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A B S T R A C T   

Building footprints are essential for understanding urban dynamics. Planet satellite imagery with daily repetition 
frequency and high resolution has opened new opportunities for building mapping at large scales. However, 
suitable building mapping methods are scarce for less developed regions, as these regions lack massive annotated 
samples to provide strong supervisory information. To address this problem, we propose to learn cross- 
geolocation attention maps in a co-segmentation network, which is able to improve the discriminability of 
buildings within the target city and provide a more general building representation in different cities. In this way, 
the limited supervisory information resulting from insufficient training examples in target cities can be 
compensated. Our method is termed as CrossGeoNet, and consists of three elemental modules: a Siamese 
encoder, a cross-geolocation attention module, and a Siamese decoder. More specifically, the encoder learns 
feature maps from a pair of images from two different geo-locations. The cross-location attention module aims at 
learning similarity based on these two feature maps and can provide a global overview of common objects (e.g., 
buildings) in different cities. The decoder predicts segmentation masks of buildings using the learned cross- 
location attention maps and the original convolved images. The proposed method is evaluated on two data
sets with different spatial resolutions, i.e., Planet dataset (3 m/pixel) and Inria dataset (0.3 m/pixel), which are 
collected from various locations around the world. Experimental results show that CrossGeoNet can well extract 
buildings of different sizes and alleviate false detections, which significantly outperforms other competitors.   

1. Introduction 

Building footprint maps offer insights for the comprehensive un
derstanding of urban development. In less developed regions (e.g., Af
rica), significant changes occur in urban areas annually due to rapid 
urban expansion and city renewal (Huang et al., 2020), resulting in 
environmental and ecological problems (Guo et al., 2021a). Therefore, 
acquiring up-to-date building footprint maps for these regions is essen
tial to the urban-related analysis. 

In recent decades, high spatial resolution satellite images are capable 
of deriving spatial details of individual buildings. However, there are 
some weaknesses in high-resolution commercial satellites, e.g., high cost 
and low revisit frequency. This limits the regional or global building 
footprint generation. Planet is a new micro-satellite constellation, which 
consists of more than 120 satellites in orbit and is able to collect meter- 

level spatial resolution imagery on a daily basis at low-cost (Houborg 
and McCabe, 2016). Its high revisit capability also helps to acquire low 
cloud cover observations for the regions with above-average cloud cover 
(Asner et al., 2017). To date, most high-resolution building footprint 
generation studies are limited to aerial imagery (Bischke et al., 2019, 
Bischke et al., 2019; Maggiori et al., 2017,Maggiori et al., 2017; Li et al., 
2020,Li et al., 2020) or WorldView satellite imagery (Pan et al., 2020b; 
Pan et al., 2020b; Tonbul and Kavzoglu, 2020; Tonbul and Kavzoglu, 
2020), and the investigation on Planet satellite imagery is lacking. 

Although some approaches (Ivanovsky et al., 2019,Ivanovsky et al., 
2019;Li et al., 2020, Li et al., 2020;Li et al., 2021, Li et al., 2021;Shi 
et al., 2020,Shi et al., 2020) are capable of delivering very promising 
results on Planet satellite imagery, they are mostly developed for 
Europe. To the best of our knowledge, few are dedicated to the cities in 
less developed regions represented by Africa, South America, and Asia, 
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where buildings differ substantially in size and type from those in 
Europe. 

To generate building footprint maps from Planet satellite imagery, 
existing studies use convolutional neural networks (CNNs) that can 
effectively learn high-level features from raw data without heuristic 
feature design. Nevertheless, there remains a challenge for extracting 
building footprints on target cities — massive data need to be collected 
to promote the performance of CNNs. Considering that the manual 
annotation of reference data is a very time-consuming and costly pro
cess, OpenStreetMap (OSM) could be considered as a good source for 
acquiring manually annotated building footprints for training networks 
(Kaiser et al., 2017). By analyzing available building annotation data in 
OSM, we observe that they have an extremely uneven distribution across 
cities in different continents (see Fig. 1). For example, there are abun
dant labeled samples in European cities, while for cities in Africa, South 
America, and Asia, annotated data are quite limited. The lack of anno
tated data usually restricts the performance of existing methods in these 
regions, as they require a lot of strong supervisory information for 
network learning. 

In this paper, we aim to generate building footprint maps using 
Planet satellite imagery for target cities that suffer from data deficit of 
labeled samples. In order to improve the performance of a network 
trained on the target city with scarce labeled data, a straightforward idea 
is to take advantage of the cities with massive annotated data (hereafter 
called auxiliary set). Nonetheless, geographic peculiarities across 
different geolocations raise several challenges. As shown in Fig. 2, ap
pearances of buildings in different continents are noticeably different. 
This induces CNNs to produce unsatisfactory results when we directly 

apply a network trained on the auxiliary set to target cities. In this re
gard, some works (Maggiori et al., 2016) utilize transfer learning that 
fine-tunes a pre-trained model with a few labeled instances in target 
cities. Domain adaptation methods (Vu et al., 2019) aim to transfer the 
knowledge learned from a domain to improve performance on target 
cities. Other works (He et al., 2020) utilize a new learning strategy, 
where the model is first pre-trained with a large number of unlabeled 
images in a self-supervised way and then transferred to the task of se
mantic segmentation with very few labeled samples. 

