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a b s t r a c t

We consider vector-valued solutions to a linear transmission problem, and we prove
that Lipschitz-regularity on one phase is transmitted to the next phase. More
exactly, given a solution u : B1 ⊂ Rn → Rm to the elliptic system

div((A + (B − A)χD)∇u) = 0 in B1,

where A and B are Dini continuous, uniformly elliptic matrices, we prove that if
∇u ∈ L∞(D) then u is Lipschitz in B1/2. A similar result is also derived for the
parabolic counterpart of this problem.
©2022 The Authors. Published by Elsevier Ltd. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

1.1. Background

This paper concerns optimal regularity results for vector-valued solutions to linear elliptic systems (and
their parabolic counterparts), with free boundaries, for the so-called transmission problem

div((A+ (B −A)χD)∇u) = 0 in B1; (1.1)

see below for notational specification and exact definitions.
The transmission problem has long been under scrutiny and subject to intense study from various aspects:

existence, regularity, geometry of the free boundary, etc. Its importance has shown to be central in many
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applications when composite materials are used. To avoid digression from the main mathematical problem,
we refer the interested reader to two books that cover such applications [1,2].

In this paper we introduce yet another type of question, concerning the fine regularity of solutions. Indeed,
under rather general assumptions, we prove that if a solution to this problem is Lipschitz in D, then it is

ipschitz in the ball B1/2. The proof is inspired by the approach in [3,4], where the authors proved similar
esults for the scalar obstacle-type problems.

Our results can be set in the context of optimal regularity of solutions, subject to harmonic continuation
roperty (see Section 4 for an explanation) in classical inverse-conductivity problem, as treated in [5] (see
lso [6] for the two-dimensional case). Related results have been considered in [7,8]. It needs to be remarked
hat the techniques from these references do not apply to our setting, since our problem has different
rerequisites and is of a different nature. Indeed, under harmonic-continuation-property assumption, one
ses the well-established monotonicity formula to prove Lipschitz regularity of solutions, as done in [5].
he approach of [5] to prove Lipschitz regularity for solutions could be extended also to the case of C2-
ontinuation-property; see Section 4.1 for some explanation. Our approach is more general, as we only assume
he solution to be Lipschitz “on one side”, i.e., ∇u ∈ L∞(D), and the proof applies to linear systems and
ossibly to several other equations. We shall discuss this further, along with other aspects of the problem,

n Section 4.
It is noteworthy that we do not impose any assumption on the regularity of ∂D. As for regular boundaries,

ne can obtain the Lipschitz regularity of u across ∂D, without the assumption ∇u ∈ L∞(D). For instance,
n [9], it is proved that ∇u ∈ L∞ when ∂D is C1,α, and that the derivatives of u are Hölder continuous up to
D from each side. Let us also mention a classical work [10] that proves square integrability of the gradient
long ∂D when ∂D is assumed to be Lipschitz regular.

.2. Definitions and standing assumptions

Throughout the paper, the parameters n, m, λ, Λ, and ω will be fixed, unless stated otherwise. By (f)z,r,
e shall denote the average of f over the ball Br(z), i.e.,

(f)z,r = 1
|Br(z)|

∫
Br(z)

f(x) dx.

In addition, we shall simply write (f)r for (f)0,r. In Section 3, we shall follow the usual parabolic terminology:
parabolic cubes Qr(X) = Br(x) × (t − r2, t) with X = (x, t) ∈ Rn+1, Qr = Qr(0), the parabolic distance
dp(X,X ′) =

√
|x− x′|2 + (t− t′), and the parabolic boundary

∂pQr(X) = (Br(x) × {t− r2}) ∪ (∂Br(x) × (t− r2, t)).

The following elliptic system and also its parabolic counterpart (see (1.7)) are the main equations treated
in this paper:

div((A+ (B −A)χD)∇u) = 0 in B1 (1.2)

where A = (aαβ
ij )1≤α,β≤n

1≤i,j≤m , and B = (bαβ
ij )1≤α,β≤n

1≤i,j≤m are coefficient mappings, and D ⊂ Rn is an open subset.
We say u is a weak solution of (1.2) in B1, if u ∈ W 1,2(B1;Rm) and∫

B1

(
aαβ

ij +
(
bαβ

ij − aαβ
ij

)
χD

)
∂βu

j∂αφ
i dx = 0,

for any φ ∈ W 1,2
0 (B1;Rm), where we used summation convention over repeated indices.
We specify the conditions on the coefficients A and B as follows:
2



A. Figalli, S. Kim and H. Shahgholian Nonlinear Analysis 221 (2022) 112911

N
w

1

T
u

w

w
R

(i) (Ellipticity) There exists a constant λ ∈ (0, 1) such that

min
{

inf
B1
aαβ

ij ξ
i
αξ

j
β , inf

B1
bαβ

ij ξ
i
αξ

j
β

}
≥ λ|ξ|2, (1.3)

for any ξ ∈ Rmn.
(ii) (Boundedness) With the same λ as above,

max
{

sup
B1

|aαβ
ij |, sup

B1
|bαβ

ij |

}
≤ 1
λ
, (1.4)

for any 1 ≤ i, j ≤ m and any 1 ≤ α, β ≤ n.
(iii) (Regularity) There exist a Dini modulus of continuity4 ω and a constant Λ > 0 such that aαβ

ij ∈
C0,ω(B1) and [

aαβ
ij

]
C0,ω(B1)

≤ Λ, (1.5)

for each 1 ≤ α, β ≤ n and each 1 ≤ i, j ≤ m.

ote that we only require B to be bounded measurable, where B is the matrix coefficient for the domain D

here u is assumed to be Lipschitz.

.3. Main results

Our main theorem for elliptic system is the following.

heorem 1.1. Let D ⊂ Rn be an open set, and A,B : B1 → Rn2m2 satisfy (1.3), (1.4), and (1.5). Let
∈ W 1,2(B1;Rm) be a weak solution of (1.2) in B1, and assume further that ∇u ∈ L∞(B1 ∩ D). Then

u ∈ W 1,∞(B1/2;Rm) and

∥∇u∥L∞(B1/2) ≤ C(∥u∥L2(B1) + ∥∇u∥L∞(B1∩D)), (1.6)

here C > 0 depends only on n, m, λ, Λ, and ω.

