experiment 1 was used (iv) to compare 
commonly used indices of passive multispectral sensors (UAV) with 
ground-based hyperspectral sensors of a mobile ground-based platform, 
(v) to determine the sensitivity of indices frequently used for detecting N 
uptake taking into account the developmental stage, and (vi) to assess 
the importance of N content and DW for the detection of N uptake using 
frequently applied indices. 

2. Materials and methods 

2.1. Field trials 

Field experiment 1 was conducted at the Dürnast research station of 
the Technical University of Munich in Germany (48◦23′60′′ N, 
11◦41′60′′ E). The soil of the experimental field is described in Table 1. 
The different soil classifications within the field are reflected in the wide 
range of the apparent electrical conductivity values, as measured by an 
EM38 device (Heil and Schmidhalter, 2003). The average annual tem
perature is 8 ◦C, and average precipitation is approximately 800 mm.. 

Winter wheat (Triticum aestivum L., variety Apostel) was sown in mid- 
October 2019 at a rate of 350 kernels per square meter. The preceding 
crop was spring barley. The field was managed conventionally and plant 
protection activities were in line with local standards. Potassium and 
phosphorus were supplied by fertilization as part of the crop rotation. 
The nitrate-N content of the 0–60 cm soil layer was measured at the 
beginning of vegetation in the experimental year and amounted to 22 kg 
ha− 1. 

The experiment had a randomized complete block design with four 
replicates (Fig. 1). Each block contained all N levels (n = 10), and each N 

Table 1 
Description of field site, showing elevation, apparent soil electrical conductivity 
(ECa), and soil classification, with a predominant soil texture according to FAO 
et al. (1998).  

Field Elevation [m] ECa [mS m− 1] Soil classification 

D4 457–470 20–63 Cambisol: 
Silty clay loam 
Silty loam 
Loam 
Sandy loam 
Skeletic Cambisol 
Cumulic Cambisol 
Cumulic Anthrosol  
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level treatment consisted of two neighboring plots, one for combine 
harvest and spectral measurements and one for biomass sampling. The 
two types of plots were located directly alongside each other. Each plot 
measured 10.5 m in length and 1.50 m in width. 

Table 2 shows the N-fertilizer treatments. The absolute N-fertiliza
tion quantity for each N level was divided into three equally split ap
plications using calcium ammonium nitrate (27% N). The timing was 
chosen both to enhance tillering and, to increase the number of spikelets 
and the grain protein content. The range of the absolute fertilized N 
levels (105–225 kg N ha− 1) roughly reflects that of N-fertilization in 
agricultural practice for yield expectations typical in large parts of 
Europe. The variant without N-fertilization (0 kg N ha− 1) provides 
additional information on the site and year-specific nitrogen supply of 
the experimental field. The fertilizer quantity could be precisely dosed 
and distributed on the plot in fine gradations thanks to the exact ma
chine adjustments that are possible with a box spreader (Fiona® G-85, 
Denmark). 

Experiment 2 was performed at the same site as Experiment 1.  
Table 3 indicates the data sets used. Extreme N levels were present in 
these experiments. To evaluate the influence of high N-fertilization, we 
divided the data sets in this study for further analysis. One set included 
all the N levels (0–60–120–180–240–300–360–420 kg N ha− 1), while 
the other only included the site-specific, agronomically relevant N levels 
(0–60–120–180–240 kg N ha− 1). A detailed description of the Experi
ment 2 can be found in Prey and Schmidhalter (2019) and Li et al. 
(2012). 

Field Experiment 3 was conducted at the Roggenstein research sta
tion of the Technical University of Munich in Germany (48◦10′44,9′′ N, 

11◦19′14,5′′ E). In 2017, data were collected for the RGT Reform variety, 
which was fertilized with calcium ammonium nitrate. The range of N 
levels was 0–245 kg N ha− 1. A detailed description of the Experiment 3 
can be found in Westermeier and Maidl (2019). 

2.2. Spectral measurements 

In Experiment 1, spectral aerial- (UAV) and ground-based measure
ments were conducted under cloud-free conditions on the day of the 
biomass harvest. Care was taken to ensure that the time offset between 
the use of the measurement platforms was as short as possible. 

A Phenotrac IV vehicle sensor platform was used to perform ground- 
based measurements, with a hyperspectral bidirectional passive sensor 
spectrometer (tec5, Oberursel, Germany) mounted at the front center of 
the Phenotrac IV. The sensor had a nominal resolution of approximately 
3.3 nm, a measuring range from 300 to 1000 nm, and a field of view 
(FOV) of 24◦. The measuring distance to the canopy surface was 
approximately 0.8 m. The driving speed during measurement was 
approximately 5 km h− 1. A more detailed description of the Phenotrac 
IV can be found in Barmeier and Schmidhalter (2017). 

Aerial multispectral sensing was performed with eBee X (BBCH 37) 
and ebee Plus (BBCH 61) fixed-wing aircraft (SenseFly®, Lausanne, 
Switzerland). Both UAVs were equipped with the same multispectral 
camera (Sequoia+ camera, Parrot, Paris, France), which recorded four 
spectral bands of the electromagnetic spectrum: green (550 nm, ~40 nm 
bandwidth), red (660 nm, ~40 nm bandwidth), red edge (735 nm, 
~10 nm bandwidth), and NIR (790 nm, ~40 nm bandwidth). A white 
balance card was used to calibrate the reflectance. The flights were 
conducted at a height of 80 m above ground, resulting in ground reso
lutions of approximately 8 cm/pixel. This was the minimum possible 
flight altitude, as it was limited by the presence of power lines. The 
individual images were merged into a whole using Pix4D software 
(Pix4D S.A., Prilly, Switzerland). A detailed description of the UAV 
equipment can be found in Hu et al. (2020). A polygon for each plot was 
subsequently created for the complete image of each individual band 
using the ArcGIS program (ESRI®, Germany, Version 10.5.0.6491), 

Fig. 1. Design of the field trial. The numbers indicate the fertilized quantity of nitrogen in kg N ha− 1, whereby each N-fertilization level per block (n = 4) always 
consists of two adjacent plots. White cells indicate the plots for biomass sampling while grey cells indicate those for combine harvesting and spectral measurements. 