Recently, co-segmentation is proposed for the object segmentation in 
computer vision, aiming at jointly segmenting semantically similar ob
jects in video frames (Papoutsakis et al., 2017; Papoutsakis et al., 2017; 
Wang et al., 2019; Wang et al., 2019) or multiple images (Li et al., 2018). 
The success of these works suggests that co-segmentation can fully 
harness the sequential or pair-wise relations among consecutive frames 
to discover common objects, which helps to alleviate the dependency of 
strong supervisory information. This gives us an incentive that the co- 
segmentation framework may benefit our cross-city building extrac
tion task. Therefore, we propose an end-to-end trainable network–
CrossGeoNet, which consists of three modules: a Siamese encoder, a 
cross-geolocation attention module, and a Siamese decoder. The 
encoder takes as input a pair of images from two different geolocations 
and is responsible for learning feature representations for both images. 
The cross-geolocation attention module learns to explicitly encode cor
relations between the features of the two images, enabling the network 
to attend more to common objects (i.e., building in our case). The 
decoder combines convolved images with the cross-geolocation atten
tion maps to generate segmentation masks through a series of 

Fig. 1. The annotated building footprints in OpenStreetMap (counted by continents), and four examples of cities in Europe, Africa, South America, and Asia. The 
base map about building densities on OpenStreetMap is obtained from OpenStreetMap Analytics (osm, 2021-08-24.). 

Fig. 2. Illustration of geographic peculiarities across different geolocations. The Planet satellite images are collected from (a) Munich (Germany), (b) Yaounde 
(Cameroon), (c) Lisbon (Portugal), and (d) Niamey (Niger), respectively. We can see that appearances of buildings in different cities are noticeably different. 
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deconvolutional layers. Note that the three components are jointly 
optimized in our method. This work’s contributions are threefold. 

(1) The proposed CrossGeoNet examines the potential of Planet sat
ellite imagery for building mapping in less developed regions (e. 
g., cities in Africa, South America, and Asia).  

(2) To tackle the problem of insufficient labeled samples in target 
cities, we propose to use a co-segmentation learning framework 
that can leverage a large amount of labeled data in other cities to 
improve the performance of a model in the target cities. To the 
best of our knowledge, our work is the first one that exploits co- 
segmentation learning to generate building footprint maps.  

(3) Since capturing the relationship between the two inputs is the key 
element in our CrossGeoNet, we propose a cross-geolocation 
attention module to effectively learn the underlying similarity 
between different geolocations, which is superior to other exist
ing methods (e.g. mutual correlation (Li et al., 2018) and Fourier 
domain correlation (Danelljan et al., 2014)). Compared with 
other competitors, our approach gains significantly better results. 
The codes of CrossGeoNet will be made publicly available in 
https://github.com/lqycrystal/coseg_building. 

This article is organized as follows. Section 2 presents the framework 
of CrossGeoNet for building footprint generation. The experiments are 
described in Section 3. Results are provided in Section 4. The perfor
mance of CrossGeoNet on another data source is investigated in Section 
5. Eventually, Section 6 summarizes this work. 

2. Methodology 

In this section, the co-segmentation pipeline of CrossGeoNet is first 
presented. Afterward, we present the proposed cross-geolocation 
attention module in detail. Finally, the end-to-end network learning 
procedure is described. 

2.1. Co-segmentation Pipeline 

When objects of the same class vary in pose, shape, or color, the idea 
of co-learning can exploit the synergistic relationship between video 
frames or multiple images to provide generic features, improving model 
performance. In this work, our motivation is that by jointly viewing 
common objects (i.e., building in our case) in different geolocations, 
networks can learn underlying similarities for extracting more generic 
representations for buildings. In this regard, we propose to integrate co- 

segmentation learning into the framework of building footprint gener
ation, which is capable of fully harnessing information from various 
locations and further enhancing the generalizability of the model. Spe
cifically, we propose a cross-geolocation attention module in the co- 
segmentation pipeline that learns to enhance latent features by encod
ing relations between the target city and cities from the auxiliary set. As 
a consequence, our co-segmentation network is able to not only improve 
building discriminability within target cities but also learn generic fea
tures of buildings across different cities. By doing so, the limited su
pervisory information in target cities can be compensated. 