We also prove the parabolic counterpart of the above regularity theory for weak solutions of

∂tu = div((A+ (B −A)χD)∇u) in Q1 = B1 × (−1, 0), (1.7)

here A and B are now also time-dependent, ∇u is the spatial gradient of u, and D is an open subset in
n+1. We call u a weak solution of (1.7) in Q1, provided

u ∈ L∞((−1, 0);L2(B1;Rm)) ∩ L2((−1, 0);W 1,2(B1;Rm))

and ∫
Q1

(
aαβ

ij +
(
bαβ

ij − aαβ
ij

)
χD

)
∂βu

j∂αφ
i dX =

∫
Q1

ui∂tφ
i dX,

for any φ ∈ W 1,2((−1, 0);L2(B1;Rm)) ∩ L2((−1, 0);W 1,2(B1;Rm)) with φ(·,−1) = φ(·, 0) = 0 on B1. Here
and in the sequel, we denote dp(X,Y ) =

√
|x− y|2 + (t− s) for X = (x, t) and Y = (y, s).

4 That is, ω : (0, 1] → (0, ∞) is a non-decreasing function satisfying

lim
r→0

ω(r) = 0 and

∫ 1

0

ω(r)
r

dr < ∞.
3
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Theorem 1.2. Let D ⊂ Rn+1 be an open set, and let A,B : Q1 → Rn2m2 satisfy (1.3), (1.4), and
1.5) (with B1 replaced by Q1 = B1 × (−1, 0)). Suppose that u is a weak solution of (1.7) in Q1 satisfying
u ∈ L∞(Q1 ∩D). Then for any X,Y ∈ Q1/2 with X ̸= Y ,

|u(X) − u(Y )|
dp(X,Y ) ≤ C

(
ess sup
t∈(−1,0)

∥u(·, t)∥L2(B1) + ∥∇u∥L∞(Q1∩D)

)
, (1.8)

here C > 0 depends only on n, m, λ, Λ, and ω.

emark 1.3. Theorems 1.1 and 1.2 can be easily extended to the case when the right hand sides of (1.1)
nd (1.7) are replaced with divF , for some Dini continuous mapping F . Here we treat the homogeneous
ight hand side only for the sake of simplicity. We shall leave such a generalisation to the interested reader.

.4. Organisation of the paper

The paper is organised as follows. In Sections 2 and 3, we prove respectively Theorem 1.1 and Theorem 1.2.
n Section 4, we shall discuss some relevant problems at a heuristic level, and present some open questions
or the interested reader. In Appendix, we include some technical lemmas.

. Proof of Theorem 1.1 : elliptic case

As mentioned before, the analysis here follows closely Sections 2.1 and 2.2 in [4]. To simplify the
xposition, we shall assume, in addition to the assumptions in Theorem 1.1, that

∥u∥L2(B1) + ∥∇u∥L∞(D∩B1) ≤ 1, (2.1)

nless stated otherwise. The general case can be recovered by considering

ũ = u

∥u∥L2(B1) + ∥∇u∥L∞(D∩B1)
.

emma 2.1. Under the assumption of Theorem 1.1 and (2.1), one has ∇u ∈ BMO(B3/4;Rmn), and
∈ Cα(B3/4;Rm) for any α ∈ (0, 1). In particular, for each z ∈ B1/2 and any r ∈ (0, 1

4 ), there exists a
ectorial affine function ℓz,r such that ∫

Br(z)
|∇u− ∇ℓz,r|2 dx ≤ Crn, (2.2)

here C > 0 depends only on n, m, λ, Λ, and ω.

roof. Note that, due to the assumptions (1.4) and (2.1), our Eq. (1.2) can be written as

div(A∇u) = divF, with F = (A−B)χD∇u ∈ L∞(B1;Rmn).

Hence, choosing a vectorial affine function ℓz,r satisfying ∇ℓz,r = (∇u)z,r, the conclusion follows by ellipticity
regularity theory (e.g., Theorem 4.1 in [11]), thanks to the assumption that A is Dini continuous on B1. □

The following lemma is the analogue of Proposition 2.4 in [4]. We need the following definition:

Dz,r = {x ∈ B1 : rx+ z ∈ Br(z) ∩D}, (2.3)

and D = D .
r 0,r

4
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Lemma 2.2. Assume that ω(1) ≤ 1
2 , z ∈ B1/2, r ∈ (0, 1

4 ), and let ℓz,r be as in Lemma 2.1. There exist
onstants c > 1 and M > 1, depending only on n, m, λ, Λ, and ω, such that if |∇ℓz,r| ≥ M , then

|Dz,r/2| ≤ |Dz,r|
2n

+ c ω(r)3n. (2.4)

Proof. Throughout the proof, C and Cp will be universal constants, depending only on n, m, λ, Λ, and
, with Cp further depending on p, and they may vary from one appearance to another. With no loss of
enerality, we can assume z = 0.

Fix r ∈ (0, 1
2 ), and let ℓr = ℓ0,r be a vectorial affine function satisfying (2.2). In what follows, we shall

write
ur(x) = u(rx)

r
. (2.5)

Let vr be the weak solution of {
div(A(0)∇vr) = 0 in B1,

vr − (ur − ℓr) ∈ W 1,2
0 (B1;Rm).

(2.6)

Then the interior gradient estimate for constant elliptic systems, followed by the Poincaré inequality, yields

∥∇vr∥L∞(B2/3) ≤ C∥vr − (vr)1∥L2(B1) ≤ C∥∇vr∥L2(B1) (2.7)

(recall that (vr)1 denotes the average of vr over B1). Using vr − (ur − ℓr) ∈ W 1,2
0 (B1;Rm) as a test function

in (2.6), we obtain

λ∥∇vr∥2
L2(B1) ≤

∫
B1

aαβ
ij (0)∂αv

i
r∂βv

j
r dx =

∫
B1

aαβ
ij (0)∂αv

i
r∂β(uj

r − ℓj
r) dx

≤ C

λ
∥∇vr∥L2(B1)∥∇(ur − ℓr)∥L2(B1),

and consequently
∥∇vr∥L2(B1) ≤ C∥∇(ur − ℓr)∥L2(B1).