Table 2 
Quantity distribution and growing stage of N-fertilization. At the beginning of 
vegetation (VB) the wheat was at the tillering stage of development. The main 
developmental stage for BBCH 32 was stem elongation, while for BBCH 49 it was 
booting.  

Fertilizer treatments VB BBCH 32 BBCH 49 Total 

1 0 0 0 0 
2 35 35 35 105 
3 40 40 40 120 
4 45 45 45 135 
5 50 50 50 150 
6 55 55 55 165 
7 60 60 60 180 
8 65 65 65 195 
9 70 70 70 210 
10 75 75 75 225  

Table 3 
Data sets used in Experiment 2.  

Year Variety N fertilizer 

2009 Nongda318 Urea 
2016 Diskus, Rumor Ammonium nitrate 
2018 Diskus, Rumor Ammonium nitrate  
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using the same measurement area and position as the terrestrial Phe
notrac IV measurements for each plot. The mean value per polygon was 
then calculated for each individual band. 

Indices were calculated from the reflectance data (Table 3). The 
indices for nitrogen traits in wheat were evaluated in previous studies at 
this site (Mistele and Schmidhalter, 2008, 2010; Erdle et al., 2011; Prey 
and Schmidhalter, 2019; De Souza et al., 2021) (Table 4). 

Experiment 2, ground-based spectral measurements were performed 
with a Handy-Spec® field spectrometer in 2009 (Li et al., 2012) at BBCH 
37, as well as with the Phenotrac IV mobile sensor platform in 2016 at 
BBCH 37, and in 2018 at BBCH 45 (Prey and Schmidhalter, 2019). In 
Experiment 3, a two-channel spectrometer was used at BBCH 32, 39, and 
65 (Westermeier and Maidl, 2019). For a more detailed description of 
the sensors used, the reader is referred to the publications indicated 
above. Of the reflectance data obtained in Experiments 2 and 3, only the 
index REIP was used in this study. This index displayed a very good 
performance in previous publications compared with all the evaluated 
indices. 

2.3. Destructive data collection and laboratory analyses 

In Experiment 1, plant samples were taken from each biomass plot at 
indicative stages of development (BBCH 37 and 61) to assess the winter 
wheat nitrogen status. Four adjacent rows of plants at a mutual distance 
of 12.5 cm and with a length of 1.5 m (0.75 m2) were manually sampled. 
The fresh biomass samples were oven-dried at 60 ◦C until no further 
water loss occurred and weighed to determine the DW, expressed as t 
ha− 1. The dried samples were then milled and sieved to 0.5 mm (Bra
bender®, Duisburg, Germany) for subsequent analysis in the laboratory 
to determine the N content (% of dry matter). This was done by mass 
spectrometry using an isotope ratio mass spectrometer with an ANCA SL 
20–20 preparation unit (Europe Scientific, Crewe, UK). The N uptake of 
the total aboveground plant (kg N ha− 1) was calculated as DW x N 
content. 

Samples were also taken at indicative developmental stages from the 
plots for destructive biomass data collection in Experiment 2 conducted 
in 2009 and 2016 at BBCH 37 and in 2018 at BBCH 45 and in Experiment 
3 at BBCH 32, 39, and 65. The samples were then dried and analyzed to 
determine their N content. A detailed description of Experiment 2 is 

given in Prey and Schmidhalter (2019) and Li et al. (2012) as well as of 
Experiment 3 in Westermeier and Maidl (2019). 

2.4. Statistics and calculations 

The data were analyzed using Microsoft® Excel® 2019 MSO 
(16.0.14701.20240), and R Core Team (2021). 

Based on the Akaike Information Criterion (AIC) (Webster and 
McBratney, 1989), either linear or polynomial (second-order) re
gressions were calculated between the N uptake (dependent variable =
Y) and the indices and single bands (independent variable = X), 
respectively. The coefficient of determination (R2) was calculated as a 
measure of the goodness of fit. R2 shows the portion of the explained 
variance in the model with respect to the total variance (Eq. 1): 

R2 =
explained deviation sum of squares

total deviation sum of squares to be explained

=

∑n

i=1
(ŷi − ӯ)2

∑n

i=1
(yi − ӯ)2

(1)  

where ӯ is the arithmetic mean of all observed yi and ŷi is the estimator 
(regression function) of each observed yi. Fig. 2 illustrates these re
lationships graphically. 

As a further measure of the predictive quality of the regression, the 
confidence interval (95% level) for the estimated value (regression 
estimator) and the prediction interval (95% level) for the observed value 
are commonly used statistics. A detailed description can be found in 
Köhler et al. (2012) and Bleymüller et al. (2008). To obtain a more 
specific evaluation of the error of the entire model, the root mean square 
error (RMSE) was calculated as follows: 

RMSE [kg N ha− 1] =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(ŷi − yi )2

n

√
√
√
√
√

(2)  

where ŷi are the predicted and yi the measured values for the N uptake 
and n the number of samples. The advantage of RMSE is that it uses the 
same data unit as that of the variable to be explained. To enable better 
comparability of RMSE with other data sets, the RMSE values were 
standardized as a percentage and calculated as follows (modified ac
cording to Loague and Green, 1991): 

RMSE [%] =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Pi − Oi )2

n

√
√
√
√
√

ˣ
100
Ō

(3)  

where Pi and Oi are the predicted and observed values and n the number 
of samples. Ō represents the mean of the observed data. The RMSE 
values were then classified and evaluated according to Westermeier and 
Maidl (2019). RMSE values < 10% were considered excellent, 10–20% 
good and > 30% sufficient. 

