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a b s t r a c t 

Land Use/Land Cover (LULC) changes alter the ecosystem structure and function, resulting in variations of the 
Ecosystem Service Values (ESVs). This study investigated the impacts of LULC changes on ESVs over 37 years 
in the Cherangany Hills Water Tower (CHWT) of Kenya. Landsat images from 1985 and 2022 were used to 
examine historical LULC changes in the CHWT. Supervised classification was carried out using the Random Forest 
(RF) classifier in R-Studio while ArcGIS desktop software was used for mapping to evaluate the LULC changes. 
Accuracy assessments were also conducted for each reference year. The estimation of ESVs was done using the 
Benefit Transfer Approach (BTA), employing modified local value coefficients. Six LULC types (Forest, Cropland, 
Grassland, Water bodies, Bareland, and Built-up area) were successfully classified, with overall accuracies of more 
than 92.5% and Kappa coefficients greater than 0.91. Our study findings showed an expansion in built-up areas 
(201.63%), cropland (36.78%), and water bodies (40.05%) whereas grassland, forest, and bareland experienced a 
reduction in their land areas by 28.26%, 13.38%, and 24.15% respectively between 1985 and 2022 in the CHWT. 
Consequently, there was an increase in the ESV of cropland while forest and grassland registered a decrease in 
their ESVs. Overall, the total ESV of the CHWT declined by 7.16% from 121.22 million United States Dollars 
(USD) in the year 1985 to 112.54 million USD in 2022. As for the individual ESVs, 15 out of the 17 individual 
Ecosystem Services (ES) registered negative changes in their ESVs. Food production and biological control were 
the two individual ES with positive ESV changes over the study period. There is a need to curb the current 
drivers of LULC changes within the water tower, especially the expansion of croplands, to stop further ecosystem 

degradation for optimum delivery of ES. 
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. Introduction 

Ecosystem Services (ES) refers to the aspects of ecosystems uti-
ized either actively or passively for human well-being ( Fisher and
urner, 2008 ; Millennium Ecosystem Assessment [MEA], 2005 ). These
enefits can be categorized into direct benefits (regulating, provision-
ng, and cultural services), which affect the well-being of humans in the
hort term, and indirect benefits (supporting services), which are critical
n sustaining the production of the other services; hence affects human
ell-being in the long run ( Costanza et al., 1997 ; de Groot et al., 2012 ).

ES are crucial for sustaining life on earth and preserving the ecosys-
em’s integrity (The Economics of Ecosystems and Biodiversity [TEEB],
010 ). Despite their significance, ES are threatened by socio-economic
∗ Corresponding author. 
E-mail address: brotich@chuka.ac.ke (B. Rotich) . 
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nd biophysical pressures such as expanding human settlements, ex-
anding agriculture, population growth, urbanization, and accessibility
o markets ( Kindu et al., 2016 ; Li et al., 2007 ). Unprecedented Land Use/
and Cover (LULC) changes in different parts of the world due to hu-
an and natural activities have had adverse impacts on biological diver-

ity and ecosystems, affecting their ability to provide ecosystem services
 Costanza et al., 1997 ; Gashaw et al., 2018 ; Hernández-Blanco et al.,
020 ). As a result, such changes have been identified as one of the lead-
ng drivers of ES loss both globally and locally. LULC changes character-
zed by the conversion of natural habitats such as forests, grasslands, and
etlands into agricultural lands, and urban areas have led to increased

ood production and housing, but at the cost of ES, human well being,
nd biodiversity ( Biratu et al., 2022 ; Gashaw et al., 2018 ; Hasan et al.,
020 ; Lawler et al., 2014 ; Polasky et al., 2011 ; Tolessa et al., 2021 ). 
22 
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Globally, research has been carried out to understand, value,
odel, and manage ES ( Badamfirooz et al., 2021 ; Cabral et al., 2016 ;
ostanza et al., 2014 , 1997; De Groot et al., 2012 ; Gashaw et al., 2018 ;
asan et al., 2020 ; Jha et al., 2020 ; Kindu et al., 2016 ; Marques et al.,
021 ; Niquisse et al., 2017 ; Sannigrahi et al., 2020 ; Sharma et al., 2019 ;
hiferaw et al., 2019 ; Talukdar et al., 2020 ; Tolessa et al., 2017 ). ES
aluation entails estimating the marginal value of ES which determines
he benefit of preserving or the cost of losing a given amount or qual-
ty of ES ( Pearce, 1998 ). The valuation of ES, therefore, provides an
ssential tool for creating awareness and influencing policy and deci-
ion making. It provides an easily understandable measure of the true
alue of ES to prioritize the conservation of ecosystems and biodiversity
 Qin et al., 2019 ; Thellmann et al., 2019 ). There are different valua-
ion methods of ES which can be broadly divided into two categories: a)
he primary valuation methods, which follow economic approaches in-
olving market prices, production approaches, travel cost, opportunity
ost, the hedonic method, conjoint analysis, and replacement cost; and
) the land use proxy-based method, which utilizes the Benefit Trans-
er Approach (BTA) by applying the existing Ecosystem Service Val-
es (ESVs) data from one region to a new region which has little or
o data ( De Groot et al., 2012 ; Farber et al., 2006 ; Kindu et al., 2016 ;
ichardson et al., 2015 ). Kenya has experienced LULC changes over time
ue to a combination of anthropogenic and natural factors. The Food
nd Agriculture Organization of the United Nations (FAO) reports a de-
rease in areas covered by forests (6.58%) and grasslands (2.07%) in
enya, while areas under settlement, cropland, and wetlands increased
y 150.88%, 11%, and 1.09%, respectively, between 1990 and 2015
 FAO, 2015 ). Several studies have been done to quantify and map his-
orical LULC changes in different regions of Kenya ( Campbell et al.,
005 ; Cheruto et al., 2016 ; Kogo et al., 2021 ; Muhati et al., 2018 ;
etersen et al., 2021 ) and estimate the economic values of ecosystems
 Langat et al., 2021 ; Ministry of Environment and Forestry, 2019 ; Na-
ure Kenya, 2019 ; Okumu and Muchapondwa, 2017 ), but studies linking
he two are scarce. 