Combining this inequality with (2.7), and then employing the L2 − BMO estimate (2.2) for ∇u, we arrive
at

∥∇vr∥L∞(B2/3) + ∥∇vr∥L2(B1) ≤ C. (2.8)

We now observe that the vector-valued function

wr = ur − ℓr − vr

is a weak solution of {
div(Ar∇wr) = div(Fr + ϕr) in B1,

wr ∈ W 1,2
0 (B1;Rm),

where
Ar(x) = A(rx), ϕr(x) = (Ar(0) −Ar(x))(∇ℓr + ∇vr),
Br(x) = B(rx), and Fr(x) = (Ar(x) −Br(x))χDr ∇ur.

(2.9)

Recalling (2.8), we have
∥ϕr∥L∞(B2/3) + ∥ϕr∥L2(B1) ≤ Cω(r)(|∇ℓr| + 1). (2.10)

n the other hand, the Lipschitz regularity assumption (2.1) on u|D, together with (1.4), implies that for
ny 1 ≤ p < ∞ ∫

|Fr|p dx ≤ Cp|Dr|. (2.11)

B1

5
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Since wr = 0 on ∂B1, classical energy estimates combined with (2.10) and (2.11) yield∫
B1

|∇wr|2 dx ≤ C

∫
B1

|Fr + ϕr|2 dx

≤ C
(
|Dr| + ω(r)2(|∇ℓr| + 1)2) . (2.12)

ext, it follows from the local Lp-theory (Theorem 7.2 in [12]), along with (2.12), (2.10), and (2.11), that
or each p > n it holds∫

B1/2

|∇wr|p dx ≤ Cp

(
∥∇wr∥p

L2(B2/3) +
∫

B2/3

|Fr + ϕr|p dx

)
≤ Cp

(
|Dr| + (ω(r))p (|∇ℓr| + 1)p)

.

(2.13)

Finally, combining (2.8), (2.13), and (2.1), and using that

∇(vr + wr) = ∇ur − ∇ℓr,

for any p > n we obtain

|Dr ∩B 1
2
||∇ℓr|p ≤

∫
Dr∩B 1

2

(
|∇vr| + |∇wr| + |∇ur|

)p
dx

≤ 3p

∫
Dr∩B 1

2

(
|∇vr|p + |∇wr|p + |∇ur|p

)
dx

≤ Cp

(
|Dr| + ω(r)p(|∇ℓr| + 1)p

)
.

(2.14)

Finally, we choose p = 3n and M = (22nC3n)1/(3n) in the statement of the proposition, where C3n

is the constant appearing in the last line of (2.14) with p = 3n. In this way, we have by assumption
that |∇ℓr|3n ≥ M3n = 22nC3n. Hence, dividing by |∇ℓr|3n both sides of (2.14), and using the relation
|Dr/2| = 2n|Dr ∩B1/2|, we get

|Dr/2| ≤ 1
2n

|Dr| + Cω(r)3n.

his finishes the proof. □

Now we are ready to prove the main theorem of this section. With Lemma 2.2 at hand, one can proceed
s in the proof of Theorem 1.1 in [4], with some modification due to the dependence of A on x.

roof of Theorem 1.1. As discussed before, we can assume that u satisfies (2.1). Also, up to rescaling,
e can assume that ω(1) ≤ 1

2 .
We shall prove that, for every Lebesgue point z ∈ B1/2 \D of ∇u ∈ L2(B1), it holds

|∇u(z)| ≤ C0M, (2.15)

here C0 > 1 depends only on n, m, λ, Λ, and ω. Since almost every point in B1/2 \D is a Lebesgue point
f ∇u, this will conclude the proof.

Without loss of generality, we can assume that z = 0. For r ∈ (0, 1
2 ), we denote by ℓr a vectorial affine

unction as in Lemma 2.1. As in the proof of Theorem 1.1 in [4], we split the argument into two cases:

Case 1) lim infk→∞ |∇ℓ2−k | < 2M ,
Case 2) lim infk→∞ |∇ℓ2−k | ≥ 2M ,
where M > 1 is the large constant chosen from Lemma 2.2.
6
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In what follows, we shall denote by C a generic constant that depends only on n, m, λ, Λ, and ω, which
may vary upon each occasion.

In Case 1, the result follows immediately from the L2 − BMO estimate (2.2), and the assumption that
he origin is a Lebesgue point of ∇u.

In Case 2, we define k0 ∈ N as

k0 = min{k ∈ N : |∇ℓ2−j | ≥ M for any j ≥ k}.

In virtue of Caccioppoli’s inequality for (1.2) and (2.1), we know that ∥∇u∥L2(B1/2) ≤ C, so it follows by
2.2) that

|∇ℓ2−1 | ≤ ∥∇u∥L2(B1/2) + C ≤ 2C.

ence, by taking M larger if necessary, we can ensure that k0 ≥ 2,
By the definition of k0, we have |∇ℓ2−k0+1 | < M . Also, (2.2) implies that |∇ℓr − ∇ℓr/2| ≤ C for any

∈ (0, 3
5 ). Thus

|∇ℓ2−k0 | ≤ C +M. (2.16)

n the other hand, since
|∇ℓ2−k0−j | ≥ M, for any j ∈ N,

e can apply (2.4) at each level r = 2−k0−j to get

|D2−k0−j | ≤ C

(
2−jn +

j−1∑
i=0

2−inω(2−k0−j+i)3n

)
, (2.17)

here we also used |D2−k0 | ≤ |B1|.
Without loss of generality, assume that u(0) = ℓr(0) = 0, let ur be as in (2.5), and define

ŵr = ur − ℓr,

hanks to (2.2) and Poincaré inequality, we have

∥ŵr∥W 1,2(B1) ≤ C. (2.18)

oreover, ŵr is a weak solution of

div(Ar∇ŵr) = div(Fr + ϕ̂r) in B1, (2.19)

here Ar and Fr are as in (2.9), while

ϕ̂r = (Ar(0) −Ar)∇ℓr.

hanks to (1.4), (2.1), (2.17), and the scaling relation |Dr ∩B2−j | = 2−jn|D2−jr|, for any integer j ≥ 1 we
btain ∫

B2−j

|F2−k0 |2 dx ≤ C|D2−k0 ∩B2−j |

≤ 2−jnC

(
2−jn +

j−1∑
i=0

2−jnω(2−k0−j+i)3n

)
.

