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1. Introduction

Let F' be a non-archimedean local field with residual characteristic p, and k an alge-
braically closed field with characteristic ¢ different from p. We say G is a p-adic group
if it is the group of F-rational points of a connected reductive group G defined over F'.
Let Rep;,(G) be the category of smooth k-representations of G. In this article, we always
denote by M’ a Levi subgroup of SL,, (F'), and we study the category Rep, (M').

For arbitrary p-adic group G, we say that Rep,(G) has a category decomposition with
respect to an index set A, if there exists an equivalence:

Repy(G) = ] Rep(G)a, (1)
acA

where Rep,(G),, are full sub-categories of Rep,(G). The equivalence implies that:

o Each object II € Rep,(G) can be decomposed as a direct sum II = @, 411, where
Ha € Repk(G)a~
o Fori=1,2and o; € A, if a1 # ag, then Homg (11, II3) = 0 for II; € Rep(G)a,;

Furthermore, if

o for a € A, there is no such decomposition for Rep,(G),, we say that Rep,(G), is
non-split.

If Repy(G), is non-split for each o € A, we call this category decomposition a block
decomposition of Rep, (G), which means the finest category decomposition of Rep,(G),
and we call each Rep,(G),, a block of Rep,(G).

When ¢ = 0, a block decomposition of Rep,(G) has been established with respect
to A = SCq, where SCq is the set of G-inertially equivalent supercuspidal classes of G
(see Section 2.1 for the definition). Let [M, 7]g € SCq, where (M, 7) is a supercuspidal

pair of G (see Section 2.1). The subcategory Repy (G),x, consists of the objects whose

G
irreducible subquotients have supercuspidal supports (see Section 2.1) in [M, 7]g.
When /¢ is positive, a block decomposition has been established when G is GL,, ([8])
and its inner forms ([11]). For G = GL,, the block decomposition is with respect to SCq
as well, which is the same as the case when ¢ = 0. It is worth noting that when we restrict
the block decomposition in Equation (1) to the set of irreducible k-representations of
G, the block decomposition with respect to SCq requires the supercuspidal support of

which is an irreducible k-representation of G belongs to a unique G-inertially equivalent
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supercuspidal class, which can be deduced from the uniqueness of supercuspidal support
proved in [13, §V.4] for GL,, (F'). However the uniqueness of supercuspidal support is not
true in general, in [6] an irreducible k-representation of Spg(F’) that the supercuspidal
support is not unique up to Spg(F')-conjugation has been found. As for SL,,(F'), the
uniqueness of supercuspidal support holds true and has been proved in [5], hence the
block decomposition with respect to SL,, (F)-inertially equivalent supercuspidal classes
was expected. However in this article, we show that this is not always true by providing
a counter-example in Section 4.

1.1. Main results

Now we describe the work in this article with more details. Let G’ be SL,,(F'), and M’
be a Levi subgroup of G’. Let M be a Levi subgroup of GL,,(F') such that MN G’ = M.
We establish a category decomposition of Rep, (M’) with respect to M-inertially equiv-
alent supercuspidal classes SC)j, (see Section 2.1 for the definitions), which is different
from SCyr, the set of M’-inertially equivalent supercuspidal classes. In fact, let L be a
Levi subgroup of M and L' = LN M’ a Levi subgroup of M’, and let 7 be an irreducible
supercuspidal k-representation of L. Denote by Z(7) the set of isomorphic classes of irre-
ducible components of 7|r/. Let 7/ € Z(7), denote by [/, 7']y the M'-inertially equivalent
supercuspidal class defined by (M’, 7). The M-inertially equivalent supercuspidal class
of (L', 7") is Uyrez(r)[L',¥']m, and we denote it by [L/, 7/]u.

Theorem 1.1 (Theorem 3.15). Let SCM, be the set of M-inertially equivalent supercuspidal
classes of M'. There is a category decomposition of Rep,(M') with respect to SCM,.

In particular, let [/, 7'\ € SCh, a k-representation of M belongs to the full subcat-
egory Repy (M) 71y, if and only if the supercuspidal support of each of its irreducible
subquotients is contained in [L',7'|m.

The above theorem gives a category decomposition
Repy,(M') = Rep,(M')sc x Repy, (M) non—sc,

where a k-representation II of M’ belongs to Rep;,, (M')sc (resp. Repy, (M) non—sc) if each
(resp. none) of its irreducible subquotients is supercuspidal. We call Rep,(M’)sc the
supercuspidal subcategory of Rep, (M'). In Section 4, we establish a block decomposition
of Rep,. (M) sc-

Let 7 be an irreducible supercuspidal k-representation of M, and let Z(7) be the set of
isomorphic classes of irreducible components of 7|y. In Section 4, we introduce an equiv-
alence relation ~ on Z(7). For n’ € Z(r), an irreducible supercuspidal k-representation
of M/, let (n’,~) be the connected component of Z(7) containing 7’ under this equiv-
alence relation, which is the subset of Z(m) consisting of the elements equivalent to 7'
Let [’, ~] be the union of M'-inertially equivalent supercuspidal classes of 7’ € (7', ~).
In general, we have
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M, 7w G [, ~] & M, 7]

Denote by SCyy ~. the set of pairs of the form [, ~]. We establish a block decomposition
of Repk (M,)SC:

Theorem 1.2 (Theorem 4.12). There is a block decomposition of Rep,(M')sc with respect
to SCyy o~ - In particular, let [n',~] € SCwr ~. A k-representation II of M’ belongs to
Repy(M') (5~ if and only if each of the irreducible subquotients of I1 belongs to [1',~].

This article ends with Example 4.13 of a k-representation in the supercuspidal sub-
category of Rep,(SLa(F)) when ¢ = 3. In this example, we construct a finite length
projective k-representation of SLo(F') which is induced from a projective cover of a max-
imal simple supercuspidal k-type of depth zero. By using the theory of k-representations
of finite SLy group, we compute the irreducible subquotients of this projective cover, and
we show that there exist two different supercuspidal k-representations of SLo(F'), which
are not inertially equivalent, such that they belong to a same block. Or equivalently,
this example shows that there exists an irreducible supercuspidal k-representation 7’
of SLy(F), such that [7/,~] is not a unique SLo(F)-inertially equivalent supercuspidal
class, hence the equivalence relation defined on Z(7) is non-trivial in general. This ex-
ample shows that a block decomposition of Rep,(G’) (resp. Rep,(M')) with respect to
G’-inertially equivalent supercuspidal classes SCqs (resp. Repy (M')-inertially equivalent
supercuspidal classes SCy/) is not always possible in general.

1.2. Structure of this paper

The author is inspired by the method in [8]. We use the theory of maximal simple
k-types, which has been firstly established for C-representations of GL,(F) in [2] and
generalised by the author to the cuspidal k-representations of M’ a Levi subgroup of
SL,(F) in [4]. In this article, we construct a family of projective objects defined from
the projective cover of maximal simple k-types. In Section 3.1, we show that the pro-
jective cover of a maximal simple k-type of M’ is an indecomposable direct summand of
the restriction of the projective cover of a maximal simple k-type of M. We apply the
compact induction functor indM, to these projective objects and describe their decompo-
sition under the block decomposition of Rep,(M). The above two parts lead to a family
of injective objects verifying the conditions stated in Proposition 2.1, which gives the
category decomposition in Theorem 1.1.

Section 4 concentrates on the supercuspidal subcategory of Rep, (M’), where M’ is a
Levi subgroup of SL, (F'). We introduce an equivalence relation generated by putting all
the irreducible subquotients of the projective cover of a maximal simple supercuspidal
k-type of M’ into a same equivalent class. Let m be an irreducible supercuspidal k-
representation of M. The above equivalence relation on maximal simple supercuspidal
k-types induces an equivalence relation on Z(7), which is the equivalence relation ~
needed in Theorem 1.2.
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It is natural to expect that a block decomposition of Rep,(G’) can be given with re-
spect to the set of G’-conjugacy classes of elements in SCyy . for all Levi subgroup
M’, which involves the study of projective cover of maximal simple k-types (non-
supercuspidal) of M’ and leads to a study of semisimple k-types of G’.