Another generally accepted error of the entire model is the mean 
absolute error (MAE), calculated as follows: 

MAE [kg N ha− 1] =

∑n

i=1
|Pi − Oi |

n
(4)  

where Pi and Oi are the predicted and observed values and n the number 
of samples. For a detailed description of RMSE and MAE, the reader is 
referred to Willmott (1984). 

In addition to the commonly used statistical error measures for re
gressions, confidence intervals were calculated that tolerate a model 
error that is acceptable from an agronomical point of view. The 
magnitude of the error depends mainly on the N uptake of wheat, which 

Table 4 
List of indices and sensor platforms (UAV and Phenotrac IV vehicle-based sensor 
platform). The original bands were approximated depending on the technique 
used.  

Index Equation Sensor 
platform 

Reference 

NDVI 
(NDVI_UAV 
and 
NDVI_Pheno) 

R790 − R660
R790 + R660 

UAV and 
Phenotrac 
IV 

Rouse et al. 
(1974) 

NIR/GREEN R780/R550 UAV Mistele and 
Schmidhalter 
(2008) 

NIR/RED R780/R670 UAV Gitelson et al. 
(2003) 

NIR/REDEDGE R780/R735 UAV De Souza et al. 
(2021) 

NDRE R790 − R720
R790 + R720 

UAV 
Barnes et al. 
(2000) 

REIP 700 + 40 

(
( R670 + R780

2

)

− R700

R740 − R700

)

Phenotrac 
IV Guyot et al. 

(1988) 

R760/R730 R760/R730 Phenotrac 
IV 

Erdle et al. 
(2011) 

R780/R740 R780/R740 Phenotrac 
IV 

Mistele and 
Schmidhalter 
(2010)  
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is primarily determined by the growth stage. Two growth stage intervals 
were defined: those at which N fertilization can still be performed (up to 
BBCH 50) and those that allow an assessment of the preceding N 
fertilization (after BBCH 50). Since the N uptake after BBCH 50 can 
reach values well above 200 kg ha− 1, a wider interval is tolerable, 
whereas up to BBCH 50, the error should be smaller, because the N 
uptake is much lower and further N fertilization decisions can be made 
based on the spectral detection. Identifying these limits was based on 
screening all available data sets with a subsequent post hoc analysis. 
This error is calculated using:  

agronomical error [kg N ha− 1] = ŷi ± error of yi                                  (5) 

where ŷi is the estimator of the regression function and the errors of yi 
used were assumed to be 10 and 15 kg ha− 1 N uptake. 

Correlations according to Pearson (r) were calculated between the N 
content and DW and all spectral indices and bands used. Next, the in
fluence of the N content on the correlation of DW with all spectral 
indices and bands was determined. This was done by eliminating the 
influence of the N content using the partial correlation coefficient of x1 
and x2 given ξ which is calculated as follows: 

rx1, x2|ξ =
rx1,x2 − rx1,ξ⋅rx2,ξ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(1 − rx1,ξ

2)⋅(1 − rx2,ξ
2)

√ (6)  

where rx1,x2 are the correlation coefficients between x1 and x2, rx1,ξ are 
those between x1 and ξ and rx2,ξ are those between x2 and ξ (Backhaus 
et al., 2006). If the N content does not influence the correlation of DW 
and all spectral indices and bands, the partial correlation coefficient is at 
the same level as the Pearson correlation coefficient (without the co
variate). Increasing influence is indicated through a lower partial cor
relation coefficient. The difference between the Pearson and the partial 
correlation coefficient is equal to the influence of the covariate (N 
content). 

The Nitrogen Nutrition Index (NNI) was calculated according to 
Lemaire and Gastal (1997) to characterize the nitrogen supply of wheat 
at each date*treatment combination, and is expressed as: 

NNI =
Nact
Nc

(7)  

where Nact (%) is the actual measured nitrogen content and Nc (%) the 

critical nitrogen content of the biomass shoot dry matter. For Nc, Justes 
et al. (1997) developed the following estimation equation: 

Nc = 5.35 (shoot dry weight [t ha− 1]− 0.442). 
based on investigations of winter wheat when the shoot dry weight 

was in the range 1.55–12 t ha− 1 and growth stages ranged from BBCH 
30–65. NNI values above the line indicate no limitation of biomass 
production as there was sufficient N content, whereas NNI values below 
the line indicate a biomass limitation due to insufficient N content. 

3. Results 

3.1. Weather conditions and plant development 

The following weather and plant growth conditions refer to Experi
ment 1. The weather in 2020 displayed some significant deviations from 
the long-term average (mean 1981–2010) in some months, which had an 
effect on the wheat growth (Fig. 3). The temperature was above the 
long-term average between January and April inclusive and also in 
August. The largest difference was observed in February and April. A 
precipitation deficit was observed in January, March to May inclusive, 
and July, while in February, June, and August, there was an increased 
amount of precipitation. The most pronounced differences were in 
February, May, and June (CDC, 2020). 

At BBCH 37, the DW, N content, and NNI values were in the ranges 
1.9–3.1 t ha− 1, 1.5–2.7%, and 0.4–0.7, respectively. The aboveground N 
uptake ranged from 28.2 to 70.3 kg N ha− 1. At BBCH 61, the DW, N 
content, and NNI values were in the ranges 4.7–8.0 t ha− 1, 1.0–2.2%, 
and 0.6–1.7, respectively while the N uptake ranged from 47.2 to 
170.9 kg N ha− 1. 

N-fertilization increased the N content at BBCH 37 and 61, but only 
increased DW at BBCH 61. The NNI showed only a moderate increase at 
BBCH 37 across the N levels, whereas at BBCH 61, a more significant 
increase in the NNI could be observed with increasing N-fertilization 
(data not shown). 