n addition, it follows from (1.5) and (2.16) that∫
|ϕ̂2−k0 |

2
dx ≤ 2−jnC ω(2−k0−j)2(1 +M)2.
B2−j

7
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Combining these two estimates together, we arrive at∫
Bρ

|F2−k0 + ϕ̂2−k0 |
2
dx ≤ CM2ρnψ(ρ)2, for all ρ ∈ (0, 1/2), (2.20)

here

ψ(ρ) = ρn/2 +
(
ρn

∫ 1

ρ

ω(τ)3n

τn+1 dτ

)1/2

+ ω(ρ). (2.21)

Since ω is a Dini modulus of continuity, it follows from Lemma A.2 (with α = 3
2n > 1) that

∫ 1/2
0 ρ−1ψ(ρ) dρ <

. In addition, one can easily verify that ψ(ρ) is non-decreasing in ρ ∈ (0, 1
2 ) and limρ→0 ψ(ρ) = 0. Hence,

as in (2.21) is also a Dini modulus of continuity.
Recalling that ŵ2−k0 is a weak solution of (2.19) satisfying (2.18), one can deduce from [13, Proposition

.1, Remark 2.2] along with (2.20) that∫
Bρ

|ŵ2−k0 − ℓ̂|
2
dx ≤ CM2ρn+2ψ1(ρ)2, for all ρ ∈ (0, 1/4), (2.22)

or certain modulus of continuity ψ1 depending only on ψ, and some vectorial affine function ℓ̂ satisfying

|ℓ̂(0)| + |∇ℓ̂| ≤ CM. (2.23)

n view of (2.19), we have

div(A2−k0 ∇(ŵ2−k0 − ℓ̂)) = div(F2−k0 + ϕ̃2−k0 ) in B1,

n the weak sense, where
ϕ̃2−k0 = ϕ̂2−k0 + (A2−k0 (0) −A2−k0 )∇ℓ̂.

ence, we can deduce from Caccioppoli inequality, (1.5), (2.20), (2.22), and (2.23), that

∫
Bρ

|∇ŵ2−k0 − ∇ℓ̂|
2
dx ≤ C

∫
Bρ

(
|ŵ2−k0 − ℓ̂|

2

ρ2 + |F2−k0 + ϕ̃2−k0 |2
)
dx

≤ CM2ρn
(
ψ1(ρ)2 + ψ(ρ)2 + ω(ρ)2)

≤ CM2ρn,

for any ρ ∈ (0, ρ0), where ρ0 is chosen so as to satisfy ψ1(ρ0)2 + ψ(ρ0)2 + ω(ρ0)2 ≤ 1. Since ∇u2−k0 =
∇ℓ2−k0 + ∇ŵ2−k0 , we deduce from (2.16), (2.23), and the last inequality, that

∫
Bρ

|∇u2−k0 |2 dx ≤ C

(
|∇ℓ2−k0 |2ρn +

∫
Bρ

|∇ŵ2−k0 |2 dx

)
≤ CMρn,

for any ρ ∈ (0, 1
2 ). Dividing by ρn both sides, letting ρ → 0, and recalling that the origin is a Lebesgue point

f ∇u (and thus that of ∇u2−k0 ), we arrive at

|∇u(0)| = |∇u2−k0 (0)| ≤ CM,

proving (2.15) for z = 0.
Repeating this argument at any Lebesgue point z ∈ B \D, the proof is finished. □
1/2

8
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3. Proof of Theorem 1.2 : parabolic case

This section is concerned with transmission problems of uniformly parabolic systems,

∂tu = div((A+ (B −A)χD)∇u) in Q1, (3.1)

where A = (aαβ
ij )1≤α,β≤n

1≤i,j≤≤m and B = (bαβ
ij )1≤α,β≤n

1≤i,j≤≤m are assumed to verify (1.3), (1.4), and (1.5), with B1
replaced by the unit parabolic cube, Q1 = B1 × (−1, 0) ⊂ Rn+1; in particular, the Dini continuity (1.5),
should now be understood in the parabolic terminology, i.e.,

|aαβ
ij (X) − aαβ

ij (Y )| ≤ Λω(dp(X,Y )),

for any X = (x, t), Y = (y, s) ∈ Q1, where dp(X,Y ) =
√

|x− y|2 + |t− s| is the parabolic distance between
X and Y .

Most of the argument follows Section 2 and [14]. We shall focus on the part that requires new ideas, and
omit the arguments that can be derived from the previous section with minor modification.

Analogously to the elliptic case, in addition to the assumptions of Theorem 1.2, we can always suppose
that

ess sup
t∈(−1,0)

∫
B1

|u(x, t)|2 dx+ ∥∇u∥L∞(D∩Q1) ≤ 1. (3.2)

Let us begin with the log-Lipschitz type estimate.

emma 3.1. There exists a positive constant C, depending only on n, m, λ, Λ, and ω, such that the following
olds: for each Z = (z, s) ∈ Q1/2 and r ∈ (0, 1

4 ), there exists some time-independent vectorial linear function
Z,r for which |∇ℓZ,r| ≤ C| log r| and

sup
t∈(−r2+s,s)

∫
Br(z)

|u(x, t) − u(z, s) − ℓZ,r(x)|2 dx ≤ Crn+2. (3.3)

Proof. Note that u is a weak solution of

∂tu− div(A∇u) = divF in Q1,

where F = (A − B)χD∇u. Due to (1.4) and (3.2), ∥F∥L∞(Q1) ≤ C for some C > 0, depending only on n,
, and λ. Hence, we can apply Lemma A.3 for each Z ∈ Q1/2. This yields a constant vector aZ ∈ Rm,
ith |aZ | ≤ C, and a time-independent vectorial linear function ℓZ,r, for each r ∈ (0, 1

4 ), such that
∇ℓZ,r| ≤ C| log r| and

ess sup
t∈(−r2+s,s)

∫
Br(z)

|u(x, t) − aZ − ℓZ,r(x)|2 dx ≤ Crn+2.

n particular, using the bound |∇ℓZ,r| ≤ C| log r| we easily deduce that aZ = u(Z) for a.e. Z ∈ Q1/2, and
hat |aZ − aY | ≤ Cdp(Z, Y )| log dp(Z, Y )| for any Z, Y ∈ Q1/2. Thus, after redefining u in a set of null
easure if necessary, we can conclude that u is continuous in Q1/2, and aZ = u(Z) for all Z ∈ Q1/2. Due to

he continuity, we can also replace ess sup (in t) with sup. This finishes the proof. □