2. Preliminary
2.1. Notations
Let F be a non-archimedean local field with residual characteristic equal to p.

e op: the ring of integers of F', and pp: the unique maximal ideal of op.

e k: an algebraically closed field with characteristic £ # p.

e Let K be a closed subgroup of a p-adic group G, then ind?(: compact induction,
Ind%: induction, resG: restriction.

o Fix a split maximal torus of G, and M be a Levi subgroup, then i$;, r$;: normalised
parabolic induction and normalised parabolic restriction.

e Denote by dg the module character of G.

In this article, without specified we always denote by G the group of F-rational points
of GL,, and by G’ the group of F-rational points of SL,,. Let ¢ be the canonical embedding
from G’ to G, which induces an isomorphism between the Weyl group of G’ and G, hence
gives a bijection from the set of Levi subgroups of G’ to those of G. In particular, if M is
a Levi subgroup of G, we always denote by M’ the Levi subgroup M N G’ of G’. We say
an irreducible k-representation 7 of a p-adic group G is cuspidal, if r{i7 is zero for every
proper Levi subgroup M; we say 7 is supercuspidal if it does not appear as a subquotient
of iIC\;/IT for each proper Levi subgroup M and its irreducible representation 7.

Let m be an irreducible k-representation of G. Its restriction 7|qs is semisimple with
finite length, and each irreducible k-representation 7’ of G’ appears as a direct component
of 7|gr. A pair (M, 7) is called a cuspidal (resp. supercuspidal) pair if M is a Levi subgroup
and 7 is an irreducible cuspidal (resp. supercuspidal) of M. Let (M}, /), (M}, 75) be two
cuspidal pairs of G’ and K be a subgroup of G. We say they are K-inertially equivalent,
if there exists an element g € K such that g(M}) = M} and there exists an unramified k-
quasicharacter  of F'* such that g(m1) = 7 ® 0. We denote by [M’, '] the K-inertially
equivalent class defined by (M’, 77), and we call it a K-inertially equivalent supercuspidal
(resp. cuspidal) class if (M’,7’) is a supercuspidal (resp. cuspidal) pair. A same definition
of [M, 7]¢ is applied for cuspidal pairs of G. We always abbreviate [M’, 7’]q as [M’', 7],
and abbreviate [M, 7|g as [M, 7].

We say that a cuspidal (resp. supercuspidal) pair (M, 7) belongs to the cuspidal
(resp. supercuspidal) support of 7, if ™ appears as a subrepresentation or a quotient-
representation (resp. subquotient representation) of i{;7. When 7 is an irreducible k-
representation of G (resp. G'), its supercuspidal support as well as its cuspidal support
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is unique up to G (resp. G’)-conjugation (see Theorem 4.16 of [5] and §V.4 of [13] for
the uniqueness of supercuspidal support, and see §III 2.4 of [12] for the uniqueness of
cuspidal support).

To decompose Rep, (G’) as a direct product of a family of full-subcategories, we con-
struct a family of injective objects and follow the method as below, which is the same
strategy as in [8, Proposition 2.4]. We state it here for convenient reason.

Proposition 2.1. Let 71,7> be two injective objects in Rep,(G’), and denote by S1,Sa
the sets of irreducible k-representations of G’ which appear as subquotients of T and Ts
respectively. Suppose the following conditions are verified:

e an object in S1 can be embedded into Iy;

e an object in 81 does not belong to So up to isomorphism;

e an irreducible k-representation of G', which does not belong to S1 up to isomorphism,
can be embedded into Is.

Then Rep,(G’) can be decomposed as a direct product of two full subcategories Ry and
Rs, such that

o every object II € Repy(G') is isomorphic to a direct sum m @ wa, where each irre-
ducible subquotient of m, belongs to S1 and each irreducible subquotient of wo belongs
to 82 5

o cevery object in Ry has an injective resolution by direct sums of copies of I;, and
every object in Ro has an injective resolution by direct sums of copies of Iy (copies
means direct product by itself).

Remark 2.2 (Projective version). Let Py, P2 be two projective objects in Rep, (G’), and
denote by Si, S the sets of irreducible k-representations of G’ which appears as a sub-
quotient of P; and P respectively. Suppose the following conditions are verified:

e an object in &7 is a quotient of Py;

e an object in &7 does not belong to Sz up to isomorphism;

e an irreducible k-representation of G’, which does not belong to S; up to isomorphism,
can be realised as a quotient of Ps.

Then Rep;, (G’) can be decomposed as a direct product of two full subcategories R; and
Rg, such that every object II € Rep,(G’) is isomorphic to a direct sum 7y @ g, where
each irreducible subquotient of m; belongs to S and each irreducible subquotient of o
belongs to Ss.

The proof of Remark 2.2 is done in the same manner as in Proposition 2.4 of [8] by
changing injective objects to projective objects as suggested in Remark 2.5 of [8].
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2.2. Maximal simple k-types of M’

In this section, we recall notations and definitions in the theory of maximal simple
k-types of Levi subgroups M’ of G’ which has been studies in [4]. It requires the theory of
maximal simple k-types of G which has been established in [3] for complex case. The later
is related to modulo ¢ maximal simple types in [12, §III] by considering the reduction
modulo ¢, while [9] gives a more intrinsic description. We state some useful properties
which will be needed for the further use.

A maximal simple k-type of G is a pair (J, \), where J is an open compact subgroup
of G and A is an irreducible k-representation of J. We have a groups inclusion:

H'cJ'cJ,

where J! is a normal pro-p open subgroup J! of J, such that the quotient J/J! is
isomorphic to GL,,(F,), where F, is a field extension of the residue field of F, and
H' is open. The k-representation A is a tensor product x ® o, where & is irreducible
whose restriction to H' is a multiple of a k-character, and ¢ is inflated from a cuspidal
k-representation of J/J'. By [12, §III 4.25] or [9, Proposition 3.1], for an irreducible
k-cuspidal representation 7 of G, there exists a maximal simple k-type (J, A), a compact
modulo centre subgroup K and an irreducible representation A of K, where J is the
unique largest compact open subgroup of K and A is an extension of A, such that
= ind%A. Since a Levi subgroup of G is a tensor product of GL-groups of lower rank,
so we can define maximal simple k-types (Ju, Am) and obtain the same property for
cuspidal k-representations of M as above.

For the reason that a Levi subgroup M’ of G’ is not a product of SL-groups of lower
rank, so it is not sufficient to consider only the maximal simple k-types of G’. Let
(JM, Am) be a maximal simple k-type of M. The group of projective normaliser N
contains Jy as a normal subgroup, which is defined in [4, 2.15] and [3, 2.2]. In particular,
for any g € Jy, we have g(AM) = A ® x, where x is a k-quasicharacter of F*. As in
[4, 2.48], a maximal simple k-type of M’ is a pair of the form (J{;, Ny;), where X}, is
an irreducible direct component of (indﬂx Am)| o and we set Ay := indﬂx AM, which is
irreducible as proved in [4, Theorem 2.47]. For any irreducible cuspidal k-representation
7w’ of M/, there exists an irreducible cuspidal k-representation m of M such that «’ is
a direct component of 7|y. Let (Jum, Am) be a maximal simple k-types contained in
m, then there exists a maximal simple k-type (jM,S\{VI) as well as an open compact
modulo centre subgroup NM/(S\{VI), the normaliser group of 5\{\/{ in M/, containing j{v[ as
its largest open compact subgroup, as well as an extension Ay of /N\{vI to Ny (5\{\4), such
that 7’ = ind%;,l,(S\;\d)AM" We call (Ny(Nyy), Ay) an extended maximal simple k-type.
Proposition 2.3 (Proposition 2.29 and Lemma 4.2 of [5]). Let ' be an irreducible cuspidal
k-representation of M. There exists a cuspidal k-representation m of M, such that @' is
a direct component of w|v. Then 7' is supercuspidal if and only if © is supercuspidal.
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When 7 is supercuspidal, we call a k-type (Jyr, \mt) (resp. (Jig, Nyy)) contained in 7 (resp.
7' ) a maximal simple supercuspidal k-type.

