
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY

INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics

An Optimal Symbolic Construction of
Matrix Product Operators and Tree Tensor

Network Operators

Hazar Çakır

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY

INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics

An Optimal Symbolic Construction of
Matrix Product Operators and Tree Tensor

Network Operators

Eine Optimale Symbolische Konstruktion
von Matrix-Produkt-Operatoren und
Baum-Tensor-Netzwerk-Operatoren

Author: Hazar Çakır
Supervisor: Prof. Dr. Christian B. Mendl
Advisor: M.Sc. Richard Milbradt
Submission Date: 08.01.2025

I confirm that this master’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Munich, 08.01.2025 Hazar Çakır

Acknowledgments

I would like to express my deepest gratitude to my professor, Prof. Christian Mendl,
for his invaluable guidance, insightful feedback, and unwavering support throughout
the duration of this thesis. His expertise and encouragement have been instrumental
in shaping the direction and quality of my work. I am equally grateful to my advisor,
Richard Milbradt, also for his mentorship and constructive advice.

I am profoundly thankful to the German Academic Exchange Service, and the Turk-
ish Education Foundation (DAAD - TEV) for their financial support, which allowed
me to pursue my dreams, i.e., my master’s degree in Germany. Their support allowed
me to undertake this research and complete my studies at the Technical University of
Munich like many others.

I am deeply grateful to my previous teachers, both at the Technical University of
Munich (TUM) and Boğaziçi University. The knowledge, inspiration, and mentorship I
received during my academic journey have been invaluable.

Additionally, I would like to acknowledge OpenAI’s ChatGPT, which played a sup-
portive role in the writing process. It helped enhance the clarity and coherence of this
thesis. Importantly, all AI-generated content was carefully reviewed and tailored to
meet the specific needs and standards of the research.

Lastly, I would like to extend my heartfelt thanks to my friends, who provided
both academic and emotional support during this process and of course, I am deeply
thankful to my family for their continuous love, encouragement, and support. Their
belief in me has been a constant source of motivation, and their understanding and
sacrifices made this achievement possible.

To all who have contributed to this endeavor in any way, I offer my sincere thanks.

Abstract

The construction of Matrix Product Operators (MPOs) and Tree Tensor Network Opera-
tors (TTNOs) plays a pivotal role in the simulation and analysis of quantum systems,
particularly in capturing their complex interactions and structures. This thesis intro-
duces an innovative framework that combines bipartite graph theory with a symbolic
Gaussian elimination preprocessing step to address the challenges in the optimal con-
struction of these operators. While previous methods have focused on linear MPO
structures, this work extends the methodology to TTNOs, offering a novel approach to
hierarchical operator representations.

The research begins by critically analyzing an established algorithm for MPO con-
struction based on bipartite graphs. Through a detailed evaluation, the algorithm’s
strengths and limitations were identified, revealing its inability to handle certain edge
cases. To overcome these shortcomings, a new algorithm was developed, incorporating
symbolic Gaussian elimination to achieve greater flexibility and accuracy in bond
dimension optimization. This enhanced approach preserves the symbolic nature of the
computation, ensuring both numerical stability and general applicability.

Building on this foundation, the algorithm was adapted for TTNOs, which represent
a more general and hierarchical class of tensor network operators. This transition
introduced additional complexities. A systematic implementation strategy was devised
to address these challenges, emphasizing modularity, efficiency, and reproducibility.
Good programming practices were followed throughout the development process to
ensure the resulting framework could be easily understood and extended.

The outcomes of this research demonstrate significant improvements in the con-
struction of both MPOs and TTNOs, achieving reduced bond dimensions and better
alignment with the underlying system symmetries. The findings represent a mean-
ingful contribution to the field, providing a robust algorithmic solution for tensor
network operator construction. This thesis details the theoretical background, algorith-
mic innovations, and practical implementations, offering a comprehensive approach to
improving quantum simulation methodologies.

iv

Contents

Acknowledgments iii

Abstract iv

1. Introduction 1

2. Related Work 3
2.1. A General Automatic Method for Optimal Construction of Matrix Prod-

uct Operators Using Bipartite Graph Theory 3
2.2. Matrix Product Operators, Matrix Product States, and ab initio Density

Matrix Renormalization Group algorithms 3
2.3. State Diagrams for Tree Tensor Network Operators 4
2.4. Optimal Tree Tensor Network Operators for Tensor Network Simulations:

Applications to Open Quantum Systems 5
2.5. The Density-Matrix Renormalization Group in the Age of Matrix Product

States . 5
2.6. Generic Construction of Efficient Matrix Product Operators 6

3. Theory 7
3.1. Hamiltonian Representation with Operator Strings 7

3.1.1. Power of the Representation . 8
3.1.2. Coefficients and Their Role . 9

3.2. Tensor Networks . 10
3.2.1. The Need for Tensor Networks . 10
3.2.2. Historical Development of Tensor Networks 11

3.3. Matrix Product States (MPS) and Matrix Product Operators (MPO) . . . 14
3.3.1. Matrix Product States (MPS) . 14
3.3.2. Matrix Product Operators (MPO) 16

3.4. Tree Tensor Networks (TTNs) and Tree Tensor Network Operators (TTNOs) 17
3.4.1. Tree Tensor Networks (TTNs) . 18
3.4.2. Tree Tensor Network Operators (TTNOs) 21

3.5. State Diagrams for TTNOs . 22
3.5.1. Definition and Structure . 22

v

Contents

3.5.2. Benefits of State Diagrams . 23
3.6. How to Construct Initial MPOs and TTNOs 24

3.6.1. Construction Methods . 24
3.6.2. Comparison of Construction Methods 25
3.6.3. Constructing TTNOs . 25
3.6.4. Conclusion . 25

4. Methodology - Algorithm 27
4.1. Part I: Optimization of Bond Dimensions 27

4.1.1. Existing Method Implementation and Analysis 28
4.1.2. Hopcroft-Karp Algorithm and Minimum Vertex Cover Detection 31
4.1.3. Selection of Nodes and Assignment of Gamma Coefficients . . . 33
4.1.4. Gamma Matrix Interpretation . 35
4.1.5. Identified Limitations in Bipartite Graph Algorithm 38
4.1.6. Proposed Improvement - Symbolic Gaussian Elimination 40
4.1.7. Algorithm Summary . 47

4.2. Part II: Application to TTNOs . 49
4.2.1. Adapting the Optimization Algorithm to Tree Structure 49
4.2.2. Decision of the Tree Root and Orientation 51
4.2.3. Tree Structure Traversal . 52
4.2.4. Efficiency in Comparison - Hash Values 55
4.2.5. Algorithm Summary and Analysis 56

5. Physical Model 60
5.1. Ab Initio Electronic Hamiltonian . 60
5.2. Effective Lattice Hamiltonian with Local and Non-Local Terms 62
5.3. Randomly Generated Hamiltonians in Sum-of-Products Form 65

5.3.1. Key Features of the Randomly Generated Hamiltonian 66
5.3.2. Applications of Randomly Generated Hamiltonians 66

6. Experiments, Results and Evaluations 67
6.1. Experimental Setup . 68
6.2. Ab Initio Electronic Hamiltonian . 68
6.3. Randomly Generated Hamiltonians . 68

6.3.1. Uniform Coefficients: . 70
6.3.2. Partially Uniform and Distinct Coefficients: 72

6.4. Effective Lattice Hamiltonian . 73
6.4.1. Experiment Results . 74

6.5. Discussion . 77

vi

Contents

7. Conclusions 80
7.1. Limitations and Challenges . 81
7.2. Future Work . 81
7.3. Concluding Remarks . 82

A. Appendix 83
A.1. Symbolic Gaussian Elimination Implementation steps 83
A.2. Another example where Symbolic Gaussian Elimination is required . . 84
A.3. Appendix: Use of AI Tools . 85

Bibliography 86

vii

1. Introduction

The study of quantum computing bridges principles from quantum physics, computer
science, and mathematics, offering profound insights into the behavior of quantum
systems [1, 2]. This interdisciplinary field plays a pivotal role in advancing technolo-
gies such as quantum computing, cryptography [3], and the simulation of quantum
phenomena [4–6]. Among its many aspects, this thesis focuses on quantum simulation,
particularly the simulation of quantum systems on classical computers.

Simulating quantum systems on classical computers presents an inherent challenge:
the representation of quantum systems. Due to the fundamentally different nature
of quantum data compared to classical approaches, innovative methods have been
developed over time. A cornerstone of these efforts is the concept of Matrix Product
Operators (MPOs), which provide an efficient framework for representing quantum
states and operations [7]. MPOs have been extensively studied for their utility in
one-dimensional quantum systems, leading to the development and optimization of
numerous algorithms [8–11]. However, the initial configuration and construction of
MPOs have received comparatively less attention. But it is known that the efficiency of
algorithms like Density Matrix Renormalization Group (DMRG) and Time-Evolving
Block Decimation (TEBD) is significantly influenced by the initial construction of MPOs
[12] [13]. This thesis focuses on addressing this gap by exploring methods for the
optimal construction of such systems, which forms the core focus of this work.

Another key structure explored in this thesis is Tree Tensor Network Operators
(TTNOs), an alternative representation of quantum systems that employs a hierarchical
tree structure[14]. Unlike MPOs, which impose a linear representation regardless of
the system’s inherent structure, TTNOs offer a framework better suited for capturing
long-range interactions. The linear nature of MPOs can introduce limitations when
modeling such interactions, as no direct relationships are preserved within their struc-
ture. TTNOs address this by maintaining a tree-like relationship scheme, which is
theoretically more accurate for certain scenarios.

This thesis focuses on the application of bipartite graph theory for the construction
of MPOs and TTNOs[15]. Bipartite graph theory provides an efficient framework for

1

1. Introduction

identifying interactions within quantum systems—such as virtual bonds—which holds
great potential for developing algorithms that optimize tensor network operator con-
struction. Initially, the study involved a comprehensive analysis and implementation of
an existing bipartite graph algorithm for constructing MPOs to evaluate its effectiveness.
During this process, limitations in the existing approach were identified, motivating
the development of a new algorithm aimed at addressing these shortcomings.

The proposed novel approach incorporates symbolic Gaussian elimination as a pre-
processing step for the bipartite graph algorithm. This enhancement preserves the
symbolic nature of the original solution while introducing improvements to tackle
previously observed limitations. The specifics of this algorithm are discussed in detail
in Chapter 4

Subsequently, the algorithm was adapted for TTNOs, which represent a more gener-
alized case compared to MPOs by incorporating tree-like structures rather than linear
relationships. This adaptation presented significant challenges, particularly in transi-
tioning from a linear framework to a hierarchical tree-based structure. While the core
principles of bond optimization remained consistent, considerable effort was required
at the implementation level to accommodate tree structures. Throughout this process,
good programming practices were followed to ensure the resulting algorithm is both
efficient and maintainable.

In summary, this thesis explores an efficient symbolic construction of MPOs and
TTNOs through innovative applications of bipartite graph theory and symbolic Gaus-
sian elimination. By addressing key limitations in existing methodologies and extending
these approaches to tree tensor networks, the work provides a robust foundation for
future advancements in quantum simulation techniques. This introduction provides
an overview of the project’s background, motivation, challenges, and objectives. It
sets the stage for the detailed account that follows, covering the literature review,
theory, methodology, and experiments, building up in a discussion of the project’s
contributions to the literature.

2

2. Related Work

The optimization and construction of Matrix Product Operators (MPOs) and Tree Tensor
Network Operators (TTNOs) have been studied broadly in the literature. This section
reviews key contributions to the field, highlighting their methodologies, strengths, and
limitations, and situating this research within the wider context.

2.1. A General Automatic Method for Optimal Construction of
Matrix Product Operators Using Bipartite Graph Theory

A significant starting point for this thesis was the detailed analysis and implementa-
tion of the methodologies proposed by Ren et al. (2020) [15]. Their work introduced
an algorithm for the automatic construction of optimal MPOs leveraging bipartite
graph theory. Their method utilizes the minimum vertex cover of a bipartite graph to
achieve this construction. Their approach successfully eliminates numerical errors and
produces globally optimal MPOs for nearly all kinds of Hamiltonians expressed in a
sum-of-products form by employing symbolic computation. The algorithm demon-
strates its effectiveness in reducing MPO bond dimensions and has shown success
across various models, including the spin-boson and Holstein models and Ab initio
electronic Hamiltonian.

Despite these advancements, our analysis uncovered cases where the algorithm fails
to achieve optimal performance, challenging the claim of its universal applicability.
Additionally, the algorithm lacks a generalization beyond linear MPO structures, un-
derscoring the need for further exploration into hierarchical representations, such as
Tree Tensor Network Operators (TTNOs).

2.2. Matrix Product Operators, Matrix Product States, and ab
initio Density Matrix Renormalization Group algorithms

Chan et al. (2016) [16] provide a comprehensive analysis of the ab initio Density
Matrix Renormalization Group (DMRG) algorithm, making the connections between

3

2. Related Work

the traditional renormalization group framework and the modern matrix product state
(MPS) and matrix product operator (MPO) formalism clear. They detail the translation
between these two paradigms, demonstrating how the same algorithm can be expressed
differently depending on the chosen language. The authors also introduce improve-
ments to the ab initio DMRG sweep algorithm, such as Hamiltonian compression
and a sum-over-operators representation, which enhance computational efficiency and
parallelism.

Early in this thesis, the experimental focus was refined to study the ab initio electronic
Hamiltonian system. A foundational understanding of fermionic algebra was critical to
this endeavor, a challenge addressed through the foundational insights provided by
Chan et al. (2016) [16]. Their work not only deepened my understanding of electronic
systems but also illuminated their relationship with tensor networks, serving as a
cornerstone for the applied research conducted in this thesis.

2.3. State Diagrams for Tree Tensor Network Operators

Milbradt et al. (2024) [17] introduced the concept of state diagrams as a framework
for determining Tree Tensor Network Operators (TTNOs). Their work established a
connection between tree topologies and operator representations, providing a novel
blueprint for representing the hierarchical structure of TTNOs. When this thesis ex-
panded its focus to include the construction of TTNOs, Milbradt et al. (2024) served as
a pivotal reference point.

Although their methodology deviates significantly from bipartite graph theory and
employs a suboptimal approach for forming TTNOs, the paper was instrumental in
offering an initial conceptual framework. By leveraging the state diagram representa-
tion, this research embarked on developing a new algorithmic approach grounded in
bipartite graph theory. This innovative method utilized the state diagram structure as a
foundation while addressing its limitations to create an optimized construction process
for TTNOs.

4

2. Related Work

2.4. Optimal Tree Tensor Network Operators for Tensor
Network Simulations: Applications to Open Quantum
Systems

Li et al. (2024) [18] presented an algorithm for the automatic construction of optimal
and exact Tree Tensor Network Operators (TTNOs) for quantum operators expressed
in sum-of-product form. Building upon the work of Ren et al. (2020) [15], the au-
thors—hailing from the same research group—extended the bipartite graph approach
to the more generalized TTNO framework. Their algorithm was applied to simulate
open quantum systems, addressing scenarios such as spin relaxation dynamics in the
spin-boson model and charge transport in molecular junctions.

This paper, published during the final stages of the development of this thesis, oper-
ates in a closely related domain by extending the bipartite graph theory to hierarchical
TTNO structures. However, despite this extension, the paper does not address the
inherent limitations of the original approach, rendering the new method equally prob-
lematic in cases where the MPO approach previously fell short. This underscores the
ongoing need for improvements in the generality and robustness of these algorithms.

2.5. The Density-Matrix Renormalization Group in the Age of
Matrix Product States

Schollwöck (2011) [19] presented a comprehensive review of the Density Matrix Renor-
malization Group (DMRG) and its reformulation using Matrix Product States (MPS).
The paper traces the historical evolution of DMRG, illustrating its transition from a
numerical renormalization group method to a fully developed tensor network approach.
Schollwöck highlights the extension of DMRG to tackle finite-temperature and time-
dependent problems, as well as its integration with Matrix Product Operator (MPO)
techniques for representing quantum operators. This review serves as a cornerstone
in tensor network research, providing insights into the computational efficiency and
versatility of these methods, which have significantly influenced subsequent advance-
ments in the field.

In the context of this thesis, Schollwöck’s review provided a crucial foundation for
understanding the mathematical and computational frameworks underpinning MPS
and MPOs. By delving into the integration of MPO techniques within DMRG, the
paper informed our exploration of the initial configuration of MPOs and the role of

5

2. Related Work

bond dimension optimization in algorithmic efficiency. The insights gained from this
foundational work were instrumental in guiding our approach to constructing optimal
MPOs and extending these methodologies to Tree Tensor Network Operators (TTNOs).

2.6. Generic Construction of Efficient Matrix Product Operators

Hubig et al. (2017) [9] introduced a generic scheme for constructing efficient Matrix
Product Operators (MPOs). Their approach focuses on reducing bond dimensions
through compression techniques, thereby enhancing computational performance while
maintaining the accuracy of quantum simulations. By systematically compressing
identical or redundant terms in the MPO representation, the authors demonstrated
significant improvements in both the efficiency and scalability of tensor network-based
algorithms.

In this thesis, the methods outlined by Hubig et al. were pivotal in shaping our un-
derstanding of MPO compression and its impact on bond dimension optimization. The
paper’s emphasis on eliminating redundancies resonated with our symbolic Gaussian
elimination preprocessing step, offering a complementary perspective to the bipartite
graph algorithm. By drawing on the principles established by Hubig et al., we were
able to refine our approach, ensuring that our constructed MPOs maintained both
efficiency and flexibility across various quantum systems.

6

3. Theory

3.1. Hamiltonian Representation with Operator Strings

In quantum mechanics, the Hamiltonian of a system is the key operator that defines its
energy and governs its dynamics. Representing Hamiltonians efficiently and flexibly
is crucial for analyzing and simulating quantum systems. In our framework, the
Hamiltonian is expressed as a sum of terms, each consisting of a product of local
operators and an associated coefficient, known as the operator string representation.
This is mathematically described as:

H = ∑
i

γi Ô(i)
1 ⊗ Ô(i)

2 ⊗ . . .⊗ Ô(i)
N , (3.1)

where:

• γi: Real or complex coefficients associated with each term, representing interaction
strengths or coupling constants.

• Ô(i)
j : Local operators acting on site j for the ith term. These operators can be Pauli

matrices, annihilation/creation operators, or other quantum operators.

• ⊗: The tensor product, combining operators acting on different sites.

The operator string representation provides several advantages when dealing with
complex quantum systems:

1. Modularity: Each term in the Hamiltonian is represented as a modular unit con-
sisting of a coefficient and a sequence of local operators. This modularity allows
for a clear and systematic way to construct and manipulate the Hamiltonian,
making introducing or modifying new interactions easier.

2. Flexibility: This representation can accommodate a wide range of Hamiltonians,
including those with nearest-neighbor interactions, long-range interactions, and
even more complex multi-body interactions. The use of local operators Ô(i)

j in
each string allows for a concise encoding of the system’s dynamics.

7

3. Theory

3. Scalability: As the system size increases, the operator string representation scales
well by simply adding more terms or extending the length of the operator strings.
This scalability is crucial for studying large quantum systems or systems with
many degrees of freedom.

4. Compatibility with Tensor Networks: The operator string representation is
particularly well-suited for tensor network methods such as Matrix Product
Operators (MPOs) and Tree Tensor Network Operators (TTNOs). Each term in
the Hamiltonian can be directly mapped onto a tensor network structure, where
the local operators correspond to tensors and the coefficients γi are included as
weights.

5. Simplicity in Implementation: The operator string representation offers a
straightforward way to encode complex Hamiltonians. Its structured format
makes it easier to translate into computational algorithms, facilitating numerical
simulations and symbolic manipulations.

3.1.1. Power of the Representation

The power of the operator string representation lies in its ability to represent a wide
variety of Hamiltonians compactly and efficiently. For example, consider the following
typical forms:

• Heisenberg Model: The Hamiltonian can be written as a sum of operator strings
involving spin operators Ŝx, Ŝy, Ŝz for different sites.