As shown in Fig. 3, a Siamese encoder-decoder architecture is 
adopted in CrossGeoNet. The Siamese encoder is composed of two 
identical CNNs with shared weights for the purpose of feature extrac
tion. The input of the encoder is an image pair, where one image It is 
from a target city and the other image Ia is from the auxiliary set, and 
their feature representations are denoted as Ft ∈ RC×W×H and 
Fa ∈ RC×W×H, respectively. H and W represent the height and width, and 
C denotes the channel dimension. Unlike conventional semantic seg
mentation networks, where high-level features are directly decoded for 
inferring building masks, here we enhance the learned feature maps 
through the proposed cross-geolocation attention module. Specifically, 
this module takes two feature maps as input and outputs two attention 
maps St→a and Sa→t . Afterward, they are fused with the corresponding 
convolved images and fed into the decoder. The Siamese decoder is 
comprised of a set of transposed convolutional layers that upsample the 
convolved images to generate two building segmentation masks Mt and 
Ma. Note that all modules are integrated into one framework and opti
mized in an end-to-end manner. 

2.2. Cross-geolocation Attention 

The feature maps learned from the Siamese encoder contain abstract 
semantic information, and when the input images contain the common 
object (e.g., building), their features should also include similar infor
mation. The key component of co-segmentation learning is to find 
similarities in feature vectors among various images. In the literature, 
there have been several commonly used similarity measures, e.g., 
mutual correlation (Li et al., 2018) and Fourier domain correlation 
(Danelljan et al., 2014). 

Inspired by the success of self-attention (Hu et al., 2018) in capturing 
long-range interactions among input signals, we propose a cross- 
geolocation attention module that can adaptively learn the similarity 
between target cities and the auxiliary set. By doing so, semantic in
formation of the common object (e.g., building) can be enhanced. More 

Fig. 3. Overview of the proposed CrossGeoNet framework.  
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specifically, we calculate the cross-geolocation attention map St→a ∈

R(WH)×(WH) between Ft and Fa as: 

St→a = FT
a Wt→aFt, (1)  

where Wt→a ∈ RC×C is a weight matrix. Here Ft and Fa are flattened into 
vectors with the size of C × WH and can be represented as: 

Ft = [f 1
t , f 2

t ,…, f p
t ,…, f WH

t ], (2)  

Fa = [f 1
a, f

2
a,…, f q

a,…, f WH
a ], (3)  

where f p
t is a C-dimiensional feature vector at position p ∈ {1,2,…,WH}

in Ft, and f q
a is a C-dimiensional feature vector at position q ∈ {1,2,…,

WH} in Fa. Thus, the entry (q, p) of St→a reflects the similarity between 
f q

a and f p
t , and can be learned automatically. St→a is capable of capturing 

the dependencies between any two positions of feature maps without 
regard for their distance in the spatial dimension. Therefore, our cross- 
geolocation module can model rich contextual dependencies, which is 
superior to other similarity measures that only consider local features. 

Since the weight matrix Wt→a is a square matrix, the diagonalization 
of Wt→a can be represented as follows: 

Wt→a = P− 1
t→aDt→aPt→a, (4)  

where Pt→a is an invertible matrix and Dt→a is a diagonal matrix. Then, 
Eq. (1) can be rewritten as: 

St→a = FT
a P− 1

t→aDt→aPt→aFt. (5)  

According to Eq. (5), a learnable linear transformation is first applied to 
the feature representation of each image, and then the similarity be
tween these two feature representations is dynamically captured by the 
dot product. Similarly, the cross-geolocation attention map Sa→t be
tween Fa and Ft is computed as: 

Sa→t = FT
t P− 1

a→tDa→tPa→tFa, (6)  

where Pa→t is an invertible matrix, and Da→t is a diagonal matrix. 
Note that Sq

t→a is the q-th row of St→a, which is a vector with length 
WH and represents the similarity between each feature vector in Ft and 
f q

a. If the p-th element in Sq
t→a has a larger value than others, f p

t is more 
similar to fq

a than other feature vectors in Ft, which indicates a very high 
probability of having the common object in f p

t and f q
a. 

Afterward, we obtain the cross-geolocation attention-enhanced fea
tures Zt by allocating the learned cross-geolocation attention map to Ft , 
which is computed with the following equations: 

Zt = St→aFT
t . (7)  

And Za is calculated in the same manner: 

Za = Sa→tFT
a . (8)  

Finally, Zt and Za are reshaped into the size of C × H × W and fed into 

the Siamese decoder to produce final segmentation masks Mt and Ma, 
respectively. 

In what follows, we discuss in detail why the proposed approach can 
improve the performance of a model in target cities. It is well known that 
contextual information is able to offer important cues for semantic 
segmentation tasks. In conventional CNNs, convolutions are used to 
extract such information. However, the performance might be limited 
due to their local receptive fields. Also, inadequate samples affect the 
learning of CNNs. On the contrary, the proposed cross-geolocation 
module explores global contextual information by learning cross- 
geolocation attention maps. Specifically, for a pixel in a sample from 
the target city, the cross-geolocation attention map can effectively 
capture relations between it and not only all other pixels in the same 
sample but also all pixels in a sample from the auxiliary set. Afterward, 
CrossGeoNet selectively aggregates global contextual information to 
provide a global view of common objects (i.e., building), alleviating the 
influence of background. In other words, we leverage the auxiliary set to 
provide additional supervisory information to enhance the discrimina
bility of building, which improves building extraction results on the 
target city. 

