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Adaptive divergence and increased genetic differentiation
among populations can lead to reproductive isolation. In Lake
Constance, Germany, a population of invasive three-spined
stickleback (Gasterosteus aculeatus) is currently diverging into
littoral and pelagic ecotypes, which both nest in the littoral
zone. We hypothesized that assortative mating behaviour
contributes to reproductive isolation between these ecotypes
and performed a behavioural experiment in which females
could choose between two nest-guarding males. Behaviour
was recorded, and data on traits relevant to mate choice were
collected. Both females of the same and different ecotypes
were courted with equal vigour. However, there was a
significant interaction effect of male and female ecotypes
on the level of aggression in females. Littoral females were
more aggressive towards pelagic males, and pelagic females
were more aggressive towards littoral males. This indicates
rejection of males of different ecotypes in spite of the fact
that littoral males were larger, more intensely red-coloured
and more aggressive than the pelagic males—all mating traits

© 2025 The Author(s). Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.

Research

Cite this article: Zeidler T, Ros A, Roch S, Jacobs
A, Geist J, Brinker A. 2025 Non-random mating
behaviour between diverging littoral and pelagic
three-spined sticklebacks in an invasive
population from Upper Lake Constance. R. Soc.
Open Sci. 12: 241252.
https://doi.org/10.1098/rsos.241252

Received: 24 July 2024
Accepted: 25 November 2024

Subject Category:
Organismal and evolutionary biology

Subject Areas:
behaviour, ecology, evolution

Keywords:
reproductive isolation, mate choice, aggression,
courtship, adaptive divergence, adaptive radiation

Author for correspondence:
Alexander Brinker
e-mail: alexander.brinker@lazbw.bwl.de

Electronic supplementary material is available
online at https://doi.org/10.6084/
m9.figshare.c.7596419.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

15
 J

an
ua

ry
 2

02
5 

http://orcid.org/
http://orcid.org/0009-0004-9835-5914
https://orcid.org/0000-0003-3241-9722
http://orcid.org/0000-0003-3441-9830
http://orcid.org/0000-0001-7635-5447
http://orcid.org/0000-0001-7698-3443
http://orcid.org/0000-0002-2433-5652
http://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.1098/rsos.241252&domain=pdf&date_stamp=2025-01-13
https://doi.org/10.1098/rsos.241252
https://doi.org/10.6084/m9.figshare.c.7596419
https://doi.org/10.6084/m9.figshare.c.7596419


female sticklebacks generally select for. This study documents the emergence of behavioural
barriers during early divergence in an invasive and rapidly diversifying stickleback population and
discusses their putative role in facilitating reproductive isolation and adaptive radiation within this
species.

1. Introduction
A key feature of speciation is reproductive isolation, which limits gene flow between populations
[1] and facilitates the build-up of genetic differences [2]. Reproductive isolation involves pre- and
post-zygotic barriers [3]. Pre-zygotic barriers encompass all those that impair mating between incipient
species, including selective mate choice as well as spatial and temporal separation during reproduction
[4,5], sperm competition [6] and cryptic female choice [7]. Post-zygotic barriers manifest after mating
and result from fitness disadvantages of hybrid traits [8–10]. Since Darwin’s seminal theories on the
origin of species [11], research has focused on the way reproductive isolation can arise [2,12–15], and
a consensus has emerged that natural selection on the viability of individuals during adaptation to
alternative environments can be an important driver [16]. Sexual selection is driven by competition for
access to gametes and fertilization [17–19], which may result in a genetic linkage between secondary
mating characters and mate choice through divergent runaway processes [20–23]. In general, reproduc-
tive isolation will most likely evolve when processes of adaptation to alternative environments are
reinforced by selective mate choice [19,24–27]. Studying micro-evolutionary processes at an early stage
of speciation, especially in sympatric populations, is thus essential in understanding how adaptive
divergence and selective mate choice act together to initiate the evolution of reproductive isolation [28].