H = ∑
⟨i,j⟩

γij

(
Ŝx

i ⊗ Ŝx
j + Ŝy

i ⊗ Ŝy
j + Ŝz

i ⊗ Ŝz
j

)
, (3.2)

where γij are coefficients representing the coupling strength between spins on
sites i and j. The Heisenberg model captures phenomena like ferromagnetism
and antiferromagnetism depending on the sign of γij. This model is particularly
useful in studying quantum phase transitions and spin entanglement.[20]

• Bosonic Hamiltonians: In systems involving bosonic operators â, â†, the operator
string representation can be used to encode creation and annihilation terms.

H = ∑
i,j

γij â†
i ⊗ âj + ∑

i
γii â†

i âi, (3.3)

where γij are the coefficients governing the hopping and on-site interactions.
This Hamiltonian is often used to study systems like superfluidity, Bose-Einstein

8

3. Theory

condensation, and lattice models in cold atomic gases. The first term represents
particle hopping between different sites, while the second term accounts for
interactions within each site.

• Multi-Body Interactions: The operator string framework can also handle complex
multi-body terms, such as those found in certain lattice gauge theories or models
of superconductivity.

H = ∑
i,j,k

γijkÔi ⊗ Ôj ⊗ Ôk, (3.4)

where γijk are the coefficients for the three-body interaction terms. Multi-body
interactions are crucial for describing phenomena such as topological phases of
matter, where interactions among multiple particles lead to emergent properties
that cannot be understood through pairwise interactions alone. These models are
computationally demanding but provide deep insights into strongly correlated
systems.

3.1.2. Coefficients and Their Role

The coefficients γi are fundamental components in the Hamiltonian, as they define the
strength and nature of the interactions within the quantum system. These coefficients
serve as numerical weights for the terms in the operator string representation, directly
influencing the physical properties and behavior of the system. In physical models,
the coefficients γi often correspond to key parameters that characterize the system’s
dynamics, including:

Coupling Constants: These coefficients quantify the interaction strength between
different components of the system, such as spins in a spin lattice or particles in a
bosonic or fermionic system. For example, in the Heisenberg model, γij represents the
exchange interaction between spins on sites i and j.

External Field Strengths: In systems subjected to external fields, coefficients like γi
determine the influence of these fields on the local operators. For instance, in a magnetic
system, γi might represent the strength of a magnetic field acting on a particular spin.

Decay Factors: In models with long-range interactions, coefficients γij can encode
the distance-dependent decay of interaction strengths, such as γij = J/∥i− j∥α, where
∥i− j∥ is the distance between sites i and j and α is the decay exponent.

In summary, the coefficients γi not only define the strength of interactions in the
Hamiltonian but also play a crucial role in shaping the overall behavior of the system,
its energy landscape, and its dynamical evolution. Understanding and appropriately
selecting γi is essential for accurately modeling and analyzing quantum systems.

9

3. Theory

3.2. Tensor Networks

Tensor networks (TNs) are a mathematical framework for efficiently representing and
manipulating high-dimensional data, particularly in the context of quantum many-body
systems. They provide a structured way to decompose complex tensors into a network
of simpler, lower-dimensional tensors connected by shared indices. This decomposition
is crucial for overcoming the exponential growth of computational resources required
to represent large quantum systems. [21]

The concept of tensor networks originated from efforts to address the computational
challenges of quantum mechanics. Early developments can be traced back to the work
on Matrix Product States (MPS) in the context of the Density Matrix Renormalization
Group (DMRG) method, introduced by White in the early 1990s [22][23]. DMRG
became a groundbreaking algorithm for studying one-dimensional quantum systems,
particularly in condensed matter physics.

Building on MPS, higher-dimensional extensions such as Projected Entangled Pair
States (PEPS) and Tree Tensor Networks (TTNs) were developed to handle systems with
more complex entanglement structures. The introduction of Tensor Network States
(TNS) provided a unifying framework for these representations, allowing for systematic
exploration of quantum systems with varied topologies and dimensions.

Recent advances have further extended tensor networks to applications beyond
quantum mechanics, including machine learning, statistical physics, and quantum
chemistry.

3.2.1. The Need for Tensor Networks

The primary motivation for tensor networks arises from the exponential complexity of
representing quantum states and operators. In a system of N qubits, the state vector
requires 2N complex coefficients, making exact representations infeasible for large N.
Tensor networks address this challenge by exploiting the fact that many physically
relevant quantum states exhibit limited entanglement, which can be efficiently captured
using low-rank tensor decompositions. [24]

Tensor networks offer several key advantages that make them indispensable tools
in quantum many-body physics and beyond. One of their primary benefits is their
efficient representation of high-dimensional data. By leveraging the entanglement
structure of quantum systems, tensor networks significantly reduce both storage and

10

3. Theory

computational demands, enabling the study of systems that would otherwise be infea-
sible to model. Additionally, tensor networks are highly scalable, providing a robust
framework for simulating large systems. This scalability is particularly valuable for
addressing problems that are computationally intractable using conventional methods.
Finally, tensor networks exhibit remarkable flexibility, as they can be adapted to a wide
variety of system geometries, dimensions, and interaction types. This versatility allows
researchers to study an extensive range of quantum systems, from simple linear chains
to complex multi-dimensional lattices. [25]

Tensor networks have revolutionized the study of quantum many-body systems by
providing a flexible and scalable representation framework. They balance accuracy and
computational efficiency, enabling the exploration of large and complex systems that
were previously beyond reach. The foundational concepts and algorithms of tensor
networks set the stage for advanced methods like Tree Tensor Networks (TTNs) and
their operator-based extensions, which will be discussed in the subsequent sections.

3.2.2. Historical Development of Tensor Networks

The development of tensor networks is deeply rooted in the need to efficiently study
quantum many-body systems, where the complexity of the Hilbert space grows ex-
ponentially with system size. The history of tensor networks can be traced through
several key milestones:

Density Matrix Renormalization Group (DMRG) and Matrix Product States (MPS)

The foundation of tensor networks was laid in the early 1990s with the introduction
of the Density Matrix Renormalization Group (DMRG) by Steven R. White [22][23].
DMRG was developed as a variational method for studying the ground-state properties
of one-dimensional quantum systems, such as spin chains. It achieved unprecedented
accuracy for systems like the spin-1 Heisenberg chain and the Hubbard model, outper-
forming traditional renormalization group techniques.

Around the same time, it was recognized that DMRG could be reformulated in terms
of a specific tensor network structure known as Matrix Product States (MPS). MPS
provide an efficient representation for quantum states with low entanglement, typical
of gapped one-dimensional systems. An MPS expresses a quantum state as:

|ψ⟩ = ∑
i1 ,i2 ,...,iN

A[1]
i1

A[2]
i2
· · · A[N]

iN
|i1i2 . . . iN⟩,

11

3. Theory

where A[n]
in

are matrices representing tensors at each site, and |in⟩ are basis states of the
local Hilbert space.

Projected Entangled Pair States (PEPS)

In the mid-2000s, Projected Entangled Pair States (PEPS) were introduced as a gen-
eralization of MPS to higher dimensions[26] [27]. PEPS extend the tensor network
representation to two-dimensional and three-dimensional systems, where tensors are
connected in a lattice structure. While PEPS can encode complex correlations in higher-
dimensional systems, their computational cost is significantly higher than that of MPS.
[28]

PEPS became a crucial tool for studying two-dimensional quantum systems, such
as the toric code and topological phases of matter. However, the increased complexity
posed challenges for efficient optimization and contraction algorithms.

Tree Tensor Networks (TTNs)

Tree Tensor Networks (TTNs) emerged as a hierarchical alternative to MPS and
PEPS. TTNs use a tree-like structure to represent quantum states, where tensors are
organized hierarchically, with leaves corresponding to physical indices and internal
nodes encoding correlations [29]. TTNs are particularly effective for systems with
localized interactions and low entanglement, providing an efficient approximation of
ground states and low-energy excitations.

Multiscale Entanglement Renormalization Ansatz (MERA)

In 2007, MERA (Multiscale Entanglement Renormalization Ansatz) was introduced
by Guifre Vidal [30]. MERA incorporates a hierarchical structure similar to TTNs
but includes disentangling layers to efficiently represent quantum states with critical
or scale-invariant properties. This made MERA particularly powerful for studying
conformal field theories and quantum systems at criticality.

The key feature of MERA is its ability to represent states with logarithmic scaling
of entanglement entropy, which is characteristic of gapless systems. The disentan-
gling layers reduce correlations at each scale, allowing for efficient representation and
manipulation of the quantum state.[31]

12

3. Theory

Tensor Renormalization Group (TRG)

Tensor Renormalization Group (TRG), introduced in 2007 by Levin and Nave [32],
provided a coarse-graining technique for studying partition functions in statistical
mechanics. TRG uses tensor networks to represent the partition function and iteratively
reduces the network by contracting tensors, preserving essential information about the
system.

TRG inspired subsequent advancements in renormalization techniques, including
Higher-Order Tensor Renormalization Group (HOTRG)[33] and Tensor Network
Renormalization (TNR)[34], which improved accuracy and efficiency for systems in
both quantum and classical regimes.

Insights from Schollwöck’s 2011 Paper

In 2011, Ulrich Schollwöck published a comprehensive review article titled The Density
Matrix Renormalization Group in the Age of Matrix Product States [19], which firmly estab-
lished the connection between DMRG and MPS. This paper highlighted the underlying
principles of MPS as a variational ansatz and its extensions to time evolution, finite-
temperature states, and open quantum systems. Schollwöck’s work was instrumental in
transitioning DMRG from being viewed as a standalone algorithm to being understood
as part of the broader tensor network framework.

Key contributions of this paper include:

• A formalization of DMRG as an optimization over MPS, providing a unified
language for the method.

• Extensions of MPS to finite-temperature states using purification techniques.

• Applications of DMRG and MPS to dynamical properties and time evolution
through methods like Time-Dependent DMRG (tDMRG).

Schollwöck’s review has become a cornerstone reference in the field, guiding re-
searchers in understanding the interplay between DMRG, MPS, and tensor network
techniques.

Applications Beyond Quantum Mechanics

In recent years, tensor networks have found applications beyond their traditional
domain of quantum many-body physics. For example:

13

3. Theory

• Quantum Chemistry: Tensor networks, such as MPS, are used to approximate
molecular wavefunctions and compute ground-state energies in quantum chem-
istry.

• Machine Learning: Tensor networks have been adapted for machine learning
tasks, providing compact representations of neural networks and probabilistic
models.

• Statistical Mechanics: Tensor networks are employed to study phase transitions
and critical phenomena in classical systems.

3.3. Matrix Product States (MPS) and Matrix Product Operators
(MPO)

Matrix Product States (MPS) and Matrix Product Operators (MPO) are foundational
concepts in the study of tensor networks. They provide efficient representations
of quantum states and operators, particularly in one-dimensional quantum systems.
This section delves into the details of their structure, mathematical formulation, and
significance.

3.3.1. Matrix Product States (MPS)

Matrix Product States are tensor network representations of quantum states that lever-
age the entanglement structure of one-dimensional systems. An MPS expresses a
quantum state as a product of matrices, significantly reducing the computational re-
sources required to store and manipulate the state.[10]

Consider a one-dimensional quantum system with N sites, each having a local Hilbert
space of dimension d. A general quantum state |ψ⟩ can be written in the form:

|ψ⟩ = ∑
i1 ,i2 ,...,iN

ci1i2 ...iN |i1i2 . . . iN⟩,

where ci1i2 ...iN are the coefficients, and |i1i2 . . . iN⟩ represents the basis states of the
composite system. For a large system, the number of coefficients grows exponentially,
dN , making this representation infeasible for large N.

In the MPS representation, the coefficients ci1i2 ...iN are decomposed into a product of
tensors:

ci1i2...iN = ∑
α1,α2,...,αN−1

A[1]
i1 ,α1

A[2]
α1,i2 ,α2

· · · A[N]
αN−1 ,iN

.

Here:

14

3. Theory

Figure 3.1.: A depiction of an MPS structure (adapted from tensornetwork.org[35]).

• A[k] is the local tensor at site k, where ik is the physical index, and αk and αk−1
are bond indices connecting neighboring tensors.

• The bond dimension χ of the indices αk determines the amount of entanglement
the MPS can capture. For low-entanglement states, χ can remain small even as N
grows.

In compact form, the quantum state is expressed as:

|ψ⟩ = ∑
i1 ,i2 ,...,iN

A[1]
i1

A[2]
i2
· · · A[N]

iN
|i1i2 . . . iN⟩.

Advantages of MPS

Matrix Product States (MPS) offer a highly efficient representation of quantum states
with low entanglement. In particular, they excel at representing ground states of gapped
one-dimensional systems, where the entanglement entropy scales logarithmically or
remains constant. This compact representation significantly reduces the computational
resources required to store and manipulate quantum states, making MPS a practical
choice for simulating large quantum systems.

Another significant advantage of MPS is their scalability. The representation scales
linearly with the system size for a fixed bond dimension χ, enabling efficient simula-
tions of extensive systems without encountering exponential growth in computational
demands. This property ensures that MPS remain computationally feasible even as the
number of particles or degrees of freedom in the system increases.

MPS also serve as the foundation for many powerful algorithms, such as the Density
Matrix Renormalization Group (DMRG) and Time-Evolving Block Decimation (TEBD).
These algorithms leverage the MPS structure to efficiently compute ground states,
simulate time evolution, and analyze other dynamical properties of quantum systems.
The algorithmic utility of MPS has made them indispensable in the study of quantum
many-body systems.

15

3. Theory

Operations on MPS

Matrix Product States also support a variety of efficient operations, making them
practical tools for quantum simulations. The norm of an MPS can be computed by
sequentially contracting tensors, allowing for a straightforward calculation. Similarly,
expectation values of local observables can be obtained efficiently by exploiting the MPS
structure, where the relevant contractions are performed locally. Furthermore, MPS are
well-suited for time evolution simulations, as algorithms like TEBD leverage the MPS
framework to propagate quantum states over time while maintaining computational
efficiency. These capabilities underscore the versatility and utility of MPS in quantum
many-body physics.

3.3.2. Matrix Product Operators (MPO)

Matrix Product Operators extend the MPS framework to represent operators instead of
states. MPOs are crucial for efficiently encoding Hamiltonians, density matrices, and
other operators in tensor network algorithms.[36]

Consider an operator Ô acting on a one-dimensional quantum system. In the full
tensor representation, the operator is expressed as:

Ô = ∑
i1,i2,...,iN

∑
j1,j2 ,...,jN

Oi1i2...iN ,j1 j2...jN |i1i2 . . . iN⟩⟨j1 j2 . . . jN |.

Here, Oi1i2...iN ,j1 j2 ...jN is a tensor containing the coefficients of the operator.
In the MPO representation, the coefficients are decomposed as:

Oi1i2...iN ,j1 j2...jN = ∑
α1 ,α2 ,...,αN−1

W[1]
i1 ,j1,α1

W[2]
α1,i2 ,j2,α2

· · ·W[N]
αN−1 ,iN ,jN

.

Here:

• W[k] is the local tensor at site k, with physical indices ik and jk, and bond indices
αk connecting neighboring tensors.

• The bond dimension χ controls the complexity of the MPO and determines the
range of correlations it can encode.

Advantages of MPO

MPOs provide several critical advantages in the efficient representation and manipula-
tion of quantum operators. One primary benefit is their compact representation of op-
erators, which allows MPOs to efficiently encode operators with local or limited-range

16

3. Theory

Figure 3.2.: A depiction of an MPO structure (adapted from tensornetwork.org[35]).

interactions, such as Hamiltonians for one-dimensional spin chains. This compactness
significantly reduces the computational resources required for large-scale quantum
simulations. Another advantage of MPOs is their compatibility with MPS, enabling
seamless integration with Matrix Product States for tasks such as computing expecta-
tion values, simulating time evolution, and evaluating operator norms. Finally, MPOs
exhibit excellent scalability, similar to MPS, as their representation scales efficiently
with system size. This scalability makes them suitable for studying large systems with
complex interactions.

Examples of MPOs

MPOs are versatile and can be used to represent a variety of operators in quantum
systems. A common example is local Hamiltonians, such as those describing 1D
spin chains with nearest-neighbor interactions. MPOs can also approximate long-
range interactions, maintaining computational efficiency even for complex systems.
Another straightforward example is the identity operator across all sites, which can
be represented as an MPO with diagonal tensors W[k] at each site. These examples
highlight the flexibility and utility of MPOs in quantum many-body simulations.

3.4. Tree Tensor Networks (TTNs) and Tree Tensor Network
Operators (TTNOs)

Tree Tensor Networks (TTNs) and Tree Tensor Network Operators (TTNOs) are hierar-
chical tensor network structures designed to efficiently represent quantum states and
operators, respectively. TTNs provide a compact representation of quantum states by
leveraging their low entanglement, making them particularly effective for systems with
localized interactions or ground states of gapped one-dimensional systems. Extending
this concept, TTNOs encode quantum operators, such as Hamiltonians or density
matrices, within a similar hierarchical framework. The tree-like structure of TTNs and
TTNOs enables efficient encoding of correlations across multiple scales, making them

17

3. Theory

powerful tools for studying quantum many-body systems, quantum dynamics, and
operator-based analyses. This section explores the theoretical foundations, mathemat-
ical formulations, and practical applications of TTNs and TTNOs, highlighting their
advantages in computational efficiency and scalability.

3.4.1. Tree Tensor Networks (TTNs)

Tree Tensor Networks (TTNs) are a subclass of tensor networks distinguished by their
hierarchical, tree-like structure. This structure makes TTNs particularly effective for
representing and manipulating quantum states with low entanglement, such as ground
states of gapped one-dimensional systems or systems with localized interactions. In
TTNs, the nodes represent tensors, while the edges connecting these nodes correspond
to shared indices, facilitating efficient encoding of correlations across the quantum
system. [37]

The hierarchical nature of TTNs ensures a balanced distribution of information across
the network. This structure is advantageous for approximating quantum states with
reduced computational resources compared to more general tensor network structures,
such as PEPS.

Mathematical Representation of TTNs

Mathematically, a TTN for a quantum state |ψ⟩ can be expressed as:

|ψ⟩ = ∑
i1,i2,...,iN

T(1)
i1i2 ...ik

T(2)
j1 j2...jl

. . . T(R)
r1r2 ...rm |i1, i2, . . . , iN⟩,

where:

• T(1), T(2), . . . , T(R) are tensors representing the nodes of the network.

• i1, i2, . . . , iN are the physical indices corresponding to the leaf nodes.

• r1, r2, . . . , rm are bond indices connecting internal nodes.

Each tensor Ti in the TTN has a set of indices, typically including:

• Physical Indices (pi): Represent the local Hilbert space of a subsystem.

• Bond Indices (bij): Shared indices that connect tensors, encoding the correlations
between subsystems.

The hierarchical structure allows TTNs to efficiently encode quantum correlations by
contracting tensors along the edges of the tree, propagating information from the leaf
nodes to the root.

18

3. Theory

Applications of TTNs

TTNs have several usage areas throughout the fields of quantum physics and compu-
tational science. One of their primary applications is in ground-state approximation,
where TTNs are used to efficiently approximate the ground states of quantum systems,
particularly in one-dimensional and quasi-one-dimensional geometries. The hierarchi-
cal structure of TTNs enables accurate and computationally efficient representations of
these states.

In quantum chemistry, TTNs have proven valuable for modeling molecular sys-
tems. Their structure aligns well with the natural partitioning of electrons and nuclei,
providing an efficient framework for representing electronic wavefunctions and other
molecular properties.

TTNs also play a significant role in quantum information theory. By providing
detailed insights into the entanglement structure of quantum systems, TTNs facilitate
the study of entanglement entropy and related measures, which are critical for under-
standing quantum correlations and their implications.

Beyond quantum physics, TTNs have been adapted for machine learning tasks.
Their hierarchical structure is particularly effective for encoding complex datasets,
enabling efficient representation and analysis in machine learning applications. This
cross-disciplinary utility highlights the broad impact of TTNs in both theoretical and
applied settings.

Comparison to Other Tensor Networks

When compared to other tensor network representations, such as Matrix Product States
(MPS) and Projected Entangled Pair States (PEPS), Tree Tensor Networks (TTNs) offer
unique advantages. Unlike MPS, which are restricted to a linear topology, TTNs utilize
a tree-like structure that enables more efficient encoding of correlations in non-linear
systems. This flexibility allows TTNs to represent a wider range of quantum states
effectively.