The Cherangany Hills Water Tower (CHWT) is among the five major
ater towers (Mt. Kenya, Mt. Elgon, Cherangany Hills, The Aberdare

ange, and The Mau Forest complex) of the 18 gazetted water towers
n Kenya. It makes a significant contribution to the national economy
y providing numerous environmental, economic, social, and cultural
enefits ( Kenya Water Towers Agency, 2020 ). While efforts have been
ade towards studying the impact of LULC changes on ES globally, no

uch studies have been carried out in the CHWT of Kenya. The objectives
f this study, therefore, are to 1). Analyze LULC changes in the CHWT
rom 1985-2022 using Remote Sensing (RS) and Geographical Informa-
ion System (GIS) 2). To find out the total ESV change in response to
he LULC changes in the CHWT and 3). To estimate the impact of LULC
ynamics on individual ESVs in the CHWT. Our research findings will
rovide a better understanding of the status and dynamics of ES in the
HWT for future land use planning and natural resource management
y the relevant stakeholders. 

. Materials and methods 

.1. Study area 

The CHWT is geographically located between 35°.00 ′ to 35°.83 ′ E
nd 0°.50 ′ to 1°.50 ′ N spanning four administrative counties of El-
eyo ‐Marakwet, West Pokot, Trans-Nzoia, and Uasin Gishu ( Fig.1 ). The
ater tower covers an area of 263,771ha (2,637.71km 

2 ), which com-
rises 97,397ha of gazetted forest and 166,374ha of a 5 kilometers (km)
uffer zone around the gazetted forest ( Kenya Water Towers Agency,
020 ). The gazetted forest is made up of 14 forest blocks, mainly com-
rised of indigenous forests with a few continuous forest plantations and
rassland, while the buffer zone is dominated by agricultural land and
uman settlement (Kenya Forest Service, 2015 ; Kenya Water Towers
gency, 2020 ). 
2 
The water tower has an altitude range of 2,000m to 3,365m above
ea level at Cheptoket peak. The area receives bimodal rainfall, with
ong rains occurring from April to June and short rains from July to Oc-
ober. The average yearly rainfall in the water tower ranges from 800
m in the north to about 1,500 mm in the west, with cool and hu-
id weather conditions. Temperatures range from 14 °C to 30 °C, with

uly being the coldest month and January the hottest (Kenya Forest
ervice, 2015 ). CHWT is a vital watershed area for lake Turkana and
ictoria basins as it hosts critical headwaters for rivers Turkwel, Nzoia,
nd Kerio that drain into the two lakes (Kenya Forest Service, 2015 ).
ambisols form the major soil group in the water tower, characterized
y good drainage, good structure, varied acidity, and high organic mat-
er (OM) content ( Kenya Water Towers Agency, 2020 ). 

The water tower is rich in biodiversity, with about 1,296 vas-
ular plant species from 130 families and 608 genera spread across
he forest blocks, including 17 endemic species. This flora represents
4.17%, 43.83%, and 18.50% of the Kenyan plant families, genera, and
pecies, respectively ( Mbuni et al., 2019 ). The water tower is home
o many fauna, including buffaloes ( Syncerus caffer ), elephants ( Lox-

donta africana ), leopards ( Panthera pardus ), black and white Colobus
onkeys ( Colobus guereza ), the rare swamp-dwelling sitatunga antelope

 Tragelaphus spekii ), and the near-threatened mountain bongo antelope
 Tragelaphus eurycerus ) (Kenya Forest Service, 2015 ; Kenya Forestry Re-
earch Institute, 2017a ). It has attractive recreation sites such as Kip-
oboi caves, Kiptaberr mountain, Mtelo campsite, and Muyein water-
alls ( Ministry of Environment and Forestry, 2019 ). Communities liv-
ng within the water tower include the Cherang’any/Sengwer, Marak-
et, Pokot, and Luhya, whose livelihoods are supported by economic
ctivities like farming, wage labor, beekeeping, and small businesses
 Mbuni et al., 2020 ; Rotich, 2019 ). 

.2. Data collection, image processing, and classification 

Satellite imageries and ancillary data were used to examine the his-
orical LULC changes in the study area over 37 years, from 1985 to 2022.
he year 1985 was chosen as the baseline for the change detection anal-
sis because it was the year with the best available quality satellite im-
ge data close to 1964, the year when Cherangany forest was gazetted
s a forest reserve (Kenya Forest Service, 2015 ), and 2022 was the most
ecent year for comparison. A subset of Landsat satellite imageries was
ownloaded from the United States Geological Survey (USGS) website
 https://earthexplorer.usgs.gov/ ) using the Google Earth Engine (GEE)
cript. Inbuilt in the script were radiometric, geometric correction, cloud
asking, and filling using available same season imagery using Landsat

uality assessment band, image subsetting, and mosaicking of the im-
ges. For the best comparison of the acquired satellite data for the two
ime periods, images captured during the dry season were used, which
ell on 0 to 90 Julian days (January to March). For 1985, Landsat 4-
 Thematic Mapper (TM) was selected while Landsat 8-9 Operational
and Imager (OLI) and Thermal Infrared Sensor (TIRS) was used for
022, both at 30m spatial resolution. Images were sourced for path/row
69/059, covering the CHWT fully. To address the challenge of clouds
n the imageries, this study used the clouds score algorithm in GEE to
ask pixels that had high cloud cover based on Landsat quality image
les. The algorithm scores clouds on an image in the value range of 0
o 100, and for this study, a threshold value of 20 was used to mask the
loudy pixels. The masked clouds were replaced with pixels of images in
he Landsat archive acquired within the defined 0-90 day Julian period.

Pixel-based supervised classification was executed using the Random
orest (RF) classifier in R-Studio using the packages; snow, maptools, sf,
andomforest, raster, rgdal and lwgeom. The advantage of using RF over
aximum likelihood is the ability to limit overfitting without substan-

ially increasing error due to bias. Running RF in R-Studio is faster, eas-
er to integrate validation data, and generates a confusion matrix within
he model ( Shelestov et al., 2017 ). Visual interpretation of high resolu-
ion ( < 1.5m) Google Earth images, as well as the use of secondary data,

https://earthexplorer.usgs.gov/
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Fig. 1. Map of Cherangany Hills Water Tower, Kenya. 

Table 1 

The number of training samples used for LULC classification. 

