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Semantic place annotation can provide individual semantics, greatly helping the field of
trajectory data mining. Most existing methods rely on annotated or external data and
require retraining models following a region change, thus preventing their large-scale
applications. Herein, we propose an unsupervised method denoted as UPAPP for the
semantic place annotation of individual trajectories using spatiotemporal information.
The Bayesian Criterion is specifically employed to decompose the spatiotemporal probabil-
ity of visiting the candidate place into spatial probability, duration probability, and visiting
time probability. Spatial information in two geospatial data sources is comprehensively
integrated to calculate the spatial probability. In terms of the temporal probabilities, the
Term Frequency–Inverse Document Frequency weighting algorithm is used to count the
potential visits to different place types in the trajectories and to generate the prior proba-
bilities of the visiting time and duration. Finally, the spatiotemporal probability of the can-
didate place is then combined with the importance of the place category to annotate the
visited places. Experimental results in a trajectory dataset collected by 709 volunteers in
Beijing showed that our method achieved an overall and average accuracy of 0.712 and
0.720, respectively, indicating that the visited places can be annotated accurately without
any annotated data.
� 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Semantic place annotation refers to determining the most likely visited places hidden in the raw trajectory data by con-
textual information (e.g., spatial and temporal information). With the increasing popularity of mobile terminals and the
development of positioning technology, massive amounts of human movement trajectory data have been collected and
recorded. Many studies have investigated various spatiotemporal patterns in the trajectory data [1,2], whereby a spatiotem-
poral trajectory is typically expressed as a series of coordinates, clusters or geographic regions. Such a large number of spa-
tiotemporal trajectories provides us with new opportunities to discover the purposes and habits of individuals’ travel
patterns. However, the absence of semantic information related to the visited places prevents a comprehensive understand-
ing of the daily behavior and complicates its subsequent usage. Understanding the semantics contained in the massive spa-
tiotemporal trajectory data is of great significance for personalized service recommendations and predictions, the advance
prediction and prevention of emergencies, and personal health monitoring [3,4]. Therefore, there is a growing demand for
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the automated semantic annotation of the trajectories before mining valuable travel patterns hidden in the huge spatiotem-
poral trajectory data [5–9].

Existing methods for semantic place annotation typically include two steps, namely, trajectory segmentation and seman-
tic annotation. The process of subdividing the original trajectory into sequences in which ‘‘moving” and ‘‘stop” episodes
alternately appear is called trajectory segmentation [10]. In particular, a ‘‘stop” is not entirely stationary, rather it denotes
staying in a relatively small neighborhood for an extended period. It is assumed that if individuals have stopped, they must
be doing some meaningful activities at specific places, and therefore the stops are noteworthy [11]. Semantic annotation is
also a semantic enrichment process applied by integrating different types of data to obtain beneficial information from the
analysis of a raw trajectory. The annotation of the moving episode typically includes inferring the travel mode, while the
annotation of the stop episode determines the most probable places visited by the individual in their stops. Compared with
moving episodes, stops exhibit richer semantic information and are considered more important in trajectory data mining.
However, the accuracy of place annotation is limited by the following factors: 1) the positioning terminal often has low accu-
racy and cannot effectively match the actual location; 2) place ambiguity is a common occurrence, particularly for multiple
place types in the same area (e.g., multiple shops or restaurants in a shopping mall); and 3) temporal ambiguity is also
observed, for example, visiting the same place for different purposes results in complicated temporal patterns.

Many studies have recently been conducted on the semantic place annotation of trajectories. These approaches typically
aim to determine the most likely visited places hidden in the trajectory data by multi-source information. However, they
either ignore the temporal information of the stop or rely on annotated samples or other external data [6,8]. Moreover,
obtaining large-scale annotated data usually proves to be difficult. Therefore, a semantic annotation model that can effec-
tively combine temporal and spatial information without supplementary data is urgently required.

In this study, we develop a prior probability-based method for unsupervised semantic annotation of trajectory stop
places. The contribution of our work is as follows:

1) A prior probability statistical method for semantic trajectory annotation that does not require annotated data or other
external data is proposed. With only the trajectory data, our method can extract the visiting time and duration pat-
terns for the different types of visited places. It begins with the trajectory dataset itself and is not restricted by chang-
ing regions and people. Thus, our method solves the dependence on annotated data in the existing methods and can
greatly improve the availability of trajectory data.

2) A probability model that fully considers the spatial characteristics, visiting time and duration of the stop episode is
created to address the issue of place ambiguity. Our model is able to comprehensively employ temporal characteristics
and spatial locations to calculate the spatiotemporal probability of visiting different places, combining the spatiotem-
poral probability of the place and the importance of the place category to annotate the visited place.

3) A method that determines the spatial probability by combining the ROI (region of interest) and POI (point of interest)
data is proposed to increase the accuracy of the spatial probability calculations, fully employing the topological char-
acteristics provided by the ROI data and the spatial distribution characteristics of the POI.

2. Related work

2.1. Trajectory segmentation

Current trajectory segmentation methods can be classified into supervised, unsupervised, and semi-supervised
approaches [12,13]. The supervised method uses labeled samples for training and learns the knowledge to generate sub-
trajectories (e.g., the recently proposed WS-II) [14]. The semi-supervised approach includes RGRASP-SemTS [15] and CoEx-
DBSCAN [16] and uses a combination of user-labeled meaningful segments and unlabeled data to segment the trajectory.
Unfortunately, most trajectory datasets do not contain semantic labels, and it is challenging to label big trajectory datasets
manually. Consequently, the unsupervised method is an essential topic in trajectory segmentation.

Unsupervised segmentation algorithms can be divided into four categories, namely, rule-based, clustering-based, sliding-
window-based, and cost-function-based approaches. The rule-based algorithm detects the trajectory sequence that meets
the required spatiotemporal conditions via a threshold. Commonly used thresholds include spatial distance, time length
[17], speed [18], and angle change thresholds [19]. Although a rule-based method is easy to implement and relatively intu-
itive, it is not robust to noise. The cost-function-based approach partitions a trajectory by minimizing a specific cost function
to build the most homogeneous segments, such as GRASP-UTS and TS-MF based on the minimum description length prin-
ciple [12,20]. The sliding window-based approach determines where the moving object changed its behavior by deriving the
local features within a fixed-size sliding window (e.g., OWS [21] and SWS [13]). While these two methods can effectively
detect changes in the motion state, they are not suitable for the semantic mining of visited places. This is because an indi-
vidual is not necessarily completely static when visiting a place such as walking in a park.

