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A B S T R A C T

Buildings are the predominant objects that characterize the urban structure. For many cities, local governments
establish building databases for administration as well as urban planning and monitoring. However, newly
constructed buildings are often only included with a considerable time delay in the official digital cadastral
maps due to processes in the acquisition of data, so-called undocumented buildings. In this regard, detecting
undocumented buildings using remote sensing techniques would support the construction of update-to-date
building databases with complementary information. In-depth studies on undocumented buildings and their
number and location, however, are scarce. Therefore, we exploit a deep learning-based framework to detect
undocumented buildings in remote sensing data and propose to derive 2D and 3D morphological parameters
as well as landscape metrics., which are capable of depicting the physical forms and spatial structures of
undocumented buildings. Furthermore, we exemplify the variabilities of undocumented buildings across space
by the differences in morphology and landscape metrics between high and low building density regions.
Upon analysis of undocumented buildings in 15 cities in the state of Bavaria, Germany, both state- and city-
scale results reveal that most undocumented buildings are located in lower dense regions. This reveals that
fragmentation of the landscape by building structures in the state of Bavaria is probably greater than official
geospatial data currently documented.
1. Introduction

The three-dimensional (3D) building stock characterizes the planar
and vertical dimensions of built structures where people live (Cao and
Huang, 2021). The construction of 3D building models in nowadays
administrations of communities allows for administrating, document-
ing, and monitoring urban development (Li et al., 2020b). Across the
globe, some cities already have building databases for resource man-
agement (Griffiths and Boehm, 2019). For instance, in most German
cities, a two-dimensional (2D) building database, namely, digital cadas-
tral map (DFK), is provided by the official authority. The geographic
coordinates of buildings documented in the DFK are acquired through
terrestrial surveys, which provide accurate and comprehensive infor-
mation for sustainable urban planning. As more and more houses are
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being built, the conversion from natural land into urban land is an ever-
ongoing process (Taubenböck et al., 2012; Huang et al., 2021; Huang
et al., 2022). In most cases, there are buildings newly constructed in for-
mer arable land, pastures, forests, etc (Leichtle et al., 2017). Therefore,
monitoring newly constructed buildings is helpful to support sustain-
able land resource management (Huang et al., 2020). Nevertheless,
some newly constructed buildings are not recorded in an up-to-date
manner via terrestrial surveying. Since these buildings are missing in
the DFK, they are named ‘‘undocumented buildings’’.

Remote sensing technologies such as airborne imaging and laser
scanning make it possible to identify these undocumented buildings,
as they provide high-resolution data sets for detailed analysis of build-
ings on a large scale. Early efforts (Roschlaub et al., 2020; Geßler
vailable online 2 August 2022
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et al., 2019) have been developed for the detection of undocumented
buildings, which first extract buildings based on heuristic methods and
then overlay the extracted building maps on the DFK to detect undocu-
mented buildings. However, the heuristic thresholds utilized in these
strategies cannot guarantee a uniform and standardized processing
manner, limiting their application on a large scale. Moreover, results
obtained from these approaches show a high false alarm rate (Li et al.,
2020a). Recently, a novel framework (Li et al., 2020a) has been pro-
posed to detect undocumented building constructions. In this method,
buildings are first extracted by convolutional neural networks (CNNs),
as CNNs have better generalization capability than heuristic methods
(Li et al., 2020a; Zhu et al., 2017). After the comparison with the
DFK, it has been shown that undocumented buildings can be detected
with high accuracy. Furthermore, this framework is able to acquire
the construction period of undocumented buildings in multi-temporal
remote sensing data, which provides complementary information for
urban planning.