2.3. Network Learning 

We propose an end-to-end training pipeline for the supervised 
learning of CrossGeoNet. The whole network is trained by the following 
loss function: 

L = Lt + λ⋅La, (9)  

where Lt and La are two cross-entropy loss functions for measuring the 
difference between segmentation masks and their corresponding 
ground-truth masks. λ is a hyperparameter to control the importance of 
the second loss. 

3. Experiments 

3.1. Dataset 

In this work, we collect Planet satellite images and their corre
sponding OSM building footprints from different cities all over the 
globe. Planet satellite images have 3 bands (i.e., red, green, blue), and 
their spatial resolution is 3 m/pixel. In the pre-processing step, all im
ages and ground-truth masks are cropped into small patches with the 
size of 256 × 256 pixels. To thoroughly investigate the performance of 
CrossGeoNet, we select three target cities from different continents: 
Yaounde (Cameroon), Porto Alegre (Brazil), and Kyoto (Japan). As to 
the auxiliary set, 6 European cities, Madrid (Spain), London (UK), Rome 
(Italy), Lisbon (Portugal), Munich (Germany), and Zurich (Switzerland), 
are selected due to their massive building footprint annotations. The 
numbers of patches collected from each city for network training, vali
dation, and test are reported in Table 1. 

3.2. Experimental Setup 

To verify the effectiveness of CrossGeoNet for building footprint 
generation, we compare it with several commonly-used network 
learning methods, i.e., Baseline-t, Baseline-a, Baseline-a+t, fine-tuning, 
ADVENT (Vu et al., 2019) IntraDA (Pan et al., 2020a), MetaCorrection 
(Guo et al., 2021b), MoCo (He et al., 2020), DenseCL (Wang et al., 
2021), U-Net-AFM (Li et al., 2021), CBRNet (Guo et al., 2022), EPU-Net 
(Guo et al., 2021a), and CSGANet (Chen et al., 2021). Note that exper
iments are independently conducted in three target cities. That is to say, 
for the experiment in one target city, training samples consist of only 
patches from that target city and the auxiliary set. For the evaluation of 
our cross-geolocation attention module, we conduct comparisons with 
the aforementioned two similarity measures, i.e., mutual correlation (Li 

Table 1 
Statistics of the datasets utilized in this research.   

Continent Name The number of patches  
train validation test 

Target city Africa Yaounde 100 100 300 
South America Porto Alegre 100 100 300 
Asia Kyoto 100 100 300 

Auxiliary set Europe Madrid 2971 743 0 
London 2256 565 0 
Rome 2303 576 0 
Lisbon 2043 511 0 
Munich 2271 568 0 
Zurich 1849 463 0  
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et al., 2018) and Fourier domain correlation (Danelljan et al., 2014). 

3.3. Training Details 

CrossGeoNet is implemented on PyTorch framework and trained on 
an NVIDIA Quadro P4000 GPU with 8 GB memory. The training epochs 
of all models are set as 100 epochs, and stochastic gradient descent 
(SGD) with a learning rate of 0.001 is set as the optimizer. The size of the 
training batch for all models is 4. Detailed configurations of all methods 
in our experiments are presented as follows:  

(1) CrossGeoNet: Since our model is trained for each target city 
independently, we select It and Ia from one target city and the 
auxiliary set, respectively, in the training phase. To enlarge the 
number of training pairs, for each patch in the target city, we 
create 100 duplicates and pair them with 100 samples randomly 
selected from one city in the auxiliary set. In the inference stage, 
It and Ia are both selected from test patches of the target city. The 
loss term weighting parameter λ in Eq. (9) is set as 0.00001 
empirically.  

(2) Baseline-t : An Efficient-UNet is trained and tested with training 
and test sets of the target city.  

(3) Baseline-a: An Efficient-UNet is trained with samples collected 
from the auxiliary set and tested on test instances in the target 
city.  

(4) Baseline-a+t: An Efficient-UNet is trained using samples from 
training sets of the target city and the auxiliary set, and tested on 
test samples from the target city.  

(5) Fine-tuning: It consists of two steps. Firstly, all samples from the 
auxiliary set are used to pre-train an Efficient-UNet. Secondly, the 
pre-trained network is fine-tuned with the training set of the 
target city.  

(6) ADVENT (Vu et al., 2019), IntraDA (Pan et al., 2020a), and 
MetaCorrection (Guo et al., 2021b): They aim at addressing the 
task of domain adaptation in semantic segmentation. The auxil
iary set is regarded as the source domain, and the target city is the 
target domain.  

(7) MoCo (He et al., 2020) and DenseCL (Wang et al., 2021): They 
first learn knowledge from a large number of unlabeled images in 
a self-supervised way. Afterward, the weights are transferred to 

the task of semantic segmentation. In our research, MoCo (He 
et al., 2020) learns from the auxiliary set, while for DenseCL 
(Wang et al., 2021), we use its pre-trained weights (Deng et al., 
2009).  