1985 2022 

LULC types Polygons Training Pixels Polygons Training Pixels 

Forest 16 400 22 400 
Cropland 19 400 43 400 
Grassland 31 200 34 200 
Water bodies 4 200 3 400 
Bareland 5 200 22 200 
Built-up area 2 100 5 100 
Total 77 1500 129 1700 
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uided digitization of polygons used as training sites for the LULC classes
efined using the national classification scheme, modified from the In-
ergovernmental Panel on Climate Change (IPCC) classification scheme
s shown in Table 2 (Intergovernmental Panel on Climate Change, 2003 ;
enya Forest Service, 2021 ) . In total, 1500 pixels were collected for
985 and 1700 pixels for 2022 as training samples. The training samples
ere determined using a user-defined number of pixels based on the pro-
ortion of the polygons per landcover class as provided in Table 1 . The
amples were then used to train the classifier using the stratified random
ampling method. The validation samples were interpreted visually on
he composite Landsat images and Google Earth high-resolution images.

To determine the accuracy of the landcover classification, a ran-
om stratified sample of an equal number of pixels (as provided for
he training pixels in Table 1 ) was applied in each stratum (landcover
lass) and a confusion matrix was generated. The metrics used to assess
he accuracy were the Kappa coefficient, user and producer error ma-
rices. Six LULC types were identified and classified based on Kenya’s
ational level LULC classification approach domesticated from the IPCC
lassification guidelines of 2003 (Intergovernmental Panel on Climate
hange, 2003 ; Kenya Forest Service, 2021 ). The classes comprised crop-

and, forest, grassland, bareland, built-up area, and water bodies as de-

cribed in Table 2 . h  

3 
In order to determine LULC changes between 1985 and 2022, change
etection was carried out by converting the classified land cover images
o polygons for each year and overlay analysis carried out in the GIS en-
ironment. The output was a change matrix with land cover transitions.
he area in hectares for each land cover conversion was then computed
nd a LULC transition map generated. 

The data processing workflow is shown in Fig. 2 . 

.3. Ecosystem services value estimation 

This study used the BTA to estimate the study area’s ESVs due to
he lack of local-level data ( Costanza et al., 1997 ; Hu et al., 2008 ;
ichardson et al., 2015 ). Numerous studies have used a similar ap-
roach through the benefit transfer method, which refers to the pro-
ess of utilizing existing values from an original research to estimate
he ESVs of other similar locations in the absence of site-specific val-
ation data ( Gashaw et al., 2018 ; Kindu et al., 2016 ; Munthali et al.,
022 ; Rai et al., 2018 ; Sharma et al., 2019 ; Talukdar et al., 2020 ;
emesgen et al., 2018 ; Tolessa et al., 2017 ). Modified conservative local
alue coefficients developed for 9 biomes by Kindu et al. (2016) were
dopted for this study to determine ESVs due to the unavailability of
istorical data for our study area and the high cost of ground data
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Table 2 

Land use and land cover types in the CHWT as per the national LULC classification scheme (Kenya Forest Service, 2021 ). 

LULC type Description 

Forest Land area more than 0.5ha dominated by trees greater than 2m in height, with a crown cover greater than 15% 

Cropland Tilled land and land under cultivation of crops 
Grassland Areas with temporary or permanent grass cover 
Water bodies Watercourses including rivers, streams, wetlands, and dams 
Bareland Areas without vegetation covered by rocks, rough roads, or degraded lands 
Built-up area Land dominated by houses, huts, paved roads, and industrial facilities 

Fig. 2. Data processing workflow. 
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ollection. These more locally valid coefficients ( Kindu et al., 2016 )
ere preferred to the often used global coefficients ( Costanza et al.,
997 ) since our study area is within the same geographic location (East
frican Great Rift Valley), with similar market values, climatic condi-

ions (mean annual rainfall of 1500mm, with a bimodal pattern), and
opographic conditions (montane forested highland peaking at 3365m
sl) (Kenya Forest Service, 2015 ; Kenya Water Towers Agency, 2020 ;
indu et al., 2016 , 2013). Additionally, Costanza et al’s. (1997) unit
alues for a particular good were derived based on an assumption that
he average unit value throughout all locations of that good was ho-
ogeneous, which may not be the case in reality ( Kindu et al., 2016 ).
omparably, the coefficients developed by Kindu et al. (2016) has
een widely utilized by other researchers to estimate ESVs and com-
ute ESV changes following LULC changes in data scarce African coun-
ries including Ethiopia ( Alebachew et al., 2022 ; Gashaw et al., 2018 ;
hiferaw et al., 2021 ), Tanzania ( Msofe et al., 2020 ), and Malawi
 Munthali et al., 2022 ). Kindu et al. (2016) modified the coefficients
4 
rom those employed by Costanza et al. (1997) through a benefit transfer
ethod using expert knowledge of the study landscape conditions and

ther studies, mainly from TEEB valuation database which comprised
ore than 1300 original values compiled mainly based on local studies

cross the globe ( Van der Ploeg et al., 2010 ) and ( Knoke et al., 2011 ).
o ensure the applicability of the data from TEEB valuation database,
indu et al. (2016) considered only values from tropical areas of similar
ULC types to their landscape. The value coefficients were then adjusted
sing the consumer and producer price indices to check the effect of time
evelopment in the coefficients on the overall estimation of ESV changes
 Kindu et al., 2016 ). The global coefficient values ( Costanza et al., 1997 )
n the other hand were estimated from the then economic value of 17
cosystem services for 16 biomes, based on a few original calculations
nd published studies hence the descrepancies in the coefficient values
etween the two pioneering studies ( Costanza et al., 1997 ). 

The modified coefficients by Kindu et al. (2016) notably have lower
oefficient values for forest biomes and water bodies and higher coeffi-
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Table 3 

Six LULC types in the study area, their equivalent biomes, and ecosystem service coefficients based on the 
modified estimates ( Kindu et al., 2016 ) and global coefficient values ( Costanza et al., 1997 ). 

LULC 

type 

Equivalent biome Ecosystem serviceCoefficient (USDha − 1 year − 1 ) 

Kindu et al., 2016 Costanza et al., 1997 Kindu et al., 2016 Costanza et al., 1997 

Forest Tropical Forest Tropical Forest 986.69 2007 
Cropland Cropland Cropland 225.56 92 
Grassland Grassland Grass/rangelands 293.25 232 
Water bodies Water Lakes/rivers 8103.5 8498 
Bareland Bareland Desert 0 0 
Built-up area Urban Urban 0 0 

Table 4 

Ecosystem service functions and their adopted modified value coefficients (USD ha − 1 year − 1 ) for each 
of the six LULC types ( Kindu et al., 2016 ). 