Morphology parameters of buildings provide a quantitative char-
acterization of urban morphology and facilitate the analysis of the
sustainability, efficiency, and resilience of a city (Bonczak and Kon-
tokosta, 2019). Morphology analyses are carried out in two ways,
(1) 2D (e.g., building area) and (2) 3D (e.g., building volume) (Yoshida
and Omae, 2005). The derived 2D and 3D building morphological
parameters contribute to the analysis in different aspects, e.g., urban
structures (Taubenböck et al., 2017), energy consumption (Kontokosta
and Tull, 2017), solar radiation acquisition (Robinson, 2006), pedes-
trian wind flow modeling (Kubota et al., 2008), or surface thermal
efficiency and loss (Lu et al., 2019). Landscape metrics capturing spatial
parameters of buildings are exploited for quantitative observation of
landscape patterns, which offer a way to explore the landscape’s eco-
logical processes. 2D building landscape metrics (e.g., mean building
area) are widely examined in many studies, however, they are still
biased when dealing with complex scenes and high height heterogene-
ity (Cao et al., 2020). 3D building landscape metrics (e.g., floor area
ratio) take the vertical features into consideration, providing a more
comprehensive understanding of landscape patterns (Taubenböck et al.,
2016). The landscape analysis of buildings reveals the urban landscape
pattern characteristics that have impacts on ecosystems (Wu, 2014),
air quality (Lu and Liu, 2016), public health (Koohsari et al., 2015),
etc. Therefore, morphological parameters and landscape metrics of the
undocumented buildings are of crucial interest to administration, urban
planning, and science, as in-depth studies can provide insights into land
use, and sustainable development, among others.

During the process of construction of buildings especially in and
around urban areas, one of the most urgent problems is urban sprawl.
Urban sprawl is usually linked to the low density growth of urban
space (Hamidi and Ewing, 2014; Durieux et al., 2008). This relates
to negative impacts on urban sustainability, including excessive car
use, high costs of infrastructure, and lack of social interaction (Ab-
dullahi et al., 2018). However, if building databases are incomplete,
the analysis regarding urban sprawl will also be biased. In this paper,
we propose to quantify undocumented buildings with respect to high
and low building density regions. With it, we inspect their effects on
morphological characteristics and landscape patterns. Specifically, we
want to show whether the number of undocumented buildings is higher
in high-density or low-density regions and thus show what influence
this has on the assessment regarding urban sprawl.

In this study, we propose to investigate these effects by monitor-
ing construction period, morphology, and landscape of undocumented
buildings. The contributions of this article are twofold:

(1) We propose to utilize a set of 2D and 3D metrics to carry out
morphology and landscape analysis of undocumented buildings, which
can provide insights for environmentally sustainable development.

(2) We propose to investigate the differences in morphology param-
eters and landscape metrics of undocumented buildings between high
and low building density regions. The results can provide empirical
evidence relating to the extent of urban sprawl, and are helpful for
2

policy-makers to control this problem.
Table 1
Datasets utilized for this research. In this research, time point 1 is the year 2014, while
time point 2 is the year 2017.

Dataset Temporal information

nDSM Time point 2
tDSM Within the period from time point 1 to time point 2
TrueDOP Time point 2
DFK Time point 2

2. Data and methodology

2.1. Study regions

The study regions are located in the state of Bavaria, Southeast
Germany. Due to the availability and accessibility of datasets, 15 cities
are selected and distributed across the federal state (see Fig. 1). The
selected 15 cities are Wolfratshausen, Weilheim, Schweinfurt, Wasser-
burg, Rosenheim, Regensburg, Muenchen, Landshut, Landau, Kronach,
Kulmbach, Hemau, Deggendorf, Bad Toelz, and Ansbach, which host
about 3 million inhabitants. Muenchen is the largest city. The spatial
extents of cities are defined by the administrative boundaries. The
selected 15 cities vary in geographical, social, and economic conditions.
Hence, the investigation of these cities can basically be assumed to be
representative of the various patterns existent.

2.2. Data sets

This study is based on four data sources: (1) a normalized dig-
ital surface model (nDSM), (2) a temporal digital surface model
(tDSM), (3) orthophotos (TrueDOP), as well as (4) a DFK. For
each city, these data are prepared as plenty of tiles with a size of
2500 × 2500 pixels at a spatial resolution of 40 cm/pixel. Fig. 2
illustrates the sample datasets with temporal details shown in Table 1.

(1) nDSM: nDSM is the difference model between the digital surface
model (DSM) and the digital terrain model (DTM), illustrating objects
including trees and buildings. The DSM captures the heights of the
Earth’s surface including natural and human-made objects and is ob-
tained by a dense matching method (Ressl et al., 2016) from aerial
images that are acquired in the year 2017. The DTM is derived as
regular point grids from airbore lase scanning (ALS). The accuracy of
the DSM and the DTM is ±1.50 m and ±0.2 m, respectively.