Furthermore, TTNs require fewer computational resources than PEPS, making them
a more practical choice for systems with moderate dimensionality. While PEPS are
suited for higher-dimensional systems, their computational cost can be prohibitive.
TTNs strike a balance between efficiency and representational power, making them par-
ticularly advantageous for studying systems with hierarchical correlations or moderate

19

3. Theory

Figure 3.3.: Example of a Tree Tensor Network (TTN) for a 8-site quantum system. Leaf
nodes correspond to physical indices, and internal nodes represent tensors
connecting subsystems.

entanglement.

Graphical Representation of TTNs

Graphically, a TTN is depicted as a tree diagram, where:

• Nodes represent tensors.

• Edges represent shared indices, such as bond indices connecting two tensors.

An example of a TTN for a 8-site system is shown in Figure 3.3.

Mathematical Operations in TTNs

Tree Tensor Networks (TTNs) support several fundamental operations essential for their
use in quantum many-body simulations. Similar to MPS and MPO, tensor contraction
is a primary operation in TTNs, combining tensors by summing over shared indices
to propagate information efficiently through the network. Another key operation is
optimization, where tensor entries are iteratively adjusted to minimize the energy or
match a target quantum state, ensuring the network effectively captures correlations.
Additionally, truncation is performed to reduce bond dimensions, simplifying the
TTN while retaining critical correlations. These operations collectively enable TTNs to
provide efficient and scalable representatio

20

3. Theory

Summary

Tree Tensor Networks provide an efficient and flexible framework for representing
quantum states with hierarchical correlations. Their structured design, combined with
powerful mathematical operations, makes them an indispensable tool for studying
quantum many-body systems, quantum chemistry, and related fields. In the following
sections, we extend this framework to Tree Tensor Network Operators (TTNOs) for
representing and manipulating quantum operators.

3.4.2. Tree Tensor Network Operators (TTNOs)

Tree Tensor Network Operators (TTNOs) are a natural extension of Tree Tensor Net-
works (TTNs), designed to represent and manipulate quantum operators rather than
states. Like TTNs, TTNOs utilize a hierarchical tree structure, where each node cor-
responds to an operator tensor, and the edges represent shared indices. TTNOs are
particularly advantageous for representing many-body operators, such as Hamiltonians,
in systems with hierarchical correlations.

A TTNO for an operator Ô acting on a quantum system can be expressed as:

Ô = ∑
i1 ,i2,...,iN

∑
j1 ,j2 ,...,jN

O(1)
i1 j1i2 j2...O

(2)
... · · · O(R)

... |i1, i2, . . . , iN⟩⟨j1, j2, . . . , jN |,

where:

• O(1),O(2), . . . ,O(R): Operator tensors representing the nodes in the TTNO.

• i1, i2, . . . , iN : Physical indices corresponding to the input states.

• j1, j2, . . . , jN : Physical indices corresponding to the output states.

• Bond indices bij: Shared indices connecting internal operator tensors.

Each node in the TTNO represents an operator tensor that acts on a subset of the
system’s Hilbert space. The root node encodes the global operator properties, while the
hierarchical structure enables efficient encoding of local and non-local correlations.

Applications of TTNOs

The versatility of TTNOs has led to their adoption in various applications within
quantum physics and beyond. A primary application is in Hamiltonian representation,
where TTNOs are used to encode hierarchical Hamiltonians, including those with
long-range or decaying interactions. This capability makes TTNOs particularly useful

21

3. Theory

for systems where operator complexity scales with interaction range.

TTNOs are also valuable for encoding density matrices in mixed-state simulations.
By representing these matrices hierarchically, TTNOs enable efficient computation of
thermal properties and other statistical measures in quantum systems. Another critical
application is in quantum dynamics, where TTNOs serve as propagators for TTNs,
facilitating the time evolution of quantum states in a computationally efficient manner.
Furthermore, TTNOs have been explored in quantum machine learning, where their
hierarchical structure enables the efficient representation and computation of quantum
operators in machine learning models.

Comparison to Matrix Product Operators (MPOs)

While Matrix Product Operators (MPOs) are highly effective for representing operators
in linear systems, TTNOs extend this capability to hierarchical systems with complex
correlations. The key difference lies in their topology: MPOs are restricted to a
linear structure, whereas TTNOs use a tree-like structure that allows for more efficient
encoding of non-linear systems. Additionally, TTNOs demonstrate superior scalability
for systems with hierarchical correlations or sparse operators, making them a powerful
alternative to MPOs for applications requiring multi-scale representation.

3.5. State Diagrams for TTNOs

State diagrams serve as a graphical representation that maps the structure of Tree
Tensor Network Operators (TTNOs) onto a tree topology. According to Milbradt et al.
[17], a state diagram is a formalism that captures the connections and relationships
between various operator tensors in a TTNO. This diagrammatic representation is
crucial for visualizing the complex interrelations in multi-body quantum systems and
for guiding the construction and optimization of TTNOs.

3.5.1. Definition and Structure

A state diagram consists of vertices and hyperedges. The vertices, denoted as V =
{v1, v2, . . . , vn}, connect multiple hyperedges and represent the tensor contractions
between these operators, corresponding to the shared indices in the tensor network.
The hyperedges, denoted as E = {e1, e2, . . . , em}, represent the operator tensors in the
TTNO. Each hyperedge corresponds to an operator acting on a specific subset of sites
in the quantum system.

We can basically form a state diagram D for a TTNO as:

22

3. Theory

Figure 3.4.: Example of a state diagram for a TTNO. The vertices represent operator
tensors, and the hyperedges represent the connections between these ten-
sors. (from Milbradt et al[17])

• D = (V, E): The state diagram is defined by its set of vertices V and hyperedges E.

• vi ∈ V: A vertex representing an operator tensor Oi.

• ej ∈ E: A hyperedge representing the contraction between operator tensors
connected by ej.

• pi: A path through the state diagram, representing a sequence of tensor contrac-
tions.

3.5.2. Benefits of State Diagrams

State diagrams offer a clear and intuitive way to visualize the complex tensor networks
underlying TTNOs. By representing operators and their interactions graphically, state
diagrams help in understanding the structure and behavior of the TTNO. They also
facilitate the identification of optimal contraction sequences and the minimization
of bond dimensions, making them a valuable tool for both theoretical analysis and
practical implementation.

This foundational framework for state diagrams is crucial for developing efficient
algorithms to construct and manipulate TTNOs, as detailed in subsequent sections.

23

3. Theory

3.6. How to Construct Initial MPOs and TTNOs

Constructing Matrix Product Operators (MPOs) and Tree Tensor Network Operators
(TTNOs) is a fundamental step in representing quantum systems efficiently. When the
input operators are given in a Sum-of-Product (SOP) form, an analytical expression for
the MPO can often be derived without requiring approximations. This section explores
different approaches to constructing MPOs and TTNOs, detailing their advantages,
limitations, and practical implications.

3.6.1. Construction Methods

We can investigate the construction of MPOs and TTNOs through three primary
methods, each with its own advantages and challenges:

Naïve Construction

The naïve construction method involves directly translating the SOP form of the
Hamiltonian or operator into an MPO or TTNO structure. While this approach is
straightforward, it is far from optimal. The resulting structure often has unnecessarily
high bond dimensions, leading to inefficient computations and increased resource usage.
This inefficiency arises because the method does not attempt to minimize redundancies
or optimize the tensor structure, making it impractical for complex systems.

Manual Design

The manual design method focuses on carefully constructing the MPO or TTNO struc-
ture based on the specific operators and interactions within the system. Although this
approach can yield more efficient representations compared to the naïve construction,
it is inherently labor-intensive and prone to errors. This is particularly true for systems
with many different types of operators, where ensuring both correctness and efficiency
requires detailed knowledge of the system and significant effort. As the complexity of
the system grows, so does the risk of mistakes, making this approach difficult to scale
effectively.

In essence, manual design involves compressing the naïve construction of the Hamil-
tonian. As explained in Hubig et al. (2017) [9], this includes combining identical
terms early in the process, as well as merging repeated operator chains, such as long
sequences of identity operators. Such compression techniques are not only fundamental
to manual design but also play a crucial role in our proposed approach.

24

3. Theory

SVD-Based Automated Construction

The SVD-based automated construction approach leverages Singular Value Decom-
position (SVD) to automatically decompose the SOP form into an optimized MPO or
TTNO structure. While this method is less prone to manual errors and can produce
compact representations, it has significant drawbacks. The process is mathematically
unstable, especially for operators with small singular values, and can be computation-
ally expensive. This instability and cost make SVD-based construction less appealing
for large-scale or highly intricate systems.

3.6.2. Comparison of Construction Methods

Each construction method offers trade-offs between ease of implementation, computa-
tional efficiency, and stability:

1. Naïve Construction: Easy to implement but results in inefficient structures.

2. Manual Design: Produces more optimized results but is time-consuming and
error-prone.

3. SVD-Based Construction: Automates optimization but can be unstable and costly
and not repeatable.

3.6.3. Constructing TTNOs

The construction of Tree Tensor Network Operators (TTNOs) extends the principles used
for MPOs but adapts them to a hierarchical structure. Instead of a linear chain, TTNOs
use a tree topology to represent operators, which is particularly effective for systems
with long-range or multi-scale interactions. While the basic steps of construction (e.g.,
translating the SOP form into operator chains) remain the same, additional care must
be taken to align the hierarchical structure with the system’s interaction geometry.

3.6.4. Conclusion

The construction of MPOs and TTNOs is a critical step in efficiently representing
quantum systems. Each method for constructing these structures presents unique
advantages and challenges, with the choice of method largely depending on the specific
requirements of the system and the available computational resources. While existing
approaches, such as manual design and naïve construction, offer some utility, they
fall short of providing a generalized and efficient solution. There is a pressing need
for an automated design process that can generate compressed terms for any given

25

3. Theory

Hamiltonian. Ren et al. (2020) [15] proposed an automated solution, which we will
analyze in detail, but their approach has limitations in addressing all possible cases.
Bridging this gap is the primary goal of our research, as we aim to enhance the method
proposed by Ren et al. (2020) and develop a more robust framework for automating
the construction of optimized and compressed MPOs and TTNOs. By improving this
approach, we seek to advance the efficiency and scalability of tensor network-based
quantum simulations significantly.

26

4. Methodology - Algorithm

The primary goal of our algorithm is to construct Matrix Product Operators (MPOs) or
Tree Tensor Network Operators (TTNOs) in an efficient and scalable manner. These
constructions are critical for representing quantum systems with minimal computa-
tional overhead while maintaining accuracy. The focus is on developing methods that
optimize the construction process underlying tensor structures. To achieve this, we
explore techniques that minimize bond dimensions and adapt these methods to the
hierarchical structures inherent in TTNOs.

The thesis is divided into two primary parts: the optimization of bond dimensions
for any quantum state representation using bipartite graph theory with a symbolic
Gaussian elimination preprocessing step, followed by the extension and adaptation of
this method to Tree Tensor Network Operators (TTNOs). Each part addresses specific
challenges and provides a novel contribution to the efficient construction and represen-
tation of quantum systems.

Since the core optimization in tree structures is fundamentally based on the optimiza-
tion of a bond, we begin by thoroughly analyzing and understanding the optimization
process for a given pair of sites. Once this is established, the remaining challenge lies
in extending the same optimization procedure to the tree structure. The systematic
methodology presented in this section ensures that the developed algorithm remains
efficient and robust across various quantum system configurations.

4.1. Part I: Optimization of Bond Dimensions

The first part of our research focuses on optimizing bond dimensions, which is a key
factor in constructing efficient tensor networks. We started by studying an existing
method based on bipartite graph theory. This method aims to find the best bond
dimensions for a quantum system, minimizing computational costs while keeping the
representation accurate. The method uses the structure of bipartite graphs to simplify
the problem, making it manageable for certain cases. However, after a detailed analysis,
we found that this approach is limited. It can only handle a subset of the scenarios
commonly encountered in quantum systems, leaving important cases non-optimal.

27

4. Methodology - Algorithm

This limitation shows the need for a more flexible and complete solution.

To address these limitations, we present a new and robust solution designed to
handle critical cases that the existing method cannot solve but are often encountered in
practical applications. Our approach adds some complexity by including techniques
such as a symbolic Gaussian elimination preprocessing step, enabling it to optimize
cases where the bipartite graph algorithm falls short. Although the new method de-
mands more computational resources and has a slower runtime in certain situations, it
significantly improves efficiency by optimizing bond dimensions for these challenging
cases. This improved algorithm provides a compact representation of quantum systems
across a broader range of scenarios, ultimately reducing computational costs in subse-
quent tensor network operations.

This section begins with a detailed analysis of the bipartite graph algorithm, provid-
ing a re-interpretation of the underlying problem to explain its theoretical foundations
and inherent limitations. We will systematically highlight the shortcomings of the exist-
ing approach, illustrating its failure in addressing certain classes of quantum systems.
Finally, we will introduce our novel algorithm, demonstrating how it resolves these crit-
ical cases while maintaining a balance between computational complexity and efficiency.

4.1.1. Existing Method Implementation and Analysis

Our base algorithm was introduced by Ren et al. (2020) [15] and is both well-established
and thoroughly documented, complete with detailed pseudocode. The original paper
provides comprehensive insights for those seeking a more in-depth explanation. Here,
we briefly outline the general process, as it serves as a foundational component of our
work. To assess its functionality and reliability, we began by replicating the algorithm’s
implementation. As expected, the algorithm performed well, accurately identifying
optimal bond dimensions in most cases. However, our experiments also highlighted
certain edge cases where the bipartite graph approach fails, demonstrating that the
method is not entirely comprehensive.

To understand how the algorithm works, it is important to first examine how the
terms are structured. Here, we will focus on the MPO structure, as it forms the basis
of the initial algorithm. While we will elaborate on the optimization of virtual bond
dimensions for a single site — since the algorithm is iterative and applies the same
technique to each site —understanding the overall MPO construction is key to grasping
the problem. Each term in the MPO is represented as a chain of operators, with each

28

4. Methodology - Algorithm

a† a I2 I2

a† Z a I2

I2 I2 a Z

Term 1

Term 2

Term k

Site 1 Site 2 Site 3 Site n

Figure 4.1.: The MPO structure is illustrated here, with each site marked in red and
each chain represented in green. Operators are assigned randomly to serve
as an example. For simplicity, the physical legs of the nodes are not shown
in the diagram, though they are present in the actual structure.

local operator acting on a specific site. Suppose we have k terms and n sites; the edges
between two adjacent sites play a critical role. The number of edges determines the
virtual bond dimension between the MPO sites, and the algorithm’s goal is to minimize
these edges for every site-to-site connection as much as possible. Initially, there are k
parallel chains, resulting in k edges between each of the n− 1 connections. This initial
structure lays the groundwork for the optimization process. We can see the explained
structure in figure 4.1.

The algorithm begins with this initial trivial MPO construction. While this formation
is a valid MPO representation, it features k dots between each pair of sites, indicating a
virtual bond dimension of k. This is the maximum possible bond dimension and poses
significant challenges for the algorithms that follow. Therefore, the goal is to minimize
the bond dimensions as much as possible for each site. To achieve this, the algorithm
optimizes the bond connections through a sweeping process, moving systematically
from one end of the chain to the other, specifically from left to right.

We will refer to the left chains as U-chains and the right chains as V-chains. For each

29

4. Methodology - Algorithm

edge in the network, the algorithm proceeds through the following steps to optimize
the structure and reduce bond dimensions:

• Create Non-Redundant Operator Sets (U and V):
The first step involves generating non-redundant sets of chains for the left (U)
and right (V) sides. In this process, the algorithm compares entire chains on each
side and removes duplicated chains, where a duplicated chain is defined as one
in which every local operator matches exactly. After this step, the U-set contains
only the unique chains from the Ũ-chains, and similarly, the V-set contains the
unique chains from the Ṽ-chains. This process ensures that the sets U and V
are simplified by retaining only unique chains while eliminating redundancies,
providing a clean and compact structure for further steps.

• Preserve Connectivity Between U and V Sets:
Once the U and V sets are formed, the algorithm ensures that the connectivity
between these sets is preserved. Specifically, connections are created between
nodes in U and V based on the original edges in the Ũ- and Ṽ-chains before
their unification in step 1. This step guarantees that the structural integrity of
the network is maintained, allowing the algorithm to operate on a consistent and
accurate representation of the system.

• Apply the Bipartite Algorithm:
In this step, the algorithm constructs a bipartite graph with the U and V sets as the
two partitions. To optimize the connectivity between these sets, the algorithm first
applies the Hopcroft-Karp algorithm to identify a maximum matching, which is a
set of edges such that no two edges share a vertex. Once the maximum matching
is determined, the algorithm uses it to calculate the minimum vertex cover, which
is the smallest set of vertices that collectively covers all edges in the graph. The
nodes included in this vertex cover are then selected to preserve the necessary
connections while minimizing redundancy in the network. This process ensures
an efficient and compact structure for the tensor network representation. The
details of the Hopcroft-Karp algorithm and node selection process are explained
in details in the following parts.

• Form New U Chains for the Next Iteration:
In this step, the nodes identified in step 3 are used to update the U and V chains.
As the optimization progresses from left to right, the newly optimized V-chains
are prepared to serve as the U-chains for the next iteration. During this process,
particular care is taken in assigning the γ coefficients, as they play a critical role in
preserving the correct weights and relationships between the chains. Ensuring the

30

4. Methodology - Algorithm

accurate assignment of these coefficients is essential to maintaining the integrity of
the updated structure and accurately representing the original quantum system.

By systematically applying these steps to each edge, the algorithm incrementally
optimizes the bond dimensions, ensuring an efficient and compact representation of
the tensor network while maintaining the required connectivity.

4.1.2. Hopcroft-Karp Algorithm and Minimum Vertex Cover Detection

The Hopcroft-Karp algorithm is used to compute the maximum cardinality matching
in the bipartite graph setting between sites. This matching forms the foundation for
constructing an efficient tensor network by minimizing unnecessary connections. Once
the maximum matching is identified, we leverage König’s theorem to determine the
minimum vertex cover, which is crucial for optimizing the structure of the tensor net-
work. This subsection provides a detailed explanation of the Hopcroft-Karp algorithm
and its role in detecting the minimum vertex cover.

Hopcroft-Karp Algorithm: Maximum Cardinality Matching

The Hopcroft-Karp algorithm is designed to efficiently find the maximum matching in
a bipartite graph [38]. A matching in a graph is a set of edges such that no two edges
share a vertex. The maximum cardinality matching is the largest possible matching in
terms of the number of edges.

The algorithm operates in alternating phases of breadth-first search (BFS) and
depth-first search (DFS):

• BFS Phase: This phase builds a level graph by identifying the shortest augmenting
paths, which are paths that start and end with unmatched vertices and alternate
between edges not in the matching and edges in the matching.

• DFS Phase: Once the level graph is constructed, DFS is used to find and augment
the matching along these shortest paths. Augmentation involves flipping the
edges along the path, adding unmatched edges to the matching, and removing
previously matched edges.

The algorithm alternates between these phases until no augmenting paths remain,
at which point the matching is guaranteed to be maximal. Following pseudocode 1
illustrates the high-level flow of the algorithm that we implemented.

31

4. Methodology - Algorithm

Algorithm 1: Hopcroft-Karp Algorithm for Maximum Cardinality Matching
Input: Bipartite graph G = (U, V, E)
Output: Maximum matching M

1 Function HopcroftKarp(G):
2 M← ∅ // Initialize an empty matching
3 while connect_unmatched_vertices_BFS(G, M) do
4 foreach unmatched vertex u ∈ U do
5 add_augmenting_path_DFS(u, G, M) // Augment along paths

6 return M

7 Function connect_unmatched_vertices_BFS(G, M):
8 L← BuildLevelGraph(G, M) // Construct the level graph
9 return HasAugmentingPaths(L)

10 Function add_augmenting_path_DFS(u, G, M):
11 if u is unmatched then
12 v_temp← suitable_v // Find a suitable v to augment path
13 if add_augmenting_path_DFS(pair_of_v, G, M) then
14 AugmentMatching(u, M) return True

15 return False

16 return True

Using König’s Theorem to Find the Minimum Vertex Cover

Once the maximum cardinality matching is identified using the Hopcroft-Karp algo-
rithm, we utilize König’s theorem to find the minimum vertex cover. König’s theorem
states that in a bipartite graph, the size of the maximum matching is equal to the size
of the minimum vertex cover. This property allows us to directly deduce the vertex
cover from the matching.