Ecosystem 

services 

Biome 

Tropical Forest Cropland Grassland Water Bareland Urban 

Provisioning services 

Water supply 8 2117 
Food production 32 187.56 117.45 41 
Raw material 51.24 
Genetic resources 41 
Regulating services 

Water regulation 6 3 5445 
Water treatment 136 87 431.5 
Erosion control 245 29 
Climate regulation 223 
Biological control 24 23 
Gas regulation 13.68 7 
Disturbance regulation 5 
Supporting services 

Nutrient cycling 184.4 
Pollination 7.27 14 25 
Soil formation 10 1 
Habitat/refugia 17.3 
Cultural services 

Recreation 4.8 0.8 69 
Cultural 2 
Total 986.69 225.56 293.25 8103.5 0 0 
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ient values for cropland and grassland in comparison to Costanza et al’s.
1997) global coefficient values ( Table 3 ). Six LULC classes from our
tudy were identified then compared with their corresponding equiva-
ent biomes ( Table 3 ), where the most representative biomes were used
s a proxy for each LULC type, including 1) Tropical Forest for Forest, 2)
ropland for Cropland, 3) Grassland for Grassland, 4) Urban for Built-up
rea, 5) Water for Water bodies and 6) Bareland for Bareland. 

Similarly, modified conservative annual value coefficients
or the ecosystem service functions of each LULC type by
indu et al. (2016) were used for this study ( Table 4 ). 

The LULC data for each reference year was prepared, and their
orresponding area in hectares was calculated in a GIS environment.
he value coefficients were then assigned to each LULC type based
n the values of the modified coefficients Table 3 ). We calculated
SVs and changes using equations ( Equations 1 - (3) derived from the
odel proposed by Costanza et al. (1997) and further modified by
reuter et al. (2001) , Hu et al. (2008) , Gashaw et al. (2018) and
indu et al. (2016) . The total ESV for each LULC type was obtained by
ultiplying the area of each LULC type with its corresponding value co-

fficient. The values for the LULC types for each year were then summed
p to estimate the total ESV of the water tower for each year, as shown
n equation 1 ( Hu et al., 2008 ; Kindu et al., 2016 ; Kreuter et al., 2001 ).

SV = 

∑(
A 𝑘 × V C 𝑘 

)
(Equation 1)

here ESV = total estimated ecosystem service value, A k = the area (ha)
nd VC k = the value coefficient (USD ha − 1 year − 1 ) for LULC type ’k’. 

The values of services provided by individual ecosystem
unctions within the study area were also estimated using
5 
quation 2 ( Gashaw et al., 2018 ; Kindu et al., 2016 ; Tolessa et al.,
017 ). 

SVf = 

∑(
A 𝑘 × V C 𝑓𝑘 

)
(Equation 2)

here ESV f = calculated ecosystem service value of function ’f’, A k = the
rea (ha) and VC fk = value coefficient of function ’f’ (USDha − 1 year − 1 )
or LULC type ’k’. 

The changes of ESVs over time were calculated in USD and percent-
ges from the difference between the estimated values in each reference
ear and presented in a table ( Table 8 ). The percentage changes in ESVs
ere calculated by comparing the values of the last and first years, as

hown in equation 3 ( Gashaw et al., 2018 ; Kindu et al., 2016 ; Li et al.,
019 ). 

 𝑒𝑟𝑐 𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑆𝑉 𝑐 ℎ𝑎𝑛𝑔𝑒 = 

( 

𝐸𝑆𝑉 𝑓𝑖𝑛𝑎𝑙 𝑦𝑒𝑎𝑟 − 𝐸𝑆𝑉 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑦𝑒𝑎𝑟 

𝐸𝑆𝑉 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑦𝑒𝑎𝑟 

) 

× 100

(Equation 3) 

. Results 

.1. LULC classification accuracy 

The overall classification accuracy, Kappa coefficient, user and pro-
ucer error matrices for different LULC classes for 1985 and 2022 were
alculated and presented in Tables 5a and 5b , respectively. The LULC
ap from 1985 had an overall classification accuracy of 97.6% with a

orresponding Kappa coefficient of 0.97, whereas the LULC map for the
ear 2022 had an overall accuracy of 92.5% with a Kappa coefficient of
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Table 5a 

Accuracy assessment for the year 1985. 

Reference data 

ClassifiedData Forest Cropland Grassland Waterbodies Bareland Built-upareas Total User accuracy 

Forest 394 4 1 1 0 0 400 0.99 
Cropland 3 386 7 0 4 0 400 0.97 
Grassland 1 8 188 0 2 1 200 0.94 
Water bodies 0 0 1 199 0 0 200 1.00 
Bareland 0 0 3 0 197 0 200 0.99 
Built-up areas 0 0 0 0 0 100 100 1.00 
Total 398 398 200 200 203 101 1500 

Producer accuracy (%) 0.99 0.97 0.94 1.00 0.97 0.84 

Overall accuracy = 97.6%, Kappa Coefficient = 0.97. 

Table 5b 

Accuracy assessment for the year 2022. 

Reference data 

ClassifiedData Forest Cropland Grassland Waterbodies Bareland Built-upareas Total User accuracy 

Forest 384 4 11 1 0 0 400 0.96 
Cropland 7 353 24 0 16 0 400 0.88 
Grassland 19 25 153 0 2 1 200 0.77 
Water bodies 0 0 0 400 0 0 400 1.00 
Bareland 0 10 0 0 190 0 200 0.95 
Built-up areas 0 4 0 0 4 92 100 0.92 
Total 410 396 188 401 212 93 1700 

Producer accuracy (%) 0.94 0.89 0.81 1.00 0.90 0.84 

Overall accuracy = 92.5%, Kappa Coefficient = 0.91. 

Table 6 

LULC classification results and area changes from 1985 and 2022 in the CHWT. 

LULC type 

1985 2022 Area change (1985-2022) 

Area (ha) (%) Area (ha) (%) Ha % Annual change rate (ha) 

Forest 77400.4 29.34 67047 25.42 -10353.4 -13.38 -279.82 
Cropland 95392 36.16 130473.9 49.46 35081.9 36.78 948.16 
Grassland 78488.8 29.76 56307.5 21.35 -22181.3 -28.26 -599.49 
Water bodies 39.2 0.01 54.9 0.02 15.7 40.05 0.42 
Bareland 12254.3 4.65 9295.4 3.52 -2958.9 -24.15 -79.97 
Built-up area 196.4 0.08 592.4 0.22 396 201.63 10.70 
Total 263771.1 100 263771.1 100 
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.91. These results are within the acceptable range, hence we proceeded
nd used the classification output for the estimation of the ESVs of the
ifferent LULC classes ( Kindu et al., 2013 ; Landis and Koch, 1977 ). 