Let K1, K5 be two open subgroups of M’ and p1, p2 two irreducible k-representations
of K, K> respectively. We say that p; is weakly intertwined with ps in M’, if

there exists an element m € M’ such that p; is isomorphic to a subquotient of

1ndKimm(K2)resKlm;(K2)m(pg).

Proposition 2.4 (Theorem 3.19 and Theorem 3.25 of [4]).

1. We have Jy = j{v[JM.
2. Let (j{vm,)\iv[’l) and (jll\/[,zv)‘iv[,z) be two mazimal simple k-types of M. They are
weakly intertwined in M’ if and only if they are M’-conjugate.

3. Category decomposition

In this section, to simplify the notations, we denote by G a Levi subgroup of GL,,(F)
and G’ = G N SL,(F), which is a Levi subgroup of SL, (F). Let M be a Levi subgroup
of G. We denote by M’ = M NG’ a Levi subgroup of G/, and let K be an open subgroup
of G. We always denote by K’ = K N G’. If 7 is an irreducible k-representation of K,
then 7’ is one of the irreducible summand of 7| g .

3.1. Projective objects

In this section, we will follow the strategy of [8] to construct some projective ob-
jects of Rep,(G’). We study first the projective cover of maximal simple k-types of
Levi subgroups M’, then we consider their induced representations. Proposition 3.6
and Corollary 3.7 give the relation between these projective objects and irreducible k-
representations whose cuspidal support is given by the corresponding maximal simple
k-type. The later properties will be used in Section 3.2.

Let (Jum, Am) be a maximal simple k-type of M, and Ju be the group of projective
normaliser of (Jy, Am) (see Section 2.2). Write Ay as kv ® oy Let Py, be the projec-
tive cover of Ay. From [8, Lemma 4.8] we know that Py,, is isomorphic to P,y ® M,
where P,,; is the projective cover of oy, Denote by Au the irreducible k-representation
ind:% At Let (J{;, Xy;) be a maximal simple k-type of M’ defined from (Jyr, Au) as in
Section 2.2. Since Py, has finite length, we have Py, |y = @;_;P;, where P; is an
indecomposable projective k-representation of Ji; for each i.

Remark 3.1. The projective cover P,,, is given by the theory of k-representations of finite
general linear groups. When oy is inflated from a supercuspidal k-representation of M,
which means (Jy, Ay) is a maximal simple supercuspidal k-type of M, according to the
construction of Py,, (see Lemma 5.11 of [7] or see Corollary 3.5 of [5]) as well as Deligne-
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Lusztig theory, we conclude that the irreducible subquotients of P,,, are isomorphic to

OM -

Let 7 be an irreducible cuspidal k-representation of M which contains (Jy, Am), and
7' be an irreducible cuspidal k-representation of M’ which contains (J{;, Ay;) such that
7' — 7|yr. We denote by

P[M)W] = ilc\;/[indl\J/IMP)\M,
and by
P[M’,Tr’] = ZI\G/I'de}{(APS\;M
Lemma 3.2. Py - s an direct summand of Pp,x|w -
Proof. We have
(ig/{indl}/[MP)\hT)|G/ = II:I\G/III (indl}/il'PAMHM/.

Since ind'}ﬁpﬂj{w is projective and has a surjection to A};, we obtain that Ps, is a
M

~

. . 1Jum ~ s . ~ ~
direct summand of ind ;] PA\J{%. Hence P5, is a direct summand of P5,, Im where P5 =

indﬁ;?’AM, and Ppyr 1 is a direct summand of Py qjlar. O

Let (Ju, Am) be a maximal simple supercuspidal k-type of M, and (j{v[,j\{v[) be a
maximal simple supercuspidal k-type of M’ defined from (Jp, Anm) as in Section 2.2.

Lemma 3.3. Let w be an irreducible supercuspidal k-representation of M which contains
(JMm, Am), and 7' be an irreducible subquotient of the projective cover 775\1\4 of 5\{\/[ Then
(i, ') is also a mazimal simple supercuspidal k-type defined by (Ju, Am), and there
exists an irreducible direct component w(, of w|\y which contains ( ~1(/[, 7). In particular,
when M' = G’ = SL,(F), if 7 is dz’ﬁerent from Ny, and suppose 7' is an irreducible
direct component of wlw containing Ny, then () is different from n’.

Proof. Recall that P,,, is the projective k-cover of Ay, as explained in Remark 3.1,
its irreducible subquotients are isomorphic to Ay. As in the proof of Lemma 3.2, we
know that the projective representation 7)5\{\/1 is an indecomposable direct component
of indjﬁPAMmﬂ. As in Section 2.2, the induced representation A = ind'}x Ay s irre-
ducible. By the exactness of induction functor, we know that the irreducible subquotients
of indﬁ Py, are isomorphic to Au, which implies that an irreducible subquotient of ’P;\i\4
is isomorphic to an irreducible direct component of S\M‘j{v[. Since 7 contains Ay after
restricting to Jyi, by the Mackey’s theory, any irreducible direct component of 5\M| T,
must be contained in an irreducible direct component of 7|y .
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When M’ = G’ = SL,(F), by Mackey’s theory the induction ind?éres??j\g is a
~ G
subrepresentation of 7|g/, and each irreducible component of Ag| Tt is irreducibly induced

to G’. The second statement is directly from the fact that 7|y is multiplicity-free as
proved in Proposition 2.35 of [4]. O

Remark 3.4. When M’ is a proper Levi subgroup of G’, it is possible that two different
maximal simple supercuspidal k-types (jll\/[aj‘iv[) and (j{v[,T/ ), which are defined from
a same maximal simple supercuspidal k-type, are M’-conjugate to each other, which
implies that they may be contained in a same irreducible supercuspidal k-representation
of M'.

Lemma 3.5.

1. Let a € Jy, then a(Py,,) = Pairm) = Pay @ 0, where 8 is a k-quasicharacter of
det(Jy) and a(Am) = Ay ® 6.

2. Let (J{;, N}) and (Ji, M) be two different mazimal simple k-types defined from
(Jats Am). Let o € Jyp such that a(N)) = Xy, then for the projective covers we have
04(735\/1) =Ps,-

Proof. For the first part, there is a surjective morphism from Py, ® 6 to Ay ® 6 and
is indecomposable. Moreover, the projectivity can be easily deduced directly from the
definition. Since a(Py,, ) is the projective cover of ae(Ay), we obtain the expected equality.
The second part can be deduced in a similar way. O

Proposition 3.6. Recall that G’ is a Levi subgroup of SL,(F). Let p' be an irreducible
k-representation of G' and (M', ") be a cuspidal pair of G’ inside the cuspidal support
of p', then there is a surjective morphism

P[M' ,ﬂ./] — p/.

Proof. Let (jﬁ/lvj‘iv[) be a maximal simple k-type contained in 7', hence there is an
injection A\j; — resel\f,/
M

which induces a surjection Py 1 — iI\G/[//W’, hence a surjection from Py 1 to p’ by [12,
§11, 2.20]. O

!
7’. By Frobenius reciprocity, it gives a surjection indl}/[, Py, — 7,
M

Corollary 3.7. Let I\ 1) be the contragredient of Py xvi, where 'Y is the contragre-

dient of @'. Suppose that the cuspidal support of T/ is [M', '], then 7' is embedding to
I[M’,ﬂ’]'

3.2. Category decomposition

Recall that in this section G’ is a Levi subgroup of SL,(F) and G is a Levi sub-
group of GL,(F) such that G’ = G N SL,(F). A decomposition of Rep,(G’) by its



140 P. Cui / Journal of Algebra 602 (2022) 130-153

full sub-categories will be given in Theorem 3.15 with respect to the G-twist equivalent
supercuspidal classes of G’ (see the paragraph below Proposition 3.12 for G-twist equiv-
alent equivalence). This will not be a block decomposition in general, which means it
does not always verify the last condition of Equation (1), however we will see in Section 4
that it is not always possible to decompose Rep,(G’) with respect to the G’-inertially
equivalent supercuspidal classes as for Rep(G) in Equation (1).