The process involves:

• Identifying unmatched vertices in one partition of the bipartite graph.

• Performing a traversal to find the alternating paths relative to the matching.

• Determining which vertices belong to the vertex cover based on their involvement
in these alternating paths.

The result is the smallest set of vertices collectively covering all edges in the graph,
ensuring the minimum connections for the TN while preserving its structure.

32

4. Methodology - Algorithm

U1

U2

U3

U4

V1

V2

V3

V4

γ′11

γ′12γ′13

γ′22

γ′32

γ′43

γ′44

Hopcroft-Karp Algorithm

U1

U2

U3

U4

V1

V2

V3

V4

γ′11

γ′12γ′13

γ′22

γ′32

γ′43

γ′44

Figure 4.2.: Here we have an example bipartite graph, before and after the algorithm.
The edges in the red form a maximum matching detected via Hopcroft-
Karp algorithm. The blue dashed vertices form a minimum vertex cover.

Summary of Hopcroft-Karp Algorithm

In Figure 4.2, the process of applying the Hopcroft-Karp algorithm to a bipartite graph
is illustrated. The algorithm begins by identifying the maximum matching, represented
by the red edges in the graph. Once the maximum matching is established, the
algorithm utilizes König’s theorem to determine the minimum vertex cover, depicted
by the blue nodes. The resulting blue nodes ensure all edges in the graph are covered
with the minimal number of vertices, optimizing the graph’s structure for further tensor
network applications.

4.1.3. Selection of Nodes and Assignment of Gamma Coefficients

Selection of Nodes

Let us elaborate on why finding the minimum vertex cover is important and how to
interpret the selection of nodes. In the bipartite graph, each edge represents a unique
term, corresponding to the chain formed by the operators on either side of the edge.
In the beginning, we ensure that no duplicate terms with different coefficients exist,
as such terms can be easily combined into one by summing their coefficients. This
guarantees that there will be no multiple edges between the same pair of vertices in
our graph representation. With this understanding, it becomes essential to preserve
information about all edges to retain every term of the Hamiltonian. Hence, spanning

33

4. Methodology - Algorithm

U1

U2

U3

U4

V1

V2

V3

V4

γ′11

γ′12γ′13

γ′22

γ′32

γ′43

γ′44

U1

U2

U3

U4

V1

V2

V3

V4

U1 V3

γ11

γ13

γ22

γ12

γ32

γ43

γ44

Figure 4.3.: The selection of nodes in the minimum vertex cover and assignment of the
gamma coefficients.

all edges of the graph for each iteration is critical.

The key property of the minimum vertex cover is that it allows us to span all edges
using only the vertices included in the vertex cover. This property drives our procedure.
We group edges (i.e., terms) based on the nodes in the vertex cover. For each selected
node, we create a connection dot, combining the edges associated with that node. The
final result is that the number of connection dots corresponds to the number of vertices
in the minimum vertex cover, which directly determines the virtual bond dimension.

As we iterate from left to right in our graph, the first nodes of the V-chains become
the head of the U-chains in the subsequent iteration. When a U-node is selected, the
corresponding V-chains are combined into a single dot, with each V-chain representing
a different term. Conversely, when a V-node is selected, the U-chains are combined
together, meaning the selected V-node now consists of multiple different terms.

This process results in the formation of what is referred to as a complementary
operation or a compressed operation. The newly constructed node represents the
summation of the combined terms, allowing it to serve as a compact representation for
subsequent operations. This compression is a crucial step in reducing redundancies

34

4. Methodology - Algorithm

and optimizing the structure for the following stages of the algorithm.

Gamma coefficients

When we say each edge represents a different term, we must consider the corresponding
gamma coefficient of each term. Specifically, each edge carries the information of its
associated gamma coefficient. During the construction process, our goal is to store
these gamma coefficients within the nodes, as each node represents a matrix of local
operators. For each term, it is crucial that only one local operator is multiplied by
the corresponding gamma coefficient. Therefore, when grouping the U- and V-chains,
we must also keep track of the positions of the gamma coefficients to ensure they are
properly assigned.

Whenever we select a U-node, we push the gamma coefficients to the right, onto
the V-nodes. Since there are distinct chains for each term on the right-hand side, the
coefficients need to propagate through the next terms accordingly. On the other hand,
when we create a complementary operation, the newly formed V-node will consist of
multiple terms from the left-hand side. In this case, we cannot push different gamma
coefficients into the same node. Instead, we store the coefficients in the U-nodes, and
the new chain will have a coefficient of 1 for the remainder of the iteration to avoid
recalculating the coefficients.

In summary, this process can be understood as an effort to push the gamma coeffi-
cients as far to the right as possible during the iterations. However, when a comple-
mentary operation is performed (i.e., combining left chains), the nodes involved in that
operation take responsibility for storing the ongoing coefficients, and the iterations
proceed with a coefficient value of 1.

Referring to Figure 4.3, we can observe the details of this assignment. In this example,
the minimum vertex cover consists of the nodes U1, V2, and U4. For the V2 node, the
coefficients are stored on the left-hand side nodes, while for U1 and U4, V-chains are
created, and the coefficients are pushed to the right. The figure also illustrates how
edges are grouped and combined during this process, highlighting the flow of gamma
coefficients and the formation of new chains.

4.1.4. Gamma Matrix Interpretation

We can approach the bond optimization problem from an alternative perspective, which
not only reveals why bipartite graph theory is insufficient for determining optimal

35

4. Methodology - Algorithm

bond dimensions in certain cases but also guides the development of a natural follow-
up algorithm. To illustrate this, let us represent the connection between two sites as
a matrix, denoted by Γ. The Γ matrix can be seen as a modified adjacency matrix,
reflecting the connectivity of the bipartite graph. Each row corresponds to the graph’s
left-hand side U-nodes, while each column represents the right-hand side V-nodes.

Γ =

V1 V2 . . . Vj . . . Vm

U1 γ11 γ12 . . . γ1j . . . γ1m

U2 γ21 γ22 . . . γ2j . . . γ2m
...

...
...

...
...

Ui γi1 γi2 . . . γij . . . γim
...

...
...

...
...

Un γn1 γn2 . . . γnj . . . γnm

An entry γij in the matrix indicates the connectivity between the i-th U-node and the
j-th V-node. The values of these entries correspond to the γ-coefficients of the terms,
representing the strength of the connection between these nodes.

As explained previously, preserving the connectivity described by the Γ matrix is
essential to accurately represent the Hamiltonian. Each coefficient in the matrix corre-
sponds to an operation chain, representing a Hamiltonian term. Thus, each γ-coefficient
plays a crucial role in maintaining the system’s structure. We can again think about
retaining each connection exactly as it is and follow the structure of the Γ matrix. While
this approach is valid, it is still far from optimal and our primary objective was to
construct an efficient representation of the Hamiltonian, allowing us to run algorithms
on the resulting structure more effectively.

We can analyze the rank k of the Γ matrix, which represents the number of linearly
independent rows or columns. This approach is motivated by the Singular Value
Decomposition (SVD) of the matrix. The rank k provides insight into the minimal
number of terms and complementary operations necessary to accurately represent the
Hamiltonian. By determining the rank, we ensure that the essential structure of the

36

4. Methodology - Algorithm

Hamiltonian is captured using the optimal number of terms, as outlined below:

Γ =

V1 V2 . . . Vj . . . Vm

U1 γ11 γ12 . . . γ1j . . . γ1m

U2 γ21 γ22 . . . γ2j . . . γ2m
...

...
...

...
...

Ui γi1 γi2 . . . γij . . . γim
...

...
...

...
...

Un γn1 γn2 . . . γnj . . . γnm

=


α11

α12
...

α1n

 [
β11 β12 . . . β1m

]
+


α21

α22
...

α2n

 [
β21 β22 . . . β2m

]
+ . . . +


αk1
αk2

...
αkn

 [
βk1 βk2 . . . βkm

]

As expected, deriving such a decomposition can be computationally intensive. The
bipartite graph algorithm addresses this challenge by simplifying the problem through
additional constraints on the terms. Specifically, it requires that one of the vectors
(either a row or a column) must be a unit vector. In practical terms, this means the
algorithm selects certain rows or columns directly from the Γ matrix to construct the
decomposition. To explore this operation further, let us examine the following Γe matrix
in detail:

Γe =


γ11 γ12 γ13 0
0 γ22 0 0
0 γ32 0 0
0 0 γ43 γ44



This is the same example with the figure 4.2. For this toy example, it is trivial to see
that selecting Row1, Column2 and Row4 is enough to decompose the Γe as:

Γe =


γ11 γ12 γ13 0
0 γ22 0 0
0 γ32 0 0
0 0 γ43 γ44

 =


1
0
0
0

 [
γ11 γ12 γ13 0

]
+


0

γ22

γ32

0

 [
0 1 0 0

]
+


0
0
0
1

 [
0 0 γ43 γ44

]

As observed, we achieve a rank-3 solution by selecting specific rows and columns
from the Γe matrix. This result is derived by applying the Hopcroft-Karp algorithm
to the bipartite graph representation, as previously discussed. The selected rows and
columns correspond to the elements of the minimum vertex cover of the Γe matrix.
This demonstrates how the decomposition process facilitated by the Hopcroft-Karp
algorithm translates into mathematical terms, providing a clear connection between the
graph-based method and the matrix representation.

37

4. Methodology - Algorithm

4.1.5. Identified Limitations in Bipartite Graph Algorithm

While the existing method effectively reduces bond dimensions in most cases, we iden-
tified some configurations where it fails to achieve the true minimal bond dimension.
Although Ren et al. (2020) [15] provide a scientific proof asserting the completeness of
the algorithm, the assumptions underlying this proof are insufficient to guarantee its
applicability in all scenarios. To address these issues, let us first examine the problem-
atic aspects of the algorithm’s approach.

The bipartite algorithm selects edges from only one side of the bond by choosing
vertices from either the U or V set, resulting in connections that are either on the left
or the right side. To better illustrate this, consider Figure 4.3. In the diagram, the
algorithm selects Û1, V̂2, Û4. Selecting Û1 involves combining the connected vertices
on the left side. Similarly, selecting V̂2 combines three connected vertices on the right.
However, this approach is limited and fails when combining both sides, i.e., when
dealing with doubly connected sites.

Rephrasing the problem in terms of the Γ matrix, the bipartite graph algorithm is
limited to selecting either a single column or row when forming a sum term in the
decomposition. However, in some cases, it may be more efficient to combine both
rows and columns simultaneously rather than restricting the operation to one side.
More specifically, when we have a uniform value for the term coefficients, this kind of
combination becomes fairly common and required.

Let’s analyze the Hamiltonian H f , which is a minimal example where we can see the
non-optimality of the approach:

H f =
4

∑
j=1

hj = X1Y2 + X1X2 + Y1Y2 + Y1X2

In Figure 4.4, we compare the solution proposed by the algorithm with the actual
optimal bond configuration. The Hopcroft-Karp algorithm results in a virtual bond
dimension of 2, as it selects nodes only from one side of the bipartite graph. In this
example, we assume it chooses the left side, although the opposite is equally possible.
Regardless of the choice, the solution will consist of two dots, limiting the representa-
tion to have an non-optimal virtual bond dimensions.

In contrast, the optimal configuration involves creating a fully connected node, where
every node is connected to all others. This fully connected structure allows for cap-
turing all 4 terms accurately. To understand this in detail, consider how chains are

38

4. Methodology - Algorithm

(a)

X Y

X X

Y Y

Y X

(b)

X
X

Y

Y
X

Y

(c)

X

Y

X

Y

Figure 4.4.: a) The initial configuration of the chains. b) The result of the bipartite-graph
algorithm with virtual dimension 2. c) Actual optimal solution with a both
side connected node.

processed: for each line traversing from left to right in the structure, a distinct term is
produced. In the fully connected case, all 4 terms can be represented, demonstrating
the limitations of the algorithm in achieving the true minimal bond configuration.

Let’s check the problem in terms of Gamma matrices to understand more analytically:

Γ f =
[

γ11 γ12

γ21 γ22

]
=
[

1
0

] [
γ11 γ12

]
+
[

0
1

] [
γ21 γ22

]
Examining H f , we observe that the coefficients are identical, with a value of 1 for all

4 terms. More generally, this can be expressed as γ11 = γ12 = γ21 = γ22 = γ. With this
generalization, the decomposition can be rewritten as:

Γ f =
[

γ γ

γ γ

]
=
[

1
0

] [
γ γ

]
+
[

0
1

] [
γ γ

]
As one can see easily, two terms can be combined into one as they have the same row
vector. With this basic operation, we can represent Γ with just one term as follows,
which corresponds to the fully connected graph in the figure 4.4:

Γ f =
[

γ γ

γ γ

]
=
[

1
1

] [
γ γ

]
We were able to construct a counterexample that challenges the generality of the

initial algorithm with relative ease. This phenomenon, as demonstrated in this case,
can also arise in more complex systems. The bipartite graph algorithm is inherently
limited in its ability to handle many-to-many connections, specifically cases where
row or column vectors in the decomposition are not unit vectors. Consequently, an
enhancement to the algorithm is necessary to address these situations and provide a

39

4. Methodology - Algorithm

more comprehensive and robust solution.

As can be seen from the example, to create such a case, we set the coefficients
all equal to each other. While such patterns may not be commonly encountered in
chemical models, they are crucial in lattice models often studied in physics, where
many Hamiltonian terms share the same coefficient.[18] Ignoring this pattern could
lead to sub-optimal representations. Therefore, it becomes essential to develop methods
that specifically address this configuration.

4.1.6. Proposed Improvement - Symbolic Gaussian Elimination

A straightforward approach for achieving optimal bond dimensions is the application
of Singular Value Decomposition (SVD). While SVD effectively identifies the rank of a
matrix and optimizes its representation, it comes with notable drawbacks. Firstly, as
discussed earlier, it is computationally expensive and can be mathematically unstable.
Secondly, its outcome highly depends on the specific values of the γ-coefficients. As
a result, any change in the γ-coefficients, even a minor one, requires re-running the
optimization process.

In contrast, the bipartite graph algorithm offers a significant advantage: it operates
independently of the specific values of the γ-coefficients. Instead of relying on these
values, the algorithm focuses on selecting rows or columns and determining the vertex
cover of the Γ-matrix based solely on its structural properties. This independence from
coefficient values is a key feature we sought to preserve in our work.

To address the encountered issues, we decided to retain the Hopcroft-Karp algorithm
and introduce a pre-processing step to overcome its limitations. Specifically, our goal
is to minimize the connectivity matrix (Γ) while preserving all essential information.
Singular Value Decomposition (SVD) is one way to achieve this, but a more stable
and symbolic solution is required due to explained concerns. To start from a simpler
point of view, we can pre-process the Γ-matrix with a Gaussian elimination process to
eliminate linearly dependent rows or columns. In that way, we can again determine the
matrix’s rank. However, as we want to stay symbolic, our Gaussian elimination method
should also be working symbolically. That’s where we come up with our variant of
Gaussian Elimination:

40

4. Methodology - Algorithm

Symbolic Gaussian Elimination

We propose a symbolic adaptation of Gaussian elimination, referred to as Symbolic
Gaussian Elimination. This is a symbolic method in nature. In this method, the entries
of the input matrix are stored and manipulated symbolically, represented as terms such
as "3 times γ1". During the row and column elimination steps, symbolic values are
preserved to ensure that the process remains symbolic throughout. To maintain this
representation, strict constraints are enforced.

Firstly, we do not allow combinations of symbolic values. Each entry of the Γ-matrix
must remain in the form of "a real coefficient multiplied by a symbolic gamma". For
instance, operations that result in terms like γ1 + γ2 are not permitted. This restriction
simplifies the implementation for subsequent iterations, ensuring that the symbolic
nature of the process is preserved and keeping the method practical and easily imple-
mentable. These operations are called Restricted Row and Column Operations, as
they follow the standard principles of Gaussian elimination but with these additional
constraints.

Secondly, we constrain the real coefficient in "a real coefficient multiplied by a sym-
bolic gamma" to be a fractional real number. This constraint ensures mathematical
stability while offering sufficient representation power. Initially, we attempted to limit
coefficients to integers, but this approach severely restricted the representation ca-
pabilities of the matrix, leaving some trivial cases unsolvable by the algorithm. By
allowing fractional real numbers, we significantly increase the representation scope
while maintaining stable calculations. Although this approach imposes some limita-
tions, it provides a practical balance, covering most cases effectively and ensuring the
process remains stable and robust.

After applying the Symbolic Gaussian Elimination to update the Γ-matrix, the bi-
partite graph method is still required to determine the minimal virtual bond dimension.
However, this step becomes unnecessary if all the entries in the Γ-matrix share uniform
symbolic value. In such cases, having one identical symbolic gamma essentially reduces
the problem to traditional Gaussian elimination, where the resulting matrix naturally
reflects its rank.

On the other hand, when there is only partial uniformity among the coefficients or
when all coefficients are symbolically distinct, the bipartite graph algorithm becomes
indispensable. In these cases, the algorithm is required to determine the rank because,
with coefficients being distinct, no simplification is possible due to the restriction

41

4. Methodology - Algorithm

against combining symbolic values. Consequently, the process once again relies on the
Hopcroft-Karp algorithm to select the appropriate row or column unit vectors, ensuring
that the matrix is reduced in compliance with the symbolic constraints while preserving
its essential structure.

As previously mentioned, "Symbolic Gaussian Elimination" serves as a preprocessing
step and should not increase the overall complexity of the problem. Therefore, we apply
the bipartite graph algorithm to both the initial Γ and the processed Γ̃ and compare the
results. We proceed with Gaussian elimination only if the new matrix results in a lower
virtual bond dimension. If the pre-processing step does not yield an improvement,
we retain the initial configuration. This ensures that the performance of the previous
algorithm is at least matched, with potential improvements in the best-case scenario.

Pre-processing Implementation details

Now, we can deep dive into the details of the algorithm. We introduce two operator ma-
trices, Ol and Or, both initially defined as identity matrices. These matrices are used to
keep track of the transformations (operations) applied to the Γ-matrix. As we progress,
these matrices will be updated to reflect the operations performed. Throughout the
process, we maintain the following equality:

Γ = Ol · Γ̃ ·Or

where Γ̃ is the updated Γ-matrix.

The matrix Ol , referred to as the left operator matrix, keeps track of the row oper-
ations applied to Γ. To ensure the equality above remains valid, the columns of Ol
are updated with the inverse of the operations applied to the rows of Γ. By inverse,
we mean that for addition, we subtract the same value, and for multiplication, we
divide (or multiply by the reciprocal of the value).Additionally, the indices of columns
and rows are reversed. For example, if the i-th row of Γ is added to the j-th row, this
corresponds to subtracting the j-th column from the i-th column in Ol . This inverse
operation ensures the overall multiplication remains consistent with the equation.

Similarly, Or tracks the column operations applied to Γ. The updates to Or follow the
same principles as Ol , applying inverse operations. For instance, if we multiply the i-th
column of Γ by a scalar c, we divide the corresponding i-th row of Or by c.

If a zero row is encountered in the Γ̃-matrix at the j-th row, both the j-th row of Γ̃
and the corresponding j-th column of Ol can be removed. Similarly, if a zero column

42

4. Methodology - Algorithm

U1

U2

U3

U4

U5

V1

V2

V3

V4

V5

3γ11

3γ12−γ13
2γ12

3γ22

2γ22

3γ32

2γ32

2γ43

2γ44

−γ43 −γ44

Figure 4.5.: A simple example bipartite graph setting to apply symbolic Gaussian
elimination

is detected in the Γ̃-matrix at the j-th column, we eliminate both the j-th column of Γ̃
and the corresponding j-th row of Or. These steps simplify the matrix and operator
structures by removing redundant components.