(8) U-Net-AFM (Li et al., 2021), CBRNet (Guo et al., 2022), EPU-Net 
(Guo et al., 2021a), and CSGANet (Chen et al., 2021): They are 
semantic segmentation networks for the task of building footprint 
generation. 

Note that for MoCo (He et al., 2020), DenseCL (Wang et al., 2021), U- 
Net-AFM (Li et al., 2021), CBRNet (Guo et al., 2022), EPU-Net (Guo 
et al., 2021a), and CSGANet (Chen et al., 2021), we have separately 
organized the training set according to three experiment procedures (i. 
e., Baseline-t, Baseline-a+t, and Fine-tuning), and the best result among 
three cases is reported. 

We evaluate the performance of all models using two metrics: F1 
score and intersection over union (IoU). 

4. Results 

4.1. Comparison of Different Learning Methods 

This section presents the comparisons among CrossGeoNet, Baseline- 
t, Baseline-a, Baseline-a+t, fine-tuning, ADVENT (Vu et al., 2019), 
IntraDA (Pan et al., 2020a), MetaCorrection (Guo et al., 2021b), Moco 
(He et al., 2020), DenseCL (Wang et al., 2021), U-Net-AFM (Li et al., 
2021), CBRNet (Guo et al., 2022), EPU-Net (Guo et al., 2021a), and 
CSGANet (Chen et al., 2021). Their performance is evaluated from 
quantitative (cf. Tables 2) and and qualitative (see Figs. 4–6) perspec
tives in three target cities. 

Compared with Baseline-t, the proposed method has largely 
improved the accuracy. It can be seen from numerical results in three 
target cities that CrossGeoNet reaches improvements of above 3% in 
both F1 score and IoU. Especially for the target city of Kyoto, our method 
obtains increments of 5.48% in F1 score and 5.81% in IoU, respectively. 
As shown in Fig. 4, Baseline-t fails to recover complete masks of large 
buildings. This is due to the fact that limited training samples can not 
represent the true class distribution comprehensively (Hou et al., 2019). 
Although Baseline-a exploits massive annotated samples of the auxiliary 
set, it still performs worse than CrossGeoNet. For instance, in the target 
city of Yaounde (see Table 2), Baseline-a only achieves 1.90% in F1 score 
and 0.96% in IoU. Moreover, these results are worse than those of 
Baseline-t. This is caused by significant differences between the target 
cities and the auxiliary set, e.g., variant morphological appearance of 
human settlements and material available for building construction (Li 
et al., 2020). 

Afterward, we select another seven competitors (Baseline-a+t, fine- 
tuning, ADVENT (Vu et al., 2019), IntraDA (Pan et al., 2020a), Meta
Correction (Guo et al., 2021b), MoCo (He et al., 2020), and DenseCL 
(Wang et al., 2021)) to make a further comparison, as these methods also 
jointly utilize training samples of both the target city and the auxiliary 
set. Fine-tuning is a commonly used method to handle the issue of scarce 
training data in target datasets (Maggiori et al., 2016). Nevertheless, 
compared with Baseline-t, fine-tuning even leads to decreases in accu
racy metrics for Yaounde and Kyoto. A possible explanation is that the 
gap between target cities and auxiliary set is quite large, making it 
difficult to transfer the knowledge learned from the auxiliary set to 
target cities. Domain adaptation methods are also capable of trans
ferring the knowledge from the auxiliary set to the target city. From the 
results in Table 2, it can be seen that ADVENT (Vu et al., 2019), IntraDA 
(Pan et al., 2020a), and MetaCorrection (Guo et al., 2021b) perform 
worse than fine-tuning in knowledge transfer. One important reason is 
that the labels in the target domain are not utilized by domain adapta
tion methods. It can be observed from statistical results that MoCo (He 
et al., 2020) and DenseCL (Wang et al., 2021) are even inferior to 
Baseline-t on all three cities. This might be attributed to two factors. On 

Table 2 
Accuracies (%) of different learning methods for building footprint generation 
on tagert cities.  

Method Yaounde Porto Alegre Kyoto 
F1 
score 

IoU F1 
score 

IoU F1 
score 

IoU 

Baseline-t 63.85 46.90 58.57 41.41 59.80 42.65 
Baseline-a 1.90 0.96 27.41 15.88 36.35 22.21 
Baseline-a+t 64.95 48.10 60.44 43.31 62.76 45.72 
Fine-tuning 63.35 46.36 60.12 42.98 59.31 42.16 
ADVENT(Vu et al., 

2019) 
55.26 38.18 31.13 18.43 46.89 30.63 

IntraDA (Pan et al., 
2020a) 

56.59 39.46 40.86 25.67 53.05 36.10 

MetaCorrection (Guo 
et al., 2021b) 