Let A be a family of G-inertially equivalent supercuspidal classes of G, and denote
by Repy(G).a the union of blocks Upy 1, ca RePr(G),n)- Let A’ be a family of G'-
inertially equivalent supercuspidal classes of G’, verifying that [M',7']q € A’ if and
only if there exists [M, 7r]g € A such that M’ = M N G’ and 7" — 7|y Let L be a Levi
subgroup of G which contains M. Denote by Ap, the family of L-inertially equivalent
supercuspidal classes of the form [w(M),w(m)]m, where [M,n]c¢ € A, and recall that
[, -Jr. is the L-inertially equivalent class, and w € G such that w(M) C L. We define Aj,
in the same manner of A’ by replacing G by L.

Lemma 3.8. Let P € Rep,(G)niynlg, and L be a Levi subgroup of G. Then réP €
HweG,w(M)CL Repy (G) fw(n),w(m), -

Proof. Suppose II is an irreducible subquotient of rg P, whose cuspidal support is (N, 7),
where N is a Levi subgroup of L and 7 is a cuspidal representation of N. Let Py ;1 be the
projective object defined from the maximal simple k-type of 7, then there is a non-trivial
morphism Py -, — TS’ P. By the second adjunction of Bernstein, we have a non-trivial
morphism from EP[N,T]L to P, where E is the opposite normalised parabolic induction
from L to G. Since the module character dr, is an unramified character on L, the k-
representation EP[Nﬂ']L belongs to the same block as iEP[NJ]L, which implies that the
supercuspidal support of 7 belongs to the union Uyeq,wncr(w(M), w(r)). We finish
the proof. O

Lemma 3.9. Let P € Rep,(G)a, and 7' be an irreducible subquotient of P|gs, then the
supercuspidal support of T/ belongs to A’.

Proof. Suppose firstly that 7’ is cuspidal, then there exists a maximal simple k-type
(J,A) of G, such that an irreducible component (J’,A’") of Mg/ is contained in 7" as a
subrepresentation. By [4, Lemma 2.14], up to twist a k-character of F'*, we can assume
that X is a subquotient of P|;. Hence there is a non-trivial morphism from the projective
cover Py of A to P|;, which implies that for any irreducible cuspidal k-representation 7
of G which contains (J, \), its supercuspidal support must belong to A. In particular,
we can choose 7 such that 7" < 7|g/, hence by [5, Proposition 4.4] we know that the
supercuspidal support of 7/ must belong to A’.

Now suppose 7' is not cuspidal. Let (L’ p’) belong to its cuspidal support. The p’
appears as a subquotient of TS,P|G/ =~ (r€P)|. By Lemma 3.8, and the previous
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paragraph, we know that the supercuspidal support of p’ must belong to Aj , from which
we deduce the desired property of supercuspidal support of 7. O

Lemma 3.10. Let m and 7' be cuspidal k-representations of M and M’ respectively and
7' wlw. Let (Ju, \v) be a mazimal simple k-type of m and (Jig, Ny;) be a mazimal
simple k-type of @' defined from (Jy, Am). Suppose [L, 7] is the supercuspidal support of
[M, 7], then we have

ind§ Ppr e € [ Repr(G)w rond-
X€(OF)Y

Proof. We set P’ := Py, Pip = indl}{;/P;/M and Py = ind%PxM in this proof.

Recall that P’ = il\G/[/,indl}g, 73;\{“. Since the module character oy = oy |, we have
“M

<3G A G M G M Y
indg P’ = iyindyy Py — iyindy (Py,, ®de{\q]l)

where

res‘]M Ps. ® 1nd‘]M]l = releYImd MP)\ ® res HldJM]l
Am JY M
I\/I M 1\1
(2)
B i I o - 1In
= @aeJM\JMreSJﬁqO‘(P’\M) ® @J&I\JM/Jhlldeﬁmj{w]l.

Since Jy; is a pro-p group, and by the definition of Ju the above representation is
semisimple whose direct components are of the form 7 ® 6, where 7 is the Heisenberg
representation of the simple character of Ay, and 6§ € (det(J3;))" which can be extended
to a character of F'* and we fix one of such extension by denoting it as 6 as well. Hence
we have the decomposition

resﬁ (Psy ® ind%l) = Doe(des(my,)N o) (3)

where Py is the n ® #-isogeny subrepresentation. Notice that we require 6 is non-trivial
on Hy;, because otherwise = n ® 6. By a similar computation as in Equation (2), we
have

rebi;M (PS\M ® indji’j]l) = @OZEJM/JMa(PAI%) ® 69PE(det(JM))/\p ® ind§$)£/ﬂ7

where Jyr,¢ is the subgroup of Jy consisting with the elements whose determinant be-
longs to the ¢'-part of F*. By Lemma 3.5, the right hand side of the above equation is
isomorphic to @ ¢ (det(Jy)) (Pam ®p)q®1ndJM 1, where § is the index [Jy; : Jy] and (-)7

is the g-multiple of -. Hence Py in Equation (5) is isomorphic to @, (P, ®p)q®1nd§$l/ 1,

where p € (detJum)", pg1, = 0. Recall that Ay = k®0, where o is inflated from a super-
cuspidal k-representation of Jyi/Jyy, and Py =2 P, ® k. Since an irreducible subquotient
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of Py is isomorphic to £ ® g ® p, where oy is inflated from Jyr/ Jﬁ/[ and its supercuspidal
support is the same as that of o, and p is an character as above. Now we fix an extension
of 6 to Jy and denote it again by . We have Py = Il ® k ® 6, where Il is inflated from
Jy/Jyp, and the supercuspidal support of each of its irreducible subquotient is the same
as o ® p, where p € det(Jy/Jy)". By [11, Theorem 9.6], the induction indyM Py belongs
to the subcategory er(o;)A Repy, (M)[1,.r@y), hence i§i Py € er(o}i)A Repi(G)L.rex-
Since indS/P’ = @ge(det(Hlle))/\’l.S[ind%\]/fw Py, we deduce the desired property. O

Lemma 3.11. Let A be as above, and P € Repy,(G) 4. Then PV € Rep,(G) av, where AY
consists of the G-inertially equivalent supercuspidal classes [M, V] such that [M, ] € A.

Proof. Suppose there exists an irreducible subquotient = of PY. Denote by [Mo, o] its
supercuspidal support and by [Lg, mo] is cuspidal support. There is non-trivial morphism
PiLg,m) — PV, which implies a non-trivial morphism P — ,P[\I/-lo,ﬂ'o]' Since P[\ﬁoﬂfo] belongs
to the block Repy (G)my,ry) by [8, Corollary 11.7], we have [My, 73] € A by the Bernstein
decomposition [8, Theorem 11.8]. O

Proposition 3.12. We keep the notations as in Lemma 3.10. Let p' be an irreducible
subquotient of the contragredient P[\K/I,)Tr,], then the supercuspidal support of p' is contained
in union of G-conjugacy classes of [/, 7'V]. In other words, let 7|, = ®;er7], then the
supercuspidal support of p' is contained in | J;c,[L, 7] V].

Proof. Let P’ be Py 1 in this proof. Since there is no non-trivial character on G, we
have (ind$,P’)Y = Ind&, P’V. By Lemma 3.10 and Lemma 3.11, we have

(ndgP)Y e J[ Repr(G)L-vex-

x€(07)V

By the surjective morphism resg/lndgﬂ)' V. — P’V and Lemma 3.9, we conclude that
the supercuspidal support of an arbitrary irreducible subquotient of P’V belongs to the
G-conjugation of [I/,7']. O

Definition 3.13. Let (L1, 71) and (Lo, 72) be cuspidal pairs of G. We say they are G-twist
equivalent, if there exists g € G such that g(L;) = Ly and g(71) is isomorphic to 75 up
to a k-quasicharacter of F*, which is an equivalence relation and denote by [Lq,7]*

the G-twist equivalent class defined by (L, 7).