(2) tDSM: tDSM is the difference between two nDSMs collected at
two temporal, i.e., time point 1 (the year 2014) and time point 2 (the
year 2017).

(3) TrueDOP: TrueDOP are orthophotos with red, green, and blue
bands and are collected in the year 2017. All elevated objects including
buildings in the TrueDOP have no geometric distortion. This is because
that ortho-projection and geo-localization are established on the DSM.

(4) DFK: DFK is the building footprint map where the cadastral
2D ground plans of individual buildings are documented via terrestrial
surveying in the field. Note that it has high accuracy in the range of
centimeters.

2.3. Methodology

2.3.1. The framework of undocumented building detection
In the conceptualization of our study, undocumented buildings refer

to the buildings that have been detected in the latest remote sensing
data (the TrueDOP and the nDSM) but have not been recorded in the
DFK. In this research, we implement a technique proposed in (Li et al.,
2020a) for the detection of undocumented buildings. Moreover, this
framework can identify the construction period of these undocumented
buildings by distinguishing between new undocumented buildings and

old ones.
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Fig. 1. The study area in this research, which cover 15 cities in the state of Bavaria, Germany.
Fig. 2. Sample data from the TrueDOP, the nDSM, the rasterized DFK, and the tDSM.
Fig. 3 presents an overview of this framework, which can be di-
vided into three sub-tasks: (1) building detection, (2) undocumented
building detection, and (3) discrimination between new undocu-
mented buildings and old ones.

(1) building detection: The latest TrueDOP and the nDSM data
are exploited as the two main data sources to detect buildings. The
TrueDOP and the nDSM are able to provide spectral and geometrical
information about buildings. Therefore, the TrueDOP and the nDSM
3

data are stacked together as input for the task of building detection,
which takes full advantage of both data sources. Recently, CNNs have
shown superior performance for the task of building detection when
compared to traditional methods. This is because they can automat-
ically learn discriminative features from massive quantities of data,
avoiding manual feature selection. FC-DenseNet (Jégou et al., 2017)
is selected as the base CNN model, which assigns every pixel with the
label of ‘‘building’’ or ‘‘non-building’’. FC-DenseNet (Jégou et al., 2017)
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Fig. 3. Overview of the framework of undocumented building detection. Note that a variety of deep learning networks (e.g., FCN-8s (Long et al., 2015), U-Net (Ronneberger et al.,
2015), DeepLab V3+ (Chen et al., 2018), HA U-Net (Xu et al., 2021), and FC-DenseNet (Jégou et al., 2017)) can be utilized as the convolutional neural network module in this
framework.
is an encoder–decoder architecture, where both the encoder and the
decoder are comprised of five dense blocks (Huang et al., 2017). In
each dense block, the features are combined by iterative concatenation,
providing a more efficient flow for information transmission.

(2) undocumented building detection: Once the building foot-
print maps are generated from the predictions of the FC-DenseNet (Jé-
gou et al., 2017), they are overlaid over the DFK. By doing so, the
undocumented building pixels are identified through pixel-wise com-
parison. Specifically, undocumented building pixels refer to those pixels
that are identified as ‘‘building’’ by FC-DenseNet (Jégou et al., 2017).
However, in the DFK they belong to the ‘‘non-building’’ thematic
class. To mitigate the error accumulation induced from the pixel-wise
comparison, we use ‘‘Opening’’, which is a mathematical morphology
operation to alleviate noise (Said et al., 2016).

(3) discrimination between new undocumented buildings and
old ones: In this study, we classify the detected undocumented build-
ings into two temporal classes according to their construction period.
One type is the old undocumented building that was built before time
point 1. The other type is new undocumented building, which refers to
the undocumented buildings that were built between time points 1 and
2. In order to identify the construction period, the tDSM is utilized to
acquire temporal information. The tDSM shows the difference between
two nDSMs that are obtained from time point 1 and time point 2. An
empiric threshold (1.8 m) is utilized on the tDSM to check a height
deviation within the monitoring period. We apply this threshold as
the land surveying team in the Bavarian Agency for Digitization, High-
Speed Internet, and Surveying (LDBV), utilizes this value for a standard
4

garage without a roof usually: it has a minimum height of 1.8 m.
Therefore, we select 1.8 m as a threshold to identify whether a building
was constructed. Once these undocumented building pixels show height
deviation within this period, it is allocated to the thematic class of
‘‘new undocumented building’’. Otherwise, the identified thematic class
should be ‘‘old undocumented building’’.