55.44 38.35 51.68 34.84 49.27 32.69 

MoCo(He et al., 2020) 60.98 43.87 57.59 40.44 58.22 41.06 
DenseCL(Wang et al., 

2021) 
60.99 43.88 59.12 39.00 58.10 40.94 

U-Net-AFM (Li et al., 
2021) 

61.32 44.19 53.64 36.72 52.86 36.01 

CBRNet (Guo et al., 
2022) 

63.52 46.54 59.98 42.84 61.78 44.70 

EPU-Net (Guo et al., 
2021a) 

52.45 35.55 45.72 29.64 50.04 33.37 

CGSANet (Chen et al., 
2021) 

61.51 44.42 56.69 39.55 58.07 40.92 

CrossGeoNet 67.77 51.26 62.12 45.05 65.28 48.46  
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the one hand, the annotated information of the auxiliary set has not been 
leveraged in self-supervised learning. On the other hand, large differ
ences existing between the auxiliary set and target cities might impair 
the model performance when migrated to target cities. 

CrossGeoNet has achieved the highest accuracies among all methods, 
and it shows nearly 2% improvements of F1 score and IoU on all target 
cities compared to Baseline-a+t. From qualitative results, we can 

observe that Baseline-a+t fails to detect some small buildings (cf. Fig. 6). 
This can be explained by the imbalanced number of training samples 
collected from target cities and the auxiliary set. When training samples 
of the auxiliary set dominate the learning procedure, the network fails to 
guarantee accurate segmentation in target cities. On the contrary, our 
method is able to avoid these omission errors and reconstruct complete 
building structures to a large extent. These observations suggest that 

Fig. 4. Examples of building extraction 
results obtained by different learning 
methods. (a) Baseline-t. (b) Baseline-a+t. 
(c) Fine-tuning. (d) ADVENT (Vu et al., 
2019). (e) IntraDA (Pan et al., 2020a). (f) 
MetaCorrection (Guo et al., 2021b). (g) 
MoCo (He et al., 2020). (h) DenseCL 
(Wang et al., 2021). (i) U-Net-AFM (Li 
et al., 2021). (j) CBRNet (Guo et al., 2022), 
(k) EPU-Net (Guo et al., 2021a). (l) 
CSGANet (Chen et al., 2021). (m) Cross
GeoNet. (n) and (o) are Planet satellite 
imagery and ground reference from 
Yaounde.   

Fig. 5. Examples of building extraction 
results obtained by different learning 
methods. (a) Baseline-t. (b) Baseline-a+t. 
(c) Fine-tuning. (d) ADVENT (Vu et al., 
2019). (e) IntraDA (Pan et al., 2020a). (f) 
MetaCorrection (Guo et al., 2021b). (g) 
MoCo (He et al., 2020). (h) DenseCL 
(Wang et al., 2021). (i) U-Net-AFM (Li 
et al., 2021). (j) CBRNet (Guo et al., 2022), 
(k) EPU-Net (Guo et al., 2021a). (l) 
CSGANet (Chen et al., 2021). (m) Cross
GeoNet. (n) and (o) are Planet satellite 
imagery and ground reference from Porto 
Alegre.   
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Fig. 6. Examples of building extraction 
results obtained by different learning 
methods. (a) Baseline-t. (b) Baseline-a+t. 
(c) Fine-tuning. (d) ADVENT (Vu et al., 
2019). (e) IntraDA (Pan et al., 2020a). (f) 
MetaCorrection (Guo et al., 2021b). (g) 
MoCo (He et al., 2020). (h) DenseCL 
(Wang et al., 2021). (i) U-Net-AFM (Li 
et al., 2021). (j) CBRNet (Guo et al., 2022), 
(k) EPU-Net (Guo et al., 2021a). (l) 
CSGANet (Chen et al., 2021). (m) Cross
GeoNet. (n) and (o) are Planet satellite 
imagery and ground reference from from 
Kyoto.   

Fig. 7. Building extraction results (in blue) obtained by CrossGeoNet from Djibouti and three zoomed in areas.  
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CrossGeoNet benefits from the learning of the cross-geolocation atten
tion module, enabling the leverage of rich relationships between target 
cities and the auxiliary set. 

We then compare CrossGeoNet with U-Net-AFM (Li et al., 2021), 
CBRNet (Guo et al., 2022), EPU-Net (Guo et al., 2021a), and CSGANet 
(Chen et al., 2021), which are four state-of-the-art methods for the task 
of building footprint generation. It can be observed from the statistical 

and visual results on three cities that our method surpasses all other 
building extraction methods. 

We further explore the generalizability of model trained by Cross
GeoNet and test it on unseen cities (which are neither from the target 
city nor from the auxiliary set). Note that we directly apply the trained 
model to the unseen cities. Specifically, we select two African cities, 
Djibouti (Republic of Djibouti) and Bafoussam (Cameroon). In the 
training phase, we select Yaounde as the target city due to its high 
similarity with Djibouti and Bafoussam. Figs. 7 and 8 illustrate visual 
results on these two cities. CrossGeoNet is promising to provide building 
footprint maps in other unseen geographic regions. 