By systematically applying these principles, we ensure that Ol , Γ̃, and Or accurately
represent the transformations applied to the Γ-matrix while maintaining the given
equality. Once the "Symbolic Gaussian Elimination" process is complete, the resulting
Γ̃-matrix will be ready for the application of the bipartite graph algorithm.

We will construct two virtual layers using the newly generated matrices. Leverag-
ing the preserved equality Γ = Ol · Γ̃ ·Or, the initial connectivity matrix can now be
expressed as the product of these three matrices. Each of these matrices can also be
interpreted as representing connectivity matrices. Consequently, the problem can be
reformulated with two additional virtual layers, where the connectivities of these layers
are described by Ol , Γ̃, and Or.

43

4. Methodology - Algorithm

To understand how this is done, let us illustrate and analyze this approach with a
simple example shown in figure 4.5 corresponds to the matrix Γh:

Γh =


3γ11 3γ12 −γ13 0 2γ12

0 3γ22 0 0 2γ22

0 3γ32 0 0 2γ32

0 0 2γ43 2γ44 0
0 0 −γ43 −γ44 0



If we were to apply the Hopcroft-Karp algorithm directly, the resulting virtual di-
mension would be 5, as it is not possible to cover the entire graph by selecting rows
or columns. If we run the algorithm, it would select 5 nodes at either one of the sides.
However, it becomes evident that some rows or columns can be actually eliminated, as
they are linear combinations of others (especially some rows or columns are parallel to
each other for this specific example). Therefore, we first employ the "Symbolic Gaussian
Elimination" to obtain a reduced matrix Γ̃, and then proceed with the bipartite graph
method.

After implementing the "Symbolic Gaussian Elimination", we can reach the following
operator and Gamma and matrices. The details of the implementation and how derived
these matrices can be seen in the Appendix A:

Γ = Ol · Γ̃ ·Or
3γ11 3γ12 −γ13 0 2γ12

0 3γ22 0 0 2γ22

0 3γ32 0 0 2γ32

0 0 2γ43 2γ44 0
0 0 −γ43 −γ44 0

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 − 1

2




3γ11 3γ12 −γ13 0
0 3γ22 0 0
0 3γ32 0 0
0 0 2γ43 2γ44




1 0 0 0 0
0 1 0 0 2

3
0 0 1 0 0
0 0 0 1 0



This new decomposition allows us to interpret the matrices as adjacency matrices
with creation of 2 virtual layers in the middle of the sites which we call Ũ and Ṽ, shown
as follows:

44

4. Methodology - Algorithm

U1

U2

U3

U4

U5

Ũ1

Ũ2

Ũ3

Ũ4

Ṽ1

Ṽ2

Ṽ3

Ṽ4

V1

V2

V3

V4

V5

1

1

1

1

− 1
2

3γ11

3γ12−γ13

3γ22

3γ32

2γ43

2γ44

1

1

1

1

2
3

Figure 4.6.: The orange nodes represent the virtual U-nodes on the left-hand side, while
the green nodes represent the V-nodes on the right-hand side.

Ũ1 Ũ2 Ũ3 Ũ4

U1 1 0 0 0
U2 0 1 0 0
U3 0 0 1 0
U4 0 0 0 1
U5 0 0 0 − 1

2

Ṽ1 Ṽ2 Ṽ3 Ṽ4

Ũ1 3γ11 3γ12 −γ13 0
Ũ2 0 3γ22 0 0
Ũ3 0 3γ32 0 0
Ũ4 0 0 2γ43 2γ44

V1 V2 V3 V4 V5

Ṽ1 1 0 0 0 0
Ṽ2 0 1 0 0 2

3
Ṽ3 0 0 1 0 0
Ṽ4 0 0 0 1 0

Using these adjacency matrices, we can now identify the cut sites, as illustrated in
Figure 4.6. The Ol matrix defines the first virtual cut site between U and Ũ, while Γ̃
and Or define the second and third cut sites, respectively. The Ũ and Ṽ layers serve
as representative layers, where each Ũ node represents a combination of real U nodes,
and each Ṽ node similarly represents a combination of real V nodes. Essentially, this
approach creates a virtual layer with simplified connectivity, represented by the matrix
Γ̃, while preserving the original connectivity of the system.

We can now apply bipartite graph theory to the inner cut site to determine the mini-
mum vertex cover using the virtual nodes. The Hopcroft-Karp algorithm again does its
magic to identify the maximum edge matching and the corresponding minimum vertex
cover. Once this operation is complete, we obtain the minimal set of nodes required to

45

4. Methodology - Algorithm

U1

U2

U3

U4

U5

Ũ1

Ũ2

Ũ3

Ũ4

Ṽ1

Ṽ2

Ṽ3

Ṽ4

V1

V2

V3

V4

V5

1

1

1

1

− 1
2

3γ11

3γ12−γ13
3γ22

3γ32

2γ43

2γ44

1

1

1

1

2
3

U1

U2

U3

U4

U5

V1

V2

V3

V4

V5

U1 V3

3γ11

-γ13

3γ22

3γ12

3γ32

2
3

2γ43

− 1
2

2γ44

Step 1

Figure 4.7.: On the left, we can see the red dashed nodes form the minimal span of
the connectivity, with the red edges indicating the maximum matching,
identified using the Hopcroft–Karp algorithm. The second figure is the
realisation of the cut site.

represent the cut site with virtual nodes.

The final step is to replace the virtual Ũ and Ṽ nodes with their corresponding real U
and V nodes. The weights associated with the first and third cut sites must be carefully
handled during this replacement. The coefficients generated during the operation
are assigned to the local operators of the corresponding real nodes. Additionally, the
gamma coefficients are pushed to the left or right, as described earlier in the Hopcroft-
Karp section. We can see the details of the realisation in the figure 4.7.

Here we observe the result with a virtual bond dimension of 3, corresponding to
the creation of 3 dots as determined by the minimal vertex cover, which consists of 3
nodes. The process begins with the Ṽ2 node, located in the middle of the diagram. On
its right-hand side, Ṽ2 connects to two real nodes, V2 and V5, forming the right side
of the second dot. On the left-hand side, Ṽ2 connects to the virtual nodes Ũ1, Ũ2, and
Ũ3. Each of these virtual nodes corresponds to only one real node, maintaining the
simplicity of the representation.

46

4. Methodology - Algorithm

U1

U2

U3

U4

U5

V1

V2

V3

V4

V5

3γ11

3γ12−γ13
2γ12

3γ22

2γ22

3γ32

2γ32

2γ43

2γ44

−γ43 −γ44

U1

U2

U3

U4

U5

Ũ1

Ũ2

Ũ3

Ũ4

Ṽ1

Ṽ2

Ṽ3

Ṽ4

V1

V2

V3

V4

V5

1

1

1

1

− 1
2

3γ11

3γ12−γ13
3γ22

3γ32

2γ43

2γ44

1

1

1

1

2
3

U1

U2

U3

U4

U5

Ũ1

Ũ2

Ũ3

Ũ4

Ṽ1

Ṽ2

Ṽ3

Ṽ4

V1

V2

V3

V4

V5

1

1

1

1

− 1
2

3γ11

3γ12−γ13
3γ22

3γ32

2γ43

2γ44

1

1

1

1

2
3

U1

U2

U3

U4

U5

V1

V2

V3

V4

V5

U1 V3

3γ11

-γ13

3γ22

3γ12

3γ32

2
3

2γ43

− 1
2

2γ44

Step 1 Step 2 Step 3

Figure 4.8.: The figure illustrates the creation of virtual layers and the outcome of the
bipartite graph algorithm. In the final step, we can see the realization of
optimization with virtual bond dimension 3 as the result.

Additionally, for the last dot, we replace the virtual node Ũ4 with the real nodes
U4 and U5. This final replacement step ensures that all virtual nodes are correctly
substituted with their corresponding real nodes while preserving the optimal virtual
bond dimension of 3.

This process ultimately results in a more optimal virtual bond dimension for the
given site, improving the efficiency of the tensor network representation. The whole
process for this specific example summarized in the figure 4.8.

4.1.7. Algorithm Summary

The symbolic implementation of the algorithm is observed to be non-trivial. A partial
pivoting strategy was adapted from the method described by Heath (2002, p. 73) [39],
with modifications to adhere to the symbolic constraints. We can see the details of the
algorithm outlined in the pseudocode "Algorithm 2". Here, we can see an additional
de-parallelization step, which serves as a preprocessing stage to identify and handle
parallel rows and columns. This step is crucial for reducing the complexity of the
Gaussian elimination and addressing the limitations inherent in the symbolic algorithm.
Also in the end, we check if there is an actual improvement to decide whether to keep
the symbolic Gaussian elimination or not.

This algorithm offers significant advantages, particularly in its ability to preserve

47

4. Methodology - Algorithm

the symbolic representation of the γ coefficients throughout the computation. By
maintaining the symbolic form of the coefficients, we avoid numerical dependencies
that typically arise when directly manipulating the values. While this symbolic rep-
resentation may initially seem to distance us from an optimal solution, it is a minor
sacrifice to have a more stable implementation.

Another key strength of this approach is its ability to handle uniform coefficient
cases commonly encountered in lattice models. In these cases, where multiple or
all of the terms in the Hamiltonian share identical coefficients, the bipartite graph
approach struggles to provide an accurate representation. However, our algorithm is
specifically designed to address this scenario, ensuring that uniform coefficients are
properly represented without sacrificing accuracy. This makes the algorithm well-suited
for applications in physics, where such uniformity in the coefficients often occurs in
models like the Heisenberg or Hubbard models or lattice models.

Algorithm 2: Symbolic Gaussian Elimination and Bipartite Graph Optimization
Input : Matrix Γ with coefficients γij
Output : Updated matrix Γ̃

1 Initialize two identity matrices Ol and Or matching the row and column
dimensions of Γ;

2 Detect parallel rows and columns and De-parallelize them.
3 foreach row i in Γ do
4 foreach column j in Γ do
5 if γij is non-zero then
6 Apply restricted row elimination on row i;
7 Update Ol to track row operations;
8 Apply restricted column elimination on column j;
9 Update Or to track column operations;

10 if row i in Γ is zero then
11 Remove row i from Γ and the corresponding row i from Or;

12 if column j in Γ is zero then
13 Remove column j from Γ and the corresponding column j from Ol ;

14 Apply bipartite graph algorithm to the reduced Γ̃ to determine minimum vertex
cover;

15 if minimum vertex cover is bigger than Γ then
16 Replace Γ̃ with Γ and continue with Γ;

Output : Γ̃, Ol , and Or matrices

48

4. Methodology - Algorithm

4.2. Part II: Application to TTNOs

In the previous section, we provided a broad explanation of the optimization process
for a single bond site. It is important to note that the optimization of a bond site
is independent of the overall system structure, whether it is an MPO, a TTNO, or
another representation. However, in our explanation, we primarily referred to the MPO
structure. This focus stems from the fact that MPOs are both the most commonly used
representation method and the basis of the previous research upon which we built our
approach.

In this section, we extend the improved optimization approach to the more general
case of TTNOs. Unlike MPOs, TTNOs are organized in a hierarchical tree structure,
presenting additional challenges and opportunities for optimization. This extension
represents the second part of our research, broadening the applicability of the improved
method to systems with complex and non-linear topologies.

4.2.1. Adapting the Optimization Algorithm to Tree Structure

We utilize the state diagram representation for TTNO structures, as proposed by Mil-
bradt et al. (2024) [17]. The details of state diagrams were briefly introduced in Section
3.5 - State Diagrams. In this context, we refer to a state diagram representation consist-
ing of multiple terms as a compound state diagram.

The algorithm operates on the compound state diagram with the objective of op-
timizing virtual bond dimensions by minimizing the number of vertices intersected
by hyperedges. The starting configuration and the optimized result are illustrated in
Figure 4.9. Unlike the MPO case, where the structure is linear and traversal is straight-
forward—progressing from one side to the other—TTNOs require a more intricate
navigation strategy due to their hierarchical and non-linear tree structure.

In our approach, we utilize a Breadth-First Search (BFS) strategy, beginning at the
root of the tree and systematically traversing its branches. The optimization of a vertex
site is referred to as a cut site, as the process essentially involves "cutting" the tree at
that vertex to optimize the connectivity and reduce the virtual bond dimensions.

The core of the algorithm remains unchanged: we apply bipartite graph theory, aug-
mented with our pre-processing step using symbolic Gaussian elimination, to optimize
a cut site. The previously proposed algorithm, tailored for MPO structures, processes
sites in a linear fashion by accumulating or shifting the coefficients of terms from left

49

4. Methodology - Algorithm

Figure 4.9.: The objective of the algorithm is to determine the optimal virtual bond
dimensions between sites. This involves minimizing the number of vertices
(represented as black dots) as the algorithm transitions from the initial tree
structure on the left to the optimized structure on the right.

to right. At first glance, this approach may appear incompatible with the hierarchical
nature of a tree structure, where there is no absolute "left" or "right." Nevertheless, the
algorithm can be adapted to navigate and process tree structure

To understand this, let us revisit the "pushing" interpretation of the original algo-
rithm: when optimizing a bond dimension, nodes are selected on either the left or
right side after applying the Hopcroft–Karp algorithm. Selecting a left node pushes the
γ-coefficients to the right chains, while selecting a right node leaves them in the left
chains. Previously, we described this process as proceeding linearly from left to right,
pushing coefficients as far right as possible. When a node from the right-hand side is
selected, the coefficients are left in the left U-nodes. Extending this interpretation, we
can also say that selecting a right-side node effectively pushes coefficients to the left.

This perspective reveals that even in the linear case, the MPO structure can be pro-
cessed starting from any middle node. The key requirement is to traverse the structure
without skipping nodes, ensuring that coefficients are pushed incrementally and gently.
This flexible interpretation allows us to extend the approach to the tree structure as
well. In the tree setting, we can start from any node, and as long as the coefficients are
pushed methodically without skipping, the optimization result will remain the same
and optimal, regardless of the starting node or traversal order.

In designing the implementation for the tree structure, our focus was on achieving
the most computationally efficient solution. To this end, we explored approaches
inspired by dynamic programming. While the order of processing does not influence
the final optimization result, a strategically designed implementation can significantly

50

4. Methodology - Algorithm

Figure 4.10.: Tree structure

1

5

2

6

7

3

4 8

Figure 4.11.: Graph structure

Figure 4.12.: Graph and Tree interpretations side by side

improve the speed and efficiency of the algorithm.

4.2.2. Decision of the Tree Root and Orientation

Another important aspect to consider is how to determine a suitable tree configuration.
This issue was not the primary focus of our research, as we assumed that the tree
structure details would be provided to the algorithm and our implementation operates
on the given configuration. However, in real-world problems, it is often necessary to
convert a grid-like 2D system into a tree structure to represent it in classical computers.
While it is not strictly required to use a tree structure—many systems are currently
modeled as MPOs due to the availability of several well-established algorithms—we
want to explore TTNOs more and for that it is essential to construct a tree structure.

It is important to recognize that the choice of the root node in our graph is largely arbi-
trary, as the nature of most systems does not inherently dictate a specific root. However,
certain nodes may be more suitable as a root, depending on the system’s characteristics,
and constructing the tree structure from such a node could offer advantages. This as-
pect requires further investigation, which we partially explored during our experiments.

One might then question whether this arbitrary root choice or the flexibility in the
tree structure could impact the algorithm’s performance. Specifically, since we start
from the root and process the tree toward its leaves, would changing the root alter
the order of processing? The answer is yes, it would change the order. However, as
discussed in the previous section, our traversal order is designed solely to ensure com-
putational efficiency and has no effect on the optimization outcome. The algorithm’s

51

4. Methodology - Algorithm

Figure 4.13.: a) Tree is traversed in a BFS manner but double-passing each level. The
order of the traverse is first the 1. level (orange), then the second level
(green), and finally the third level (pink). For each layer, we process
each vertex site twice. For example, in the first layer, firstly, vertices are
processed in the red numbering order, then blue. b) For each vertex site,
we split the tree into two parts. The red part is U-subtree, and the blue part
is V-subtree. c) Another example cut for the bond between sites 5 and 6.

results remain consistent regardless of the starting point. For instance, we could just as
easily begin from a leaf node and traverse the tree while performing site optimizations,
and still achieve the same optimal tree structure.

Throughout this section, we alternately use a tree structure and a graph representation
to describe the given system. As illustrated in Figure 4.12, the two representations
actually depict the same system. In one representation, we maintain the tree structure
to facilitate the explanation of the algorithm, as the algorithm assumes the tree structure
is already provided. However, to emphasize the arbitrary nature of the root choice, we
also present the system using a graph representation. This highlights that while the
algorithm relies on a tree structure for its operation, the underlying system can equally
be viewed as a graph.

4.2.3. Tree Structure Traversal

For each site optimization, the tree is effectively divided into two parts, which we refer
to as U-subtrees and V-subtrees. The naming convention for U and V is derived from
the bipartite algorithm discussed in the previous sections. A U-subtree consists of the
subtree rooted at a specific node (or the lower node of a given cut site), including all
its children and the complete subtree structure beneath it. Conversely, the V-subtree
represents the remainder of the tree after the U-subtree has been extracted.

52

4. Methodology - Algorithm

1

5

2

6

7

3

4 8

1

5

2

6

7

3

4 8

1

5

2

6

7

3

4 8

Figure 4.14.: The traverse of U-subtrees for the first, second and third level. The
resulting red dotted subtrees are unique set of subtrees

Figure 4.13 illustrates this partitioning. In parts (b) and (c), the division into U-subtrees
and V-subtrees is shown for the vertex sites 1-2 and 5-6, respectively. It is notable that the
U-subtrees retain a tree structure including all children from the new root node, while
the V-subtrees is not like that, reflecting the asymmetry introduced by the partitioning
process.

As previously mentioned, we utilize a Breadth-First Search (BFS) strategy, starting at
the root of the tree and traversing through its branches. A key feature of our approach
is the dual traversal at each level: rather than processing each vertex site consecutively,
the algorithm performs a complete pass through all vertex sites at any level before
initiating a second pass. This traversal order is illustrated in Figure 4.13 a), providing a
clear representation of the process.

One of the primary challenges in this approach is constructing non-redundant sets
for each cut. In the linear case, this task involved identifying unique left and right
chains to form the initial non-redundant sets of U and V nodes, which served as the
algorithm’s starting point. This process was relatively straightforward. However, in the
tree structure, the focus shifts to comparing subtrees instead of chains, significantly in-
creasing the computational complexity. This is the main motivation of our double-pass
strategy.

During the first pass, all U-subtrees are processed, and redundant U-subtree sets
are identified and formed. Since each U-subtree is independent and does not share
any nodes with others, we can precalculate and update the compound state diagram
accordingly. This approach eliminates the need to repeatedly recalculate the same
tree parts, improving computational efficiency. The process of handling U-subtrees
is illustrated in Figure 4.14 for each level. Let us examine how this contributes to the
overall optimization.

53

4. Methodology - Algorithm

Figure 4.15.: Red dashed lines are U-subtrees that are already optimized, and Blue
dashed lines correspond to the V-subtrees.

Following the first pass, we proceed with the second pass, where V-subtrees are
calculated and cut optimizations are performed. The optimization process itself remains
unchanged, following exactly the same steps discussed in the previous section. The key
enhancement lies in the calculation of V-subtrees, where we leverage the precomputed
U-subtrees.

Refer to Figure 4.15, which depicts two cuts at the first level. Notice that a V-subtree
typically includes already computed U-subtrees, except for the cut site node. To iden-
tify the redundant set of V-subtrees, it suffices to compare the cut site node with the
corresponding subtrees. This significantly reduces the computational burden, as much
of the work was already performed during the first pass.

The same principle extends to consecutive levels. As shown in Figure 4.16, there are
three cuts at the next level. Here, we observe that V-subtrees are composed not only of
the precomputed U-subtrees but also of the precomputed V-subtrees from the previous
iteration.

For the comparison process, it is unnecessary to compare all the nodes within the
blue dashed region. Instead, we can once again leverage the precalculated data and
limit the comparison to the cut site nodes and their immediate connections. This
further reduces the computational overhead, making the algorithm more efficient as it
progresses through the tree.