.2. LULC spatial distribution patterns 

The six LULC types in CHWT from 1985 and 2022 were mapped, and
heir spatial distribution patterns displayed ( Fig . 3 ). In 1985, cropland
epresented the dominant LULC type, covering about 36.16% of the total
and area in the water tower. The areas under grassland and forest were
qually significant, as they covered 29.76% and 29.34% of the study
rea, respectively. In contrast, the remaining LULC types (built-up areas,
ater bodies, and bareland) made up only 4.74% of the total land area
f the water tower ( Table 6 ). By the year 2022, there were variations
n the spatial distribution patterns as the proportion of cropland had
ncreased to 49.46%. Forest and grassland covered lesser areas (25.42%)
nd (21.35%), respectively, while the combined area covered by water
odies, built-up, and bareland was a meagre (3.76%). 

.3. Land use land cover changes 

Between 1985 and 2022, areas under cropland, water bodies, and
uilt-up zones increased, whereas forest, grassland, and bareland areas
iminished. Croplands expanded the most by 35,081.9ha, while grass-
and (-22,181.3ha) and forest (-10,353.4ha) experienced a significant
eduction in their total land area ( Table 6 ). Built-up areas showed the
6 
ighest expansion percentage (202%). However, this high percentage
ncrease of the built-up class does not mean houses and roads covered a
arge land area, but it is instead the relative proportion of increment of
he LULC type observed over the 37 years. As for the mean annual area
ains and losses rates, cropland areas had the highest average yearly
xpansion at approximately 948.16 ha/year, while grassland reduced
he most annually by around 600 ha/year. Water bodies exhibited the
east positive mean annual change rate at 0.42 ha/year, while bareland
ecreased the least annually by 79.97ha/year. 

.4. LULC transitions 

Over the 37 years, there were several conversions from one LULC
ype to another in CHWT. The respective LULC transitions in the study
rea are presented in Table 7 . 

A considerable chunk of the forestland was converted to grass-
and (11,793.4ha) and cropland (9,539ha), respectively. Around 53%
41,836.3ha) of the grassland and 56% (6,837.5ha) of the bareland
ere also converted to cropland in the CHWT over the study period.
herefore, it is evident that the highest share of conversions within the
rassland, bareland, and forest classes in the water tower was towards
roplands. Overall, in the 37 years of this study, approximately 13% of
he total landmass in the CHWT was converted to cropland. This shows
hat key transitions in the CHWT are mainly attributed to agricultural
ctivities. 
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Fig. 3. LULC maps of the CHWT from 1985 (a) and 2022 (b). 

Table 7 

Transition matrix showing LULC changes (ha) in the water tower between 1985 and 2022. 

2022 

LULC type Forest Cropland Grassland Waterbodies Bareland Built-up areas Grand Total 

1985 Forest 55944.1 9539.0 11793.4 10.8 100.8 12.3 77400.4 

Cropland 3469.6 72135 13557.5 2.6 5872.2 355.1 95392 

Grassland 7593.9 41836.3 27713.7 13.9 1177 154 78488.8 

Water 
bodies 

9.9 1.1 0.7 27.5 0 0 39.2 

Bareland 29.1 6837.5 3221.1 0.1 2104.3 62.2 12254.3 

Built-up areas 0.4 125.0 21.1 0 41.1 8.8 196.4 

Grand Total 67047 130473.9 56307.5 54.9 9295.4 592.4 263771.1 
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A detailed scrutiny of the spatial distribution of these transitions
 Fig. 4 ) shows that forestland in the southern mid-high slopes of Che-
iemit, Kaptum, and Kendur locations exhibited vast conversions to
roplands. A similar observation was made in forested areas on low to
id slopes around Yemit and Kabtabuk locations and in the western

egions bordering the Kapolet and Kamatira forest blocks. The eastern
orest blocks of Lelan, Embobut, and Kipkunurr also exhibited conver-
ion of forestland to grassland. 

.5. Estimation of ecosystem services values, distribution, and changes 

The estimated ESVs and percentages from 1985 and 2022 for each
ULC type were calculated and summarized in Table 8 . Negative values
epict a decrease in ESV while positive values indicate an increase in
SV ( Li et al., 2007 ; Ligate et al., 2018 ). 

The total ESV of the water tower was estimated at 121.22 million
SD for 1985 and 112.54 million USD for 2022. This signifies an overall
ecline in the total ESV by 8.68 million USD (-7.16%). As for the indi-
idual LULC types, the forest had the greatest contribution to the total
SV in 1985 at 63% (76.37 million USD), followed by grassland, which
ade up 18.99% of the total ESV (23.01 million USD), cropland made
7 
7.75% of the total ESV (21.52 million USD), and water bodies had
he least contribution of 0.26% (0.32 million USD). In 2022, forest ac-
ounted for 58.78% of total ESV (66.15 million USD), cropland 26.15%
29.43 million USD), and grassland 14.67% (16.51 million USD), with
ater bodies accounting for the smallest percentage of the total ESV at
.40% (0.45 million USD). According to Costanza et al. (1997) , built-up
rea and bare land do not provide any ES hence the nil valuation for
hese biomes for our study area. 

The spatial distribution of ESVs for the years 1985 and 2022 in the
HWT is shown in Fig. 5 . From ESV maps, it is evident that the ESV dis-
ribution in 1985 was high in the sections of the study area within the
azzeted forest blocks due to the presence of forest and water bodies.
he eastern border of the study area (Tot, Kabetwa and Chesoi) had low
SV as a result of the barelands. In 2022, there is a visible reduction of
SV in the northern and central parts of the water tower comprising the
elan, Embobut, and Kipkunurr forest blocks, mostly due to encroach-
ent and conversion of forestland to grassland. The 5km buffer zones

Mnagei, Sitaman, and Chebara) also exhibited a slight increase in ESV
n 2022 due to the expansion of cropland areas over the study period. 

Over the 37 years, there were notable changes in the areas of indi-
idual LULC types, which contributed to changes in their ESVs and an
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Fig.4. LULC transition map of the CHWT 
(1985-2022). 
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verall change in the total ESV of the water tower. Forest and grass-
and registered losses in their ESVs by 10.22 million USD (-13.38%) and
.50 million USD (-28.26%), respectively. On the other hand, there were
ains in the ESV for cropland by 7.91 million USD (36.78%) and 0.13
illion USD (40.05%) for water bodies. Fig. 6 visualizes the percentage

nd monetary ESV changes for the different LULC types between 1985
nd 2022 in the CHWT. 