A major application of clustering-based segmentation is the detection of stop-and-move patterns [22], which describe the
behavior of an individual that stays within a specific region for more than a period of time. Clustering-based methods detect
stops by identifying continuous sequences adjacent in space and time. Moreover, these methods redefine the concepts of
neighborhood and density to find points that are nearby in both space and time. CB-SMOT is a key clustering-based algo-
rithm that redefines the neighborhood concept in DBSCAN, taking the longest continuous sequence with an average speed
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less than the speed threshold as the neighborhood [23]. If the continuous sequence time exceeds the time threshold, it is
considered a stop. Otherwise, it is considered to be a moving episode. However, the methods may introduce extra moving
points at the beginning and end of the extracted point sequence. To overcome this weakness, TrajDBSCAN is proposed and
assumes that the distances to the core point from all points in the neighborhood should be less than the distance threshold
[24]. In addition, the time length of the sequence is used to replace the neighborhood density in DBSCAN. This allows for the
application of TrajDBSCAN to trajectories of different sampling intervals. Subsequent work has been developed using this
clustering-based concept [25–27]. Such methods are data-driven and relatively robust against noise. Therefore, in the cur-
rent paper, a clustering-based method is adopted for the extraction of the stop episodes and to segment the trajectory data.

2.2. Semantic annotation

The semantic enrichment process annotates semantic information in trajectories fused with different sources of informa-
tion. Hence, different semantic trajectory models with semantic web standards have been proposed in order to represent
trajectory episodes and contextual information, such as STEP [28], FrameSTEP [29], Master [30], SEMANTIC-SEG [8] and SEP-
SIM [31]. This method can apply reliable external resources (e.g., a geographic knowledge base) and movement features to
label the trajectories in question. However, such studies are limited to a basic reasoning mechanism using spatiotemporal
concepts, properties, or relationships [31]. Due to temporal and spatial ambiguity, annotating visited places hidden in the
trajectory is a complicated task. In the context of trajectory data mining, this work positions itself in the reasoning stage.

In order to solve place ambiguity, the features extracted from multi-source data can be comprehensively utilized to infer
the places most likely to be visited. Commonly used features can be divided into geographic-, temporal-, and individual-
related features. The features related to geographic data include spatial topological relationships [11,32], distance [33],
and the distribution of place types [5,7]. Time-related features typically include the start time and duration of stop episodes
[8,34] and activity history-related features, such as accumulated duration and frequency. Common individual-related fea-
tures compromise the individual’s occupation, age and home address [35]. Additional information is also selected, such as
place popularity and moving patterns typically obtained from social media and review sites [8,36,37]. Individual-related fea-
tures are difficult to obtain and are guarded by privacy restrictions. Thus, they are rarely employed in large-scale applica-
tions. Furthermore, the distribution of samples obtained from social media is often biased, and retraining is required
following a region change. Such information is also relatively difficult to acquire. Geographic and temporal information,
which can be obtained easily and is directly related to the travel patterns of individuals, is widely used in previous studies.

On the other hand, current methods for the reasoning of visited places can be grouped into rule-based, machine learning-
based, and probability-based approaches. The rule-based method annotates visited places by formulating temporal and spa-
tial rules [38]. For example, the most commonly used spatial rule takes the nearest POI as the visited place [39]. However, the
rules are relatively arbitrary, preventing the place and temporal ambiguity from being solved effectively. The machine
learning-based method uses labeled data for supervised learning and employs the trained model to annotate the visited
places. Commonly used machine learning models in semantic annotation include decision trees, random forests [33,34],
and neural networks [40]. A recent study established a random forest model based on temporal, spatial and sequential fea-
tures for automatically estimating the semantic meanings of personal locations [7]. This method can employ a variety of
information and is suitable for large-scale datasets, yet it relies on labeled data for training [35,40–42], and retraining is
required after the region is changed. The probability-based method calculates the probability of visiting each place under
the corresponding spatial location and time conditions. The majority of studies using the probability-based method employ
spatial probability. For example, Yan established a spatial probability calculation model based on a two-dimensional Gaus-
sian distribution function [5]. Many researchers subsequently followed a similar approach to this spatial probability model
[6,8]. Unlike the aforementioned methods, some recent studies have adopted ROI data to establish a spatial probability
model based on spatial topological relationships [11]. Current studies use either the ROI or POI when establishing the spatial
probability model, while research that comprehensively integrates information from different types of geographic data is
lacking. For the formulation of the temporal probability, previous studies generally directly calculate the probability from
the activity log or employ social media to mine the required temporal patterns. For example, Gong calculated the visiting
Table 1
A summary of the differences between our method and the existing approaches.

Method Employs spatial
relationship

Employs temporal
information

Employs place category
distribution

Requires
training

Requires
external data

Graaff (2016) [43], Noureddine
(2020) [44]

Yes No No No No

Gong (2016) [6] Yes Yes No No Yes
Lv (2016) [7] Yes Yes Yes Yes No
Zhang (2018) [42] Yes Yes No Yes No
Zhang (2019) [45] Yes No No No No
Bermingham (2019) [11] Yes No Yes No No
Gao (2020) [8] Yes Yes No No Yes
Our method Yes Yes Yes No No
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time probability for different place types from the activity log [6]. In addition, Gao adopted review data to determine the
visiting time and duration probabilities of different place types [8]. The aforementioned methods either ignore the temporal
information or rely on external data. Therefore, a probability model that fully makes use of spatiotemporal characteristics
without using any external data is proposed in this paper. Table 1 summarizes the differences between our method and
the existing approaches.

3. Methodology

3.1. Overview of the framework

The proposed semantic place annotation framework is illustrated in Fig. 1, and includes the trajectory collection, stop and
candidate place extraction, spatiotemporal probability calculation of candidate places, and semantic annotation of visited
places. The Unsupervised Place Annotation with Prior Probability (UPAPP) method is specifically developed in this work.
First, the stops are extracted to segment a trajectory, and the relevant attributes of the stops are then calculated. Following
this, a spatiotemporal probability model for the candidate places is created, which is decomposed into the spatial, duration
and visiting time probabilities. Two different geospatial data are integrated to establish a spatial probability calculation
method. For the duration and visiting time probabilities, we propose an unsupervised prior probability statistical method
that does not require any supplementary data. The prior probabilities of different place types are extracted based on the
potential visits of the trajectory. Once the spatiotemporal probabilities of the candidate places are obtained, the probability
of visiting a place is calculated by the combination with the place type importance for the subsequent semantic annotation.

In the following, we provide some key definitions that are used throughout this paper.