Define, for each r ∈ (0, 1
4 ),

DZ,r = {(x, t) ∈ Q1 : (rx, r2t) + Z ∈ Qr(Z) ∩D}, (3.4)

nd Dr = D0,r. We shall prove a geometric decay of the Lebesgue measure of DZ,r, provided that |∇ℓZ,r|
s sufficiently large.
9
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Lemma 3.2. Assume that ω(r)| log r| ≤ 1
2 for all r ∈ (0, 3

4 ]. Let Z ∈ Q1/2 and r ∈ (0, 1
4 ) be given, and let

Z,r be as in Lemma 3.1 with r ∈ (0, 1
4 ). There are some constants C > 0 and M > 1, depending only on n,

, λ, Λ, and ω, such that if |∇ℓZ,r| ≥ M , then

|DZ,r/2| ≤ |DZ,r|
2n+2 + Cω(r)3n+4. (3.5)

emark 3.3. Note that the assumption ω(r)| log r| ≤ 1
2 for all r ∈ (0, 3

4 ] can always be satisfied with a
ini modulus of continuity ω, after some scaling; see Lemma A.1.

roof. Throughout this proof, we denote by C a generic constant depending on n, m, λ, Λ, and ω, only. For
he matter of simplicity, we shall take Z = (0, 0). The general case will follow the same lines of argument.

Subtracting a constant vector if necessary, we assume that u(0, 0) = 0, and write

ur(x, t) = u(rx, r2t)
r

.

Let ℓr = ℓ0,r be as in Lemma 3.1. Note that ŵr = ur − ℓr is a weak solution of

∂tŵr = div(Ar∇ŵr + Fr + ϕ̂r) in Q1, (3.6)

where
Ar(x, t) = A(rx, r2t), ϕ̂r(x, t) = (Ar(x, t) −Ar(0, 0))∇ℓr,

Br(x, t) = B(rx, r2t), and Fr(x, t) = (Br(x, t) −Ar(x, t))χDr ∇ur.

Also by (3.3), we have
sup

t∈(−1,0)

∫
B1

|ŵr(x, t)|2 dx ≤ C. (3.7)

ecall from Lemma 3.1 that |∇ℓr| ≤ C| log r|. Thus, by (1.5) and the assumption ω(ρ)| log ρ| ≤ 1
2 for all

∈ (0, 3
4 ], we have ∫

Q3/4

|ϕ̂r|
2
dX ≤ C(ω(r)| log r|)2 ≤ C. (3.8)

n the other hand, thanks to (1.3), (1.4), and (3.2), for any p ≥ 1 it holds∫
Q3/4

|Fr|p dX ≤ Cp|Dr|. (3.9)

herefore, it follows from the Caccioppoli inequality for (3.6) that∫
Q3/4

|∇ŵr|2 dX ≤ C. (3.10)

onsider now the weak solution vr to{
∂tvr = div(A(0, 0)∇vr) in Q3/4,

vr = ŵr(= ur − ℓr) on ∂pQ3/4.

ombining (3.10) and the interior gradient estimate for constant, linear parabolic systems, we deduce that
vr ∈ L∞(Q2/3) and

∥∇vr∥L∞(Q2/3) ≤ C. (3.11)

bserve that the auxiliary function

w = u − ℓ − v = ŵ − v
r r r r r r

10
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is a weak solution of {
∂twr = div(Ar∇wr + Fr + ϕr) in Q3/4,

wr = 0 on ∂pQ3/4,
(3.12)

where Ar and Fr are as above, while ϕr = (Ar −Ar(0, 0))(∇ℓr +∇vr). By (3.10), (3.9), and (3.12), we obtain

ess sup
t∈(− 9

16 ,0)

∫
B3/4

|wr(x, t)|2 dx+
∫

Q3/4

|∇wr|2 dX

≤ C

∫
Q3/4

(|Fr|2 + |ϕr|2) dX

≤ C
(
|Dr| + ω(r)2(|∇ℓr| + 1)2).

(3.13)

n the other hand, it also follows from (3.11) that

∥ϕr∥L∞(Q2/3) ≤ ω(r)(|∇ℓr| + 1). (3.14)

pplying the interior Lp-theory [15, Theorem 4.IV] to the parabolic system (3.12), and using (3.9), (3.13),
nd (3.14), we arrive at

∫
Q1/2

|∇wr|p dX ≤ Cp

(∫
Q2/3

(|wr|2 + |∇wr|2) dX
)p/2

+ Cp

∫
Q2/3

|Fr + ϕr|p dX

≤ Cp

(
|Dr| + ω(r)p(|∇ℓr| + 1)p

)
.

(3.15)

he rest of the proof can be finished by following the lines of the proof of Lemma 2.2; we use (3.11), (3.15),
nd (3.2) in replacement of (2.8), (2.13), and (2.1), respectively. We omit the details. □

Now we are in position to prove Theorem 1.2.

roof of Theorem 1.2. We can assume that u is normalised, so to satisfy (3.2). We shall first prove the
ipschitz regularity of u in space, and then verify the 1

2 -Hölder continuity of u in time.
As in the proof of Theorem 1.1, to prove (1.8) it suffices to prove that ∇u(Z) ≤ C0M for all Lebesgue

oint Z ∈ Q1/2 \ D of ∇u ∈ L2(−1, 0;L2(B1)), where C0 > 1 is a constant depending only on n, m, λ, Λ,
nd ω. Again, we present the proof with Z = (0, 0) for notational convenience.