The annual individual ES for the two reference years and their re-
pective changes were also estimated, and their values summarized
 Table 9 ). 

Regulating services were the dominant ES offered by the water
ower, followed by provisioning services, supporting services, and cul-
ural services in that order for both years ( Fig. 7 ). The top three contrib-
tors to the total ESV of the 17 individual ES in the study area for the
ear 1985 included food production (29.59 million USD/year), erosion
ontrol (21.24 million USD/year), and water treatment (17.37 million
SD/year). In 2022, food production (33.23 million USD/year) was the
 w  

8 
op-ranking individual ES from the water tower, followed by erosion
ontrol (18.06 million USD/year) and climate regulation (14.95 mil-
ion USD/year). Regarding individual ES changes, 15 of the 17 ES regis-
ered negative changes in their ESVs between the two years, with water
reatment (-3.33 million USD/year) and erosion control (-3.18 million
SD/year) diminishing the most. The two ES with positive changes in

heir ESVs included food production (3.64 million USD/year) and bio-
ogical control (0.34 million USD/year). Generally, there were losses in
egulating services (-14.12%), supporting services (-11.56%), and cul-
ural services (-15.25%), while provisioning services increased by 7.05%
etween 1985 and 2022 ( Table 9 ). 

. Discussion 

.1. Land use land cover changes 

The CHWT underwent several LULC changes over the study period,
ith a notable increase in areas under cropland, built-up areas, and wa-
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Table 8 

Ecosystem Service Values (Million USD) and percentages for each LULC type in 
1985 and 2022 in the CHWT. 

LULC 

type 

1985 2022 1985-2022 

ESV % ESV % ESV change % Change 

Forest 76.37 63.00 66.15 58.78 -10.22 -13.38 
Cropland 21.52 17.75 29.43 26.15 7.91 36.78 
Grassland 23.01 18.99 16.51 14.67 -6.50 -28.26 
Water bodies 0.32 0.26 0.45 0.40 0.13 40.05 
Bareland 0 0 0 0 0 0 
Built-up area 0 0 0 0 0 0 
Total 121.22 100 112.54 100 -8.68 -7.16 

Fig. 5. Spatial distribution of ESVs in the CHWT for 1985 (a) and 2022 (b). 

Fig. 6. Changes in ESVs (% and Million USD) for each LULC 
type between 1985 and 2022. 

9 
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Fig. 7. Bar chart showing the four categories of individual 
ecosystem services (1985 and 2022). 

Table 9 

The estimated annual value and changes of individual ecosystem services (ESV 

in million USD per year). 

Ecosystem services ESV 1985 ESV 2022 Change % Change 

1 Provisioning services 

Water supply 0.70 0.65 -0.05 -7.14 
Food production 29.59 33.23 3.64 12.30 
Raw material 3.97 3.44 -0.53 -13.35 
Genetic resources 3.17 2.75 -0.42 -13.25 
Sub total 1 37.43 40.07 2.64 7.05 

2 Regulating services 

Water regulation 0.91 0.87 -0.04 -4.40 
Water treatment 17.37 14.04 -3.33 -19.17 
Erosion control 21.24 18.06 -3.18 -14.97 
Climate regulation 17.26 14.95 -2.31 -13.38 
Biological control 4.09 4.43 0.34 8.31 
Gas regulation 1.61 1.31 -0.30 -18.63 
Disturbance regulation 0.39 0.34 -0.05 -12.82 
Sub total 2 62.88 54.00 -8.88 -14.12 

3 Supporting services 

Nutrient cycling 14.27 12.36 -1.91 -13.38 
Pollination 3.86 3.72 -0.14 -3.63 
Soil formation 0.85 0.73 -0.12 -14.12 
Habitat/refugia 1.34 1.16 -0.18 -13.43 
Sub total 3 20.32 17.97 -2.35 -11.56 

4 Cultural services 

Recreation 0.44 0.37 -0.07 -15.91 
Cultural 0.15 0.13 -0.02 -13.33 
Sub total 4 0.59 0.5 -0.09 -15.25 

Total 121.22 112.54 -8.68 
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er bodies while forest, grassland, and bareland classes decreased. Our
ndings are in tandem with that of the Kenya Water Towers Agency.
2020) , which showed a contraction of forest and grassland and a sub-
equent increase in cropland over 29 years from 1990 to 2019 in the
tudy area. The loss of forest cover and grassland in the CHWT is trig-
ered by a number of direct and indirect drivers. The direct drivers com-
rise encroachment into the forestland by the surrounding communities
or farming, overgrazing, illegal logging of timber, charcoal production,
nsustainable harvesting of firewood and building poles, forest exci-
ions for settlement and farming, forest fires, and climate change ( Kenya
ater Towers Agency, 2020 ; Ministry of Forestry and Wildlife, 2013 ;
otich and Ojwang, 2021 ). Indirect drivers of forest and grassland losses

n the study area include population growth, which increases the de-
and for agricultural land for food production, poor implementation

f existing forest and land use policies, limited institutional capacity
or effective forest management and monitoring, and integrity issues
10 
mong some officials in charge of forest management ( Kogo et al., 2019 ;
inistry of Environment and Forestry, 2020 ; Rotich and Ojwang, 2021 ).

Similar forest cover loss trends have also been observed in the
ther prominent water towers of Kenya, including the Mau forest
omplex ( Jebiwott et al., 2021 ; Ongong and Sweta, 2014 ), Mount
lgon ( Masayi et al., 2021 ; Mugagga et al., 2012 ), Mount Kenya
 Willkomm et al., 2016 ) and Aberdare ranges ( Akotsi et al., 2006 ). Ac-
ording to Brink and Eva. (2009) , the Sub-Saharan African region lost
6% of its forests and 5% of its open woodlands and bushlands be-
ween 1975 and 2000, while agricultural land increased by 55%. Most
f the grassland areas within the water tower were also converted to
ropland at an alarming average annual rate of about 600 ha/year.
he grasslands mostly occupy the buffer zones around the forest; thus,
heir proximity to the forest and the fertile nature of the soils within
he grasslands make them prone to conversion to cropland for food
roduction ( Kenya Forestry Research Institute, 2017b ). The vast and
apid (948.16ha/year) expansion of cropland can be linked to popula-
ion growth in the water tower, which leads to a demand for more land
or food production to meet the population’s needs. Rotich and Ojwang.
2021) report a 78.4% rise in the human population in the study area
n just three decades from 1989 to 2019. This is affirmed by the up-
urge in built-up areas (201.63%) observed in the water tower over the
7 years ( Table 6 ). These findings corroborate with that by Odawa and
eo. (2019) in the Mau water tower in Kenya, over a 29-year study pe-
iod (1986-2015). They found out that population growth resulted in
assive LULC changes in the water tower, as farmers living around the
 km forest buffer zone expanded their agricultural lands through their
ynamic and extensive agricultural activities. 