Definition 1. Stop SP = (x, y, tstart , dur) denotes a stop episode and is a list of continuous spatiotemporal trajectory points,
where (x, y) is the coordinate of the stop center, which is calculated by the average coordinate of all spatiotemporal points in
that stop; tstart represents the start time or visiting time of the stop; and dur indicates the duration calculated by the time
difference between the end and the start of the stop.
Fig. 1. Flowchart of the proposed UPAPP method.
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Definition 2. Stop region RSP = (x, y, r) indicates the spatial range covered by the circle whose radius represents the spatial
uncertainty and noise present in a real trajectory stop. In addition, the stop center is chosen as the center of the circle, and
the stop radius equals the maximum distance to the stop center from all spatiotemporal points in the stop.
Definition 3. Candidate place O of the corresponding stop is a place with a distance from the stop center that is less than the
search radius, where the search radius is user-specified.
Definition 4. The spatiotemporal probability of a candidate place indicates the probability of visiting the place under the
corresponding spatial location and time conditions and is only related to the spatiotemporal conditions and the place itself.
Definition 5. The visit probability of a candidate place represents the probability of the place being visited. This variable is
calculated by combining the spatiotemporal probability of the place and the place type importance and is related to the place
category distribution in the candidate place set.
3.2. Extraction of the stops and candidate places

Three types of stop places were extracted [46]. The first category represents stops whereby the individual stays in a speci-
fic area without a positioning signal loss. This stop type is typically clustered based on spatiotemporal attributes. The second
category denotes stops whereby the individual stays in the same area, yet the signal is partly lost due to object occlusion. The
third includes stops that belong to the start and end of the trajectory, where the individual generally leaves or arrives at a
room with no signal (e.g., leaving/arriving at home).

A clustering-based algorithm was chosen to detect the first category of stops. This algorithm searches for high-density
clusters with strong aggregation in the spatiotemporal dimension. More specifically, the neighborhood of a spatiotemporal
point is defined as the longest continuous subsequence starting from this point. The spatial distance from the starting point
is less than the specified distance threshold d1 for all points in the sequence. The density is defined as the period of the
sequence. Points with a density exceeding the period threshold t1 were denoted as core points, otherwise they were marked
as noise. These definitions were integrated into the DBSCAN algorithm to identify the stops in the trajectory.

For the second stop category, the time interval and spatial distance of adjacent points were calculated to determine all
point pairs whose time interval exceeds a specified time threshold t2. The point pair is considered a stop if the distance
between the point pair is less than a specified distance threshold d2. The third category was extracted using the spatial dis-
tance between the end and starting points of the daily trajectory; if this distance is less than a specified distance threshold d3,
it is considered as a stop. Once the detection process was completed, all stops that were adjacent in both time and space
were merged to ensure that the entire stop would not be divided into several smaller stops.

After that, the attributes of each stop were calculated (e.g., stop center, radius, start time, and duration), and the corre-
sponding geospatial data (i.e., ROI and POI) was employed to search for candidate places around each stop. These two
geospatial data sources were comprehensively integrated to obtain a complete geographic database and spatial
understanding.

3.3. Calculating the spatiotemporal probabilities of candidate places

The spatiotemporal probability of a candidate place denotes the probability of a place being visited under the conditions
of the corresponding spatial location and temporal attributes. The spatiotemporal probability of candidate place Oi corre-
sponding to the stop point SP can be expressed as:
P OijSPð Þ ¼ P Oij x; yð Þ; t; durð Þ; ð1Þ

where (x, y) is the coordinates of the stop center of SP; dur is the duration of SP; and t is the visiting (start) time of SP;

According to the Bayesian criterion, the probability can be calculated using Eq. (2).
P Oij x; yð Þ; t;durð Þ ¼ Pð x;yÞ;t;dur;Oið Þ
Pð x;yÞ;t;durð Þ ; ð2Þ
where P ðx; yÞ; t; dur;Oið Þ represents the joint distribution probability of stop SP and place Oi; and Pð x; yÞ; t; durð Þ is not relevant
to the place, for the same stop is a constant.

Based on the Bayesian criterion, P ðx; yÞ; t; dur;Oið Þ is calculated as:
P ðx; yÞ; t;dur;Oið Þ ¼ P tj x; yð Þ;dur;Oið Þ � P x; yÞ;dur;Oið Þ ¼ P tj x; yð Þ;dur;Oið Þ � P durjOi; ðx; yð Þð Þ � P Oij x; yð Þð Þ
� P x; yð Þð Þ ð3Þ
Substituting Eq. (3) into Eq. (2) results in:
P Oij x; yð Þ; t;durð Þ ¼ P tj x;yð Þ;dur;Oið Þ�P durjOi ;ðx;yð ÞÞ�PðOi j x;yð ÞÞ�P x;yð Þð Þ
Pð x;yÞ;t;durð Þ : ð4Þ
1315
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If we assume that (x, y), t, and dur are conditionally independent with respect to Oi, then we get:
P Oij x; yð Þ; t;durð Þ ¼ P tjOið Þ � P durjOið Þ � P Oij x; yð Þð Þ � P x;yð Þð Þ
Pð x;yÞ;t;durð Þ ; ð5Þ
where P x;yð Þð Þ
Pð x;yÞ;t;durð Þ is a constant for the same stop. Therefore, if only the first three expressions (i.e., the visiting time, duration,

and spatial probabilities, respectively) are considered, Eq. (5) can be expressed asP tjOið Þ � P durjOið Þ � PðOij x; yð ÞÞ. These three
expressions are calculated in turn. The above three probabilities will simultaneously affect the annotation result of the vis-
ited place. As Fig. 2 shows, Place O1 is most likely to be visited according to the spatial relationship only, while place O5 is
most likely to be visited under the corresponding temporal conditions.

3.3.1. Calculation of the spatial probability
The spatial probability of a candidate place is calculated based on the corresponding spatial distance and topological

information. Here two geographic data types are considered, the POI and ROI.
The spatial probability of ROI employs the topological relationship between the candidate geographic object and the stop

region, which can be divided into the following three categories: contain, intersection and disjoint [11]. If we denote the stop
region of stop SP as RSP and the geographic range of place Oi as ROi

, then the relative spatial probability of Oi can be expressed
as:
Prelative Oij x; yð Þð Þ ¼

1; RSP contain ROi
or ROi

contain RSP

Pr þ 1� Prð Þ � AreaROi
\RSP

AreaRSP
;ROi

intersect RSP

Pr �
Searchradius�dROi

;centerSP

Searchradius�rSP
;ROi

disjoint RSP

8>>>><
>>>>:

; ð6Þ
where contain indicates that the topological relationship is contained if the stop region contains the place geometry (or vice-
versa); intersect denotes that the topological relationship is intersecting but not contained; disjoint indicates that the topo-
logical relationship is separated; Pr is a user-specified parameter that represents the relative spatial probability when the
place geometry just intersects the stop region; AreaROi\RSP represents the intersection area of ROi

and RSP; AreaRSP is the area

of the stop region of SP; dROi ;centerSP
represents the minimum distance from the stop center of SP to the geographic object Oi;

Searchradius is the user-specified radius used to search candidate places; and rSP is the stop radius of SP.
For the spatial probability calculation of POIs, it is assumed that the influence of each POI on the surrounding areas obeys

a two-dimensional Gaussian distribution, where the relative probability decays with distance [5]. To ensure that the relative
probability of the POI is consistent with that of the ROI, the probability is constrained to be 1 when the distance equals 0 and
Pr when the distance equals the stop radius. Thus, the relative probability of the POI is described as:
Prelative Oij x; yð Þð Þ ¼ P x; yð ÞjOið Þ ¼ exp � dOi ;centerSP
2

2r2

� �
s:t:exp � rSP2

2r2

� �
¼ Pr ; ð7Þ
where dOi ;centerSP is the distance from the geographic object to the center of SP; and r is the Gaussian distribution parameter
that is calculated via the constraint conditions.
Fig. 2. An example of a stop and the corresponding candidate places.
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Following the calculation of the relative spatial probability of all candidate places, the spatial probability is then deter-
mined via normalization. For candidate place Oi, the spatial probability is described as:
P Oij x; yð Þð Þ ¼ Prelative Oi j x;yð Þð ÞP
i
Prelative Oi j x;yð Þð Þ ; ð8Þ
where,
P

iPrelative Oij x; yð Þð Þ is the sum of the relative spatial probability of all the candidate places in the corresponding stop.

3.3.2. Calculation of the duration probability
Visits to the same place categories follow the same duration and visiting time patterns [8]. Assuming that the place cat-

egory corresponding to Oi is Cj, then the visiting time probability is P tjOið Þ ¼ P tjCj
� �

and the duration probability is
P durjOið Þ ¼ P durjCj

� �
. Previous work determines P tjCj

� �
and P durjCj

� �
by counting labeled activity logs or extracting patterns

from social media. However, this method relies on external data, which is not conducive to large-scale applications. In order
to overcome the bottleneck of difficult-to-obtain annotated data, we propose a prior probability statistical method based on
potential visits.

For the proposed method, a stop corresponds to an actual visit, and the places in the stop region are regarded as potential
visits. These potential visits are weighted according to their importance. The Term Frequency-Inverse Document Frequency
(TF-IDF) weighting method was adopted to calculate the importance weights of the potential visits [7]. If a stop region con-
tains many places of the same type, and there are fewer places of this type in the whole area (e.g., the entire city), the impor-
tance of this type of place is high. The TF-IDF weighting method can effectively avoid the weight explosion and reflect the
importance of the place category in the surrounding area. If the importance of category Cj places in the stop region is denoted

as ISPCj
, then category Cj places are potentially visited ISPCj

*1 times in the corresponding stop.

When counting the duration prior probability, the duration is divided into multiple intervals [dur1; dur2 � � � durm � � �]. For
stop SP with duration dur2durm, the number of potential visits of stop SP to category Cj places is calculated as follows:
VisitSPCj ;durm
¼ ISPCj

� 1 ¼
CountSPCjP
j
CountSPCj

� log
P

j
CountCj

CountCj

� �
� 1; ð9Þ
where countSPCj
is the number of category Cj places in the SP stop region;

P
jCount

SP
Cj

is the sum of the number of all places in

the SP stop region; CountCj
is the number of category Cj places in the entire area; and

P
jCountCj

is the sum of the number of
all places in the entire area.

The above method is employed to calculate the number of potential visits in the entire trajectory dataset. The average
number of potential visits of all stops with duration dur2durmin the trajectory dataset to category Cj places is then deter-
mined as:
VisitCj ;durm ¼ 1
Ndurm

PNdurm
i¼1 VisitSPiCj ;durm

; ð10Þ
where VisitSPiCj ;durm
is the number of potential visits to type Cj places in SPi (duration dur2durm); and Ndurm is the number of

stops with duration dur2durm.
After separately counting the average number of potential visits to different place types belonging to different duration

groups, the probability of visiting a certain place category when the duration belongs to a specified interval can be calculated.
For example, the prior probability that the duration belongs to durm when visiting a category Cj place is given as:
P dur 2 durmjCj
� � ¼ VisitCj ;durmP

m
VisitCj ;durm

¼
1

Ndurm

PNdurm
i¼1

Visit
SPi
Cj ;durmP

m
1

Ndurm

PNdurm
i¼1

Visit
SPi
Cj ;durm

; ð11Þ
where VisitCj ;durm is the average number of potential visits of all stops with duration dur2durmto category Cj places; andP
mVisitCj ;durm is the sum of the average number of potential visits across different duration intervals to category Cj places.

An example of calculating the prior duration probability is presented in Appendix A.
Assuming that the candidate place Oi corresponds to place category Cj and the duration of the corresponding stop belongs

to durm, then the duration probability of Oi is P durjOið Þ ¼ P durjCj
� � ¼ P dur 2 durmjCj

� �
.

3.3.3. Calculation of the visiting time probability
Similarly, the visiting time is divided into multiple intervals [t1; t2 � � � tk � � �] and calculated with Eq. (9), Eq. (10) and Eq.

(11). The prior probabilities that the visiting time belongs to different intervals when visiting a certain place type are thus
determined. For example, for a category Cj place, the prior probability of visiting time t2tkis calculated as follows:
P t 2 tkjCj
� � ¼ VisitCj ;tkP

k
VisitCj ;tk

¼
1

Ntk

PNtk
i ¼ 1

Visit
SPi
Cj ;tkP

k
1

Ntk

PNtk
i ¼ 1

Visit
SPi
Cj ;tk

; ð12Þ
1317



J. Cheng, X. Zhang, P. Luo et al. Information Sciences 607 (2022) 1311–1327
where VisitCj ;tk represents the average number of potential visits of all stops with visiting time t2tkto category Cj places;P
kVisitCj ;tk is the sum of the average number of potential visits of stops to category Cj places with the visiting time belonging

to different intervals; and VisitSPiCj ;tk
is the number of potential visits to type Cj places in SPi with visiting time t2tk, which is the

same as Eq. (9).
If candidate place Oi corresponds to place category Cj and the visiting time of the corresponding stop belongs to tk, then

the visiting time probability of Oi is P tjOið Þ ¼ P tjCj
� � ¼ P t 2 tkjCj

� �
.