The performance of the implemented framework is investigated
from two aspects. On the one hand, two popular metrics, intersection
over union (IoU) and F1 score (Li et al., 2020a), are utilized for the
accuracy assessment of buildings that are extracted by the CNN. On
the other hand, the precision is exploited to measure the correctness
of detected undocumented buildings in a more targeted manner, which
can be computed as follows:

precision = 𝑇𝑃
𝑃

, (1)

where 𝑇𝑃 refers to the number of correctly detected undocumented
buildings and 𝑃 denotes the number of undocumented buildings that
have been detected by the implemented framework.

2.3.2. The definition of high and low building density regions
In this study, we aim to analyze whether there are differences in

undocumented buildings across space. Therefore, we conceptualize the
space with respect to the pattern of buildings, which is defined as
‘‘high’’ and ‘‘low’’ building density regions. This is due to the fact that
we want to show whether the number of undocumented buildings is
higher in high density or low density regions and thus show what
influence this has on the assessment regarding urban sprawl. Based on
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Table 2
Morphological parameters metrics proposed to describe undocumented buildings.

Name Abbreviation Equation Description

Building area A 𝐴 =
∑𝑚

𝑖=1 𝐴𝑖 Total area of buildings in one region
Building volume V 𝑉 =

∑𝑚
𝑖=1 𝑉𝑖 Total volume of buildings in one region

where 𝑚 is the number of buildings; 𝐴𝑖 and 𝑉𝑖 are the area and volume of a building 𝑖, respectively.
Table 3
Landscape metrics proposed to describe undocumented buildings.

Name Abbreviation Equation Description

Mean building area MBA 𝑀𝐵𝐴 =
∑𝑚

𝑖=1 𝐴𝑖

𝑚
Average of building area in one region

Standard deviation of building area SDBA 𝑆𝐷𝐵𝐴 =
√

∑𝑚
𝑖=1 (𝐴𝑖−𝑀𝐵𝐴)2

𝑚
Standard deviation of building area in one region

The number of buildings NB 𝑁𝐵 = 𝑚 Total number of buildings in one region

The number of high buildings NHB 𝑁𝐻𝐵 = 𝑛 Total number of buildings over 22.5 m in one region

Mean building height MBH 𝑀𝐵𝐻 =
∑𝑚

𝑖=1 𝐻𝑖

𝑚
Average of building height in one region

Standard deviation of building height SDBH 𝑆𝐷𝐵𝐻 =
√

∑𝑚
𝑖=1 (𝐻𝑖−𝑀𝐵𝐻)2

𝑚
Standard deviation of building height in one region

where 𝑚 is the number of buildings in one region; 𝐴𝑖 and 𝐻𝑖 are the area and the height of a building 𝑖, respectively. In our study, 𝐻𝑖 is
derived as the mean value of the nDSM value of building pixels within 𝑖.
i
i

the generated building footprint maps from the CNN, we first calculate
the building density within each grid cell with a size of 100 m×100 m. By
nalyzing the building density, we classify these grid cells into 5 types,
ncluding very low, low, medium, high, and very high dense regions.
n other words, the goal to classify high and low building density
egions can be realized by clustering all the grid cells that compose
he entire test regions, into 5 categories. To overcome the dichotomic
onceptualization of the two abstract classes of ‘‘high’’ and ‘‘low’’, we
onceptualize five thematic density classes of different building density
egions, incorporating the transition areas between high and low dense
egions. Since the configuration and distribution of transition areas are
omplex (Zhou et al., 2004), the five thematic classes allow a more
ifferentiated and fine-grained analysis.