We observe that in the above definition, we do not require the k-quasicharacter of
F* is unramified, which is different comparing to the relation of G-inertial equivalence.
We define the depth of a G-twist equivalent class as the minimal depth among all the
pairs inside this class. Denote by Cr, ;j+w the set of G-twist equivalent cuspidal classes
whose supercuspidal support belong to [L,7]*” up to an isomorphism, and denote by
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CW the set of G-twist equivalent cuspidal classes whose supercuspidal support does
not belong to [L, 7] up to an isomorphism. It is worth noticing that

1. Cjp 7w is a finite set;
2. fix a positive number n € N, there are only finitely many object in CW whose
depth is smaller than n.

Define
I(L,T) - @ P[\l/\/[/ﬂ./\/],
M’ Tr/]GC[L jtw
— Vv
I(L,'T) - P[M/7T/ \/]7
[M', /] ec e

where the relation between Cjp, ;jew and C/

(L,r]tw is as explained in the beginning of Sec-
tion 3.2.

Lemma 3.14. Im 1s injective.

Proof. In fact Z{y—y is the smooth part of the contragredient [ € Pirzrvy of

O mec: . Ppw vy, where Py, ) is the contragredient (not necessarlly smooth)

[L,r]tw
of P rvyee. Fix an open compact subgroup K’ of G, there exist finitely many
M, 7] € C/L e
the same property for the contragredient Pﬁ\/{/ - by [12, §4.15]. Hence an K-invariant

such that the K-invariant part of Py v} is non-trivial, which implies

non-trivial linear form f in the smooth part of H[M, rect Pﬁ\/{/ v) must belong to
; o ;

B rr]ec P[Yv[f,r/vy which finishes the proof. 0O

[L,T]tw

Theorem 3.15. Let G be a Levi subgroup of GL,,(F) and G’ be a Levi subgroup of SL,(F),
such that G' = G N SL, (F). We have a category decomposition

Repk(G/) = H Repk(G/)[L,T]twv

[L,r]tweschy

where

1. chﬂ is the set of G-twist equivalent supercuspidal classes in G;

2. Repy (G, 7w is the full subcategory consisting with the objects whose irreducible
subquotients have supercuspidal support belonging to L/, ']q and 7 is an irreducible
direct component of T|.

In particular, each object in Repy(G'), 70w has an injective resolution with direct sums
of copies of 1, 7)-
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Proof. By the definition of Z, ;), Corollary 3.7 and Proposition 3.12, each irreducible
subquotient of Zy, -y is a subrepresentation of Z, ), and none of the irreducible sub-
quotient of Im appears as a subquotient of Z, ;). Furthermore, each irreducible
k-representation is either a subrepresentation of Z(y, -y or a subrepresentation of IW by
the unicity of cuspidal support as well as the unicity of supercuspidal support. Hence by
Proposition 2.1, for any object IT € Rep,(G’) and any G-twist equivalent supercuspidal
class [L, 7] of G, define [y, +jtw to be the largest subrepresentation of II belonging to
Repy (G')pr, 70w, we have II = @y, rjesce L, -+», and by applying Proposition 2.1 we
know that there is no morphism between objects of sub-categories defined from different
G-twist equivalent supercuspidal classes, hence we finish the proof. O

Remark 3.16. Let (L, 7) be a supercuspidal pair of G, and 7|1, = &j_;7;, where (L, i)
are supercuspidal pairs of G’. Denote by Rep,, (G’ )[L/ﬂ'ﬂ the full subcategory of Rep, (G'),
consisting of objects of which any irreducible subquotient has supercuspidal support
belonging to the G'-inertially equivalent class [L/, 7/]. The subcategory Rep(G')(L 7w
is generated by sub-categories Repy (G') (1,71}, for all 1 < j < s. In other words, let Scé,
be the set of G-inertially equivalent supercuspidal classes of G’. Theorem 3.15 establishes

a category decomposition of Repj,(G') with respect to SC&,.

Corollary 3.17. Let [L,7]| be a G-inertially equivalent class of G, where G is a Levi
subgroup of GLy,(F). The functor resG, gives functors from blocks Repy(G)(1, ray) for
any k-quasicharacter x of F* to the subcategory Repy (G')r, e .

Proof. It follows directly from Theorem 3.15 and Lemma 3.9. 0O

Corollary 3.18. Let G’ be a Levi subgroup of SL,, (F). There is a category decomposition

Repk(G/) = Repk(G/)SC X Repk(G/)non—SCa
where
1. an object belongs to Rep,(G')sc, if and only if all its irreducible subquotients are
supercuspidal;
2. an object belongs to Rep (G )non—sc, if and only if none of its irreducible subquo-

tients is supercuspidal.

Proof. Directly from Theorem 3.15. O

Definition 3.19. We call Rep, (M')sc the supercuspidal sub-category of Rep,(M’), and
the blocks of Rep;,(M’)sc are called supercuspidal blocks of Rep, (M').
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4. Supercuspidal subcategory of Rep, (M’)

In this section, let G be GL,,(F) and G’ be SL,(F). In the previous section, Theo-
rem 3.15 gives a category decomposition of Rep,(G'), according to which we define the
supercuspidal subcategory Repy,(G')sc. In this section, Theorem 4.12 gives a description
of the blocks of the supercuspidal subcategory of Rep,(G’) and Rep,(M’), where M’ is
a Levi subgroup of G'.

4.1. M'-inertially equivalent supercuspidal classes

In this section, we give a bijection between M’-conjugacy classes of maximal simple
k-types of M’, and M'-inertially equivalent cuspidal classes of M’. The most complexity
of this section comes from the fact that the Levi subgroup of G’ is not a special linear
group in lower rank.

Let M be a Levi subgroup of G such that M’ = M N G’. Let (Ji;, \};) be a maximal
simple k-type of M’ defined from a maximal simple k-type (Jy, Ay) of M. As explained
in Section 2.2, if 7 is an irreducible cuspidal k-representation of M containing (Ja, Am),
then there exists a direct component 7’ of 7|y, such that ' contains (J{;, Ny;)-

Lemma 4.1. Let E be a field extension of F, such that there is an embedding E* <
GL,,(F). Let wg be a uniformiser of E, and Z,, be a subgroup of GL,,(F) generated by

the image of wg under the embedding. Then a k-character of Z,, can be extended to a
character of GL,(F).

Proof. A k-character of Z, factors through determinant of GL,,(F). O

Under the assumption on E as in Lemma 4.1, denote by Zp,, the group generated by
the image of O} under the embedding. For general Levi subgroup M of G = GL,,(F).
Suppose M is a direct product of m general linear groups, and there exist field extensions
E;,1 <i<mof F,such that [[\"; E;* < M. Then after fixing a uniformiser w; for each
E;, we denote by Z, the group generated by the image of {1x--xwm;x---x1,1<i<
m} under the embedding, and by Z@EM the group generated by the image of H:zl oy,
where O; is the ring of integers of E;. It is obvious that the image of []\~, E can be
decomposed as a direct product Loy, X Zopg,,- In particular, when E; = F for1 <i < m,
we consider the canonical embedding, which is the equivalence between (F*)™ and the
centre of M. Then the centre Zy of M decomposes as Z,, X Zo,., .. We denote by ZZ’DEM
as Zwp, MM and Z@EM as Zop, NM'.