4.2. Comparison With Different Similarity Measures 

Explicitly capturing similarities among various cities is essential for 

Fig. 8. Building extraction results (in blue) obtained by CrossGeoNet from Bafoussam and three zoomed in areas.  

Table 3 
Accuracies (%) of different similarity measures on Yaounde.  

Method F1 score IoU 

Mutual correlation (Li et al., 2018) 66.78 50.13 
Fourier domain correlation (Danelljan et al., 2014) 65.76 48.99 
Proposed cross-geolocation attention module 67.77 51.26  

Fig. 9. Examples of building extraction results obtained by different similarity measures. (a) Mutual correlation (Li et al., 2018). (b) Fourier domain correlation 
(Danelljan et al., 2014). (c) Proposed cross-geolocation attention module. (d) and (e) are Planet satellite imagery and ground reference from Yaounde. 
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co-segmentation methods. Therefore, we further investigate the afore
mentioned two similarity measures, i.e., mutual correlation (Li et al., 
2018) and Fourier domain correlation (Danelljan et al., 2014), to make a 
comparison with our cross-geolocation attention module. 

The statistical results on Yaounde are reported in Table 3. The pro
posed module outperforms the other two methods by over 1% in sta
tistical metrics. In Fig. 9, the building masks obtained by CrossGeoNet 
are much closer to ground-truth masks. However, the results provided 
by Fourier domain correlation show many omitted detection. One 
reason is that mutual correlation (Li et al., 2018) and Fourier domain 
correlation (Danelljan et al., 2014) operate on a local neighborhood, 
leading to the loss of global information. In contrast, our cross- 
geolocation attention module can capture long-range dependencies, 
enabling the leverage of useful information from more remote regions in 
the target image and those from the auxiliary set. This is beneficial to the 
reduction of semantic noise and the enhancement of semantic infor
mation of buildings. Another reason is that these two methods simply 
concatenate correlation maps with original convolved images to 
generate new features, while our module updates features by selectively 

aggregating contexts according to the learned attention maps. By doing 
so, mutual gains can be achieved through similar features, providing 
more representative features for building footprint generation. 

5. Performance Investigation on Another Data Source 

In this section, we further investigate the performance of Cross
GeoNet on another dataset, INRIA Aerial Image Labeling data (Maggiori 
et al., 2017), comprising images captured by airborne sensors. The 
INRIA dataset is a benchmark dataset, which consists of 360 tiles of 
aerial imagery. Each aerial image has 5000 × 5000 pixels at a spatial 
resolution of 30 cm/pixel. In this dataset, only ground reference data for 
five cities (Austin, Chicago, Kitsap County, Western Tyrol, and Vienna) 
are made publicly available, and hence we only conduct experiments on 
these cities. According to the setup in (Bischke et al., 2019), data are 
split into training and validation sets in our research. We observe that 
buildings in Vienna have very different structures and sizes in compar
ison with the other four cities. Therefore, we select Vienna as the target 
city and the other four cities as the auxiliary set. To verify the effec
tiveness of CrossGeoNet on INRIA dataset, we make a comparison of 
different learning methods, i.e., Baseline-t, Baseline-a, Baseline-a+t, 
fine-tuning, ADVENT (Vu et al., 2019) IntraDA (Pan et al., 2020a), 
MetaCorrection (Guo et al., 2021b), MoCo (He et al., 2020), DenseCL 
(Wang et al., 2021), U-Net-AFM (Li et al., 2021), CBRNet (Guo et al., 
2022), EPU-Net (Guo et al., 2021a), CSGANet (Chen et al., 2021), and 
CrossGeoNet. Note the statistics are computed from the validation set of 

Table 4 
Accuracies (%) of different learning methods for building footprint generation 
on Vienna.  

Method F1 score IoU 

Baseline-t 82.32 69.96 
Baseline-a 78.75 64.95 
Baseline-a+t 85.02 73.95 
Fine-tuning 85.38 74.49 
ADVENT(Vu et al., 2019) 81.07 68.17 
IntraDA (Pan et al., 2020a) 82.44 70.12 
MetaCorrection (Guo et al., 2021b) 83.93 72.31 
MoCo (He et al., 2020) 85.66 74.91 
DenseCL (Wang et al., 2021) 86.52 76.25 
U-Net-AFM (Li et al., 2021) 86.64 76.42 
CBRNet (Guo et al., 2022) 86.46 76.09 
EPU-Net (Guo et al., 2021a) 86.04 75.50 
CGSANet (Chen et al., 2021) 86.59 76.35 
CrossGeoNet 87.51 77.79  

Fig. 10. Examples of building extraction 
results obtained by different learning 
methods. (a) Baseline-t. (b) Baseline-a+t. 
(c) Fine-tuning. (d) ADVENT (Vu et al., 
2019). (e) IntraDA (Pan et al., 2020a). (f) 
MetaCorrection (Guo et al., 2021b). (g) 
MoCo (He et al., 2020). (h) DenseCL 
(Wang et al., 2021). (i) U-Net-AFM (Li 
et al., 2021). (j) CBRNet (Guo et al., 2022), 
(k) EPU-Net (Guo et al., 2021a). (l) 
CSGANet (Chen et al., 2021). (m) Cross
GeoNet. (n) and (o) are INRIA aerial im
agery and ground reference from Vienna.   