Finally, the spatiotemporal probability of the candidate place Oi is calculated as P tjOið Þ � P durjOið Þ � PðOij x; yð ÞÞ.

3.4. Annotation of visited places

In addition to the spatiotemporal attributes, the distribution of place categories also has an impact on the choice of visited
places. For example, the probability of individuals visiting restaurants in areas containing many restaurants is higher. The
probability of visiting the candidate place is essentially equal to the spatiotemporal probability of the place multiplied by
the importance of the category to which the place belongs. If the candidate place set of SP is denoted as
Ocandidate ¼ ðO1;O2 � � �ONÞ, then for category Cj of place Oi, the importance of place Oi in Ocandidate is calculated as follows:
IOcandidate
Oi

¼ IOcandidate
Cj

¼
Count

Ocandidate
CjP

j
Count

Ocandidate
Cj

� log
P

j
CountCj

CountCj
; ð13Þ
where IOcandidate
Oi

indicates the importance of Oi in candidate place set Ocandidate; Cj is the place category of Oi; I
Ocandidate
Cj

indicates

the importance of place category Cj; Count
Ocandidate
Cj

is the number of candidate places of category Cj in Ocandidate; and CountCj
is

the number of places of category Cj in the entire area. The probability that Oi is visited in the corresponding stop is expressed
as:
P Oið Þ ¼ P Oij x; yð Þ; t; durð Þ � NIOcandidate
Oi

; ð14Þ
where NIOcandidate
Oi

is the post-normalization importance of Oi.
For each stop, the candidate place with the highest visit probability is marked as the visited place.
4. Experiments and results

In order to evaluate the performance of our approach, we conducted comprehensive experiments using two real GPS tra-
jectory datasets (i.e., the Shangdi-Qinghe dataset and the Geolife dataset) and various evaluation metrics. All the algorithms
were implemented in Python and run on computers with Intel(R) Xeon(R) Silver 4116 CPU (2.10 GHz) and 128 GB memory.

4.1. Datasets

4.1.1. Trajectory datasets

(1) Shangdi-Qinghe trajectory datasets
The Shangdi-Qinghe trajectory dataset came from a daily behavior project conducted on the residents of Beijing City,

China, from October to December 2012. This seven-day period project involved a total of 709 participants living or working
in the Shangdi-Qinghe area, a subdistrict in Beijing [47,48]. GPS trackers equipped by volunteers recorded their locations
every 30 s with a spatial positioning accuracy of 15 m. As the GPS trackers collected private locations, a privacy protection
contract was signed by each participant. A total of 2,955,049 spatiotemporal points were collected, which is a sufficient rep-
resentation of the target area.

While collecting the trajectory data, volunteers recorded their travel destination categories and activities on a daily basis
to form activity logs. The collected information includes the ID, date, activity start time, activity end time, activity type, and
place category. Place categories were grouped into residential areas, working areas, service venues, dining venues, schools,
leisure venues, shopping venues, and others. The place category recorded in the activity log is used as the truth data to eval-
uate the accuracy of the UPAPP method in our experiment.

(2) Geolife trajectory datasets

The Geolife trajectory datasets were collected during the Microsoft Research Asia Geolife project period by 182 users from
April 2007 to August 2012 [49]. This dataset contains 17,621 trajectories with a total duration of 50,176 h, recording a broad
range of users’ outdoor movements, including life routines and some entertainment and sports activities. The majority of the
data was collected in Beijing, China, and participants were generally college students and Microsoft employees.
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Noise is present in the original trajectory data due to signal blockages, and thus pre-processing is required. Following
drifting, the data points considered as noise deviate from the original position in the route, producing abnormal speeds
and included angles. The included angle refers to the angle formed by the connection between the central points and two
points located at the front and back. We calculated the speed and included angle of each point, and removed those points
with a speed exceeding 180 km/h or an angle less than 30� to eliminate the noise in the trajectory data.

4.1.2. Geographic data
The POI and ROI datasets were obtained from AutoNavi (the most famous navigation service company in China) and OSM

(Open Street Map) data, respectively, in 2014. These geographic data were divided into the corresponding seven place cat-
egories in the activity logs, and the rules are described as follows.

The published POI data already includes classification information, and we further divided it into the following seven cat-
egories with corresponding keywords: 1) residential area: ‘‘community”, ‘‘residential”; 2) working area: ‘‘company”, ‘‘office
building”, ‘‘government”; 3) service place: ‘‘life services”, ‘‘medical care”, ‘‘finance”, ‘‘car”; 4) dining place: ‘‘dining”; 5)
school: ‘‘school”; 6) leisure place: ‘‘leisure”; and 7) shopping place: ‘‘shopping”.

The elements of the OSM data contain a tag expressed in the form of key-value and were also divided into the following
seven categories: 1) residential area: land use = residential; 2) working area: office = *; 3) dining place: amenity = restaurant;
4) school: amenity = college, amenity = university, amenity = school, amenity = kindergarten 5) leisure place: leisure = *; 6)
shopping venue: shop = *; 7) service venue: amenity = *. Places belonging to other categories were removed out.

4.2. Experimental setup

4.2.1. Compared methods
To the best of our knowledge, the paper presents the first attempt at extracting the temporal probability from the trajec-

tory itself. However, some existing unsupervised semantic annotation methods can be extended for place annotation. To ver-
ify the effectiveness of the proposed method, we compared the proposed UPAPP with other approaches by employing the
following four methods: 1) spatial probability only; 2) spatiotemporal probability; 3) existing sequence model; and 4) the
proposed method combined with a sequence model. The sequence model refers to using the order (i.e., sequence) of the vis-
ited places to establish a sequence model. Spatial and sequential characteristics have recently been employed to obtain a
sequence model denoted as Spatio-Temporal Trajectories to Semantic Place-Matching Patterns (STOSEM) based on the
HMM [11]. In this approach, the state transition probabilities were learned based on the potential visits.

The sequence models used for the comparison are detailed as follows: the observable sequence is the sequence of stop
episodes; the hidden states correspond to candidate places associated with each stop episode that the individual may have
stopped at; and the emission probability employs the probability of places visited described in Section 3.4. The state tran-
sition probability describes the probability of moving from one place category to another. Based on the potential visits, we
learned all the probabilities in the trajectory to generate the state transition probability matrix. In particular, for adjacent
stops SPi and SPiþ1, there are a total of m category Ca places in the candidate places of SPi, and a total of n category Cb places
in the candidate places of SPiþ1. The potential visit calculation method introduced in Section 3.3 was applied to calculate the

number of potential visits of SPi (SPiþ1) to category Ca (Cb) places as Visit
SPi
Ca
ðVisitSPiþ1

Cb
Þ. We assume that category Cb places are

visited after type Ca places at a total of VisitSP1Ca
� VisitSP2Cb

times, while the STOSEMmethod assumes this to occurm*n times. All
state transitions in the trajectory dataset were then counted to generate a state transition probability matrix. As a final step,
the visited places were annotated via the Viterbi algorithm.