3.2. Spectral detection of N uptake using different statistical measures of 
goodness, and the influence of the N levels 

Using data from all three experiments (1− 3), Table 5 presents an 
evaluation of the regression models using selected statistical measures of 

Fig. 2. Diagram showing the decomposition of the deviation sum of squares. x and y represent the independent and dependent variables with P as an example of a 
single measured value. ӯ is the arithmetic mean of all observed yi and ŷi is the estimator (regression function) of each observed yi (according to Bleymüller 
et al., 2008). 
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goodness. Polynomial regression models predominated for all data sets. 
Linear regression models were only observed at early growth stages. 
Across all, the models were highly significant. The values of R2, RMSE, 
MAE, and data points outside the agronomically relevant intervals 
increased with increasing growth stages. However, regardless of this, the 
MAE was always lower than the RMSE. For the agronomically relevant 
intervals, the proportion of the data points within the interval increased 
significantly as the interval size increased (ŷi ± 10 vs. ± 15 kg N uptake 
ha− 1). The proportion of data points falling outside the ±10 kg N uptake 
ha− 1 interval was on average approximately 30% for developmental 
stages up to BBCH 50 and approximately 50% from BBCH 50 onwards. 
In contrast, the proportion of data points outside the ± 15 kg N uptake 
ha− 1 interval for developmental stages up to BBCH 50 was on average 
approximately 12% and from BBCH 50 onward 37%. In addition, the 
number of data points outside the interval limits below 10 kg N uptake 

ha− 1 increased sharply (data not shown). High R2 values did not imply a 
low proportion of data points falling outside the agronomically relevant 
interval. The greater influence in this context was due to the stage of 
development. 

In addition, data from extreme N levels (300–360–420 kg N ha− 1) 
were included in the analysis (indicated by b). This led in part to changes 
in the different types of regression models. R2 was slightly lower (except 
in one case), while the RMSE and MAE values were slightly higher. The 
proportion of data points outside the agronomically relevant interval (ŷi 
± 10 kg N uptake ha− 1) also increased. This was also true for the wider 
interval (ŷi ± 15 kg N uptake ha− 1) except with one data set, which 
remained at the same level. 

Based on three example data sets, Fig. 4 illustrates the different in
tervals around the fitted regression line. The width of the interval was 
smallest for the confidence interval (95%), increased for the 

Fig. 3. Monthly weather conditions (January to August) at the experiment site in 2020 compared to the long-term average (1981–2010). The temperature (Temp.) is 
shown as lines and the precipitation (Prec.) as bars (CDC, 2020). 

Table 5 
Comparison of statistical measures of goodness relating to spectral recording of N uptake [kg N ha− 1] for wheat (Experiments 1–3) at different stages of development. 
Data sets labeled a include the N levels 0–240 kg N ha− 1 with 60 kg increments. Data sets labeled b include N levels 0–420 kg N ha− 1 in 60 kg increments. ŷi is the 
estimator of the polynomial (poly) and linear (lin) regression function at the point xi. Asterisks indicate the significance level (* ≙ p < 0.05, ** ≙ p < 0.01 and *** ≙ 
p < 0.001).  

Experiment Year Variety BBCH Index Type of 
Regression 

R2 RMSE 
[kg N 
ha− 1] 

RMSE 
[%] 

MAE 
[kg N 
ha− 1] 

Proportion of 
data points (%) outside 
the agronomically 
relevant interval 
[ŷi ± 10 kg 
N uptake ha− 1] 

Proportion of data points (%) 
outside the agronomically 
relevant interval 
[ŷi ± 15 kg 
N uptake ha− 1] 

1a 2020 Apostel 37 REIP poly 0.52 * **  6.6  13.1  5.2  17.9  2.6 
1a 2020 Apostel 61 REIP poly 0.83 * **  13.5  12.7  10.5  42.5  25.0 
2a 2009 Nongda318 37 REIP lin 0.44 * **  9.9  26.2  8.1  33.3  20.0 
2a 2016 Diskus 37 REIP poly 0.94 * **  8.4  11.8  6.3  20.0  15.0 
2a 2016 Rumor 37 REIP poly 0.95 * **  7.9  10.5  5.9  30.0  10.0 
2a 2018 Diskus 45 REIP poly 0.71 * **  12.5  16.5  10.8  53.3  33.3 
2a 2018 Rumor 45 REIP poly 0.72 * **  8.1  12.7  6.7  28.6  0.0 
3a 2017 Reform 32 REIP lin 0.80 * **  5.3  12.2  4.5  0.0  0.0 
3a 2017 Reform 39 REIP poly 0.95 * **  10.9  7.1  8.6  35.0  17.5 
3a 2017 Reform 65 REIP poly 0.85 * **  23.7  12.3  18.3  59.4  48.4 
2b 2009 Nongda318 37 REIP poly 0.51 * **  12.7  26.9  11.2  58.3  20.8 
2b 2016 Diskus 37 REIP poly 0.93 * **  11.7  12.3  9.1  43.8  18.8 
2b 2016 Rumor 37 REIP poly 0.91 * **  13.4  13.2  10.0  32.3  25.8 
2b 2018 Diskus 45 REIP lin 0.68 * **  14.1  16.3  12.3  54.2  33.3 
2b 2018 Rumor 45 REIP lin 0.58 * **  13.9  18.6  11.0  45.8  25.0  
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Fig. 4. Three example data sets, showing different 
stages of development (a-c), are used to compare 
different intervals to detect the N uptake [kg N 
ha− 1] using the index REIP with polynomial 
regression analysis. Asterisks indicate the signifi
cance level (*** ≙ p < 0.001). The grey areas 
show the confidence intervals (95%). The red lines 
show the limits of the prediction intervals (95%). 
The dashed (ŷi ± 10 kg N uptake ha− 1) and dotted 
(ŷi ± 15 kg N uptake ha− 1) lines show the limits of 
the agronomically relevant intervals. The year of 
the experiment, cultivar and growth stage are 
indicated at the top of the figures.   
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agronomically relevant intervals (depending on the specified error), and 
was largest for the prediction interval (95%). 