Table 5 
Accuracies (%) of different learning methods on Vienna. Auxiliary and target 
sets are chosen from Vienna for ensuring similar data distribution.  

Method F1 score IoU 

Baseline-t 78.93 65.19 
Baseline-a 81.27 68.45 
Baseline-a+t 82.32 69.96 
CrossGeoNet 86.38 76.03  
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Vienna. 
We first compare the proposed method against the Baseline-a. It is 

observed from the statistical results in Table 4, our network obtains 
increments of 12.84% in IoU. Moreover, CrossGeoNet surpasses 
Baseline-t by 7.83% in IoU. This indicates that the proposed approach is 
able to boost the network performance by the joint use of training 
samples from both the target city and the auxiliary set. From accuracy 
metrics in Table 4, the proposed method has achieved better perfor
mance than other learning methods that aim at transferring the 
knowledge learned from the auxiliary set to the target city. This dem
onstrates the effectiveness and robustness of the proposed method for 
this task, as cross-geolocation co-segmentation learning is able to 
improve the results on different data sources. When compared with 
state-of-the-art building extraction methods, CrossGeoNet shows above 
1.3% improvement in IoU. 

Fig. 10 presents a visual comparison among different learning 
methods on Vienna. The building footprints generated by CrossGeoNet 
are more accurate and reliable, as they coincide better with the ground 
reference when compared with the other methods. For instance, most 
methods detect only a part of the large building in the bottom left area. 
In contrast, the proposed approach is capable of accurately capturing a 
more complete roof outline. Furthermore, for buildings in complex 
shapes, buildings masks obtained by our network contain more detailed 
structures, which suggests that CrossGeoNet is still promising in such 
challenging situations. 

In order to investigate the performance of CrossGeoNet when target 
and auxiliary sets are similar, we have split the original training data of 
Vienna into two parts, i.e., auxiliary set and target set. Furthermore, we 
explore the performance of models trained by different learning 
methods. Specifically, we compare CrossGeoNet with three competitors 
(i.e., Baseline-t, Baseline-a, and Baseline-a+t) quantitatively and quali
tatively. The quantitative results are shown in Table 5. Baseline-t per
forms poorly than Baseline-a. This is because the number of training 
patches in the target set is smaller than that in the auxiliary set, which 
makes it difficult for Baseline-t to achieve good results. Baseline-a+t 
provides better results than both Baseline-a and Baseline-t, as all 
training patches are jointly utilized during network learning. It should 
be noted that CrossGeoNet significantly outperforms Baseline-a+t, with 
the IoU improved by 6.07%. This demonstrates that our cross- 
geolocation co-segmentation learning helps to improve model perfor
mance. Moreover, this improvement is more significant than that in the 
case where target and auxiliary sets are less similar. This is because the 
similarity between target and auxiliary contributes to extracting more 
generic representations for buildings. Fig. 11 illustrates visual compar
isons of different learning methods. Baseline-t and Baseline-a fail to 
detect some building footprints on the top area. On the contrary, 
CrossGeoNet is able to alleviate omission errors. 

6. Conclusion 

Planet satellite imagery holds potentials for generating high- 
resolution building footprint maps at a large scale. However, gener
ating building footprint maps from Planet satellite imagery is difficult 
for less developed regions because of the lack of massive annotated 

samples. Given these issues, we have proposed a novel end-to-end 
building mapping method, namely CrossGeoNet, aiming at exploring 
the use of Planet satellite images in detecting buildings on the target city 
with scarce labeled samples. CrossGeoNet comprises three modules: a 
Siamese encoder, a cross-geolocation attention module, and a Siamese 
decoder. More specifically, the encoder is designed to learn features 
from a pair of images from different geolocations. Afterward, the cross- 
geolocation attention module learns to encode similarities between 
them, enabling the capture of a more discriminative and generic rep
resentation of the common object (i.e., building in our case). Finally, the 
decoder exploits the original feature maps and the learned cross- 
geolocation attention maps to predict building masks. We investigate 
the proposed approach on two datasets with different spatial resolu
tions, i.e., Planet dataset (3 m/pixel) and Inria dataset (0.3 m/pixel), 
which are collected from diverse cities across the globe. Experimental 
results suggest that the incorporation of the proposed cross-geolocation 
attention module in co-segmentation learning can offer more satisfac
tory building footprints than other competitors. Thus, we believe that 
CrossGeoNet is a robust solution for the task of building footprint gen
eration when dealing with scarce training samples within target cities. 
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