4.2.2. Evaluation metrics
To evaluate the effectiveness of the UPAPP method in semantic place annotation, we used the Shangdi-Qinghe trajectory

dataset and the corresponding activity logs for a quantitative accuracy assessment. The accuracy for each place category was
calculated using Eq. (15). Furthermore, the overall accuracy and average accuracy were also adopted to evaluate the effec-
tiveness of semantic annotation.
acci ¼ TPi
Totali

; ð15Þ
where acci represents the accuracy of place category i; TPi is the number of successful predictions of place category i; and
Totali represents the total number of logged visits to place category i.
OA ¼
PN

i
TPiPN

i
Totali

; ð16Þ
where OA is the overall accuracy, and N is the total number of place categories.
AA ¼
PN

i
acci

N ; ð17Þ
where AA is the average accuracy, and N is the total number of place categories.
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4.3. Results and accuracy assessment

4.3.1. Extraction of stops
For the extraction of the first stop category, the time and space thresholds, t1 and d1, were set as 600 s and 100 m, respec-

tively. Lost points belonging to the second type of stops are formed due to signal blockage, and consequently, the positioning
accuracy of nearby points is relatively poor. For this category, we set the time and space thresholds t2 and d2 as 1200 s and
200 m, respectively. The spatial threshold d3 of the third type of stops was also set as 200 m. When merging the above stops,
the time and space thresholds were set as slightly lower than those of the first stop type, namely 90 m and 540 s, respec-
tively. Furthermore, the search radius was selected as 200 m to match stops with candidate places.

In this experiment, 12,646 stops and 16,926 stops were extracted from the Shangdi-Qinghe dataset and the Geolife data-
set, respectively. The distributions of all the detected stops from the two-trajectory dataset are presented in Fig. 3. The stops
were observed to expand outwards from the center and were distributed across over half of the urban areas of Beijing city.
The extracted stops in the Shangdi-Qinghe dataset were then matched with the activity log based on the corresponding tem-
poral information. Among the extracted 12,646 stops, a total of 9,283 stops matched the activity log, while 1,345 stops were
unsuccessfully matched. In addition, there were 1,848 stops that had no activity log on the corresponding date and 170 stops
that were not surrounded by any candidate places.
4.3.2. Effectiveness of extracting the visiting time and duration probability
In order to extract the prior probability of the visiting time over 24 h, one day was divided into one group per hour. There

were relatively few stops with the visiting time of 0–6:00 am, and thus they were merged into one group. As a result, the
division resulted in 19 temporal groups. Due to the small temporal interval, a sliding window of three was employed to per-
form mean smoothing. Figs. 4(a) and 5(a) illustrate the prior probabilities of the visiting time for different place categories
extracted from the Shangdi-Qinghe and Geolife datasets. Note that both datasets were collected in Beijing, and thus most of
the extracted patterns were similar. Nevertheless, our method is able to efficiently capture differences in temporal regularity
in different datasets. In general, the trends in the visiting time extracted from the trajectory data based on potential visits are
essentially equal to residents’ daily travel trends. The probability of visiting residential areas was higher in the morning and
evening compared to visiting between 9:00 am and 4:00 pm. The probability of visiting working areas peaked at 8:00–10:00
am, with a second peak at 1:00–3:00 pm. Following 6:00 pm, the probabilities were lower, corresponding to the work pat-
terns of individuals. The probability of visiting dining venues peaked at 11:00–1:00 pm and 6:00–7:00 pm, corresponding to
lunch and dinner, respectively. Shopping was most probable in the afternoon, while the probability of visiting leisure places
peaked at 2:00–4:00 pm and 8:00–10:00 pm. It is noteworthy that there were obvious differences in the trend of visiting
schools in the two datasets. This can be attributed to the high participation of college students in the Geolife project, while
the Shangdi-Qinghe dataset was completely based on information from individuals in employment. Furthermore, partici-
pants in the Geolife dataset had a preference for going out for leisure and shopping at night.

For the purpose of extracting the prior probability of the duration, the duration was divided into the following five
groups: [0–30] min, [30–90] min, [90–180] min, [180–300] min, and [300–1440] min. The prior probabilities determined
based on the method detailed in Section 3.3.2 are illustrated in Figs. 4(b) and 5(b). Likewise, the patterns extracted from
Fig. 3. Spatial distribution of extracted stops of the trajectory data. (a) the Shangdi-Qinghe dataset; (b) the Geolife Dataset.
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Fig. 4. Prior probabilities of visiting different place types extracted from the Shangdi-Qinghe trajectory dataset. (a) visiting time probabilities; (b) duration
probabilities.

Fig. 5. Prior probabilities of visiting different place types extracted from the Geolife trajectory dataset. (a) visiting time probabilities; (b) duration
probabilities.

J. Cheng, X. Zhang, P. Luo et al. Information Sciences 607 (2022) 1311–1327
the two datasets were consistent with the regularity of daily activities, while differences caused by different participants
were also observed. The results demonstrate that when visiting places of leisure, dining, and services, the probability
decreased with the duration. When visiting residential and working areas, longer durations were associated with a greater
probability. When visiting shopping venues, the probability peaked at the 30–90 min duration group, and subsequently
decreased as the duration increased. For school visits, durations of 0–30 min exhibited the highest probability in the
Shangdi-Qinghe dataset. This is attributed to the minimal time required to pick up children. For the remaining duration
groups, the longer the visiting time at schools, the higher the probability. In contrast, since the majority of participants lived
at school, durations exceeding 180 min were more probable in the Geolife dataset.

The results indicate that UPAPP can reveal key temporal patterns from trajectory data without any external data. More-
over, the temporal patterns of visiting different place categories can also be quantified when activity logs are available. In
order to verify the effectiveness of this method, we compared the extracted prior probabilities with the probabilities
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retrieved from the activity log statistics of the Shangdi-Qinghe dataset (Fig. 6). In general, the temporal patterns for visiting
different place types are essentially equal to the prior probabilities (Fig. 4). With respect to visiting time, visits to working,
residential, dining, leisure, and shopping places exhibited similar probability peak positions. The patterns in duration deter-
mined from the activity log statistics are also generally consistent. However, there were also two differences observed
between the two sets of results, described in the following. 1) Our results revealed relatively high probabilities for durations
of 300–1440 min for workplace and school visits. This may be linked to the possible spatial proximity of schools and work-
places to lunch venues. At close distances, the morning and afternoon may be included in the same stop, thus extending the
duration. 2) For leisure visits, our results indicated high probabilities for durations of 0–30 min. This was attributed to the
multiple outdoor activities in leisure venues that were always moving, making it difficult to form a consistent stop. Overall,
in the absence of activity logs, our method is effective in mining temporal patterns across places.