Let ℓr = ℓ0,r be as in Lemma 3.1. Choosing M > 1 as in Lemma 3.2, we are left with the following
ichotomy:

Case 1) lim infk→∞ |∇ℓ2−k | < 2M ,
Case 2) lim infk→∞ |∇ℓ2−k | ≥ 2M .

e can handle each case separately, as in the proof of Theorem 1.1. The argument can be repeated here
lmost verbatim; as for the proof for the parabolic counterpart to (2.22), we use Lemma A.4 instead of [13,
roposition 2.1]. This proves the Lipschitz regularity of u in space, with estimate

∥∇u∥L∞(Q1/2) ≤ C0M ≤ C, (3.16)

here C is a constant depending only on n, m, λ, Λ, and ω.
To show the 1

2 -Lipschitz regularity of u in time, let Z = (z, s) ∈ Q1/4, r ∈ (0, 1
4 ) be arbitrary, and choose

Z,r as a time-independent vectorial linear function satisfying Lemma 3.1. In what follows, we shall write by
a large constant that may differ at each occasion, yet depends only on n, m, λ, Λ, and ω.
11
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Following the derivation of (3.10), we obtain that

ess sup
t∈(−r2+s,s)

∫
Br(z)

|∇u(x, t) − ∇ℓZ,r|2 dx ≤ Crn,

and thus, along with (3.16), we have

|∇ℓZ,r|2 ≤ C + C

rn
ess sup

t∈(−r2+s,s)

∫
Br(z)

|∇u(x, t)|2 dx ≤ C.

tilising this inequality in (3.3), we obtain that

sup
t∈(−r2+s,s)

∫
Br(z)

|u(x, t) − u(z, s)|2 dx ≤ Crn+2 + C

∫
Br(z)

|ℓZ,r(x)|2 dx

≤ Crn+2.

ince the choice of Z ∈ Q1/4 and r ∈ (0, 1
4 ) was arbitrary, we conclude that for any X,Y ∈ Q1/4,

|u(X) − u(Y )| ≤ Cdp(X,Y ),

roving the 1
2 -Lipschitz regularity in time as well. □

. Discussions and future directions

.1. Optimal regularity of solutions

In this section, we shall discuss the scalar case, although the whole discussion carries over to the vectorial
ase.

The question of transition of regularity from one phase to another phase for solutions to (ellip-
ic/parabolic) equations has a central role in the analysis of free boundary problems. Although such
uestions arise in many applications, the mere mathematical point of view is of wide interest among people
n PDE/FBP. They are central in studying a larger class of equations that do not have variational or
onstrained formulation, as pointed out by two of the current authors in [4].

A question that appears in potential theory (and mostly known in scalar case) is the so-called harmonic
ontinuation property. To explain this, let D be a given domain in Rn, and let σ∂D denote the surface

measure. Consider the single layer potentials5 U∂D(x) = F ⋆ dσ∂D, where “⋆” denotes convolution, and F

is the (normalised) fundamental solution of the Laplace operator, so that ∆U∂D = −dσ∂D in the sense of
distributions. We say ∂D has the harmonic continuation property near z ∈ ∂D if there exist r > 0 and a
armonic function h in Br(z) such that U∂D = h in D ∩Br(z).

For analytic boundaries, this property holds true due to Cauchy–Kowalevskaya theorem. This is a
onsequence of the fact that one can solve ∆v = 0 in D ∩ Br(z) with Cauchy-data v = 0, and |∇v| = 1 on
D ∩Br(z). Since ∆U∂D = ∆v = −dσ∂D, the function h := U∂D − vχD is harmonic in Br(z) and satisfies
= U∂D in Dc ∩Br(z); thus, ∂D has the harmonic continuation property near z ∈ ∂D.
Suppose now ∂D has the harmonic continuation property close to a boundary point z ∈ ∂D, where D

is given with no a priori regularity assumption for its boundary. The question that arise is: “How regular
is the boundary ∂D ∩Br(z)?” To study this question, one may (and probably should) start with a simpler
question, namely, finding the optimal regularity of v = U∂D −h in Br/2(z), where h is the harmonic function
in Br(z) mentioned above. This amounts to finding the optimal regularity of U∂D in Br/2(z)\D, given that
∂D has harmonic continuation property.

5 We assume ∂D has some a priori regularity such that the single layer potential is well defined.
12
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In [5] the authors consider this problem in scalar case for Lipschitz domains by setting v = U∂D − h, so
hat it satisfies ∆v = −dσ∂D and v = 0 in D. They prove, using a suitable monotonicity formula, that v is

uniformly Lipschitz in Br/2(z) \D.
The above regularity question for the single layer potential is directly connected to the transmission

problem studied in this paper. Indeed, for Lipschitz domains one can express solutions to the transmission
problem through integral operators, using layer potentials; see [16] (scalar case) or [1] (vectorial case).
However, it is unknown to us how the Lipschitz regularity assumption on ∂D can be weakened to allow
this reformulation. This remains an interesting question to answer.

Our result in this paper indicates that, if we can rephrase the question in terms of the transmission
problem (1.1), then the single layer potential U∂D, with D having harmonic continuation property, should
be uniformly Lipschitz in Br/2(z). As pointed out in the introduction, the method of [5] works well if we
replace the harmonic continuation property with C2 continuation of the single layer potential, in Lipschitz
domains.6 A natural question is how far one can stretch this relaxation of regularity. Our result indicates that
if U∂D is uniformly Lipschitz in D, then this Lipschitz regularity can be transmitted across the boundary.
This naturally is true across regular boundary points, and preserves the uniform Lipschitz-norm up to
a multiplicative constant, in a neighbourhood the boundary. This neighbourhood, however, may possibly
become smaller as we come closer to a non-smooth boundary point. The tantalising question that arises
is what a priori conditions (if any) one should impose on ∂D to guarantee the transmission of Lipschitz
regularity across the boundary for the single layer potential.

We shall now formulate two questions that might be of interest to readers.

Question 1. Can one generalise our results to the setting of singular/degenerate operators, such as the
p-Laplacian?

Question 2. Consider nonlinear transmission systems,

div(A(∇u)χDc +B(∇u)χD) = 0,

where both A and B are strongly elliptic, nonlinear operators. It is well-known that nonlinear systems do
not have Lipschitz solutions, in general, even if A = B (so the system is homogeneous) and the dependence
on ∇u is smooth. This remains true even for minimisers of a nonlinear functional, see [18]. It is also known
that the boundary regularity fails for nonlinear systems, even if the boundary data is smooth, see e.g., [19].
However, if we assume that u is Lipschitz up to ∂D, then the Lipschitz regularity may have some chances
of propagating to the other side, in some small neighbourhood, depending on the geometry of ∂D. This is
because the governing system yields a matching condition of the normal derivatives of u on ∂D: formally,

Aα
i (∇u|Dc)να +Bα

i (∇u|D)να = 0,

whenever the outward normal ν is defined on ∂D. This may leave us in a better situation than a Dirichlet
boundary problem, since for the latter problem the normal derivatives of the solution does not need to match
those of the boundary data.