3.3. Comparison of sensor platforms and spectral indices 

Table 6 compares the suitability of the indices recorded by the UAV 
and the Phenotrac IV carrier vehicle platform for the N uptake in wheat 
at two developmental stages. The AIC criterion resulted in more poly
nomial regressions for the Phenotrac IV and more linear regressions for 
the UAV at BBCH 37, while linear regressions predominated at BBCH 61 
for both sensor platforms. Highly significant models were overall 
observed. The highest R2 and the lowest RMSE and MAE values were 
obtained at BBCH 37 by the NIR/REDEDGE index of the UAV and at 
BBCH 61 by the REIP index of the Phenotrac IV. At BBCH 37, the NDRE 
index of the UAV showed the lowest proportion of data points outside 
the agronomically relevant interval (ŷi ± 10 kg N uptake ha− 1), while at 
BBCH 61, the Phenotrac IV indices REIP, R760/R730, and R780/R740 
performed best. At BBCH 37, all indices of the UAV showed no data 
points outside the agronomically relevant interval (ŷi ± 15 kg N uptake 
ha− 1), while at BBCH 61, the Phenotrac IV index R780/R740 performed 
best. 

3.4. Influence of N content and DW on spectral indices and bands 

Table 7 shows the Pearson correlation coefficients between selected 
target traits and spectral indices and bands on the two measurement 
dates for Experiment 1. At BBCH 37, the strongest correlations for N 
content were observed across all indices and bands (highly significant) 
with a minimum and maximum r of 0.42 and 0.77, respectively. A weak 
correlation for DW was observed with a minimum and maximum r of 
0.14 and 0.23, respectively. The correlations for N content and DW were 

positive for the indices and negative for the individual bands, with the 
exception of the NIR band. 

The strength of the correlations generally increased for both traits at 
BBCH 61, and all were highly significant. Across all spectral indices and 
bands, the N content correlated more strongly with the spectral indices 
than DW, with a minimum and maximum r of 0.74 and 0.93, respec
tively. For DW, minimum and maximum r values of − 0.52 and 0.70 
were observed. The alternation of positive and negative correlations was 
as in BBCH 37. 

The use of N content as a covariate at BBCH 37 only resulted in a 
slight reduction in the r between DW and the spectral indices and bands. 
The minimum and maximum reductions of the correlation coefficient 
were 0% and 2%, respectively. A stronger influence of N content was 
observed at BBCH 61. On this measurement date, the minimum and 
maximum reduction of the r were 33% and 49%, respectively. 
Comparing the spectral indices and bands used, no significant difference 
could be observed at BBCH 37 whereas at BBCH 61 the deviations were 
slightly increased for the index NDVI and individual bands in the visible 
and red edge wavelength range. 

4. Discussion 

4.1. Weather conditions and plant development 

In Experiment 1, wheat was in the tillering stage at the end of March 
2020, as is typical for this site. Abundant precipitation in February 
resulted in cool soil temperatures and allowed only late passage of the 
field, leading to a relatively late initial N-application. Subsequently, the 
weather was sunny with strong cold winds. These weather conditions 
caused unproductive losses in the soil water and slowed early wheat 
development in spring. The subsequent level of rainfall, which was 

Table 6 
Comparison of sensor platforms and indices relating to spectral detection of N uptake [kg N ha− 1] in wheat (Experiment 1) at different developmental stages using 
different statistical measures of goodness. The best values of each statistic at each stage of development are highlighted. ̂yi is the estimator of the polynomial (poly) and 
linear (lin) regression function at the point xi. Asterisks indicate the significance level (* ≙ p < 0.05, ** ≙ p < 0.01 and *** ≙ p < 0.001).  

Sensor 
platform 

BBCH Index Type of 
Regression 

R2 RMSE 
[kg N 
ha− 1] 

RMSE 
[%] 

MAE 
[kg N 
ha− 1] 

Proportion of 
data points (%) outside the 
agronomically relevant interval 
[ŷi ± 10 kg 
N uptake ha− 1] 

Proportion of 
data points (%) outside the 
agronomically relevant interval 
[ŷi ± 15 kg 
N uptake ha− 1] 

Phenotrac 
IV 

37 NDVI lin 0.31 * **  7.9  15.7  6.4  17.9  2.6 

Phenotrac 
IV 

37 REIP poly 0.52 * **  6.6  13.1  5.2  17.9  2.6 

Phenotrac 
IV 

37 R760/R730 poly 0.46 * **  6.9  13.8  5.5  12.8  2.6 

Phenotrac 
IV 

37 R780/R740 poly 0.48 * **  6.8  13.6  5.4  10.3  2.6 

UAV 37 NDRE lin 0.57 * **  6.2  12.3  5.2  10.0  0.0 
UAV 37 NDVI lin 0.47 * **  6.9  13.7  5.6  17.5  0.0 
UAV 37 NIR/ 

GREEN 
lin 0.46 * **  6.9  13.8  5.5  15.0  0.0 

UAV 37 NIR/RED lin 0.45 * **  7.0  14.0  6.0  15.0  0.0 
UAV 37 NIR/ 

REDEDGE 
poly 0.59 * **  6.1  12.1  5.0  12.5  0.0 

Phenotrac 
IV 

61 NDVI poly 0.71 * **  17.8  16.7  13.4  52.5  35.0 

Phenotrac 
IV 

61 REIP poly 0.83 * **  13.5  12.7  10.5  42.5  25.0 

Phenotrac 
IV 

61 R760/R730 lin 0.81 * **  14.6  13.7  11.1  42.5  25.0 

Phenotrac 
IV 

61 R780/R740 lin 0.82 * **  14.2  13.3  10.9  42.5  22.5 

UAV 61 NDRE lin 0.75 * **  16.7  15.7  13.2  57.5  37.5 
UAV 61 NDVI poly 0.64 * **  19.8  18.6  15.5  62.5  37.5 
UAV 61 NIR/ 