To identify the 5 categories, we utilize two methods for the clus-
ering of grid cells within the 15 cities. One method is the commonly
sed K-means clustering (Hartigan and Wong, 1979), which aims to
inimize the difference among the units in each category. K-means

lustering exploits the distance as a similarity index, where a shorter
istance among two samples represents a larger similarity. By doing
o, each cluster is more compact and independent. In our research, the
istance is measured by the differences in the building density among
rid cells. The other method is equal interval classification (Tyner,
014), which classifies all grid cells into different categories, and the
alue ranges in each class are set equal. In other words, the entire range
f values (max minus min) is divided equally into the defined number
f classes.

.3.3. Morphological parameters and landscape metrics of buildings
The structure of individual building objects can be characterized

y both horizontal and vertical configurations, e.g., area, volume, and
eight. The spatial aggregation of these configurations of individual
uildings in larger geographical extents (e.g., block-level and city-level)
llows for capturing spatial patterns of buildings on a larger scale

Two morphological parameters (cf. Table 2) are used to represent
D and 3D urban morphology in this paper, respectively: building area
nd volume. The building area and volume involve the quantitative in-
ormation in the planar and vertical dimensions, respectively. Building
olume offers a more accurate or discriminatory description of urban
orphology. This can be illustrated by a town center and a metropoli-

an area. Both regions might have similar building areas, while the
uilding volumes are substantially different due to the variation of
uilding heights (Chen et al., 2014).

For 2D and 3D landscape analysis, six metrics are selected (cf.
able 3), including the standard deviation of building area, mean
5

uilding area, the standard deviation of building height, mean building n
Table 4
The numbers of training and validation patches for the 14 selected cities.

City Number of training patches Number of validation patches

Wolfratshausen 14,982 3671
Weilheim 76,959 19,202
Schweinfurt 54,951 13,759
Wasserburg 14,150 3567
Rosenheim 59,141 14,789
Regensburg 47,947 11,941
Muenchen 88,364 22,213
Landshut 60,957 15,090
Landau 34,964 8733
Kronach 19,987 5112
Kulmbach 24,998 5679
Hemau 9481 2243
Deggendorf 38,454 9763
Ansbach 67,965 18,077

height, the number of high buildings, and the number of buildings.
The height value of buildings can be derived from the nDSM, which
facilitates the vertical landscape analysis of buildings. Mean building
height and mean building area are able to well depict the general
structures of buildings in the vertical and horizontal directions, respec-
tively (Chen et al., 2014). The area and height deviation are indicators
of heterogeneity of buildings, offering a better understanding of general
building structures in the study site (Liu et al., 2017). The number of
buildings represents the quantity of building objects in one region, and
it can reveal the structural differences among various regions (Chen
et al., 2014). We use the metric, the number of high buildings because
they are a distinctive feature of the city structure. In our research, a
high building is a building with a height larger than 22.5 m (Cao et al.,
2020).

3. Results and interpretation

3.1. Quantitative and qualitative results of undocumented buildings

In the implemented framework, the CNN is a crucial module that
affects the final undocumented building detection results. All the of-
ficial geodata are preprocessed to collect small patches for training
the CNN. Specifically, all the tiles of the TrueDOP and the DFK as
corresponding ground references are clipped into patches with a size
of 256 × 256 pixels. Afterwards, we collect the patches from 14 cities
n the state of Bavaria, Germany, and we split the collected patches
nto training and validation subsets for each city. Table 4 shows the
umber of training and validation patches for the 14 selected cities. To
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Fig. 4. Zoomed-in results of undocumented buildings for a sample urban area.
Table 5
Accuracies of different CNN models for building detection. (%)
Method F1 score IoU