For instance, let ∂D be a hyperplane. Then from the assumptions that u is Lipschitz up to ∂D from D,
and that the equation yields a matching condition of the normal derivative of u on ∂D, it is reasonable in
Question 2 to expect the propagation of the Lipschitz regularity to the other side.

6 The proof of [5] uses the well-known ACF-monotonicity formula, in the harmonic continuation case. For C2-continuation
ase one can use Caffarelli–Jerison–Kenig monotonicity formula, [17].
13
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On the other hand, if ∂D has a cusp so that D does not have positive density at a point on ∂D, then
he nice information from D may lose its effect, and the nonlinearity of the operators in Question 2 does
ot supplement the loss of information. More precisely, in the blowup regime the limit solution of u will
olve divA(∇u0) = 0 everywhere (recall that A is the governing operator in the region Dc). Unlike the case
f linear systems, the blowup limit u0 may fail to be Lipschitz, so this strategy cannot give any regularity
mprovement for the original solution u.

This discussion shows that there is still much to explore for the case of nonlinear systems regarding the
ropagation of the Lipschitz regularity, and we leave this problem open for the future.

.2. Regularity of the free boundary

In this section we want to discuss the challenging question of regularity of ∂D. For scalar case, the authors
in [5] study the regularity of those part of ∂D where the solution does not degenerate; i.e., behaves “linearly”.
They prove that, under a priori Lipschitz regularity assumption or a flatness and ϵ-monotonicity of the
solution (in a cone of directions), the free boundary is C1,α.

Still in the scalar case, when D is given by a level set, the authors in [20] prove that flat points are almost
everywhere with respect to the measure ∆u+ (in their setting, this is a positive measure whose support is
of σ-finite (n− 1)-dimensional Hausdorff measure).

The methods in both [5,20] can be carried out in our setting for the scalar case, under suitable assumptions
on the interface ∂D. For instance, if u = ℓ in D for some affine function ℓ, then u− ℓ is essentially the same
as in these papers, provided that u− ℓ is non-degenerate across ∂D. One may also be able to generalise this
by replacing ℓ with some f ∈ C1,α(B1). However, the methods in both [5,20] cannot be extended to the
systems, since all the techniques are based on maximum/comparison principles.

In the case of systems, the regularity theory for free boundary problems is wide open, despite its
importance. Some essential techniques, such as comparison principles and monotonicity formulas, which are
well established for scalar problems, tend to fail for systems in general. Therefore, one has to come up with
a new technique to analyse vectorial free boundary problems. In this direction, it will also be interesting to
see if one can recover the regularity theory for scalar free boundary problems with energy methods only, and
then carry it over to systems. We shall not discuss this issue in more depth, as it goes beyond the scope of
this paper.

Appendix A. Technical tools

Let us begin with some lemmas for Dini moduli of continuity. Recall that ω is said to be a Dini modulus
continuity, if ω : (0, 1] → (0,∞) is a non-decreasing function satisfying limr→0 ω(r) = 0, and

∫ 1
0

ω(r)
r dr < ∞.

emma A.1. If ω is a Dini modulus of continuity, then limr→0 ω(r) log 1
r = 0.

roof. Let δ > 0 be arbitrary. Then from the Dini condition, there exists some r1 ∈ (0, 1
2 ) such that for

ny r ∈ (0, r1),
δ >

∫ r1

r

ω(s)
s

ds ≥ ω(r)
∫ r1

r

ds

s
= ω(r) log 1

r
− ω(r) log 1

r1
> 0.

ow we choose a sufficiently small r2 ∈ (0, r1) such that ω(r) log 1
r1
< δ for all r ∈ (0, r2]. Then

0 < ω(r) log 1
r1
< ω(r) log 1

r
< δ + ω(r) log 1

r1
< 2δ,

or all r ∈ (0, r ), proving that lim ω(r) log 1 = 0. □
2 r→0 r

14
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The next lemma is used to prove that ψ as in (2.21) is a Dini modulus of continuity.

Lemma A.2. Let ω be a Dini modulus of continuity. Then for any α > 1,∫ 1

0
r

α
2 −1

√∫ 1

r

ω2α(ρ)
ρα+1 dρ dr < ∞.

roof. According to Lemma A.1, there is some r0 ∈ (0, 1] such that ω(r) log 2
r ≤ 1 for all r ∈ (0, r0). To

simplify the notation, we shall assume, without loss of any generality, that r0 = 1.
Write θ(r) =

√
rα
∫ 1

r
ω(ρ)2α

ρα+1 dρ, and let ϵ ∈ (0, 1
2 ) be arbitrary. By Hölder inequality,

(∫ 1

ϵ

θ(r)
r

dr

)2

≤
∫ 1

ϵ

1
r| log r

2 |α
dr

∫ 1

ϵ

θ2(r)| log r
2 |α

r
dr.

he first integral on the right hand side is bounded uniformly for ϵ ∈ (0, 1), since by assumption α > 1.
ence, it suffices to prove the boundedness of the second integral.
By the Fubini theorem, and integration by parts∫ 1

ϵ

θ2(r)| log r
2 |α

r
dr =

∫ 1

ϵ

ω2α(ρ)
ρα+1

∫ ρ

ϵ

rα−1| log(r/2)|α dr dρ

≤ C

∫ 1

ϵ

ω2α(ρ)| log ρ
2 |α

ρ
dρ

≤ C

∫ 1

ϵ

dρ

ρ| log ρ
2 |α

,

here C > 1 is a constant depending only on α. Since α > 1, the integral on the rightmost side is bounded
niformly for all ϵ ∈ (0, 1

2 ), from which the assertion of the lemma follows immediately. □

In what follows, we shall present an interior BMO-type estimate and C1-estimate, for the spatial gradients
or weak solutions to linear parabolic systems with Dini coefficients. Although these estimates are well
nderstood by experts, we present the proofs for the sake of convenience for non-expert readers.

Let us begin with an interior log-Lipschitz estimate.

emma A.3. Let A ∈ L∞((−1, 0);L2(B1;Rn2m2)) satisfy (1.3), (1.4), and (1.5), with a modulus of
ontinuity ω verifying the Dini condition, and let F ∈ L2((−1, 0);L2(B1;Rm)) be given. Suppose that u is a
eak solution of ∂tu−div(A∇u) = divF in Q1. Then there exists a constant C > 1, depending only on n, m,

λ, Λ, and ω, such that the following holds: if
∫

Qr
|F |2 dX ≤ rn+2 for all r ∈ (0, 1), and

∫
B1

|u(x, t)|2 dx ≤ 1
for a.e. t ∈ (−1, 0), then for each r ∈ (0, 3

4 ), there exist a vectorial time-independent linear function ℓr and
vector a ∈ Rm, independent of r, such that |a| ≤ C, |∇ℓr| ≤ C| log r|, and

ess sup
t∈(−r2,0)

∫
Br

|u(x, t) − a− ℓr(x)|2 dx ≤ Crn+2.