GREEN 
lin 0.70 * **  18.0  16.9  13.7  60.0  32.5 

UAV 61 NIR/RED lin 0.64 * **  20.0  18.8  15.6  57.5  37.5 
UAV 61 NIR/ 

REDEDGE 
lin 0.75 * **  16.5  15.5  12.8  55.0  35.0  
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significantly below average, was probably not sufficient for the N-fer
tilizer to have an effect in the first and second N-applications. In addi
tion, the residual mineral nitrogen level was low. Harmsen (1984) 
pointed out that if top dressed nitrogen is not moved into deeper soil 
layers and, the topsoil also dries out, the plant will not be able to use any 
potentially available nitrogen, which will lead to an N deficiency. This is 
first of all because the N concentration in the biomass decreases while 
the growth rate remains the same, and secondly, because the growth rate 
decreases and the accumulation of dry matter is reduced (Justes et al., 
1997). In our case, the existing biomass was further reduced, evidenced 
by the reduction of secondary tillers. Averaged over a period of years, 
the biomass at this site was significantly lower in 2020 (data not shown). 
Above-average rainfall in June, however, allowed subsequent N uptake 
and favored the grain filling phase. 

At BBCH 37, the previous two N-applications raised the N content 
but not the DW. Despite an increase in N content due to N-fertilization, 
NNI values < 1 showed a severe limitation in biomass production due to 
N deficiency (data not shown). Variations in N content led to variations 
in N uptake. The generally weak expression of the treatment was due to 
the low precipitation at this site, as indicated previously. Other authors 
have pointed out that the effect of N-fertilization on N uptake varies 
from year to year (López-Bellido and López-Bellido, 2001; Delogu et al., 
1998). 

The effects of N-fertilization, especially in the first two applications, 
were demonstrated by Maidl et al. (1998) at a comparable site for wheat. 
N-fertilization at the beginning of vegetation had a positive effect on the 
number of fertile tillers per m2, while N-fertilization during stem elon
gation had a positive effect on the number of grains per ear. Small dif
ferences in biomass observed at BBCH 37 are more likely attributable to 
soil heterogeneities than to N-fertilization. Crain et al. (2013) observed 
coefficients of variation of 15–40% for DW in transect measurements at 
the end of tillering and at early stem elongation. Soil variability is given 
as the main reason for this variability, which in turn affects the water 
holding capacity and plant nutrient supply, as well as other variables 
affecting plant growth. Especially with limiting soil moisture, small 
variations in soil texture and soil cause increasingly large effects on 
plot-to-plot variability (Ceccarelli and Grando, 1996). At BBCH 61, a 
differentiation was observed in both N content and DW. At most N 
levels, NNI values were > 1, indicating no N deficiency (data not 
shown). 

4.2. Statistical measures of goodness that describe the measurement 
quality for the spectral detection of N uptake and the influence of factor 
levels 

Many previous studies use regressions to describe the relationship 
between spectral indices and the N uptake of wheat (Erdle et al., 2011; Li 
et al., 2012; Prey and Schmidhalter, 2019; Westermeier and Maidl, 

2019). The most commonly used statistical measure of goodness is R2, 
while others, such as RMSE and MAE, also describe the measurement 
quality of the regression. 

The R2 level depends, among many other influencing factors, on the 
differentiation of the N uptake. Differentiation can occur early on (cf. 
Table 5, 2016 Rumor and Diskus, BBCH 37), depending on the effect of 
the N fertilizer, but is usually more evident at later developmental 
stages, where higher R2-values are frequently observed. This is probably 
because the proportion of the explained deviation sum of squares in
creases more than the total deviation sum of squares to be explained. 
Even if evaluations refer to the same developmental stage, additional 
statistical measures with the same unit as the target trait should be used. 
While the effect of MAE is to average the absolute deviations, RMSE 
averages the squared deviations. By squaring the errors, measured 
values that are further away from the regression equation are weighted 
more heavily, resulting in RMSE values being larger than MAE values. 
However, both average the model error, which led to an under- as well 
as overestimations of measured values. In this study, we attempted to 
define error limits from an agronomical perspective. The selected error 
limits (ŷi ± 10 and ± 15 kg N uptake ha− 1) are within an acceptable 
range, including other potential sources of error in N-fertilization, such 
as the amount applied, distribution accuracy, and small-scale crop 
variability. Error limits also depend on the development stage and the 
site-specific yield potential. Assessing a model against such limits can be 
done by calculating the data points that are within or out of range, this 
provides the dataset-based probability of capturing the N uptake within 
that error range. The model is larger for the agronomically relevant 
interval than for the RMSE and MAE measures. This suggests that the 
residuals are scattered over a wide range, leading to a more positive 
representation of the model error for RMSE and MAE values than 
agronomically relevant limits. 

The influence of extreme N levels on the statistics was also investi
gated. Only data sets collected at a relatively early stage of development 
were available for this purpose. As indicated previously, further differ
entiation, particularly of high N levels, was not possible, which led to 
rather lower R2 values but increased RMSE, MAE, and the proportion of 
data points outside the agronomical limits. Evaluating the models based 
on these statistics distorts the quality of the spectral detection of N up
take from an agronomical and application-oriented point of view. 