FCN-8s (Long et al., 2015) 81.51 ± 0.62 68.84 ± 0.87
U-Net (Ronneberger et al., 2015) 81.99 ± 0.67 69.52 ± 0.94
DeepLab V3+ (Chen et al., 2018) 82.15 ± 0.53 69.69 ± 0.75
HA U-Net (Xu et al., 2021) 83.70 ± 0.36 72.17 ± 0.50
FC-DenseNet (Jégou et al., 2017) 85.14 ± 0.55 74.06 ± 0.77
evaluate building extraction results, we choose the city of Bad Toelz
as test area, which covers 40 square kilometers. Its ground truth map
has been manually checked to guarantee correctness. To verify the
effectiveness of FC-DenseNet (Jégou et al., 2017) for building detection,
we compare it with several commonly used network learning methods,
i.e., FCN-8s (Long et al., 2015), U-Net (Ronneberger et al., 2015),
DeepLab V3+ (Chen et al., 2018), and HA U-Net (Xu et al., 2021).
Note that each experiment is carried out for five runs, which provides
a fair comparison, and the corresponding F1 score and IoU are shown
as mean and variance. Numerical results of building detection are
shown in Table 5. We find that FC-DenseNet (Jégou et al., 2017) shows
superior results in terms of F1 score and IoU when compared to all
other networks applied. Specifically, FC-DenseNet (Jégou et al., 2017)
obtains the F1 score of 85.14 ± 0.5% and the IoU of 74.06 ± 0.77%. This
demonstrates that FC-DenseNet (Jégou et al., 2017) is effective and
robust in the task of building detection.

In our research, we generate undocumented building maps for 15
cities in the state of Bavaria. Fig. 4 illustrates a zoom-in visual example
where documented buildings in the DFK, as well as undocumented
buildings, have been identified by CNN. The buildings in yellow and
red represent old and new undocumented buildings, respectively. When
the tDSM shows no height deviation, these undocumented buildings
6

are classified as old undocumented buildings, indicating they were
constructed before time point 1. When an obvious signal is identified
in the tDSM, the undocumented buildings are classified as new undoc-
umented buildings that were built between time point 1 and time point
2. To quantitatively evaluate the detected undocumented buildings,
we check results in the city of Bad Toelz by manual photo interpreta-
tion. Specifically, 1271 undocumented buildings are correctly detected
from our results (1545 undocumented buildings), and the precision is
82.27%. Note that the training data set of CNNs are collected in 14
cities excluding Bad Toelz. However, the implemented framework still
offers satisfactory results in this city.

3.2. Morphology and landscape analysis of undocumented buildings

In order to investigate the spatial distribution of undocumented
buildings, we define ‘‘high’’ and ‘‘low’’ density regions for each city.
Based on the buildings predicted by the CNN, all cities are divided
into five classes by the two selected clustering methods according to
building density. Fig. 5 illustrates the building classification results of
Muenchen that are obtained by K-means clustering and equal interval
classification, respectively. For the results generated by K-means clus-
tering, a region with a building density of 0.00 ∼ 0.07 is considered
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Fig. 5. Building density classification results of Muenchen obtained by K-means clustering and equal interval classification.
Fig. 6. (a), (c), and (e) are the share in the number, area, and volume of new undocumented buildings in different building density regions obtained by K-means clustering. (b),
(d), and (f) are the number, area, and volume of new undocumented buildings in different building density regions obtained by equal interval classification.
very low, 0.07 ∼ 0.17 is low, 0.17 ∼ 0.32 is medium, 0.32 ∼ 0.66 is high,
and 0.66 ∼ 1.0 is very high. While for the equal interval classification
method, the ranges of very low, low, medium, high, and very high
dense correspond to 0 ∼ 0.2, 0.2 ∼ 0.4, 0.4 ∼ 0.6, 0.6 ∼ 0.8, and 0.8 ∼ 1.0,
respectively.

The urban structure refers to the horizontal but also the vertical
layout. Note that in our research, new undocumented buildings which
were constructed between the year 2014 and the year 2017 are consid-
7

ered targets for further morphology and landscape analysis, facilitating
the investigation of the urban development patterns.

3.2.1. State-scale investigation
The obtained result allows for localizing individual undocumented

buildings and characterizing them in their physical appearance. To
begin, however, we evaluate the effects on our metrics at an aggregated
level with respect to the landscape structure. Fig. 6 consists of six pie
charts, showing the number, area, and volume of new undocumented
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Fig. 7. The number of new undocumented buildings in different building density regions for (a) Ansbach, (b) Bad Toelz, (c) Deggendorf, (d) Hemau, (e) Kronach, (f) Kulmbach,
(g) Landaum, (h) Landshut, (i) Muenchen, (j) Regensburg, (k) Rosenheim, (l) Schweinfurt, (m) Wasserburg, (n) Weilheim, and (o) Wolfratshausen.
buildings for different building density regions for all 15 test cases. Al-
though these pie charts are obtained from different clustering methods,
it is interesting to note that they share a similar trend, i.e., more than
half of the new undocumented buildings are identified in the very low
and low building density regions (cf. Figs. 6(a) and (b)). This suggests
that clustering method-dependent effects are able to be remedied. The
same trend is also revealed by the building area and volume (i.e., very
low and low dense regions have the largest share of undocumented
buildings). This shows that the often-discussed fragmentation of the
landscape and specifically urban sprawl in the peripheries of urban
areas is obviously more advanced in Bavaria than it is depicted in
official data sets such as the DFK. In addition, we have performed the
analysis also on grid cells of 200 m × 200 m, and found that different
grid sizes exert little influence on morphology and landscape analysis
results.