4.3.3. Effectiveness of semantic place annotation
Once the spatiotemporal probabilities of candidate places were calculated, the places visited in the stop episodes were

annotated with the category importance and spatiotemporal probability. In this set of experiments, the search radius was
set to 200 m and Pr was set to 0.5 for all the methods otherwise specified.

To determine the constancy between the actual and annotated place categories, the semantic annotation accuracy of the
9,283 stops in the Shangdi-Qinghe dataset that successfully matched the activity log was evaluated. Table 2 shows that the
UPAPP method achieves the highest overall and average accuracy compared with others. Annotating using the spatial
probability-only method has the lowest accuracy. The use of visiting time probability, duration probability, and influences
of the surrounding places contribute to improving the accuracy. The results reveal the ability of the proposed method to
effectively annotate the visited places, with relatively high recognition accuracies for all the categories. Furthermore, the
use of the ROI data significantly improved the annotation accuracy of leisure venues, schools and residential areas. These
place types typically have a large geographic range, and thus integrating spatial topological characteristics can more accu-
rately reflect the spatial characteristics of stop events. The results indicate that combining the two data types allows for the
comprehensive use of the topological characteristics and category distribution, hence effectively reflecting the spatial char-
acteristics. Furthermore, in the absence of labeled data for training, sequence characteristics may not improve the model
accuracy but rather reduce efficiency.

Since the Geolife dataset lacks labeled data for validation, we conducted a qualitative analysis of the annotation results. In
this dataset, the most frequently-visited schools were Tsinghua University, Beihang University, Renmin University of China,
and Peking University. Workplaces that appeared most frequently were the Yingdu building, the Chinese Academy of
Sciences, the Sigma building (used by Microsoft Research Asia), and the Shenchang building. All the above places are located
in the red areas in Fig. 3(b). This is consistent with the demographic statistics of the dataset [11,49]. Leisure places such as
the Old Summer Palace, the Summer Palace, and the Olympic Forest Park near the aforementioned places were also fre-
quently visited. Although a quantitative evaluation is lacking, the above analysis results also demonstrate the effectiveness
of UPAPP.

In the second set of experiments, we examined the impact of varying parameters on the performance of the methods.
First, we validated the effectiveness of the TF-IDF weighting algorithm in UPAPP. In our method, the TF-IDF weighting
method is used to measure the importance of a place category in the surrounding area. We also compared the weighting
Fig. 6. Temporal probabilities for different place categories extracted from activity logs.
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Table 2
Performance of semantic place annotation in the Shangdi-Qinghe dataset.

Performance metric UPAPP UPAPP combined with HMM STOSEM Spatial-only Spatio-temporal UPAPP with POI only

Dining place accuracy 0.697 0.574 0.563 0.406 0.480 0.691
School accuracy 0.726 0.567 0.375 0.713 0.632 0.449
Residential place accuracy 0.714 0.788 0.670 0.619 0.660 0.599
Leisure place accuracy 0.701 0.581 0.420 0.660 0.672 0.201
Working place accuracy 0.682 0.614 0.642 0.314 0.637 0.665
Shopping accuracy 0.819 0.717 0.869 0.437 0.633 0.759
Service place accuracy 0.700 0.672 0.715 0.529 0.399 0.650
Overall accuracy 0.712 0.706 0.652 0.529 0.623 0.616
Average accuracy 0.720 0.645 0.608 0.526 0.588 0.573
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method using proportional, square root with using the logarithmic function. When the proportional method was directly
used, the overall and average accuracy were 0.663 and 0.693, respectively. When the square root weighting method was
used, the overall and average accuracy were 0.704 and 0.720, respectively. These results indicate that the TF-IDF weighting
method is more powerful. Using the logarithmic function can effectively avoid the weight explosion and make the weight
(i.e., IDF) of a certain category close to 0 when there are massive places of this category in the entire region.

We then compared the UPAPP with other methods to vary the search radius and spatial probability parameter Pr . As
shown in Fig. 7, UPAPP outperforms the other methods under different parameters, which illustrates the stability and robust-
ness of our method. Fig. 7(a) reveals that an inappropriate search radius affects the annotation accuracy. A small search
radius may miss the correct place, while a large search radius will affect the distribution of surrounding places. Therefore,
we recommend setting the search radius at 150–250 m empirically. Fig. 7(b) indicates that the methods are not sensitive to
Pr for Pr < 0.6. When Pr is set too large, the spatial probability of places outside the stop radius will be relatively large, result-
ing in mismatching. Thus, we recommend setting Pr at 0.2–0.5.
5. Discussion

5.1. Practical contribution

To solve the dependence on annotated and external data in calculating temporal probability, we counted the visiting time
and duration probability based on potential visits. Consequently, an unsupervised approach for semantic place annotation
was proposed by combining spatial information, temporal information, and place category importance. To the best of the
authors’ knowledge, this is the first attempt at using temporal information without any external data. In other words, our
method can be applied in different trajectory datasets that vary in regions and participants.

To further validate the effectiveness of our method, we annotated the visited places using the temporal probabilities
derived from the activity logs. The overall accuracy of using probabilities determined by the log-based statistics is 0.725,
and is slightly higher than our proposed method. This further demonstrates that the prior probabilities determined in our
work can effectively reflect the temporal patterns of visits to multiple place types. Thus, without external data, our method
Fig. 7. Average accuracy of semantic place annotation under varying parameters on the Shangdi-Qinghe dataset. (a) search radius; (b) spatial probability
parameter (Pr).
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can make full use of spatiotemporal characteristics. This will greatly increase the utility of trajectory data for large-scale
applications.