54

4. Methodology - Algorithm

Figure 4.16.: Red dashed lines are U-subtrees that are already optimized. Purple dashed
lines are previously optimized V-subtrees. Blue dashed lines represent V-
subtrees that are currently being optimised. To detect identical V-subtrees,
it is enough to check cut_site and orange dashed connections with U-
subtrees and optimized V-subtrees. a) Cut through sites 2-3. b) Cut
through sites 2-4. c) Cut through sites 5-6.

One could argue that even with the precomputation of subtrees, we still need to
meticulously compare all the nodes of each subtree at least once, which demands
significant computational resources. This observation leads us to the next clever
implementation of our algorithm for subtree comparisons: hashing.

4.2.4. Efficiency in Comparison - Hash Values

To perform comparisons within the tree structure more efficiently, we employ hashing.
Each node is assigned a unique hash value, computed based on its internal content and
the hash values of its child nodes. These hash values are calculated once during the
tree’s construction, using a bottom-up approach.

With this method, comparing two subtrees is reduced to a straightforward compari-
son of their precomputed hash values. This significantly lowers the computational cost,
as it eliminates the need to examine potentially hundreds or thousands of nodes for
each comparison attempt. By utilizing hashes, the algorithm becomes far more efficient,
enabling rapid subtree comparisons even in large and complex tree structures.

These hash values cannot be directly applied to V-subtrees, as these structures do not
form complete subtrees encompassing all children nodes. However, V-subtrees can be
uniquely identified through the cut-site node and its connections to other subtrees. As

55

4. Methodology - Algorithm

demonstrated in Figures 4.15 and 4.16, each V-subtree is composed of either U-subtrees
or previously calculated V-subtrees.

To address this, the comparison of V-subtrees is simplified by employing a special-
ized hash function. This function integrates the internal information of the cut-site
node along with the hash values of its connected subtrees. By using this approach, we
ensure that V-subtrees can be efficiently and uniquely identified without needing to
examine their entire structure, maintaining computational efficiency.

The previously described double-traversed BFS enables efficient computation of
U-subtrees and V-subtrees for earlier depths before the cut, allowing the pre-computed
information to be reused effectively. As mentioned earlier, the order of processing
does not affect the optimization result but impacts the computational complexity as
explained here.

4.2.5. Algorithm Summary and Analysis

The TTNO optimization algorithm is a comprehensive approach designed to minimize
virtual bond dimensions while maintaining computational efficiency. It integrates
symbolic Gaussian elimination, bipartite graph theory, and subtree hashing to achieve
its objectives. The details of the overall TTNO optimization process are outlined in
"Algorithm 3", and the specific steps for cut optimization are presented in "Algorithm 4".

One of the notable features of the algorithm is its two-pass traversal strategy within
each tree level, as illustrated in Algorithm 3. During the first pass, U-subtrees are pro-
cessed to form non-redundant sets using precomputed hash values, which significantly
reduces computational redundancy. The second pass focuses on V-subtrees, leveraging
the precomputed U-subtrees to simplify the identification of redundant V-subtrees.
This dual-pass strategy ensures that the algorithm efficiently traverses the tree structure
while maintaining optimal computational performance.

A critical component of the algorithm is the cut optimization process, detailed in
Algorithm 4. For each cut site, a Γ-matrix is constructed based on the initial connectivity.
Symbolic Gaussian elimination is applied to simplify the matrix while adhering to
symbolic constraints. The bipartite graph algorithm is then employed to identify the
optimal configuration, comparing the results of the initial and updated Γ-matrices. This
step determines whether to proceed with the updated configuration or revert to the
initial one. Finally, the cut site is reconnected, and coefficients are carefully assigned to
preserve the system’s integrity.

56

4. Methodology - Algorithm

This algorithm offers several key advantages. By leveraging symbolic Gaussian
elimination, it preserves the symbolic representation of γ-coefficients, avoiding numeri-
cal dependencies and ensuring stability. Additionally, the use of hashing for subtree
comparisons drastically reduces computational overhead, particularly for large and
complex tree structures. Furthermore, the algorithm’s adaptability allows it to handle
both uniform and non-uniform coefficient cases effectively, making it suitable for a
wide range of physical models.

In summary, the TTNO optimization algorithm provides a robust framework for
optimizing hierarchical tensor networks. By combining efficient traversal strategies,
symbolic computations, and advanced graph-theoretical techniques, it achieves both
accuracy and efficiency, making it a valuable tool for quantum many-body simulations
and related applications.

57

4. Methodology - Algorithm

Algorithm 3: TTNO Optimal Constrcution Algorithm
Input: Tree structure T, Hamiltonian H
Output: Optimized TTNO with minimized virtual bond dimensions

1 Initialization: Represent T as a hierarchical tree structure and initialize
compound state diagram S using given Hamiltonian; Precompute hash values
for all nodes in T using a bottom-up approach;

2 Breadth-First Traversal:;
3 foreach level l in T (processed in BFS order) do

4 First Pass: Process U-Subtrees;
5 foreach U-subtree at level l do
6 Identify redundant U-subtrees using precomputed hash values;
7 Form non-redundant sets of U-subtrees;
8 Update compound state diagram S with optimized U-subtree information;
9 end

10 Second Pass: Process V-Subtrees and Perform Cut Optimization;
11 foreach V-subtree at level l do
12 Identify V-subtrees using precomputed U- and V-subtrees;
13 Use specialized hash function to identify redundant V-subtrees;
14 Call Cut Optimization Algorithm: Optimize the cut site using the Cut

Optimization Algorithm;
15 Update compound state diagram S and the cut site with the results of the

optimization.;
16 end
17 end

18 return Optimized TTNO compound state diagram S;

58

4. Methodology - Algorithm

Algorithm 4: Cut Optimization Algorithm
Input: Compound state diagram S with a focus on cut site C
Output: Updated S, with optimized connectivity for cut site C

1 Step 1: Create Initial Γ-Matrix;
2 Construct the Γ-matrix using the initial connectivity of the cut site C;

3 Step 2: Apply Symbolic Gaussian Elimination;
4 Update Γ-matrix by performing symbolic Gaussian elimination;
5 Preserve symbolic constraints during the elimination process;

6 Step 3: Apply Bipartite Graph Algorithm;
7 Run the bipartite graph algorithm on the initial Γ-matrix to determine minimal

virtual bond dimensions;
8 Run the bipartite graph algorithm on the updated Γ-matrix (from symbolic

Gaussian elimination);

9 Step 4: Compare Results;
10 if Updated Γ-matrix improves virtual bond dimensions then
11 Use the updated Γ-matrix for further processing;
12 end
13 else
14 Revert to the initial Γ-matrix;
15 end

16 Step 5: Reconnect Cut Site;
17 foreach node in cut site C do
18 Reconnect nodes based on the result of the bipartite graph algorithm;
19 Create new nodes if required;
20 Assign γ-coefficients carefully to ensure correctness;
21 Push coefficients to left or right subtrees as needed;
22 end

23 return Optimized connectivity for cut site C;

59

5. Physical Model

As previously outlined, this research centers on constructing representations of physical
systems for simulation. Up to this point, we have discussed the theoretical foundations
and the algorithmic framework. The remaining critical step involves conducting exper-
iments on real-world systems to evaluate the implementation’s effectiveness. Before
presenting the experiments and results, it is important to provide an overview of the
target systems. Understanding these systems is vital for developing accurate and
efficient representations or analyzing the results better.

The study begins with the ab initio electronic Hamiltonian, a relatively straightfor-
ward example encompassing both short- and long-range interactions. This choice is
motivated by its inclusion in one of the reference papers underpinning this research.
Subsequently, our attention shifts to a more general and fundamental Hamiltonian
representing a two-dimensional lattice model. Additionally, experiments are conducted
on randomly generated Hamiltonians expressed in sum-of-products form, utilizing a
limited set of local operators. The details of these systems are explored in the following
sections.

5.1. Ab Initio Electronic Hamiltonian

In the field of quantum chemistry, the ab initio electronic Hamiltonian is a fundamental
framework used to describe the quantum mechanical interactions between electrons
within molecules. This Hamiltonian is constructed entirely from the first principle
of quantum mechanics without relying on empirical parameters. The mathematical
representation of the electronic Hamiltonian, Ĥ, is given as follows:

Ĥ = ∑
pq

tpqa†
paq +

1
2 ∑

pqrs
vpqrsa†

pa†
q aras (5.1)

To fully understand the equation, it is essential to first become familiar with the
fundamentals of fermionic algebra. This mathematical framework governs the behav-
ior and properties of fermions, the particles that obey the Pauli exclusion principle.
Fermionic algebra is characterized by anticommutation relations, which are central to
describing quantum systems involving electrons:

60

5. Physical Model

a =
(

0 1
0 0

)
, a† =

(
0 0
1 0

)
The operators ap and a†

p are fundamental components of fermionic algebra and play
a crucial role in the mathematical description of quantum systems involving fermions,
such as electrons. These operators are used to modify the occupation number of a given
quantum state, such as adding or removing particles from that state. Their properties
are defined as follows:

• ap: The annihilation operator, which removes a fermion (electron) from the
quantum state p. When applied to a quantum state, ap reduces the occupation
number of state p by one, provided that state p is already occupied. This can be
written as:

ap|np⟩ = |np − 1⟩

If the state is unoccupied, the operation yields zero, reflecting the Pauli exclusion
principle:

ap|0p⟩ = 0

This reflects the fact that you cannot remove a particle from an empty state.

• a†
p: The creation operator, which adds a fermion (electron) to the quantum state

p. When applied to a quantum state, a†
p increases the occupation number of state

p by one, provided that state p is unoccupied. Mathematically, it can be expressed
as:

a†
p|np⟩ = |np + 1⟩

This operator is called the creation operator because it ’creates’ a particle in the
state p.

The operators obey the following anticommutation relations, which are fundamental
to the behavior of fermionic systems:

{ap, a†
q} = apa†

q + a†
q ap = δpq

{ap, aq} = apaq + aqap = 0

{a†
p, a†

q} = a†
pa†

q + a†
q a†

p = 0

These relations ensure that no two fermions can occupy the same quantum state
simultaneously, encapsulating the Pauli exclusion principle. Additionally, the operators
ap and a†

p allow for the construction and manipulation of many-body quantum states,
making them indispensable tools in the study of quantum mechanics and quantum

61

5. Physical Model

chemistry. For the purposes of this thesis, these operators are used to construct the
electronic Hamiltonian, which describes interactions among electrons in a given system.

Mastering all aspects of fermionic algebra is beyond the scope of this thesis. However,
a foundational understanding is necessary to interpret the provided Hamiltonian. To
this end, we can simplify the ab inito electronic Hamiltonian by explaining the two
types of interactions it encompasses:

∑
pq

tpqa†
paq

This term represents the one-body interactions within the system. It sums over
all pairs of quantum states p and q. The coefficients tpq, referred to as one-electron
integrals, typically account for the kinetic energy of electrons moving in the field of the
nuclei as well as the potential energy arising from the attraction between the electrons
and the fixed nuclei. This term captures the behavior and contributions of single
electrons within the molecular system.

1
2 ∑

pqrs
vpqrsa†

pa†
q aras

This term describes the two-body interactions, specifically the repulsion between
pairs of electrons. The summation extends over all combinations of quantum states
p, q, r, and s. The coefficients vpqrs, known as two-electron integrals, quantify the
repulsion energy between electrons in states p and q. The factor 1

2 accounts for the
double counting of electron pair interactions, as the repulsion between two specific
electrons is counted once for states p and q and again for states r and s. The sequence of
creation and annihilation operators, a†

pa†
q aras, adheres to the fermionic anticommutation

rules, ensuring compliance with the Pauli exclusion principle. This structure correctly
captures the antisymmetric nature of the wave function under the exchange of any two
electrons.

5.2. Effective Lattice Hamiltonian with Local and Non-Local
Terms

Even though the previous Hamiltonian captures both short- and long-range interactions
within a quantum system, an additional feature we aim to explore is the scenario where

62

5. Physical Model

coefficients are shared across different terms. To simplify the system under consid-
eration while retaining both local and long-range relations, we adopt the following
Hamiltonian. In this representation, the strength of the interaction decays with distance:

H = ∑
i,j

J
∥i− j∥XiXj + ∑

i
gZi

In this case, the Hamiltonian involves basic Pauli matrices, specifically Pauli-X and
Pauli-Z, operating on sites i and j. The Pauli-X operator (Xi) corresponds to a spin flip
on site i, while the Pauli-Z operator (Zi) measures the spin along the z-axis. Using
Pauli matrices offers several advantages: they form a complete basis for single-qubit
operations, allowing efficient representation and manipulation of quantum states. Ad-
ditionally, their simple algebraic properties make them particularly suitable for testing
and validating the interaction strengths and decay patterns within quantum systems.

For this system, we can again explain the two types of interactions to understand
system better:

∑
i,j

J
∥i− j∥XiXj

This term represents the long-range interaction between pairs of elements (e.g., qubits,
spins, or particles) at positions i and j. The interaction strength is governed by the
coefficient J, which is scaled by the inverse of the distance between i and j, denoted as
∥i− j∥. Such scaling reflects the physical principle that interactions between elements
typically weaken as their separation increases. The operators Xi and Xj are spin-
flip operators in spin systems or qubit state rotations in quantum computing. This
term is essential for capturing correlation effects in a quantum many-body system, as
it introduces coupling between distant elements, making the system non-local. The
inverse-distance dependency 1

∥i−j∥ is common in systems where interactions decay with
separation, such as Coulomb interactions in physics or certain graph-based problems
in quantum optimization.

∑
i

gZi

The second term describes a local field effect acting on each element i independently.
The coefficient g represents the strength of this local field, and Zi is Pauli Z-operator.
This term can be thought of as a local "bias" or "energy shift" that influences individual
elements based on their state. For instance, in a spin-1/2 system, this term would
differentiate between the energy of spin-up and spin-down states. In the context of

63

5. Physical Model

Figure 5.1.: Above, we present a grid consisting of 9 sites, illustrating only the long-
range interactions alongside their corresponding coefficients. Using the
Manhattan distance, we observe that the distance between node (0, 0) and
node (1, 1) is the same as the distance between node (0, 0) and node (0, 2).
This symmetry arises from the definition of the Manhattan distance, which
sums the absolute differences in the coordinates of two nodes. As a result,
interactions at equal Manhattan distances will have identical coefficients in
the Hamiltonian.

quantum annealing or optimization problems, this term can encode external constraints
or penalties that guide the system toward specific solutions. The local field term is
crucial for breaking symmetry in the system and introducing tunable control over
individual elements.

Together, these two terms form a versatile Hamiltonian that combines long-range
correlations (via the first term) with local control (via the second term). This type
of Hamiltonian is particularly useful in quantum simulations, quantum annealing,
and optimization problems, where both global interactions and local effects must be
balanced to explore or solve complex systems efficiently.

For the distance between two sites i and j, ∥i− j∥, we decided to use the Manhattan
distance instead of the Euclidean distance. The Manhattan distance, also known as
the L1 norm, is defined as the sum of the absolute differences of their coordinates.
Mathematically, for two points i = (ix, iy) and j = (jx, jy) on a 2D grid, the Manhattan
distance is given by:

∥i− j∥= |ix − jx|+|iy − jy|

64

5. Physical Model

This distance metric measures the total "grid-based" distance. The choice of Manhat-
tan distance in our implementation stems from its computational and representational
advantages. If the Euclidean distance (or L2 norm) were used instead, the coefficient
term J

∥i−j∥ would often result in irrational numbers. In contrast, the Manhattan distance
ensures that the coefficient remains a rational number, aligning with the constraints of
our implementation, which is designed to operate with rational coefficients. This choice
simplifies computations and maintains consistency across the Hamiltonian terms while
retaining meaningful distance-based interactions.

5.3. Randomly Generated Hamiltonians in Sum-of-Products
Form

In addition to the structured Hamiltonians discussed previously, we also explore
randomly generated Hamiltonians expressed in the form of a sum of products of local
operators. This approach provides a flexible and versatile framework for testing our
implementation across a diverse range of scenarios, as the Hamiltonian parameters can
be freely varied to simulate different system configurations.

The general form of the randomly generated Hamiltonian is given as:

H =
N

∑
k=1

γk

M

∏
i=1

O(k)
i

where N is the total number of terms in the Hamiltonian, and M represents the number
of local operators in each term which is equal to the number of sites in our system. The
coefficients γk are assigned to each term and can be configured in one of the following
ways:

• All coefficients are distinct, ensuring each term has a unique weight.

• All coefficients are uniform, providing equal contribution from each term.

• Coefficients are selected from a discrete set of predefined values, allowing for
partial uniformity.

For the local operators O(k)
i used in the product, we constrain the set of operators to

the Identity matrix (I) and the Pauli matrices (X, Y, Z). These operators form a complete
basis for single-qubit operations, enabling efficient representation and manipulation of
quantum states. The constraint to these operators ensures computational tractability
while preserving the generality of the random Hamiltonian’s structure.

65

5. Physical Model

5.3.1. Key Features of the Randomly Generated Hamiltonian

The randomly generated Hamiltonian incorporates several important features that
make it versatile and adaptable for testing:

1. Term Randomization: Each term in the Hamiltonian is generated randomly,
allowing for an arbitrary number of terms (N) and random combinations of the
local operators (O(k)

i).

2. Coefficient Variability: By adjusting the configuration of the γk coefficients,
we can simulate different physical scenarios, such as fully distinct interactions,
uniform interaction strengths, or discrete interaction patterns.

3. Operator Constraints: The restriction to Identity and Pauli matrices simplifies the
generation process while maintaining a wide range of possible interactions. These
operators are well-suited for capturing the fundamental dynamics of many-body
quantum systems.

5.3.2. Applications of Randomly Generated Hamiltonians

The random Hamiltonians are particularly useful for stress-testing the implementation
and evaluating its robustness across different scenarios:

• Validation of Algorithm Performance: By varying the number of terms (N),
number of the sites (M) and the complexity of the operator products (O(k)

i), we
can analyze the scalability and efficiency of our construction methods.

• Simulation of Generic Systems: Random Hamiltonians simulate generic quan-
tum systems without relying on specific physical models, enabling broader
applicability.

• Exploration of Edge Cases: The randomization allows us to generate rare or
extreme configurations, which are valuable for identifying potential limitations in
the algorithm.

This approach ensures a comprehensive evaluation of the methods developed in
this thesis, providing insights into their applicability to real-world systems and their
general performance across diverse Hamiltonian structures.

66

6. Experiments, Results and Evaluations

This chapter presents the experiments conducted to evaluate the proposed algorithms
and discusses the results obtained. The experiments are designed to test the algorithm’s
performance and its applicability to various quantum systems. Additionally, for each
system, we test different features, such as the impact of varying tree structures and the
effect of diverse coefficient assignments, including uniform, distinct, and discrete values.

To assess the performance of our proposed method, we compare the results for each
experimental set with optimal results calculated using the mathematically accurate
Singular Value Decomposition (SVD), with the outcomes of previously implemented
algorithm which is the Bipartite Graph Algorithm and with non-optimized trivial
construction. These comparisons provide a comprehensive evaluation of our method’s
accuracy and efficiency relative to existing techniques and ground state.

The use of Singular Value Decomposition (SVD) as a baseline method for determin-
ing the optimal virtual bond dimensions offers a mathematically rigorous reference.
However, this approach comes with significant computational limitations. The compu-
tational cost of SVD for dense matrices is O(n3), where n is the dimension of the matrix.
This cost scales exponentially with the size of the system, making SVD infeasible for
larger quantum systems, particularly those with more than 7–8 sites in our set-up.

For the experiments, wherever SVD is used to establish baseline reference values, we
will focus on smaller systems, typically limited to those with fewer than 7–8 sites. This
enables a direct comparison between the optimal results produced by SVD and the
outputs of the proposed algorithms. For larger systems, where SVD computations are
impractical, the analysis will rely on comparisons among the algorithms themselves,
excluding SVD from consideration. By adhering to these constraints, we balance com-
putational feasibility with the need for a reliable baseline in small-scale scenarios.

The chapter is organized as follows: We provide an analysis of the three main
Hamiltonian structures considered in this study: the ab initio electronic Hamiltonian,
the effective lattice Hamiltonian, and randomly generated Hamiltonians. For each
system, we evaluate specific aspects, such as the suitability of different tree structures

67

6. Experiments, Results and Evaluations

or the role of coefficient variability. Finally, we compare the performance of our method
to existing approaches and discuss the implications of the results within each section.