A historical LULC change analysis in East Africa from 1998 to 2017
lso showed a 34.8% increase in the area under cropland at the ex-
ense of natural habitats (open forests, open grasslands, and wooded
rasslands), resulting in a large-scale reduction of the woody vegeta-
ion classes ( Bullock et al., 2021 ). A study in the Northeast China by

ang et al. (2015) , further revealed an expansion of croplands at the
xpense of grassland and marginal forests. This expansion was linked to
opulation growth and accompanying food requirements, which caused
and degradation and the decline of ecosystem services. All the above
tudies underline the adverse impacts of cropland expansion on natural
abitats. 

Land use conversions in CHWT have resulted in the loss of grassland
nd forest, which play a critical role in carbon sequestration. If the trend
ontinues, it could further exacerbate climate change and its associated
mpacts in the study area. Mwangi et al. (2020) report a rise in temper-
ture by 0.3°C to 0.5°C per decade in the water tower from the years
981 to 2010, with a projected rise of between 3.0°C to 3.5°C by the
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ear 2050. This might have detrimental implications on the vast flora
nd fauna found within the CHWT and the capacity of the water tower
o provide ES. Our analysis revealed that conversions of grassland and
areland to cropland mainly occurred in the mid slopes on the eastern
nd southwestern parts of the water tower. This information is helpful
o the authorities as it can help guide conservation and restoration ini-
iatives and mitigate further unsustainable LULC changes in CHWT in
he future. 

The increase in water bodies in the CHWT can be ascribed to the
onstruction of a dam (Chebara dam) within the water tower in the year
997 to supply water to Eldoret town. The dam supplies about 24,000
ubic meters (m 

3 ) of water daily to Eldoret town ( Kenya Water Towers
gency, 2020 ). 

.2. Changes in the total ecosystem service value 

LULC change has been recognized as a key driver in altering ecosys-
ems and their services ( Kindu et al., 2016 ; Lin et al., 2018 ; Muleta et al.,
021 ). Different development priorities and management options can
ubstantially impact the LULC and ES ( Hernández-Blanco et al., 2020 ).
ignificant LULC changes in the CHWT were the decrease in forest and
rassland, with a consequent increase in cropland. Overall, there was a
.16% reduction in the total ESV in the water tower from an estimated
alue of 121.22 million USD in 1985 to 112.54 million USD in 2022.
his loss can be attributed to the substantial decrease in the ESVs of
orest and grassland proportionate to their respective LULC losses over
he study period. The coefficients of the ecological value of forest are
elatively high (986.69 USDha − 1 year − 1 ) compared to the other land
lasses ( Table 3 ), only second to water bodies; thus, the reduction in the
orest cover over the 37 years negatively impacted the total ESV. 

Our results are in line with the findings of other researchers from
ifferent parts of the world, including Ethiopia ( Alebachew et al.,
022 ; Gashaw et al., 2018 ; Kindu et al., 2016 ; Muleta et al., 2021 ;
hiferaw et al., 2021 ), China ( Hu et al., 2008 ; Wang et al., 2015 ),
angladesh ( Rahman and Szabó, 2021 ), Tanzania ( Msofe et al., 2020 ),
epal ( Sharma et al., 2019 ) and a transboundary landscape in Asia
 Gu et al., 2021 ), who report a significant negative contribution of for-
st losses to the total ESV. On the other hand, an increase in forest
rea over time positively contributes to the total ESV and enhances
S supply ( Hou et al., 2021 ; Paudyal et al., 2019 ; Wang et al., 2014 ;
uan et al., 2019 ; Zhao et al., 2022 ). Our findings, therefore, under-
core the crucial role of forests in determining the total ESV of a given
cosystem. 

Despite the vast expansion of cropland (36.78%) in the study area
etween the two years, its low coefficient equivalent value per unit area
eant its ESV could not offset the deficit created due to forest and grass-

and ESV losses. The small area covered by water bodies in comparison
o the other LULC types also meant that its contribution to the total
SV was marginal despite its enormous coefficient equivalent value.
able 10 summarises the findings of select studies across the globe and
urther highlights the impacts of individual LULC type changes on the
otal ESVs. 

.3. Changes in individual ecosystem services values 

Regulating services were the dominant ES in the water tower, fol-
owed by provisioning services, supporting services, and cultural ser-
ices, respectively, for both study years ( Fig.7 ). These findings are
omparable to a similar study conducted in the water tower in terms
f the relative contributions of the four categories to the total ESV
 Langat, et al., 2021 ). Regulating services had the most outstanding con-
ribution to the total ESV at 73%, provisioning services contributed 23%,
upporting services 3%, while cultural services made up 1% of the to-
al ESVs ( Langat, et al., 2021 ). Three out of the four main categories of
he individual ecosystem services (regulating services, supporting ser-
ices, and cultural services) experienced a reduction in their ESVs while
11 
rovisioning services ESV increased between 1985 and 2022. The gain
n the provisioning services ESV was primarily contributed to by in-
reased food production due to cropland expansion. Other researchers
ave reported similar positive contribution of increased cropland on
rovisioning services (Mengist et al., 2022; Tolessa et al., 2021 ). Tolessa
t al. (2021) lament that a continued increase in provisioning ser-
ices at the expense of regulating and supporting services is unsustain-
ble as it hampers the future flow of these two essential ES; therefore,
rotection of regulating and supporting services is necessary in such
ases. 