5.2. Limitations and future work

In Section 3.3, it is assumed that the location, visiting time and duration of a stop are conditionally independent at a given
place. Considering that the visiting time and duration are both temporal attributes, this assumption may not necessarily be
satisfied. Thus, we discuss the rationality of this assumption. Assuming that (x, y) and t are conditionally independent events
with respect to Oi, while (x, y) and dur are conditionally independent with respect to Oi, the probability in Eq. (4) can be
expressed as:
P Oij x; yð Þ; t;durð Þ ¼ P tjOi ;durð Þ�P durjOið Þ�P Oi j x;yð Þð Þ�P x;yð Þð Þ
Pð x;yÞ;t;durð Þ : ð18Þ
As with Eq. (12), for the visited place type Cj and duration dur2durm;the probability of visiting time t2tkcan be calculated
as follows:
P t 2 tkjCj;durm
� � ¼ VisitCj ;durm ;tkP

k
VisitCj ;durm ;tk

¼
1

Ndurm ;tk

PNdurm ;tk
i ¼ 1

Visit
SPi
Cj ;durm ;tkP

k
1

Ndurm ;tk

PNdurm ;tk
i ¼ 1

Visit
SPi
Cj ;durm ;tk

; ð19Þ
where VisitCj ;durm ;tk represents the average number of potential visits of all stops with duration dur2durmand visiting time
t2tkto category Cjplaces;

P
kVisitCj ;durm ;tk is the sum of the average potential visits of stops with duration dur2durmto category

Cj places when the visiting time belongs to different intervals; and Ndurm ;tk is the number of stops with visiting time t2tkand
duration dur2durm.

Assuming that conditional independence between the duration and visiting time with respect to Oi are not satisfied, an
overall accuracy of 0.710 is achieved, which does not reach the level of our method. However, this may be attributed to an
insufficient amount of data. For the case of unconditional independence, the probability must be calculated under the two
conditions, which requires a larger dataset. Increasing the trajectory data size to verify the conditional independence is
reserved for future work. In addition, our method may consider the individual’s historical trajectory in further work if the
trajectory data is collected over a long period of time. For example, the individual’s home and workplace can be extracted
using the analysis of their multi-day trajectory to improve the annotation accuracy.
6. Conclusions

This paper presented UPAPP, an unsupervised method for the semantic place annotation of trajectories without the
requirement of supplementary data. Specifically, trajectory stops were initially retrieved from the trajectory data, and the
candidate places corresponding to each stop were identified. In order to infer the visited places, a spatiotemporal probability
model was created, and the Bayesian Criterion was employed to decompose it into three terms: spatial probability, duration
probability, and visiting time probability. A probability calculation method that integrates both POI and ROI geographic data
was developed to calculate the spatial probability, fully utilizing the characteristics of the two data types. For the formulation
of the visiting time and duration probabilities, the TF-IDF weighting algorithm was adopted to calculate the potential visits
to different place types. By counting all the potential visits in the trajectory dataset, the prior probabilities of the visiting time
and duration when visiting different place categories were generated. Following this, the spatiotemporal probability of the
place was combined with the place category importance to annotate the visited place. Semantic annotation experiments
were conducted on two real trajectory datasets. Results in the Shangdi-Qinghe trajectory dataset collected by 709 volunteers
indicated that the UPAPPmethod achieved an overall accuracy of 0.712 and average accuracy of 0.720, outperforming several
other methods and annotating visited places better without relying on any other data. Moreover, the temporal patterns
acquired by potential visit statistics were essentially equal to those determined directly from the activity log. Without using
annotated data, our method has great potential in large-scale automated trajectory annotation.
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Appendix A. An example of calculating the prior duration probability

To demonstrate the calculation details of the probabilities in our UPAPP method, we present an example (Table 3) in
which the durations are divided into five intervals: [0,30), [30–90), [90–180), [180–300), and [300,1440) min, and a total
of 10 stops were used to count the prior probabilities. The potential visits to different types of places in Table 3 were calcu-
lated by Eq. (9).

Taking dining place visits as an example, we calculated the average number of potential visits of all stops with different
duration intervals in the trajectory dataset to dining places using Eq. (10):
Table 3
An exam

Stop

1
2
3
4
5
6
7
8
9
10
Visitdining;dur2½0;30Þ ¼ 1
Ndur2½0;30Þ

XNdur2½0;30Þ
i¼1

VisitSPidining;Ndur2½0;30Þ
¼ ð0:26þ 0:31þ 0:27Þ

3
¼ 0:84

3
;

Visitdining;dur2½30;90Þ ¼ 0:17þ 0:32
2

¼ 0:49
2

;

Visitdining;dur2½90;180Þ ¼ 0:12þ 0:15þ 0:16
3

¼ 0:43
3

;

Visitdining;dur2½180;300Þ ¼ 0:11
1

;

Visitdining;dur2½300;1440Þ ¼ 0:09
1

:

Next, the prior probabilities that the duration belongs to different intervals when visiting dining places were calculated
with Eq. (11):
P dur 2 ½0;30Þjdiningð Þ ¼ Visitdining;dur2½0;30ÞP
mVisitdining;durm

¼
0:84
3

0:84
3 þ 0:49

2 þ 0:43
3 þ 0:11

1 þ 0:09
1

¼ 0:32;

P dur 2 ½30;90Þjdiningð Þ ¼
0:49
2

0:84
3 þ 0:49

2 þ 0:43
3 þ 0:11

1 þ 0:09
1

¼ 0:28;

P dur 2 ½90;180Þjdiningð Þ ¼
0:43
3

0:84
3 þ 0:49

2 þ 0:43
3 þ 0:11

1 þ 0:09
1

¼ 0:17;
ple of duration probability calculation.

ID Duration interval Potential visits to schools Potential visits to shopping places Potential visits to dining places

[0,30) 0.12 0.19 0.26
[0,30) 0.14 0.16 0.31
[300,1440) 0.31 0.15 0.09
[30,90) 0.15 0.23 0.17
[90,180) 0.25 0.32 0.12
[180,300) 0.28 0.21 0.11
[30,90) 0.13 0.24 0.32
[0,30) 0.15 0.18 0.27
[90,180) 0.22 0.24 0.15
[90,180) 0.12 0.17 0.16
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Table 4
Probabilities of visiting durations for different place categories.

Category P dur 2 0;30½ ÞjCð Þ P dur 2 30;90½ ÞjCð Þ P dur 2 90;180½ ÞjCð Þ P dur 2 180;300½ ÞjCð Þ P dur 2 300;1440½ ÞjCð Þ
Dining place 0.32 0.28 0.17 0.13 0.10
School 0.13 0.13 0.18 0.26 0.29
Shopping place 0.17 0.23 0.24 0.21 0.15
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P dur 2 ½180;300Þjdiningð Þ ¼
0:11
1

0:84
3 þ 0:49

2 þ 0:43
3 þ 0:11

1 þ 0:09
1

¼ 0:13;
P dur 2 ½300;1440Þjdiningð Þ ¼
0:09
1

0:57
2 þ 0:49

2 þ 0:43
3 þ 0:23

2 þ 0:09
1

¼ 0:10:
Likewise, the prior duration probabilities of different categories of places were calculated (Table 4).
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