6.1. Experimental Setup

The experiments were conducted in a controlled computational environment using
an Arm M1 processor with 16 GB RAM. The algorithms were implemented in vanilla
Python without extra numerical libraries even like NumPy. For symbolic computations,
we again stick with pure Python implementation, refraining from usage of the SymPy
library.

Key performance metrics considered in the experiments include:

• Virtual Bond Dimension: A measure of the efficiency of the constructed MPOs
and TTNOs.

• Accuracy: The ability to reproduce the original Hamiltonian after reconstruction.
(Which we always reach with any method)

The results for each Hamiltonian configuration are discussed in the subsequent
sections.

6.2. Ab Initio Electronic Hamiltonian

Although considerable effort was invested in understanding the ab initio electronic
Hamiltonian during the initial phase of this thesis, it was ultimately not the focus of
the experimental phase. The decision was based on the observation that testing with
randomly generated Hamiltonians effectively encompasses all scenarios that could
occur with the ab initio electronic Hamiltonian. Additionally, the lattice Hamiltonian
was determined to be a more suitable system for evaluating coefficient variability
and different tree constructions. As a result, experiments with the ab initio electronic
Hamiltonian have been deferred to future work.

6.3. Randomly Generated Hamiltonians

The initial set of experiments is randomly generated Hamiltonians, providing a general
evaluation of the algorithm’s performance. As explained in the previous section, these

68

6. Experiments, Results and Evaluations

Hamiltonians were constructed with varying numbers of terms, different sets of coeffi-
cients, and combinations of local operators (I, X, Y, Z).

These Hamiltonians are composed of terms varying in number from 1 to 30. For each
level (i.e., each number of terms), 1,000 distinct Hamiltonians were tested, resulting in
a total of 30,000 Hamiltonians for one set of coefficients. This broad dataset ensures a
comprehensive evaluation of the optimization methods across a wide range of scenarios.

For this set of experiments, we utilize a fixed tree structure as depicted in Figure
4.12. The tree structure is kept constant throughout all tests to isolate the effects of the
optimization methods on bond dimensions. By standardizing the tree structure, we
ensure that any variations in performance are attributable to the optimization methods
rather than differences in tree topology.

The optimization methods under consideration are as follows:

• SVD (Singular Value Decomposition): This method provides the reference
solution with the optimal bond dimensions. Although computationally expensive,
SVD serves as a benchmark for comparing the other approaches.

• Basic: The naive construction of the TTNO without any form of compression.
This represents the worst-case scenario with maximal bond dimensions.

• Bipartite Theory: This approach applies the bipartite graph optimization tech-
nique (using the Hopcroft-Karp algorithm) to minimize the bond dimensions,
without any additional preprocessing.

• SGE + Bipartite: This enhanced method combines Symbolic Gaussian Elimination
(SGE) with the bipartite graph theory to preprocess and optimize the construction
further.

Each optimization method was tested with three distinct sets of coefficients, as
described in the previous section:

• Uniform Coefficients: All terms in the Hamiltonian share the same coefficient
value.

• Partially Uniform Coefficients: A mix of terms with identical and distinct
coefficients.

• Distinct Coefficients: Each term in the Hamiltonian has a unique coefficient.

69

6. Experiments, Results and Evaluations

0 5 10 15 20 25 30
Number of Terms

0

5

10

15

20

25

30

M
ea

n
Vi

rtu
al

 B
on

d
Di

m
en

sio
n

Mean Virtual Bond Dimensions Across Methods
Methods

Svd
Sge
Bipartite
Basic

Figure 6.1.: Mean bond dimensions for
different methods, with basic
configuration

0 5 10 15 20 25 30
Number of Terms

1

2

3

4

5

6

7

8

9

M
ea

n
Vi

rtu
al

 B
on

d
Di

m
en

sio
n

Mean Virtual Bond Dimensions Across Methods
Methods

Svd
Sge
Bipartite

Figure 6.2.: Mean bond dimensions for
different methods without ba-
sic configuration.

These coefficient configurations allow us to test how the optimization methods
perform under varying levels of complexity in the Hamiltonian. For instance, the
uniform coefficients case is expected to provide simpler connectivity structures, while
the distinct coefficients case introduces higher complexity due to the lack of redundancy.

The results obtained align well with our theoretical expectations, highlighting the
strengths and weaknesses of each method under different scenarios. The following
sections present a detailed analysis of the results, accompanied by visualizations of the
data. These include comparisons of the bond dimensions achieved by each method
and an exploration of the effects of varying coefficient configurations on optimization
performance.

6.3.1. Uniform Coefficients:

This scenario underscores the inherent limitation of the Bipartite Graph Theory, where
the addition of Symbolic Gaussian Elimination (SGE) was expected to yield significant
improvements. As illustrated in Figures 6.1 and 6.2, the basic system—with the naïve
construction approach—shows substantially higher mean bond dimensions compared
to the other methods. This strong difference highlights the efficiency of the optimisa-
tions. Even when the basic system is excluded, as shown in Figure 6.2, the mean bond
dimensions for the remaining methods appear closely aligned, reflecting the general
effectiveness of the Bipartite Graph approach in most cases. However, this overall
success also masks subtle yet critical differences between the methods.

70

6. Experiments, Results and Evaluations

0 5 10 15 20 25 30
Number of Terms

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

Di
ffe

re
nc

e
in

 M
ea

n
Vi

rtu
al

 B
on

d
Di

m
en

sio
ns Differences Between Methods

Method Pair

Svd - Sge
Svd - Bipartite
Sge - Bipartite

Figure 6.3.: Differences between Bipartite
and SVD-SGE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Terms
0

1

2

3

4

5

Nu
m

be
r o

f C
as

es
 E

xc
ee

di
ng

 S
VD

Cases Where Method Exceeds SVD (Grouped Bar Chart)
Methods

Sge
Bipartite

Figure 6.4.: Number of cases where bond
dimension is suboptimal com-
pare to SVD

A more detailed examination, presented in Figures 6.3 and 6.4, reveals a clear trend:
the deviation from the SVD solution increases with the use of the Bipartite Graph
Theory alone. This trend indicates the method’s inability to fully optimize bond di-
mensions in certain cases, particularly as the system complexity grows. By contrast,
the combination of SGE with Bipartite Graph Theory consistently achieves the optimal
bond dimensions, matching the SVD results in all tested scenarios. This success under-
scores the strength of the SGE preprocessing step in addressing the shortcomings of
the standalone Bipartite Graph approach, particularly in handling complex uniform
coefficient cases.

Despite these findings, it would be unjust to disregard the contributions of the
Bipartite Graph approach entirely. As shown in Figure 6.5, the naïve construction
performs significantly worse than the Bipartite Graph method, even when viewed on a
logarithmic scale. The disparity in performance between these methods underscores
the considerable advancements provided by the Bipartite Graph approach over basic
construction methods. However, the SGE-enhanced algorithm stands out as the most
robust and reliable, delivering consistently optimal results across all cases. This makes
it a pivotal step forward in the optimization of bond dimensions for tensor network
operators.

71

6. Experiments, Results and Evaluations

0 5 10 15 20 25 30
Number of Terms

0

100

101

102

103
Nu

m
be

r o
f C

as
es

 E
xc

ee
di

ng
 S

VD
 (L

og
 S

ca
le

) Cases Where Method Exceeds SVD (Log Scale)

Methods
Sge
Bipartite
Basic

Figure 6.5.: Deviation from SVD for all methods.

6.3.2. Partially Uniform and Distinct Coefficients:

For a unique set of coefficients, the theoretical proof of the Bipartite Graph Theory
provided by Ren et al. [15] holds true, demonstrating that the Bipartite Graph method
is, in theory, capable of achieving the optimal bond dimension. This expectation is
satisfied with our experimental results, where both the Bipartite Graph approach and
our approach SGE consistently reach the optimal configuration for all tested cases.
Figure 6.6 illustrates this equivalence, showing that the bond distributions for these
methods are identical across the experiments, regardless of the number of terms in the
Hamiltonian.

These results are also valid for both partially uniform and completely distinct co-
efficient sets. While partially uniform coefficients might theoretically introduce inef-
ficiencies in the Bipartite Graph approach—particularly in cases where the overlap
between coefficients leads to inefficiency in the optimization process—our random
experiment set revealed no such issues. A likely explanation is that the number of
unique coefficient terms in the partially uniform set remained sufficiently high to avoid
problematic configurations. Additionally, the randomness of our experiment set may

72

6. Experiments, Results and Evaluations

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Number of Terms in the Hamiltonian

2

4

6

8

10

Av
er

ag
e

Vi
rtu

al
 B

on
d

Di
m

en
sio

n Distribution of Average Bond Dimensions Across Methods
Method

Svd
Sge
Bipartite

Figure 6.6.: Virtual Bond distribution for each method

have naturally excluded edge cases where partially uniform coefficients would cause
inefficiencies.

It is worth noting that while these results suggest broad applicability of the Bipartite
Graph method, they do not entirely rule out the possibility of inefficiencies in edge
cases with more carefully curated partially uniform coefficients. Future research could
explore this possibility by deliberately constructing test cases designed to challenge the
Bipartite Graph method under partially uniform coefficient conditions. Nevertheless,
for the configurations tested in this study, both the Bipartite Graph and SGE methods
performed as expected, consistently yielding optimal bond dimensions.

6.4. Effective Lattice Hamiltonian

The second set of experiments focused on the effective lattice Hamiltonian, which
features both local and long-range interactions. The algorithm’s capability to manage
decaying interaction strengths was thoroughly tested using a two-dimensional lattice
model. Particular attention was given to the influence of different tree structures on
bond dimensions. To this end, various methods for traversing the lattice grid were
employed, enabling a comprehensive analysis of how tree configurations affect the
optimization process and the resulting bond dimensions.

The traversal methods explored in the experiments are as follows and can be shown
in the figure 6.7:

• Snake: This method performs a linear traversal, iterating over each node in a
snake-like pattern, ultimately resulting in a Matrix Product State (MPS) structure.

73

6. Experiments, Results and Evaluations

Snake Traverse Layered Traverse Layered Virtual Staircase

Figure 6.7.: Traverse Methods

• Layered: A tree structure where the first node of each line is connected directly
to the other first nodes, creating a layered hierarchy across the grid.

• Layered with Virtual Nodes: A variation of the layered tree structure, where the
connections between the first nodes are established through additional virtual
nodes, providing an intermediary layer.

• Staircase: A more balanced tree structure that traverses the grid along the
diagonal, creating a hierarchical tree configuration stemming from the diagonal
connections.

6.4.1. Experiment Results

We performed experiments on the lattice Hamiltonian by progressively increasing
the lattice size L in an L× L grid, carefully observing the virtual bond dimensions
generated across different tree structures. This experimental design allowed us to
evaluate how various tree structures impact the efficiency of TTNO representations.

For these tests, we employed Symbolic Gaussian Elimination (SGE) to construct the
Hamiltonian. The choice of SGE was informed by its demonstrated superiority in prior
experiments with randomly generated Hamiltonians, where it consistently achieved
optimal bond dimensions more effectively than other methods. As with examining
the lattice Hamiltonian, we observe that it involves only two symbolic coefficients,
accompanied by varying scalar multipliers for interaction terms, which is a scenario
where the bipartite graph algorithm may exhibit inefficiencies. By leveraging SGE, we
ensured a precise and efficient initialization of the lattice Hamiltonian, isolating the
performance of tree structures from any variability in the construction process.

74

6. Experiments, Results and Evaluations

Figure 6.8.: Mean Virtual bond Dimensionns

In our experiments, we focus on analyzing two critical metrics: the mean virtual
bond dimension and the maximum virtual bond dimension. The mean virtual bond
dimension serves as an indicator of the overall success of the optimization process. A
lower mean value reflects better compression and efficiency in the system’s representa-
tion. On the other hand, the maximum virtual bond dimension highlights the bottleneck
in the representation. Even a single site with an excessively large bond dimension can
render the representation computationally infeasible.

It is important to note that all tree construction considered in our experiments are
accurate, meaning they represent the system without any errors or approximations.
Thus, the differences in performance metrics are solely attributed to the optimization
quality of the tree structures, rather than any compromise in representational fidelity.

Mean Virtual Bond Dimensions

The graph in Figure 6.8 illustrates the mean virtual bond dimensions as a function
of the lattice size L for various tree structures. The four tree structures—MPS Case
Snake-Like Tree, Layered Tree, Layered Tree with Virtual Nodes, and Staircase Tree—are

75

6. Experiments, Results and Evaluations

compared to evaluate their efficiency in representing the lattice Hamiltonian.

The Snake-Like MPS Tree shows a rapid increase in the mean bond dimensions
with increasing L. This behavior is expected because the linear structure of the MPS
case inherently lacks the ability to represent long-range interactions efficiently. As
L grows, the linear topology forces the bond dimensions to expand significantly to
capture correlations, leading to higher computational costs.

Other tree methods demonstrate significantly better scalability compared to the
Snake-Like Tree. By incorporating a layered structure, these topologies effectively
balance local and global correlations, leading to a much slower growth in bond di-
mensions as the system size increases. This improvement underscores the advantages
of tree structures, particularly for systems with long-range interactions, where linear
representations like the Snake-Like Tree become inefficient.While there are slight differ-
ences among the tree structures tested, the Layered Tree slightly achieves the best bond
dimensions overall.

Maximum Virtual Bond Dimensions

The graph in Figure 6.9 illustrates the maximum virtual bond dimension for each
tree structure across varying grid sizes. This metric highlights the bottleneck in the
tensor network representation, as the maximum bond dimension directly impacts the
computational complexity and resource requirements for simulations.

As observed, the Snake-Like MPS Tree consistently exhibits a higher maximum
bond dimension, indicating a significant bottleneck in its representation. This result
aligns with expectations, as the Snake-Like structure is inherently limited in its ability
to distribute correlations efficiently across the system, resulting in larger peak bond
dimensions.

What is less expected, however, is the performance of the Staircase Tree, which shows
bottlenecks comparable to the MPS Tree in terms of maximum bond dimension. This
suggests that the Staircase Tree may not effectively mitigate correlation bottlenecks in
smaller grids, potentially due to its less balanced hierarchical structure. It is possible
that this performance issue may only manifest in smaller grids, as larger grids were
beyond the computational limits of this study.

These findings highlight the importance of carefully considering tree structure when

76

6. Experiments, Results and Evaluations

Figure 6.9.: Maximum Virtual Bond Dimension exist in the grid

designing tensor network representations, as suboptimal configurations can lead to
significant bottlenecks that hinder scalability and computational efficiency.

6.5. Discussion

The experimental results presented in this chapter highlight the effectiveness of the
proposed methods for optimizing bond dimensions in tensor network operators. By
systematically testing various optimization methods across different Hamiltonian struc-
tures and coefficient configurations, we gained valuable insights into the strengths and
limitations of each approach.

One of the most significant findings is the consistent superiority of the Symbolic
Gaussian Elimination (SGE) combined with the Bipartite Graph Theory. This hybrid ap-
proach consistently achieved optimal bond dimensions across all tested cases, matching
the results obtained using the mathematically rigorous but computationally expensive

77

6. Experiments, Results and Evaluations

SVD method. However, it is important to note that, due to its symbolic nature, the SGE
+ Bipartite approach can theoretically deviate from the optimal solution, particularly in
cases involving unique or partially uniform coefficients. Despite this possibility, the
experiments demonstrated that such deviations are rare, indicating that the method
performs reliably across a broad range of configurations.

The Bipartite Graph Theory, while effective in many cases, demonstrated limitations
when dealing with uniform or highly correlated coefficients. These scenarios resulted
in suboptimal bond dimensions, as reflected in the increasing deviations from the SVD
baseline. Nevertheless, the Bipartite Graph approach significantly outperformed the
naïve construction method, showcasing its value as a practical and computationally
efficient alternative for many applications.

The naïve construction method serves as a baseline to demonstrate the representation
of the system without any form of compression or optimization on the TTNO. This
approach highlights the worst-case scenario, underscoring the inefficiency and com-
putational challenges posed by unoptimized representations. The powerfull contrast
between the naïve construction and the results achieved using optimization methods
such as Bipartite-SGE underscores the necessity of implementing more sophisticated
techniques for tensor network operator construction.

The experiments also underscored the role of coefficient configurations in influencing
the performance of the optimization methods. While all methods effectively handled
unique and distinct coefficient sets, uniform configurations posed challenges, partic-
ularly for the Bipartite Graph Theory alone. These findings emphasize the need for
robust algorithms that can adapt to diverse coefficient patterns and ensure optimal
performance across a wide range of systems.

The results from the lattice experiments -on the other hand- provide additional
insights into the performance of different tree structures and their implications for
optimizing tensor network representations. One of the most striking observations is the
sharp difference in scalability between the Snake-Like MPS Tree and other hierarchical
structures. The MPS structure consistently produces higher mean bond dimensions,
showcasing its inefficiency in capturing correlations for larger systems. This trend
shows itself when considering the maximum bond dimensions. The inability of the
Snake-Like MPS to distribute correlations effectively highlights the inherent limitations
of linear structures for systems with long-range interactions.

These findings reinforce the importance of selecting appropriate tree structures for

78

6. Experiments, Results and Evaluations

tensor network representations, particularly when dealing with systems characterized
by long-range interactions. While hierarchical structures generally outperform linear
ones, the specific design of the tree can significantly impact scalability and efficiency.

In conclusion, the lattice experiments demonstrate that the choice of tree structure
plays a pivotal role in optimizing tensor network representations. While the MPS -
Tree may suffice for simpler systems, it is inadequate for capturing the complexities of
systems with long-range interactions. Hierarchical structures, particularly the Layered
Tree and its variants, offer a more robust framework for such systems, enabling efficient
representation and reduced computational overhead. These findings complement
the results from the random Hamiltonian experiments and provide a comprehensive
understanding of the algorithm’s behavior across diverse quantum systems.

79

7. Conclusions

This thesis explored an efficient symbolic construction of Matrix Product Operators
(MPOs) and Tree Tensor Network Operators (TTNOs), focusing on leveraging bipartite
graph theory and symbolic Gaussian elimination to address existing limitations. The
research began by analyzing an established algorithm by Ren et al (2020) for MPO con-
struction and identifying scenarios where the method underperformed. To overcome
these challenges, a novel approach incorporating symbolic Gaussian elimination was
developed, enhancing the bipartite graph algorithm’s capabilities. This method was
then extended to TTNOs, introducing additional complexity due to the hierarchical
nature of tree structures.

The symbolic Gaussian elimination (SGE) preprocessing step proved to be a piv-
otal addition, enabling the algorithm to handle cases involving compressions more
effectively. The algorithm avoided numerical instability by maintaining the symbolic
representation of coefficients while preserving accuracy in most configurations. The
extension to TTNOs, facilitated by state diagram representations, marked a significant
step toward more generalized tensor network constructions.

Through extensive experiments, the following key findings were observed:

• The SGE-enhanced bipartite graph algorithm consistently achieved optimal or
near-optimal bond dimensions, particularly in scenarios where the standalone
bipartite graph algorithm struggled due to linear dependencies.

• The method demonstrated robustness across different Hamiltonian structures,
including random configurations and lattice systems validating its versatility.

• While SVD provided the theoretical optimal solution, its computational limitations
restricted its applicability to small systems. The SGE approach offered a practical
alternative with competitive results.

• It has seen that TTNOs are significantly more efficient than linear MPO structures
for systems with long-range interactions. Also, it revealed notable performance
differences between various tree structures, highlighting the importance of select-
ing an optimal tree configuration for specific systems.

80

7. Conclusions

• The transition from MPOs to TTNOs, enabled by the hierarchical processing
strategy and state diagram representation, extended the applicability of the
method to non-linear systems while preserving its effectiveness.

7.1. Limitations and Challenges

Despite its successes, the proposed method is not without limitations:

• The symbolic approach, while effective in maintaining coefficient accuracy, does
introduce additional computational overhead, particularly for larger systems.
However, this overhead is deemed acceptable because the construction is per-
formed only once at the start of the simulation. Given this, we prioritized accuracy
and efficiency over computational cost, ensuring a reliable and optimized founda-
tion for the subsequent simulation processes.