4.3. Consideration of agronomical aspects in the spectral assessment of N 
uptake 

In this study, regression function errors were defined to assess the 
spectral detection of the N uptake (ŷi ± 10 and ± 15 kg N uptake ha− 1). 
These interval limits depend on the site-specific N uptake in conjunction 
with subsequent nitrogen fertilization and the respective development 
stage (Fig. 4). Accordingly, high-yielding sites with N-fertilization 

Table 7 
Pearson correlation coefficients between selected target traits and spectral indices and bands (corresponding to UAV bands). Asterisks indicate the significance level (* 
≙ p < 0.05, ** ≙ p < 0.01 and *** ≙ p < 0.001). 1) Partial correlation with N content as a covariate.  

Sensor 
platform 

Spectral 
index/band 

BBCH 37 BBCH 61 

N content DW DW1) N content DW DW1) 

Phenotrac IV NDVI 0.59 * **  0.15  0.13 0.85 * ** 0.63 * ** 0.20 
Phenotrac IV REIP 0.70 * **  0.21  0.22 0.93 * ** 0.69 * ** 0.34 * 
Phenotrac IV R760/R730 0.65 * **  0.19  0.18 0.91 * ** 0.70 * ** 0.36 * 
Phenotrac IV R780/R740 0.67 * **  0.18  0.18 0.91 * ** 0.70 * ** 0.37 * 
UAV NDRE 0.77 * **  0.23  0.26 0.88 * ** 0.67 * ** 0.29 
UAV NDVI 0.71 * **  0.18  0.18 0.83 * ** 0.58 * ** 0.11 
UAV NIR/GREEN 0.69 * **  0.21  0.22 0.85 * ** 0.65 * ** 0.26 
UAV NIR/RED 0.69 * **  0.18  0.18 0.81 * ** 0.61 * ** 0.21 
UAV NIR/REDEDGE 0.77 * **  0.23  0.26 0.88 * ** 0.68 * ** 0.31 
UAV GREEN -0.70 * **  -0.21  -0.22 -0.81 * ** -0.56 * ** -0.09 
UAV RED -0.72 * **  -0.17  -0.17 -0.80 * ** -0.52 * ** -0.03 
UAV REDEDGE -0.70 * **  -0.19  -0.19 -0.78 * ** -0.52 * ** -0.04 
UAV NIR 0.42 * *  0.14  0.12 0.74 * ** 0.62 * ** 0.29  
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adjusted for high N uptake allow wider interval limits, as do late 
developmental stages. 

N-fertilization applications in winter wheat can be done up to BBCH 
50. If they are based on spectral information, the detection error should 
be as small as possible. However, if the chosen error limits are too small, 
the probability of the measured values lying outside these intervals in
creases significantly. This trade-off should be considered with respect to 
the given data set. We assume that a probability of at least 80% of the 
data points will be within the interval, resulting in a ± 15 kg N uptake 
ha− 1 interval being the smallest one feasible in this study. At the early 
stages of stem elongation, a ± 10 kg N uptake ha− 1 interval may also be 
a reasonable choice (cf. Table 5, 2017 Reform, BBCH 32). However, this 
needs to be further evaluated. At later development stages, when N- 
fertilization is no longer possible, larger probability and/or error limits 
are possible in the spectral assessment of N-fertilization. In addition, 
within the chosen developmental stages, higher aboveground biomass 
did not result in a higher proportion of data points outside the agro
nomic error limits. Recommendations for judging the quality or limits of 
the spectral assessment of N-fertilization should not be based solely on 
R2. 

Although the indices used are suitable for the spectral detection of N 
uptake, an unexplained scatter was determined in the models, which can 
probably be attributed to three main factors. On the one hand, the 
vertical nitrogen distribution in the wheat plant has to be considered, 
however, this cannot be fully detected by spectral means, despite the 
available choice of single sensor angles. In this study, destructively ob
tained N content values were determined as the mean of the entire plant, 
which cannot be fully mimicked by spectral detection due to the vertical 
gradients in the nitrogen content of the plants (Li et al., 2013) and can 
therefore lead to differences. The reference area of the destructively 
collected data represents a further potential significant source of error, 
although fairly large areas were sampled in this study. Furthermore, the 
spectral value of the plot represents an average value, which is calcu
lated from strongly scattered individual values. 

4.4. Comparison of sensor platforms and spectral indices 

To compare different sensor platforms and spectral sensors, a UAV 
equipped with a multispectral sensor and a ground-based vehicle 
(Phenotrac IV) with a hyperspectral sensor were employed. At BBCH 37, 
the UAV, and at BBCH 61, the Phenotrac IV platform were able to 
capture the N uptake of wheat comparatively slightly better with dif
ferences however being small. 

The main difference between the sensors is their bandwidth. How
ever, after calculating the NDVI of the Phenotrac IV spectral information 
with the same bandwidths as used for the UAV NDVI, no differences in 
sensitivity were observed (data not shown). Due to the low biomass and 
the resulting presumed influence of soil heterogeneities, the index SAVI 
(Huete, 1988) was also calculated from the hyperspectral data (Pheno
trac IV). The SAVI delivered no improvement in sensitivity (data not 
shown) therefore we conclude that the measurements were not mark
edly affected by soil signals. With the Phenotracʼs IV FOV of 24◦ and the 
measuring distance to the canopy of 0.8 m, both nadir and off-nadir 
recording of the canopy take place. Aparicio et al. (2004) observed an 
influence of off-nadir measurements on the spectral indices. This was 
due to the relatively higher reflectance in the visible range compared to 
the near-infrared wavelength range caused by the higher influence of 
stems. This particularly occurs in canopies with a high leaf area index 
(LAI). At low LAI, the reflection in the near-infrared wavelength range is 
more pronounced and leads to higher NDVI values for off-nadir mea
surements. At BBCH 37, slightly higher NDVI values from the Phenotrac 
IV were observed compared to the NDVI of the UAV (data not shown). 
Further, for indices calculated from near-infrared reflectance, poly
nomial regressions prevailed (Table 6). This indicates that in given cases 
index values were higher at the same N uptake. This is in line with the 
findings by Mistele and Schmidhalter (2010), showing that with 