Remark 4.2. Lemma 4.1 implies that a k-character of Z, —can be extended to a k-
character of M. In particular, for two irreducible k-representations of M, if their central
characters coincide to each other on Zo,, , then up to modifying by an unramified k-
character, they share the same central character.
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Proposition 4.3. Let w1, m be two irreducible cuspidal k-representations of M’ which
contain (jl(/[, 5\&4) Then there exists an unramified k-character x of F*, such that my =
T2 X X

Proof. Let Ny (\y;) be the normaliser of Ay, in M/, which contains the centre Zyy of M’
as mentioned in Section 2.2, then by Theorem 4.4 of [4] there exist extensions Ay 1, Amv 2
of 5\{\/[ to NM/(S\&/I), such that m; = ind%;/y(;\{v[)AM/’l and my = indl\f\/gm(ii\q)AM’Q'

After modifying an unramified k-character of M’, we can assume that Ay ; and
Anp 2 have the same central character on Zyy. In fact, we have ZbFM C Jiy C Jiy, hence
the central characters of Ay 1 and Ay 2 coincide on ZbF . On the other hand, since

Z

o, = L™ for an integer m decided by M, a character of a sub-Z-module of Zop, Can

be extended to Z, . In particular, we can extend a character of Zz/vFM to Z,., , then
to M by Lemma 4.1, finally restricting to M’. Hence we prove that a character of Zz/va
can be extended to M’. Combining with the above discussion, we conclude that there is

an unramified k-character x1 of M/, such that Ay 1 ® X1|ZM'-7M = Awr 2 Zag Ty By the
Frobenius reciprocity, there is an injection
AM',l 024 X1 — AM”Q 0% iIldNM/()\M)]l. (4)

N

As observed in Remark 2.42 of [4], the group Ny (Xy;) (see Section 2.2 for definition)
is a subgroup with finite index of EyJy N M/, where EY = [[m, EX and E; is a
field extension of F' for each 1 < i < m. Since the quotient group Nyy(Nyy)/ZagJas 18
isomorphic to a subquotient group of Z,, , hence a character of NM/(:\i\/I) / ZM/j{v[ can
be extended to a character of M by Lemma 4.1, hence a character of M'.

Now we look back to Equation (4). The k-representation indgll\‘;/'}zf“)]l has finite length
and each of its irreducible subquotient is a character of Ny (Ny;)/ZiJ4s, hence can be
viewed as a character of M’. By the unicity of Jordan-Holder factors, there exists a
character xa of M/, such that Ayr1 ® x1 = Awr 2 ® X, since x1, x2 are k-characters of

M’, applying the induction functor ind%;m( ) on both sides gives an equivalence that

M
T ® x1 = me ® x2. Define x to be XgX;l, which is the required unramified k-character
of M. O

Proposition 4.4. Let (Ji;, \y;) be a mazimal simple k-type of M/, and ' an irreducible k-
representation of M' containing (J{;, \y;). Then any irreducible subquotient of ind%ﬂz\{w
must belong to M/, '\, or equivalently saying, must be M'-inertially equivalent to .

Proof. By Proposition IV.1.6 of [13], we know that indg/[M Aum is cuspidal, hence its sub-
representation ind% /N\{\/I is cuspidal as well. Let my be an irreducible subquotient of
ind%\]{I My, and (J§, \p) a maximal simple k-type contained in 7. The latter is weakly
intertwined with (Jy;, \y;) by Mackey’s theory. By the property of weakly intertwining
implying conjugacy of maximal simple k-types of M’ in Theorem 3.25 of [4], we conclude
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that a maximal simple k-type contained in o must M’-conjugate to (Ji;, \y;), and hence
Ty contains (jl’v[, M) By Proposition 4.3, we conclude that 7y is M'-inertially equivalent
ton’. O

Remark 4.5.

1. Lemma 4.3 and Proposition 4.4 give a bijection between the set of M’'-conjugacy
classes of maximal simple k-types and the set of M’-inertially equivalent cuspidal
classes:

v [jll\/hj‘i\/[}M' — [M/,ﬂ'/]MI,

where [J{;, MyJa is the M’-conjugacy class ~of (Jig, Nyp), and 7’ is an irreducible
cuspidal k-representation that contains (J{;, Ay;)-

2. Let (Ji,\}) and (J{;, Ny) be two different maximal simple k-types defined by
(Jm; Am). When M’ = G’ = SL,,(F) by Lemma 3.3, the associated G’-inertially
equivalent cuspidal classes defined by (Jar, As),i = 1,2 are different. When M’ is a
proper Levi of SL,, (F) by Remark 3.4, the associated G'-inertially equivalent cuspidal
classes may be the same.

4.2. Supercuspidal blocks of Rep, (M)

In this Section, we give a block decomposition of the supercuspidal subcategory
Rep;, (M) sc of Rep, (M), of which the blocks are called supercuspidal blocks of Rep,, (M’)
as defined in the end of Section 3.2. Let [M’, 7’|y be a M'-inertially equivalent super-
cuspidal class of M’. Denote by Rep;,(M’)m 1) the full subcategory of Rep,(M’), such
that the irreducible subquotients of an object of Repy (M) 1 belong to [M', 7]y
As in Proposition of [13][§III], a subcategory Rep,(M')pr -1 is non-split, and a
block of Rep,(M')sc is generated by a finitely number of subcategories of the form
Rep;, (M) 7 - o

Let (Jam, Am) be a maximal simple supercuspidal k-type of M, and (J{;, Aj;) be a
maximal simple supercuspidal k-type defined from (Jyr, Av) as explained in Section 2.2.
Recall that P:\M is the projective cover of 5\{\4 By Lemma 3.3, its irreducible subquotients
are maximal simple supercuspidal k-types of M’ as well, and we denote by Z(\};) the set
of isomorphic classes of irreducible subquotients of PS\M' We define a set of M’-inertially

equivalent supercuspidal classes SC(;\{VI), such that there is a bijection
v:T(My) = SC(\y),
which is given as in Remark 4.5.

Proposition 4.6. Suppose that the image SC(S\{\/I) is mot a singleton. For any non-trivial
disjoint union SC(Xy;) = SC1USCs, and let T(Ay;) = I1 UZy such that SC1 = v(I1) and
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SCo = v(Zy). It is not possible to decompose indg/l,l 735\,M as P ® Py, where any irreducible
M
subquotients of Py belongs to SC1 and any irreducible subquotients of Py belongs to SCa.

Proof. We abbreviate indl}{(//{ P;\M by Par in this proof. By Theorem 3.15, the irreducible
subquotients of Py are supercuspidal. Suppose the contrary that, there exists a non-
trivial disjoint union SC(S\M) = 8C; U 8Cy, such that Py = P, @ Py verifying the
conditions in the statement of the proposition. Without loss of generality, we suppose
M, € 7y Let ¢f; be a maximal simple supercuspidal k-type in Z,, and 7/ be a supercus-
pidal k-representation of M’ containing ¢},;. Hence 7’ is a subrepresentation of indl}/f,\; LM
and the later is a subquotient of Py, hence P» is non-trivial (P; is also non-trivial since
M €Th).

By Lemma 3.3, there exists a filtration of {0} = Wo C Wy .-+ C W, = Py, for an
s € N, such that each quotient \; := W;/W;_1,1 < i < s is irreducible and (J{;, \}) is a
maximal simple supercuspidal k-type of M’ defined also from (Jyr, Am ). In particular, 5\{\4
as well as ¢y are isomorphic to ;\; for some 0 < i < s respectively. Now define 5\6 to be
null, and denote by V; = ind% W;, then {Vi}o<i<s is a filtration of Py and V;/V,_q =
ind%\; 5\;, 1 <¢ < s. Denote by V; 1 the image of V; in Py under the canonical projection,
and V; o the image of V; in P, under the canonical projection. Hence {V;1}o<i<s (resp.
{Via}o<i<s) forms a filtration of Py (resp. P»). By Proposition 4.4, the quotient V; 1/
Vi—1,1 (vesp. Vio/Vi_12) is non-trivial if and only if 5\; € 7, (resp. 5\; € Iy).