For the individual ES, 15 out of the 17 ES registered negative changes
n their ESVs between 1985 and 2022. The positive changes in the ESV
or food production and biological control were due to the increase in
he area under cropland in the study area over the two reference years.
ikewise, a study conducted in central Ethiopia reported a historical
nd predicted increase in biological control and food production ESVs
hile the remaining 15 ESVs decreased throughout the study periods
 Biratu et al., 2022 ). The regulating ESVs of the water tower were the
ost diminished after the LULC changes, specifically water treatment,

rosion control, and climate regulation. This can be primarily attributed
o the loss of forest and grassland cover in the water tower, chiefly from
onversions to cropland. These two land cover types are vital for offer-
ng the aforementioned regulating services. These results are validated
y the findings of a study conducted by Nadir et al. (2019) to assess the
tatus of water quality in rivers originating from the water tower. High
ollution levels were discovered in the rivers, notably high levels of
ron, nitrates, chromium, Total Suspended Solids (TSS), copper, Chem-
cal Oxygen Demand (COD), and Biological Oxygen Demand (BOD) ex-
eeding the accepted limits in the environment ( Nadir et al., 2019 ). The
inistry of Environment and Forestry. (2020) further reports that poor

arming practices within the study area have led to increased soil ero-
ion, thus impacting the state of the soil and rivers. 

Pollination was the least affected individual ESV by the LULC
hanges (-3.63%), thereby indicating the capacity of the water tower
o offer pollination services, which is a critical ecological survival func-
ion. The forest acts as a habitat for natural and insect pollinators, which
re instrumental for crop production in the water tower. 

.4. Limitations of the study 

Our study employed the benefit transfer method, which works on
he assumption that values are constant across the types of ecosystems
n comparison. In reality, however, most ecosystems are diverse, with
ariations in the service beneficiary populations ( Sharma et al., 2019 ).
olessa et al. (2017) , however, note that the estimation of ESVs using
ULC and established ESV coefficients is useful in regions where there is
 scarcity of data on historical land uses and ground data collection is ex-
ensive as it provides robust information and alternatives for landscape-
evel decision making. 

Secondly, we did not use the Coefficient of Sensitivity (CS) analysis
ethod to account for the uncertainty of the represented biomes, as em-
loyed in many other similar studies ( Akber et al., 2018 ; Kindu et al.,
016 ; Muleta et al., 2021 ; Tolessa et al., 2017 ). This is due to the in-
bility of the CS method to address the reliability of the ESV estima-
ion ( Aschonitis et al., 2016 ). A simplistic calculus used in CS anal-
sis returns CS values that are always between 0 and 1, leading to
he conclusion that the applied coefficients by the users are always ro-
ust. Moreover, the CS values of ecosystem services are always indepen-
ent of the percentage change of the ES coefficient defined by the user
 Aschonitis et al., 2016 ). Several studies have also been conducted to es-
imate ESVs changes in response to LULC changes without incorporating
he CS analysis ( Biratu et al., 2022 ; Gashaw et al., 2018 ; Msofe et al.,
020 ; Munthali et al., 2022 ; Sharma et al., 2019 ). Therefore, there is a
eed to come up with a more reliable method that takes into account
he uncertainty of the model and the biomes it represents. 



B. Rotich, M. Kindu, H. Kipkulei et al. Environmental Challenges 8 (2022) 100576 

Table 10 

Summary of select studies globally showing the impacts of LULC changes on the total ESVs. 

Study area Study period Change in LULC Type (%) Change in Total ESV(%) Reference 

Forest Cropland Grassland Water Urban 

Munessa–Shashemene landscape 
(Ethiopia) 

1973-2012 -11.8 35.5 -18.1 -0.1 1.1 -14.8 ( Kindu et al., 2016 ) 

Jibat forest landscape (Ethiopia) 1973-2015 - 47.38 42.88 15.75 - 349.75 -39.1 ( Muleta et al., 2021 ) 
Nenjiang River Basin 
(China) 

1980-2005 -3.24 13.46 -11.32 -6.72 - -2.43 ( Wang et al., 2015 ) 

Andassa watershed (Ethiopia) 1985-2015 -1.6 14.1 -2.7 - 1 -21.73 ( Gashaw et al., 2018 ) 
Menglun Township (China) 1988-2006 -21.16 33.53 -12.68 0.09 0.43 -27.73 ( Hu et al., 2008 ) 
Kilombero Valley Floodplain 
(Tanzania) 

1990-2016 -10.3 11.3 13.3 -0.7 0.1 -26.6 ( Msofe et al., 2020 ) 

Dhaka, (Bangladesh) 1990-2020 -2.05 -2.06 - -1.98 188.35 -59.55 ( Rahman and Szabó, 2021 ) 
Terai Arc Landscape (Nepal) 2001-2016 -0.7 -3 - -5 127 -0.86 ( Sharma et al., 2019 ) 
Ningxia 
(China) 

2000-2010 0.51 -0.08 -0.64 0.16 0.79 22.76 ( Wang et al., 2014 ) 

Shangzhou district 
(China) 

2000-2015 3.35 -7.46 0.21 10.47 67.56 89.2 ( Yuan et al., 2019 ) 

Three Gorges Reservoir 
(China) 

2000-2018 1.49 -1.34 -2.81 0.56 2.12 3.46 ( Zhao et al., 2022 ) 
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. Conclusion 

This study used Landsat images and conservative ES valuation data
rom Kindu et al. (2016) , from a similar geographical setting rather than
elying on the global values from Costanza et al. (1997) , which could
therwise overestimate the economic values of the ecosystem services in
he CHWT. Between 1985 and 2022, areas under cropland, water bodies,
nd built-up zones increased, whereas forest, grassland, and bareland
reas diminished in the water tower. Within the same period, there was
 resultant negative change (-8.68 million USD) in the total ESV of the
ater tower from 121.22 million USD to 112.54 million USD. Out of the
7 individual ES in the water tower, 15 registered losses in their ESVs,
ith only two (food production and biological control) recording gains

n their ESVs. 
Our findings provide evidence that expansion of agriculture and sub-

equent losses in forest and grassland cover can drive LULC changes
nd associated losses of ESVs elsewhere globally, with similar socio-
conomic and environmental conditions as our study area. There is a
eed to curb the current drivers of LULC changes within the water tower
o stop further degradation of the ecosystem and its corresponding val-
es for optimum delivery of ecosystem services. Advocating for active
ommunity participation in the management of forest resources and en-
orcement of relevant agrarian and land laws and policies can help check
urther anthropogenic intrusions into the water tower. Restoration ef-
orts for the degraded areas should also be scaled up. Our findings, there-
ore, pave the way for future research efforts and the advancement of
obust value coefficients for better estimation of ecosystem values of the
atural resources within the study area and in other regions of Kenya. 
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