The three-spined stickleback species complex (Gasterosteus aculeatus, Linnaeus, 1758; hereafter
referred to as stickleback) contains many evolutionarily recent species pairs, making it an ideal
system for studying micro-evolutionary processes [29]. Sticklebacks are widely distributed in boreal
and temperate regions of the northern hemisphere and have a marine origin [30]. The ancestral
marine form repeatedly colonized inland habitats after the Last Glacial Maximum [31], and freshwater
ecotypes have evolved subsequently and in parallel by adaptation from standing genetic variation [32–
35]. Different ecotypes exist, which are locally adapted, and incipient species pairs have evolved along
environmental gradients, for instance, ocean–freshwater [36,37], stream–lake [38–40] and benthic–
limnetic [41,42]. Benthic–limnetic stickleback species pairs have exclusively been described in seven
lakes, all in the Strait of Georgia region of British Columbia [29,41–44]. In these lakes, the pelagic
ecotype always has a small, fusiform body and fine gill rakers to increase plankton foraging efficiency.
In contrast, the benthic ecotype has a large, deep body and a higher suction force as an adaptation
to feeding on benthic prey [45–51]. Although many stickleback ecotypes have evolved independently
at different locations, ecological adaptation has often led to similar phenotypes in similar environ-
ments [35,52,53]. The repeated evolution of stickleback ecotypes represents an ideal system to study
contemporary evolution and provides strong evidence for the role of ecology in speciation [37,54].

Divergence into ecotype pairs can be facilitated by assortative mating on phenotypic characters
that correlate with the ecotypes [4,39,55–60]. This would likely be based on common sexual selec-
tion processes in the stickleback in which mates are selected based on visual appearance [61,62],
courtship behaviour [36,63], nest structure [64], sexual imprinting [65] and chemical cues [66,67].
Females typically prefer intensely red-coloured males [68,69]. Size has also been shown to play an
important role in mate choice since many ecotype pairs show assortative mating on size, and size is
often divergent between environments [37,54]. An important driver of the formation of ecotype pairs
would be when individuals of a specific ecotype develop a preference for characters that signal local
adaptation to their respective environments [70], and such processes might contribute to the rapid
evolution, within a few generations, of stickleback species pairs in oceanic–freshwater sticklebacks
[35,56,71].

In Lake Constance, Germany, an invasive population of three-spined sticklebacks shows early signs
of divergence between littoral and pelagic individuals [72]. Repeated anthropogenic introductions
from the end of the nineteenth century eventually led the species to invade the littoral zone of the
lake, where it was well established by 1962 [73–76]. In 2012, sticklebacks from this littoral population
invaded the pelagic zone within one season [75,77] in such large numbers that they accounted for
more than 95% of fish abundance and 28% of biomass in this habitat by 2014 [78]. However, as
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sticklebacks depend on breeding in nests that are built and defended by males [79], this pelagic
population still returns to spawning grounds in shallow areas in late spring to early summer, where
it breeds sympatrically with littoral sticklebacks [80]. Despite an expected high rate of gene flow, low
genome-wide genetic differentiation between populations and their shared recent history, these littoral
and pelagic sticklebacks exhibit several regions of localized differentiation across the genome [72]. The
ecotypes differ significantly in body shape, with littoral sticklebacks being larger and having slightly
longer snouts and deeper bodies [72]. These early signs of morphometric and genetic divergence
between ecotypes suggest the potential emergence of reproductive isolation and a putative role of
mating pattern divergence in the Lake Constance population.

This study investigates whether female sticklebacks show a mating preference when presented with
a choice between males of a littoral and a pelagic ecotype, both of which guard nests and attempt to
court them. To test this, we conducted a behavioural experiment under controlled laboratory condi-
tions. Because the two ecotypes are in the process of divergence [72], we expected to find evidence for
assortative mating behaviour, which relies on divergent traits between the ecotypes. We hypothesized
that littoral stickleback females would prefer to mate with littoral stickleback males, and that pelagic
females likewise would prefer to mate with pelagic males.

2. Material and methods
2.1. Fish sampling
Lake Constance is a large oligotrophic pre-alpine lake located in the Rhine drainage basin with
shorelines on the borders of Germany, Austria and Switzerland (figure 1). With a surface area of 535
km2 and a maximum depth of 253 m, it is the third largest lake in Europe [81]. The body of the lake is
divided into two basins, the deep, warm-monomictic Upper Lake Constance (ULC) and the shallower,
dimictic Lower Lake Constance (LLC) [82]. The study focuses solely on the stickleback population in
ULC.