Now we consider the canonical injective morphism

!
o:Ps = res?, Pwmr -
M M

Under the above assumption, we have res™ 7 PM/ = res X P1 ®resM P2 Since we consider
a representation of infinite length, the un1c1ty of J ordan Hélder factors is not sufficient,
and we need a simple but practical lemma as below to continue the proof: O

Lemma 4.7. Let G be a locally pro-finite group, and 7w a k-representation of G. Let m be
a subrepresentation of w. Suppose T is an irreducible subquotient of w, then T is either
isomorphic to an irreducible subquotient of m or to an irreducible subquotient of /.

Proof. Easy to check. O

Continue the proof of Proposition 4.6. Suppose 04(77;{\/[) C res % P1 Let ¢y € Iy be an
irreducible subquotient of 79;\, By Lemma 4.7 there exists 1 < i < s, such that ¢}, is an
irreducible subquotient of V; 1 /V;_1 1, and the later is a subquotient of 1nd )\’ In other
words, ¢}, is an irreducible subquotient of 1nd )\’ Applying Mackey’s theorem it is

equivalent to say that ¢}, is weakly intertwined Wlth N, in M/ (see Section 2.2 for weakly
intertwining), hence by Theorem 3.25 of [4] they are M’-conjugate to each other, hence
they define the same M'-inertially equivalent class as in Remark 4.5. Meanwhile, by the
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above analysis, we know that v(\;) € SC; and v(t};) € SCq, which is a contradiction.
Hence a(Ps, ) N reslb\,ff,\I Py # o(Ps, ).
Now we consider a(P5, )/((P5, ) N resll\]f[,l Py), which is non-null as above, and is a
M

~

subrepresentation of res%PM//res%; P = resgfll,\;Pg. By the same manner as above, we
conclude that each irreducible subquotient of a(P;\iw)/ (a(P;\,M) ﬂres% Py) belongs to Zo,
which implies that there exists Aj € Zy such that Py, — Xj . Since A is different from
Ay, the maximal semisimple quotient of P, contains Ai, © Ay, which contradicts to

the fact that P5, is the projective cover of M, by Proposition 41 ¢) [10]. Hence we finish
the proof. O

Lemma 4.8. Let (Ji, \)) and (J{;, Ny) be two mazimal simple supercuspidal k-types.
Suppose Ny € T(N}), then Ny € T(N\y) (see the beginning of this section for the definition

of I(-))-

Proof. Let W (k) be the ring of Witt vectors of k, and K be the fractional field of W (k).
Let K be a finite field extension of K, such that K contains the |Jyi/N|-th roots, where
N is the kernel of P5_, and let O be its ring of integers. Consider the f-modular system
(K, 0, k), we have that P;  ®4 K is semisimple, whose direct components are absolutely
irreducible. By Proposition 42 of [10], the projective cover P5, can be lifted over O,
and we denote the lifting to O by P5  as well. Now we consider 735\,1 ®@& K, which
is semisimple with finite length. Suppose P is an irreducible component of 73;\/1 ®a K,
then the semisimplification of its reduction modulo ¢ must contain A}, otherwise it will
induce a surjection from Ps; to an irreducible k-representation different from A/, which
contradicts with the fact the 735\,1 is the projective cover of A} by Proposition 41 of
[10]. Since A; is a subquotient of Py, , their exists an irreducible direct component P;
of 775\/1 ®p K, of which the semisimplification of reduction modulo-¢ contains A} as well
as \,. Let a € Jyp, such that a(\]) = A}, By the second part of Lemma 3.5, we have
a(Ps5,) = Py,, which implies that a(F;) is a direct component of P5,. We state that a
stabilises Pj. In fact, by the proof of Lemma 3.2, we have ’P;\,l is an indecomposable direct
factor of P5 .. In particular, the reduction modulo-¢ of each irreducible components of
Psy ®o K is isomorphic to Ay. By the unicity of Jordan-Holdar factors, there exists
an irreducible component P of P5 = ® K, such that P} is an irreducible component
of Py j;,- Since a(AN]) = A}, the semisimplification of the reduction modulo-¢ of a(Pj)
contains . Since a(P4) is isomorphic to an irreducible component of Py, and the
reduction modulo ¢ of P, is isomorphic to Ay, combining with the fact that Ay| L, is

multiplicity-free, we conclude that «(Pj) = Py. Hence N € Z(N,). O

Definition 4.9. Let (Jy, Ay ) be a maximal simple supercuspidal k-type of M, and denote
by Z(Aum) the set of isomorphic classes of maximal simple supercuspidal k-types of M’
defined by (Jyr, Am)- Let (Ji;, ') and (J{;, 7') be two elements in Z(\y), we say



150 P. Cui / Journal of Algebra 602 (2022) 130-153

1.« is related to 7/, if 4/ € Z(7') (or equivalently 7" € Z(v') by Lemma 4.8) and we
denote by +' < 7/;
2. 4" ~ 7' if there exists a series (Ji;, \;),1 < i <t for an integer ¢, such that

Yoo oo,

and we call the series {\/,1 < i <t} a connected relation of 4/ and 7/. The relation

“~” defines an equivalence relation on Z(Ay) (By Proposition 2.6 of [4], the relations
+ and ~ on Z(Ay) do not depend on the choice of Ayp).

3. Denote by [Ny, ~] the subset of Z(\y) consisting of all 7/ such that 7/ ~ M, or

equivalently the connected component containing 5\{\4 defined by ~.

Let m be an irreducible supercuspidal k-representation of M, and denote by Z(mw)
the isomorphy classes of the irreducible direct components of 7|y/. Let (Jum, Am) be a
maximal simple supercuspidal k-type contained in 7. The above equivalence relation “~”
on Z(Ay) induces an equivalence relation on Z (7).

Definition 4.10. Let 7}, 75 € Z(n), and we say 7] ~ 74 if there exists a maximal simple
supercuspidal k-type (Jy, Am) contained in 7, and two maximal simple supercuspidal k-
types (Ju, 5\{\41) and (Jy, 5\1\42) defined from (Jy, Am ), such that 7, contains 5\{\/“ fori =
1,2, and 5\{\4,1 ~ 5\{\4’2. By the unicity property that two maximal simple supercuspidal
k-types of M/, which are contained in a same irreducible supercuspidal k-representation,
are M’-conjugate to each other (Theorem 3.25 of [4]), we have that “~” defines an
equivalence relation on Z (7).

Remark 4.11. Let n’ € Z(n), and define [7, ~] to be a subset of Z(7), consisting of the
elements that are equivalent to 7. In other words, (7', ~) is the connected component
containing 7’ under the equivalence relation “~” on Z(7). In particular, there exists a
subset {71'3, 1 < j < s} of Z(m) for an integer s, such that (7}, ~) are two-two disjoint,
and Uj_, (7}, ~) = Z(m). Denote by [r;, ~] the family of M'-inertially equivalent classes
of " € (m},~), and we call [}, ~] a connected M'-inertially equivalent class of 7.

By Theorem 3.15, giving a block decomposition of Rep(M')sc is equivalent to
giving a block decomposition of Rep;(M’){,xjtw for each irreducible supercuspidal k-
representation m of M.