off-nadir measurements, more biomass is found in the sensor`s field of 
view, and so the signal intensity increases. Gnyp et al. (2015) reported 
advantages of off-nadir compared to nadir measurements in detecting N 
uptake at early and late stages of wheat development. They also 
observed saturation effects for both measurement geometries. In 
contrast, no saturation effects were observed for any index in this study. 
This is rather exceptional at this site, but can be explained by the strong 
reduction in biomass production obtained in the experimental year. At 
the same site, Mistele et al. (2004) observed saturation effects for all 
indices in a two-year nitrogen increase experiment with wheat in 
detecting N uptake. This effect increased at later development stages. 
However, the authors pointed out that biomass was more important than 
the developmental stage. Zheng et al. (2018) also determined advan
tages of UAV over ground-based spectral measurements for pre-heading 
stages in detecting the N content of rice. The authors attribute such 
differences to the different measuring areas of the sensors. This, how
ever, can be ruled out in this study, since the areas measured were 
comparable. In contrast, Gnyp et al. (2016) found no difference between 
UAV and ground-based wheat measurements in detecting N uptake 
within a single growing season. 

Regardless of the sensor platform, indices combining the REDEDGE 
and NIR bands performed best at BBCH 37 and 61 across all given sta
tistics. This is in line with other studies (Mistele and Schmidhalter, 2010; 
Erdle et al., 2011; Gnyp et al., 2016; Prey and Schmidhalter, 2019). In 
addition, testing other commonly used spectral indices showed no 
improvement in the assessment of the N uptake. 

4.5. Influence of N content and DW on spectral reflectance and indices 

Pearson correlation coefficients were calculated between the N 
content and DW traits and spectral indices and bands from data obtained 
in Experiment 1 (Table 7). The strength of the correlation indicates the 
spectral detectability of the traits contributing to N uptake. 

Across the two measurement dates, the correlation coefficients of all 
indices and bands were constantly higher for N content than for DW. In 
contrast, Elsayed et al. (2018) observed much weaker correlation co
efficients for N content at early and late tillering stages compared to DW. 
Lilienthal (2014) reported no relationship between spectral indices and 
N content, whereas Prey and Schmidhalter (2019) observed both sig
nificant and non-significant relationships for N content across years and 
developmental stages. At different developmental stages across two 
growing seasons, Erdle et al. (2011) found slightly higher coefficients of 
determination (R2) across all indices for the assessment of DW in wheat 
compared to N content. However, R2 was high for both traits, and N 
content always increased with increasing N-fertilization, although sig
nificant differences were observed between growing seasons. DW did 
not always increase with increasing N-fertilization, especially between 
the N levels 160–220 kg N ha− 1. The different results suggest that the 
spectral detection of N content and DW may vary depending on the 
location, year, and variety. The main cause seems to be the annual 
variation in plant growth due to differences in weather conditions, 
mainly characterized by variations in precipitation, height and distri
bution. In the year of investigation, 2020, limiting soil moisture resulted 
in a greater differentiation of the N content compared to DW, thus 
improving the spectral detectability of this trait. 

Next, N content was used as a covariate to assess the influence on the 
correlation between DW and the spectral indices and bands (Table 7). At 
BBCH 37, the influence of the N content on DW was low, despite a 
relatively high correlation of the N content with the spectral indices and 
bands used. This can be explained by the generally low correlation of 
DW with the spectral indices and bands due to the lack of N-fertilization 
and, in turn, differentiation of this trait. At BBCH 61, the N content 
significantly influenced the correlation of all indices and bands with 
DW, particularly in the visible and red edge wavelength range. DW 
differed more at this developmental stage than at BBCH 37. The sensi
tivity of the just mentioned spectral ranges is in line with other studies 
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indicating the promoting influence of nitrogen on pigments which in 
turn influence light absorption (Thomas and Gausman, 1977; Fernandez 
et al., 1994; Gitelson et al., 2003; Lilienthal, 2014). However, the N 
content still showed a significant influence on N uptake, which was 
probably due to the effect of lower dilution caused by the generally 
weaker development of DW (Mistele and Schmidhalter, 2008). This 
assumption is further supported by the high NNI values (data not 
shown). 

When biomass differentiation is insufficient, N content can be an 
important additional parameter. However, differentiating N content as a 
basic trait of N uptake does not appear sufficient for spectral differen
tiation of N uptake. Furthermore, it should be pointed out that N content 
and DW at the canopy level represent the sum of the individual plant 
organs. For DW, N content, and N uptake, the leaf is the organ of the 
plant that lends itself best to spectral detection (Prey et al., 2020). 

5. Conclusion 

The results of this study suggest, that from an agronomical 
perspective it is not sufficient to use only R2 as a statistical measure for 
judging the quality of spectral N uptake assessments, as done in nitrogen 
fertilization experiments, and so it needs to be augmented with addi
tional information. The R2 values are influenced by the differentiation in 
N uptake, which is in turn influenced by both the variation in N-fertil
ization and the developmental stage, which, again, may affect the 
interpretation. Intrinsic confidence intervals defined as error limits 
based on agronomical considerations improve the validity of regression 
models. Up to BBCH 50, where N-fertilization actions can be varied, a 
± 15 kg N uptake ha− 1 error limit was deemed applicable to the eval
uation of multiple experiments over several years with different sensors. 
In addition, extreme N levels in field experiments may bias regression 
models. UAV-based multispectral as well as hyperspectral vehicle-based 
reflectance were equally suitable in detecting the N uptake of wheat. 
Regardless of the sensor platform, indices combining REDEDGE and NIR 
bands performed best. For the spectral detection of the N uptake, the 
differentiation of biomass was more crucial than the differentiation of 
the N content. Besides common statistical measures in the evaluation of 
reflectance-based detection of the N uptake in wheat, agronomically- 
supported detection limits should be further considered. 
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