Proof. The proof involves standard approximation techniques.
According to Lemma A.1, ω satisfies limr→0 ω(r) log 1

r = 0. For this reason, after suitable scaling
rgument, it suffices to prove the following claim: there are some small positive constants µ and η, depending
nly on n, m, λ, Λ, and ω, such that if, in addition to the assumptions in the statement, for all r ∈ (−1, 0),

ω(r)| log r| ≤ η and
∫

|F |2 dX ≤ η2rn+2, (A.1)

Qr
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then for each k = 1, 2, . . ., there exists a time-independent vectorial affine function ℓk such that

|ℓk(0) − ℓk−1(0)| ≤ cµk, |∇ℓk| ≤ ck (A.2)

nd
ess sup

t∈(−µ2k,0)

∫
B

µk

|u(x, t) − ℓk(x)|2 dx ≤ µk(n+2), (A.3)

where c > 1 depends only on n, m and λ.
In what follows, c will be a constant depending only on n, m, and λ, and C will be a constant depending

further on Λ and ω. These constants may differ at each appearance.
Let µ ∈ (0, 3

4 ) be a sufficiently small number, to be determined, and suppose that we have found, for some
nteger k ≥ 0, a time-independent vectorial affine function ℓk, for which (A.3) holds; note that for k = 0, we
an simply choose ℓ0 = 0 so the initial case is satisfied.

Define
uk(x, t) = u(µkx, µ2kt) − ℓk(µkx)

µk
.

hen uk is a weak solution of
∂tuk − div(Ak∇uk) = divFk in Q1, (A.4)

here
Ak(x, t) = A(µkx, µ2kt),
Fk(x, t) = F (µx, µ2kt) + (A(µkx, µ2kt) −A(0, 0))∇ℓk.

lso, by (A.3) and the Caccioppoli inequality, uk satisfies

ess sup
t∈(−1,0)

∫
B1

|uk(x, t)|2 dx+
∫

Q3/4

|∇uk|2 dX ≤ c. (A.5)

learly, Ak satisfies the same structure conditions (1.3), (1.4), and (1.5). On the other hand, by (A.1) and
A.2), we can deduce that ∫ 0

−1

∫
B1

|Fk|2 dx dt ≤ 2η2 + (n2m2Λkω(µk))2 ≤ 4η2, (A.6)

rovided that we choose µ so as to satisfy

| logµ| ≥ n2m2Λ. (A.7)

onsider the weak solution vk to {
∂tvk = div(Ak(0, 0)∇vk) in Q3/4,

vk = uk on ∂pQ3/4.
(A.8)

et βϵ ∈ C∞
0 (R) be a mollifier. Then we can use βϵ ∗ (vk − uk) as the test function to (A.8). Due to (A.5),

e obtain
ess sup

t∈(− 9
16 +ϵ,−ϵ)

∫
B3/4

|βϵ ∗ vk|2 dx+
∫ −ϵ

− 9
16 +ϵ

∫
B3/4

|∇(βϵ ∗ vk)|2 dx dt ≤ c.

Hence, letting ϵ → 0, we arrive at

ess sup
9

∫
|vk(x, t)|2 dx+

∫
|∇vk|2 dX ≤ c. (A.9)
t∈(− 16 ,0) B3/4 Q3/4

16
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Thus, by interior C2
x estimates for constant linear parabolic systems, we can find some time-independent

vectorial affine function ℓ̂k such that
|ℓk(0)| + |∇ℓk| ≤ c, (A.10)

nd
sup

t∈(−r2,0)

∫
Br

|vk(x, t) − ℓ̂k(x)|
2
dx ≤ crn+4. (A.11)

n the other hand, subtracting (A.4) from (A.8), and then using βϵ ∗ (vk − uk) as the test function to the
esulting system (with βϵ being the mollifier as above), thanks to (1.5), (A.1), (A.5), and (A.9), we deduce
hat

ess sup
t∈(− 9

16 +ϵ,−ϵ)

∫
B3/4

|βϵ ∗ (vk − uk)|2 dx

≤ c

∫
Q3/4

(|Fk|2 + ω(µk)|∇vk|2) dX ≤ cη2. (A.12)

etting ϵ → 0, and combining the resulting expression with (A.11), yields

ess sup
t∈(−µ2,0)

∫
Bµ

|uk(x, t) − ℓ̂k(x)|
2
dx ≤ c(µn+4 + η2) ≤ µn+2, (A.13)

rovided that we first choose µ sufficiently small so that both (A.7) and cµn+4 ≤ 1
2µ

n+2 hold, and then
elect η accordingly so that cη2 ≤ 1

2µ
n+2. Clearly, µ and η depend only on n, m, λ, Λ, and ω.

To this end, we define
ℓk+1(x) = ℓk(x) + µk ℓ̂k

(
x

µk

)
,

hich is again a vectorial affine function. In view of (A.1), (A.10), (A.11), and (A.13), this proves the
nduction hypotheses (A.2) and (A.3) with k replaced by k + 1. The proof is now finished by the induction
rinciple. □

Next, we establish an interior C1 estimate.

emma A.4. Under the same setting as in Lemma 3.1, there exists a constant C > 1, depending only
n n, m, λ, Λ, and ω, such that the following holds: if

∫
Qr

|F |2 dx ≤ ω(r)rn+2 for all r ∈ (0, 1), and

Br
|u(x, t)|2 dx ≤ 1 for a.e. t ∈ (−1, 0), then there exists a time-independent vectorial affine function ℓ

uch that |ℓ(0)| + |∇ℓ| ≤ C, and

ess sup
t∈(−r2,0)

∫
Br

|u(x, t) − ℓ|2 dx ≤ Crn+2ω1(r),

here ω1 is a modulus of continuity depending only on ω.

roof. The proof follows essentially the same lines as that of Lemma 3.1, and it is omitted. □
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