• The SGE-enhanced algorithm may deviate from the optimal solution in unique or
partially uniform coefficient scenarios, although this was rare in the conducted
experiments.

• The hierarchical extension to TTNOs, though successful, relies on predefined tree
structures. Determining the most efficient tree configuration remains an open
question, warranting further research.

7.2. Future Work

This research opens several avenues for future exploration:

• Extending the SGE-enhanced algorithm to other tensor network structures, such
as Projected Entangled Pair States (PEPS) or higher-dimensional systems, could
broaden its applicability.

• Developing more computationally efficient symbolic techniques or hybrid symbolic-
numerical methods could address the overhead associated with the current ap-
proach.

• Exploring the integration of the method into practical quantum simulation frame-
works to evaluate its performance on real-world quantum problems.

81

7. Conclusions

7.3. Concluding Remarks

Symbolic and efficient construction of tensor network operators, particularly MPOs
and TTNOs, remains a critical challenge in quantum simulation. This thesis has made
significant contributions to this field by introducing a novel algorithmic framework that
addresses existing limitations and broadens the applicability of tensor network methods
to hierarchical structures. By utilizing bipartite graph theory and symbolic techniques,
this work establishes a robust and versatile approach to tensor network constructions,
providing a solid foundation for future advancements in quantum computing and
simulation.

82

A. Appendix

A.1. Symbolic Gaussian Elimination Implementation steps

To elaborate the implementation of the Symbolic Gaussian Elimination, we can check the
given specific example, to observe how we preserve the operations while reducing the
matrix to a 4x4 format and the rank to 4 without creating combinations of elements. In
each step, the updates are highlighted with red, and we remove the zero rows-columns
in the end as a final step:

−→


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




3γ11 3γ12 −γ13 0 2γ12

0 3γ22 0 0 2γ22

0 3γ32 0 0 2γ32

0 0 2γ43 2γ44 0
0 0 −γ43 −γ44 0




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



−→


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 − 1

2 1




3γ11 3γ12 −γ13 0 2γ12

0 3γ22 0 0 2γ22

0 3γ32 0 0 2γ32

0 0 2γ43 2γ44 0
0 0 0 0 0




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



−→


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 − 1

2 1




3γ11 3γ12 −γ13 0 0

0 3γ22 0 0 0
0 3γ32 0 0 0
0 0 2γ43 2γ44 0
0 0 0 0 0




1 0 0 0 0
0 1 0 0 2

3
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



−→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 − 1

2




3γ11 3γ12 −γ13 0
0 3γ22 0 0
0 3γ32 0 0
0 0 2γ43 2γ44




1 0 0 0 0
0 1 0 0 2

3
0 0 1 0 0
0 0 0 1 0



83

A. Appendix

U1

U2

U3

U4

V1

V2

V3

V4

γ1

γ2

γ2

γ3γ1

γ4

γ3

γ4

Figure A.1.: Another more complex example bipartite graph setting to apply symbolic
Gaussian elimination

A.2. Another example where Symbolic Gaussian Elimination is
required

Here, we can see a more complex example where the bipartite graph algorithm is
unable to find an optimal virtual bond dimension. The configuration presented has
a rank of 3, which could be expressed as a sum of three terms. Unlike simpler cases,
no single row or column is directly parallel to another. Instead, the last row is a linear
combination of the preceding rows. The operations performed in this case, explicitly
outlined here, involve only row eliminations.

84

A. Appendix

Γh = O · Γ̃h
γ1 γ2 0 0
0 γ2 γ3 0

γ1 0 0 γ4

0 0 γ3 γ4

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ·


γ1 γ2 0 0
0 γ2 γ3 0

γ1 0 0 γ4

0 0 γ3 γ4

 ·


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



(R3 = R3 - R1) =


1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1

 ·


γ1 γ2 0 0
0 γ2 γ3 0
0 −γ2 0 γ4

0 0 γ3 γ4

 ·


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



(R3 = R3 + R2) =


1 0 0 0
0 1 0 0
1 −1 1 0
0 0 0 1

 ·


γ1 γ2 0 0
0 γ2 γ3 0
0 0 γ3 γ4

0 0 γ3 γ4

 ·


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



(R4 = R4 - R3) =


1 0 0 0
0 1 0 0
1 −1 1 0
0 0 1 1

 ·


γ1 γ2 0 0
0 γ2 γ3 0
0 0 γ3 γ4

0 0 0 0

 ·


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



(Zero Row erased) =


1 0 0
0 1 0
1 −1 1
0 0 1

 ·
γ1 γ2 0 0

0 γ2 γ3 0
0 0 γ3 γ4

 ·


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


A.3. Appendix: Use of AI Tools

During the preparation of this thesis, OpenAI’s ChatGPT was utilized to assist in the
writing process. Its contributions included:

• Rephrasing and refining textual content in various sections.

• Offering suggestions for organizing sections and improving the flow of ideas.

All content generated by ChatGPT was critically reviewed, verified, and, where
necessary, modified to meet the academic standards of the thesis. The use of this tool
was limited to textual assistance and did not involve any analytical or computational
aspects of the research.

85

Bibliography

[1] E. National Academies of Sciences and Medicine. Quantum Computing: Progress
and Prospects. Ed. by E. Grumbling and M. Horowitz. Washington, DC: The
National Academies Press, 2019. isbn: 978-0-309-47969-1. doi: 10.17226/25196.

[2] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, 2010.

[3] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D.
Englund, T. Gehring, C. Lupo, C. Ottaviani, J. L. Pereira, M. Razavi, J. S. Shaari,
M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden. “Advances
in quantum cryptography.” In: Adv. Opt. Photon. 12.4 (Dec. 2020), pp. 1012–1236.
doi: 10.1364/AOP.361502.

[4] A. J. Daley, I. Bloch, C. Kokail, S. Flannigan, N. Pearson, M. Troyer, and P. Zoller.
“Practical quantum advantage in quantum simulation.” In: Nature 7920 (2022),
pp. 667–676.

[5] I. M. Georgescu, S. Ashhab, and F. Nori. “Quantum simulation.” In: Rev. Mod.
Phys. 86 (1 Mar. 2014), pp. 153–185. doi: 10.1103/RevModPhys.86.153.

[6] I. Buluta and F. Nori. “Quantum Simulators.” In: Science 326.5949 (2009), pp. 108–
111. doi: 10.1126/science.1177838. eprint: https://www.science.org/doi/
pdf/10.1126/science.1177838.

[7] F. Verstraete, J. J. Garcıa-Ripoll, and J. I. Cirac. “Matrix Product Density Operators:
Simulation of Finite-Temperature and Dissipative Systems.” In: Phys. Rev. Lett. 93
(20 Nov. 2004), p. 207204. doi: 10.1103/PhysRevLett.93.207204.

[8] B. Pirvu, V. Murg, J. I. Cirac, and F. Verstraete. “Matrix product operator represen-
tations.” In: New Journal of Physics 12.2 (Feb. 2010), p. 025012. doi: 10.1088/1367-
2630/12/2/025012.

[9] C. Hubig, I. P. McCulloch, and U. Schollwöck. “Generic construction of efficient
matrix product operators.” In: Phys. Rev. B 95 (3 Jan. 2017), p. 035129. doi:
10.1103/PhysRevB.95.035129.

[10] I. P. McCulloch. “From density-matrix renormalization group to matrix product
states.” In: Journal of Statistical Mechanics: Theory and Experiment 2007.10 (Oct.
2007), P10014. doi: 10.1088/1742-5468/2007/10/P10014.

86

https://doi.org/10.17226/25196
https://doi.org/10.1364/AOP.361502
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1126/science.1177838
https://www.science.org/doi/pdf/10.1126/science.1177838
https://www.science.org/doi/pdf/10.1126/science.1177838
https://doi.org/10.1103/PhysRevLett.93.207204
https://doi.org/10.1088/1367-2630/12/2/025012
https://doi.org/10.1088/1367-2630/12/2/025012
https://doi.org/10.1103/PhysRevB.95.035129
https://doi.org/10.1088/1742-5468/2007/10/P10014

Bibliography

[11] S. Keller, M. Dolfi, M. Troyer, and M. Reiher. “An efficient matrix product operator
representation of the quantum chemical Hamiltonian.” In: The Journal of Chemical
Physics 143.24 (Dec. 2015), p. 244118. issn: 0021-9606. doi: 10.1063/1.4939000.
eprint: https : / / pubs . aip . org / aip / jcp / article - pdf / doi / 10 . 1063 / 1 .
4939000/15513208/244118_1_online.pdf.

[12] A. J. Daley, C. Kollath, U. Schollwöck, and G. Vidal. “Time-dependent density-
matrix renormalization-group using adaptive effective Hilbert spaces.” In: Journal
of Statistical Mechanics: Theory and Experiment 2004.04 (Apr. 2004), P04005. issn:
1742-5468. doi: 10.1088/1742-5468/2004/04/p04005.

[13] S. R. White and A. E. Feiguin. “Real-Time Evolution Using the Density Matrix
Renormalization Group.” In: Physical Review Letters 93.7 (Aug. 2004). issn: 1079-
7114. doi: 10.1103/physrevlett.93.076401.

[14] Y.-Y. Shi, L.-M. Duan, and G. Vidal. “Classical simulation of quantum many-body
systems with a tree tensor network.” In: Phys. Rev. A 74 (2 Aug. 2006), p. 022320.
doi: 10.1103/PhysRevA.74.022320.

[15] J. Ren, W. Li, T. Jiang, and Z. Shuai. “A general automatic method for optimal
construction of matrix product operators using bipartite graph theory.” In: The
Journal of Chemical Physics 153.8 (Aug. 2020). issn: 1089-7690. doi: 10.1063/5.
0018149.

[16] G. K.-L. Chan, A. Keselman, N. Nakatani, Z. Li, and S. R. White. Matrix Product
Operators, Matrix Product States, and ab initio Density Matrix Renormalization Group
algorithms. 2016. arXiv: 1605.02611 [physics.chem-ph].

[17] R. M. Milbradt, Q. Huang, and C. B. Mendl. State Diagrams to determine Tree Tensor
Network Operators. 2024. arXiv: 2311.13433 [quant-ph].

[18] W. Li, J. Ren, H. Yang, H. Wang, and Z. Shuai. “Optimal tree tensor network op-
erators for tensor network simulations: Applications to open quantum systems.”
In: The Journal of Chemical Physics 161.5 (Aug. 2024), p. 054116. issn: 0021-9606.
doi: 10.1063/5.0218773. eprint: https://pubs.aip.org/aip/jcp/article-
pdf/doi/10.1063/5.0218773/20096727/054116_1_5.0218773.pdf.

[19] U. Schollwöck. “The density-matrix renormalization group in the age of matrix
product states.” In: Annals of Physics 326.1 (2011). January 2011 Special Issue,
pp. 96–192. issn: 0003-4916. doi: https://doi.org/10.1016/j.aop.2010.09.012.

[20] G. S. Joyce. “Classical Heisenberg Model.” In: Phys. Rev. 155 (2 Mar. 1967), pp. 478–
491. doi: 10.1103/PhysRev.155.478.

87

https://doi.org/10.1063/1.4939000
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.4939000/15513208/244118_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.4939000/15513208/244118_1_online.pdf
https://doi.org/10.1088/1742-5468/2004/04/p04005
https://doi.org/10.1103/physrevlett.93.076401
https://doi.org/10.1103/PhysRevA.74.022320
https://doi.org/10.1063/5.0018149
https://doi.org/10.1063/5.0018149
https://arxiv.org/abs/1605.02611
https://arxiv.org/abs/2311.13433
https://doi.org/10.1063/5.0218773
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0218773/20096727/054116_1_5.0218773.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0218773/20096727/054116_1_5.0218773.pdf
https://doi.org/https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/PhysRev.155.478

Bibliography

[21] J. C. Bridgeman and C. T. Chubb. “Hand-waving and interpretive dance: an
introductory course on tensor networks.” In: Journal of Physics A: Mathematical
and Theoretical 50.22 (May 2017), p. 223001. doi: 10.1088/1751-8121/aa6dc3.

[22] S. R. White. “Density matrix formulation for quantum renormalization groups.”
In: Phys. Rev. Lett. 69 (19 Nov. 1992), pp. 2863–2866. doi: 10.1103/PhysRevLett.
69.2863.

[23] S. R. White. “Density-matrix algorithms for quantum renormalization groups.” In:
Phys. Rev. B 48 (14 Oct. 1993), pp. 10345–10356. doi: 10.1103/PhysRevB.48.10345.

[24] J. Biamonte and V. Bergholm. Tensor Networks in a Nutshell. 2017. arXiv: 1708.
00006 [quant-ph].

[25] J. Biamonte. Lectures on Quantum Tensor Networks. 2020. arXiv: 1912 . 10049
[quant-ph].

[26] F. Verstraete and J. I. Cirac. Renormalization algorithms for Quantum-Many Body Sys-
tems in two and higher dimensions. 2004. arXiv: cond-mat/0407066 [cond-mat.str-el].

[27] F. Verstraete, M. M. Wolf, D. Perez-Garcia, and J. I. Cirac. “Criticality, the Area Law,
and the Computational Power of Projected Entangled Pair States.” In: Physical
Review Letters 96.22 (June 2006). issn: 1079-7114. doi: 10.1103/physrevlett.96.
220601.

[28] N. Schuch, M. M. Wolf, F. Verstraete, and J. I. Cirac. “Computational Complexity
of Projected Entangled Pair States.” In: Physical Review Letters 98.14 (Apr. 2007).
issn: 1079-7114. doi: 10.1103/physrevlett.98.140506.

[29] Y.-Y. Shi, L.-M. Duan, and G. Vidal. “Classical simulation of quantum many-body
systems with a tree tensor network.” In: Physical Review A 74.2 (Aug. 2006). issn:
1094-1622. doi: 10.1103/physreva.74.022320.

[30] G. Vidal. “Class of Quantum Many-Body States That Can Be Efficiently Sim-
ulated.” In: Physical Review Letters 101.11 (Sept. 2008). issn: 1079-7114. doi:
10.1103/physrevlett.101.110501.

[31] G. Evenbly and G. Vidal. “Algorithms for entanglement renormalization.” In:
Physical Review B 79.14 (Apr. 2009). issn: 1550-235X. doi: 10.1103/physrevb.79.
144108.

[32] M. Levin and C. P. Nave. “Tensor Renormalization Group Approach to Two-
Dimensional Classical Lattice Models.” In: Physical Review Letters 99.12 (Sept.
2007). issn: 1079-7114. doi: 10.1103/physrevlett.99.120601.

[33] K. Nakayama. Randomized higher-order tensor renormalization group. 2023. arXiv:
2307.14191 [cond-mat.stat-mech].

88

https://doi.org/10.1088/1751-8121/aa6dc3
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevB.48.10345
https://arxiv.org/abs/1708.00006
https://arxiv.org/abs/1708.00006
https://arxiv.org/abs/1912.10049
https://arxiv.org/abs/1912.10049
https://arxiv.org/abs/cond-mat/0407066
https://doi.org/10.1103/physrevlett.96.220601
https://doi.org/10.1103/physrevlett.96.220601
https://doi.org/10.1103/physrevlett.98.140506
https://doi.org/10.1103/physreva.74.022320
https://doi.org/10.1103/physrevlett.101.110501
https://doi.org/10.1103/physrevb.79.144108
https://doi.org/10.1103/physrevb.79.144108
https://doi.org/10.1103/physrevlett.99.120601
https://arxiv.org/abs/2307.14191

Bibliography

[34] G. Evenbly and G. Vidal. “Tensor Network Renormalization.” In: Physical Review
Letters 115.18 (Oct. 2015). issn: 1079-7114. doi: 10 . 1103 / physrevlett . 115 .
180405.

[35] TensorNetwork. TensorNetwork.org. Accessed: 2025-01-05. 2025. url: https://www.
tensornetwork.org.

[36] G. M. Crosswhite, A. C. Doherty, and G. Vidal. “Applying matrix product
operators to model systems with long-range interactions.” In: Phys. Rev. B 78 (3
July 2008), p. 035116. doi: 10.1103/PhysRevB.78.035116.

[37] N. Nakatani and G. K.-L. Chan. “Efficient tree tensor network states (TTNS) for
quantum chemistry: Generalizations of the density matrix renormalization group
algorithm.” In: The Journal of Chemical Physics 138.13 (Apr. 2013). issn: 1089-7690.
doi: 10.1063/1.4798639.

[38] J. E. Hopcroft and R. M. Karp. “An $n5/2$Algorithm f orMaximumMatchingsinBipartiteGraphs.”
In: SIAM Journal on Computing 2.4 (1973), pp. 225–231. doi: 10.1137/0202019.
eprint: https://doi.org/10.1137/0202019.

[39] M. T. Heath. Scientific Computing. Philadelphia, PA: Society for Industrial and
Applied Mathematics, 2018. doi: 10.1137/1.9781611975581. eprint: https:
//epubs.siam.org/doi/pdf/10.1137/1.9781611975581.

89

https://doi.org/10.1103/physrevlett.115.180405
https://doi.org/10.1103/physrevlett.115.180405
https://www.tensornetwork.org
https://www.tensornetwork.org
https://doi.org/10.1103/PhysRevB.78.035116
https://doi.org/10.1063/1.4798639
https://doi.org/10.1137/0202019
https://doi.org/10.1137/0202019
https://doi.org/10.1137/1.9781611975581
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975581
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975581

	Acknowledgments
	Abstract
	Contents
	Introduction
	Related Work
	A General Automatic Method for Optimal Construction of Matrix Product Operators Using Bipartite Graph Theory
	Matrix Product Operators, Matrix Product States, and ab initio Density Matrix Renormalization Group algorithms
	State Diagrams for Tree Tensor Network Operators
	Optimal Tree Tensor Network Operators for Tensor Network Simulations: Applications to Open Quantum Systems
	The Density-Matrix Renormalization Group in the Age of Matrix Product States
	Generic Construction of Efficient Matrix Product Operators

	Theory
	Hamiltonian Representation with Operator Strings
	Power of the Representation
	Coefficients and Their Role

	Tensor Networks
	The Need for Tensor Networks
	Historical Development of Tensor Networks

	Matrix Product States (MPS) and Matrix Product Operators (MPO)
	Matrix Product States (MPS)
	Matrix Product Operators (MPO)

	Tree Tensor Networks (TTNs) and Tree Tensor Network Operators (TTNOs)
	Tree Tensor Networks (TTNs)
	Tree Tensor Network Operators (TTNOs)

	State Diagrams for TTNOs
	Definition and Structure
	Benefits of State Diagrams

	How to Construct Initial MPOs and TTNOs
	Construction Methods
	Comparison of Construction Methods
	Constructing TTNOs
	Conclusion

	Methodology - Algorithm
	Part I: Optimization of Bond Dimensions
	Existing Method Implementation and Analysis
	Hopcroft-Karp Algorithm and Minimum Vertex Cover Detection
	Selection of Nodes and Assignment of Gamma Coefficients
	Gamma Matrix Interpretation
	Identified Limitations in Bipartite Graph Algorithm
	Proposed Improvement - Symbolic Gaussian Elimination
	Algorithm Summary

	Part II: Application to TTNOs
	Adapting the Optimization Algorithm to Tree Structure
	Decision of the Tree Root and Orientation
	Tree Structure Traversal
	Efficiency in Comparison - Hash Values
	Algorithm Summary and Analysis

	Physical Model
	Ab Initio Electronic Hamiltonian
	Effective Lattice Hamiltonian with Local and Non-Local Terms
	Randomly Generated Hamiltonians in Sum-of-Products Form
	Key Features of the Randomly Generated Hamiltonian
	Applications of Randomly Generated Hamiltonians

	Experiments, Results and Evaluations
	Experimental Setup
	Ab Initio Electronic Hamiltonian
	Randomly Generated Hamiltonians
	Uniform Coefficients:
	Partially Uniform and Distinct Coefficients:

	Effective Lattice Hamiltonian
	Experiment Results

	Discussion

	Conclusions
	Limitations and Challenges
	Future Work
	Concluding Remarks

	Appendix
	Symbolic Gaussian Elimination Implementation steps
	Another example where Symbolic Gaussian Elimination is required
	Appendix: Use of AI Tools

	Bibliography