3.2.2. City-scale investigation
In this section, we carry out the morphology and landscape analysis

of undocumented buildings at the city scale. In this way, we are able to
8

explore whether the findings are in line with previous findings that the
identified trend of a larger amount of undocumented buildings in lower
dense areas is ubiquitous. Note that we utilize the K-means clustering
method for the definition of high and low building density regions
at the city-scale analysis, as K-means clustering and equal interval
classification methods show a similar trend.

Fig. 7 illustrates the number of new undocumented buildings with
respect to the different building density regions, covering 15 cities.
Each subfigure shows a distribution of new undocumented buildings
in a specific city. Looking at the spatial distribution of the number of
buildings, we find that in most cities more undocumented buildings
are identified in very low or low dense regions. This again indicates
that urban sprawl in the state of Bavaria is probably greater than
official geospatial data currently documented. An interesting finding
is that Muenchen is the only city that has the largest number of
undocumented buildings in the medium density class, with over 1000
buildings. Moreover, for different density regions, the numbers of
undocumented buildings in Muenchen are larger than those in other
cities. As an economic hub, Muenchen has experienced a high inward
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Fig. 8. The mean and standard deviation of building height of new undocumented buildings in different building density regions for (a) Ansbach, (b) Bad Toelz, (c) Deggendorf,
(d) Hemau, (e) Kronach, (f) Kulmbach, (g) Landaum, (h) Landshut, (i) Muenchen, (j) Regensburg, (k) Rosenheim, (l) Schweinfurt, (m) Wasserburg, (n) Weilheim, and
(o) Wolfratshausen.
Fig. 9. The number of high undocumented buildings in different building density
regions of Muenchen.
9

migration in the last years. The effect of high building construction
dynamics, not yet documented in the DFK, are revealed by this analysis.

If two cities share similar 2D morphological parameters or land-
scape metrics, there might exist differences in 3D morphological pa-
rameters or landscape metrics. Fig. 8 illustrates the mean height and
height deviation of undocumented buildings for different cities. For
most cities, the mean height and height deviation of undocumented
buildings in high density regions is larger than that in lower density
regions. However, undocumented buildings of Bad Toelz and Hemau
show smaller mean height and height deviation in high density regions
than those in low density region. Height deviation depicts the height
diversity of buildings. Large variations of building height in high den-
sity regions are owing to various factors such as building function types
(e.g., commercial and residential areas) (Hu et al., 2016) and human
activities (Li et al., 2020b).

In addition, the high-rise undocumented buildings in various cities
are investigated (see Fig. 9). We generally find that higher buildings
are specifically built in larger cities. In Muenchen there are 82 high
and yet undocumented buildings identified, while in Regensburg – the
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second largest city in our sample – it is only 18. In Muenchen we see the
trend that these high buildings are predominantly built in the higher
dense more central urban regions. This is related to building codes
in urban planning. As medium and high density regions are near city
centers where the land rent is high, newly built commercial buildings
are usually high-rise office buildings, occupying fewer land (Wu et al.,
2019).

4. Discussion

In this paper, we make use of the remote sensing data to investigate
differences in cadastral data sets and up-to-date remote sensing data
with respect to documented buildings at the scale of a federal state
and a city. Specifically, we have identified undocumented buildings in
official data sets and we compare their 2D and 3D morphological pa-
rameters and landscape metrics in different building density regions. By
doing so, we are able to picture the spatial variability of undocumented
buildings, allowing investigation of the structural building pattern.