Theorem 4.12 (Block decomposition of Rep,(M')sc). Let m be an irreducible supercuspi-
dal k-representation of M, and we keep the notations in Remark j.11. For each1 < j < s,
define the full subcategory Repy, (M')[,T;_’N], consisting of the objects, of which each irre-
ducible subquotient belongs to [r’;, ~]. Then Repk(l\/[')[,r;w] is a block, and the subcategory
Repy, (M)t zjew = [T-1 Repy (M) -
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Proof. First we prove that Repy(M’)(x/ ~ is non-split. By Proposition of [13][§III], we
only need to prove that for any non-trivial disjoint union (7}, ~] = I U I, where Iy, I
are two non-trivial families of M’-inertially equivalence classes, then there exists an
object P € Repk(M')[ﬂ;,N], such that P cannot be decomposed as P, & P», where P} €
Rep,(M');, and P, € Rep,(M');,. Without loss of generality, we assume that 7/ €

J
Iy and let m € Z(m) such that 7} € Ip. Since 7; ~ 7}, there exists a maximal

)
simple supercuspidal k-type (Ju, Am) of © and two inaxmlj;l simple supercuspidal k-
types (J{g, M) of 7 and (Jg, 744) of ;, such that Nyg ~ 4 in Z(Ay). By the second
part of Definition 4.9, let {)\;, 1 <4 <t} be a series of a connected relation of A}; and ;.
Define a new series {5\;,~0 <i<t+1}, by putting Ny = Ny and X, ; = 7{;. There exists
0 < i < t, such that v(\]) € I but v(\,,) € I, where v is defined as in Remark 4.5.
Now we consider Py := ind%\;P;\; € Repk(M/)sc(S\;) (see the beginning of Section 4.2
for the definition of SC(A;)), hence Py € Repy, (M) (/). Assume contrarily that Py =
Py ® P, where Py € Repy(M'), and P, € Rep;,(M)r,. Then Py € Repy (M)} rse(xr)
and P, € Repk(M’)ImSC(;\;). Since the union of I; N SC(X}) and I, N SC(\)) is a non-
trivial disjoint union of SC (;\’i), the decomposition Py =2 P; @ Ps is contradicted with
Proposition 4.6.

Secondly, we prove that Repy (M), e = H;Zl Repy, (M/)[,,;_M. We use the projec-
tive version in Remark 2.2. Now fix jo, and let (J}, 5\’ ,) be a maximal simple super-
cuspidal k-type contained in 7r ,» defined from a maxnnal simple supercuspidal k-type
(Jm, Am) of M. By Definition 4.1() and Remark 4.11, we fix a maximal simple supercus-
pidal k-type for each M'-inertially equivalent supercuspidal class contained in [r} ,~],
and denote by Z;, the finite set of these maximal simple supercuspidal k-types. Define
P[“éo*w] = ®rezy, ind%PT/ where P, is the projective cover of 7/. For each 1 < j < s
different from jo, and let [}, ~] = Li_, [M’, 7} ,]mv where 7/ ; are irreducible supercusp-
idal and ¢ € N. Fix a maximal simple supercuspidal k- type (J]’ i )\; Z) contained in 7’ ;.
Define [,, ~]* to be the union U;;j, [r;, ~] and Plrsg b = Bjtjo Dho 11ndJ/ ’P)\/ - We
show that P, ) and Py, ot verify the conditions in Remark 2.2. By Proposmon 4.4
and Lemma 4 7 we know that an irreducible subquotient of P, . belong to (Mo, ~].
Meanwhile an irreducible subquotient of P, .j1 belong to [Tjos ~]T 1= Ujjo [T, ~].
Condition 1 and 3 of Remark 2.2 can be deduced from Proposition 3.6. Condition 2 of Re-
mark 2.2 is verified from Remark 4.11 that “~” defines an equivalent relation, and [r} , ~]
is disjoint with [r;,,~]*. Hence by repeating the same operation on Repj (M’ )i ]
and after finite times we obtain the desired decomposition. O

Example 4.13. For G’ = SL,,(F), when ¢ is positive,

e it is not always true that the reduction modulo £ of an irreducible ¢-adic supercuspidal
representation of G’ is irreducible;

e it is not always true that Rep,(G’) can be decomposed with respect to the G'-
inertially equivalent supercuspidal classes as in Equation (1) in the case where £ = 0
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Proof. Let p=5,n =2,/ =3, and denote by G = GLy(FF5) and by G = SLs(F5). From
[1, §11.3.2] we know that there exist two irreducible supercuspidal Q,-representations
71, m2 of G (71 corresponding to —j” and my corresponding to 6 as in [1, §11.3.2]), such
that the reduction modulo ¢ of m; and mg are irreducible and coincide to each other.
Meanwhile, the restriction 7| is irreducible but ma|g is semisimple with length 2. We
denote by 75 the reduction modulo ¢ of . By [1, §11.3.2] the length of 7|5 is two, and
denote by 721,722 the two irreducible direct components of 7a|g (in the notation of
[1, §11.3.2], ™21 and 72 correspond to the reduction modulo ¢ of R’ (6y) and R/ (6p)
respectively). In other words, the reduction modulo ¢ of the irreducible supercuspidal
Q/-representation 7 |g is reducible, and its Jordan-Hélder components consist of 1
and 7o 2. Both of 7 1 and 7 5 are supercuspidal by [5, §3.2], since their projective covers
are cuspidal.

We consider the Z,-projective cover Yz, of 1. The strategy is to prove that the
irreducible Q -representation 71| is a subquotient of Yz, , ® Q,, from which we deduce
that o o is a subquotient of Yz, , ® k, then we apply Proposition 4.6.

Let U be the subgroup of upper triangular matrices of G, then the reduction modulo
¢ gives a bijection between non-degenerate Q,-characters of U and non-degenerate k-
characters of U. Let G@Z be a non-degenerate Q,-character of U, and 6, be the reduction
modulo ¢ of 9@27 which is a non-degenerate k-character of U, such that 75 ; is generic
according to 6y. By the unicity of Whittaker model, it follows that 72 > is not generic
according to 0. By [5], Yz, , ®Q, is semisimple, and can be written as BseSu s b, Here

sp is the #/-semisimple conjugacy class in G corresponding to 75 by the theory of Deligne-
Lusztig (or equivalently sg corresponds to 6y under the notations of [1, §11.3.2]), and

S

ED)
by 7 the irreducible supercuspidal Q,-representation corresponding to s, and by Ts,0

is the set of semisimple conjugacy classes in G whose #-part is equal to sg. Denote

the unique irreducible component of 745 which is generic according to 9@[. Hence 7 is
a subrepresentation of Yz, , ® Q,, which implies that 7 2 is a subquotient of Yz, , ® k,
which is the k-projective cover of 7 ;.

To go further to the p-adic groups, we conclude that the semisimplification of Y, , ®k
consists with a non-trivial multiple of w5 ; and a non-trivial multiple of 3 5.

Now we consider the p-adic groups G = GLo(F') and G’ = SLa(F'), suppose that F =
Qs, and k = F3. Let J = GLy(Zs5), J' = 1+My(5Zs5) and J' = JNG, JY = J'NG'. We
have J/J! = G, and J’/Jll ~ G'. We still denote by m;, Wi, T2 i, ¢ = 1,2 the corresponding
inflation to J' respectively. Hence (J,7;),i = 1,2 are maximal simple supercuspidal k-
types of G. According to [4, 3.18] and the fact that there are 4 G’-conjugacy classes of
non-degenerate characters on U, we deduce from the unicity of Whittaker models that
for an irreducible cuspidal k-representation 7 of G, the length of 7|g: is a divisor of
4, hence is prime to 5. By Theorem 3.18 of [4], the index |J : J| is a p-power and a
divisor of the length m|qs, which implies that J = J. We deduce firstly that (J', 7 |;)
is a maximal simple supercuspidal Q-type of G’, and (J',72,),i = 1,2 are maximal
simple supercuspidal k-types of G’. Hence indg;,,ﬂ'l\ g is irreducible, but its reduction
modulo ¢ has length two, with two factors ind?,/ﬁ27i,i = 1,2, which is the first of this
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example. Secondly, we have that (J',721) and (J’,722) are non G’-conjugate by the
second part of Remark 4.5. By [4, Proposition 2.35, Theorem 3.30], II; := il’ldg;/,’ﬁ'g’l and
Il = il’lds;/,’ﬁ'g,g are different irreducible supercuspidal k-representations, and they define
different G’-inertially equivalent classes since there is no non-trivial k-character on G’.
The inflation of Yz, , to J’ is the Zs-projective cover of 7 1. By applying the previous
paragraphs, 2 » appears as a subquotient of Yz, ,. Apply Theorem 4.12, we conclude
that both the full subcategories Repy (G')iq/,i,] and Repy (G')qr 11, belong to the same
block. O
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