Based on our study, we find that more than half of the undocu-
mented buildings are located in lower dense regions. It reveals that
landscape fragmentation and sprawl have progressed more than official
geodata currently document. This is a crucial finding as adverse effects
of fragmented living and sprawl have been documented in scientific
studies. Examples are that more land consumption and higher budgets
for infrastructure are needed. The benefits of the compact city to envi-
ronmental and social development have been hinted by many studies
(Zhao et al., 2020; Angel et al., 2020). Our analysis, however, reveals
that in our test sites a compact design of redensification of cities is less
extensive than the construction of buildings in lower dense areas.

In the following, the main outcomes of our study are critically
discussed from various perspectives — data, methodology, and appli-
cation:

(1) data: We make use of remote sensing data including the DSM
nd the TrueDOP, which permits the generation of 3D building mod-
ls with high geometrical accuracies. The study shows that the CNN
lassification allows a detailed morphology and landscape analysis of
ndocumented buildings. Nevertheless, a major obstacle for similar
arge-scale applications is the acquisition of such datasets, which can
e addressed by leveraging other remote sensing data sources. For in-
tance, multi-view stereo satellite imagery, e.g., WorldView or Pleiades
atellites can provide DSM and imagery with sub-meter resolution. The
ata provided by these satellites cover the whole globe in theory and
re less expensive than airborne data. Still, their high revisit capability
lso helps to acquire low cloud cover observations for the regions with
bove-average cloud cover. However, for these very high resolutions
ata, costs are still an obstacle for large area, national, or even global
pplications. And beyond, multi-view stereo data are far from global
vailability.

(2) methodology: In this study, the detection of undocumented
uildings relies heavily on building extraction results that are pro-
ided by the CNN. Therefore, related methodological challenges arising
rom the CNN need to be considered. According to the quantitative
ssessment of the accuracy of the building extraction results on the
ity of Bad Toelz, FC-DenseNet (Jégou et al., 2017) has achieved the
ighest accuracy when compared to the other four CNN models. FC-
enseNet (Jégou et al., 2017) achieves the F1 score of 85.14 ± 0.55%
nd the IoU of 74.06 ± 0.77%, respectively. Of course, uncertainties
emain despite the high accuracies, however, the CNN is superior to
raditional methods in the task of large-scale building extraction, as
he CNN is able to significantly alleviate false alarms (Li et al., 2020a).

ith respect to our work, any misclassification of buildings and non-
uilding objects introduced by the CNN will result in questionable
ndocumented building detection results. Nevertheless, we find the un-
ocumented building detection results are plausible in general, which
re confirmed by the precision of undocumented buildings (82.27%).
10
or future research, we aim to explore more robust CNN models that
re capable of improving building extraction results.

(3) application: The official building databases can be applied as
fundamental source to investigate the building structural patterns.
evertheless, when building databases are not up-to-date, the derived
orphological parameters and landscape metrics might be distorted.

n other words, the morphology and landscape analysis of out-of-date
uilding databases cannot provide valuable information to guaran-
ee comprehensive urban planning and management. To overcome
his issue, the focus of our study is to monitor undocumented build-
ngs, which contributes to the construction of update-to-date building
atabases for valid building structural pattern analysis.

. Conclusion and outlook

3D building models characterize the planar and vertical dimensions
f urban structures, offering an insight into landscape structural de-
elopment. However, official geodata sets in Germany are not always
p-to-date so new approaches are needed to track the undocumented
hanges. The increasing availability of remote sensing data and CNN
odels provide great potential to spatiotemporally analyze undocu-
ented buildings. In this study, we have established a set of 2D and
D morphological parameters and landscape metrics in undocumented
uilding analysis that can illustrate the current urban patterns. Our
tudy reveals a disproportional distribution of undocumented build-
ngs among different building density regions and a relatively high
roportion of new undocumented buildings in lower dense regions.
his suggests that landscape fragmentation and urban sprawl might be
urther developed than documented in official data sets in Germany.
oreover, we argue that up-to-date monitoring of the construction

eriod, morphology, and landscape of undocumented buildings is de-
anded better-informed planning decisions. In the future, we will

arry out research in different countries including both developed and
eveloping countries. By analyzing their similarity and differences, we
im to better promote the international significance of our research.
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