Sticklebacks were caught at three sites in the littoral zone and one in the pelagic zone (figure 1)
between January and March 2023. The littoral zone sampling sites were located close to the shore at
Überlingen (47°45′22.54″ N; 9°10′54.87″ E), Langenargen (47°35′9.04″ N; 9°32′55.80″ E) and Fussacher
Bucht (47°29′59.10″ N; 9°35′12.69″ E). Three different sites were sampled to account for potential
variation within the littoral population. Pelagic sampling was carried out in the area approximately
3 km offshore from Langenargen (47°34′10.47″ N; 9°32′46.53″ E). We chose this sampling design since
we expected higher variation among littoral populations than among pelagic populations, given that
habitats are more diverse in the littoral zone [83] and pelagic sticklebacks might perform foraging
movements over larger distances, resulting in a higher degree of admixture [47,51]. Fish were caught
with benthic and pelagic gillnets (length = 20 m; height = 2 m; mesh width = 8 and 10 mm), which were
set overnight at a depth of around 10 m. The sticklebacks were captured in winter, as there is a clear
separation between littoral and pelagic individuals during this season. Pelagic sticklebacks migrate
inshore to spawn in early spring, where they mix with the littoral conspecifics [80]. Therefore, targeted
sampling required capturing the fish prior to the spawning season. Ecotype was assigned by whether
the fish was caught in the pelagic or littoral zone. We did not select individuals by outer appearance
to keep the experiment unbiased. Dahms et al. [72] showed evidence of divergence of littoral and
pelagic individuals and our sampling design ensured that the fish participating in the mate choice
trials matched the described ecotypes. The fish were kept in eight identical outdoor tanks (77 × 68 ×
68 cm3) with a continuous water supply from the lake, separated by sampling sites. They were fed ad
libitum with frozen bloodworms and artemia two to three times a day until the experiments, which
took place in July 2023.

2.2. Mate choice experiment
In the experiment, females were given a choice between a littoral and a pelagic male, and the mating
behaviour of all three fish was recorded. The experiment was conducted in twelve aquaria (110 × 20
× 20 cm3; Amazonasbecken.eu, Germany) with identical setups (figure 2). In each aquarium, a littoral
and a pelagic female were presented to the males in two subsequent trials and random order. Each
female was used in only one trial. In total, 24 females participated in the experiment. Littoral and
pelagic males were distributed randomly between the left and right sides of the aquaria. Littoral

3
royalsocietypublishing.org/journal/rsos 

R. Soc. Open Sci. 12: 241252

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

15
 J

an
ua

ry
 2

02
5 



fish were included in equal numbers from all three sampling sites, and it was accounted for that
they were tested against an equal number of mates from the same site to ensure the experiment was
balanced (electronic supplementary material, figure S1). The observation time was one hour, and all
trials were video recorded with a Raspberry Pi camera (12.3 MP, 7.9 mm diagonal image size; lens: 3.2
mm, 12 MP, 1/1.7″), mounted 70 cm above the bottom of the aquaria and connected to a Raspberry
Pi computer. Side illumination through an LED strip (Q. Laomi, China) and a white bottom surface
were used to improve the visibility of the fish. The behaviour of the fish and the movement of the
female were logged using the behavioural observation software BORIS (v. 8.18.1 [84]). An ethogram
with 28 behaviours was defined based on the literature (for details, see table 1), and the frequency
of these behaviours was counted. The aquarium had male compartments at either end, confined by
transparent removable panels (figure 2). These transparent panels were punctured with holes to allow
the exchange of water and odours. Additionally, two opaque black partial separators were installed

Figure 1. (a) Sampling sites in Lake Constance and (b) location of Lake Constance in Europe. The sampling sites are abbreviated as ÜB:
Überlingen (littoral zone); LAN: Langenargen (littoral zone); FUS: Fussacher Bucht (littoral zone); PEL: pelagic zone. ULC and LLC refer
to Upper Lake Constance and Lower Lake Constance, respectively.

Figure 2. Setup of the aquaria for the mate choice experiment. A milk glass film was wrapped around the aquarium along with an LED
strip to optimize illumination for video recording. The male sticklebacks were provided with a tray of sand and green polyester threads
to build nests in their respective confined sections in the run up to the trial. Two opaque black separators were mounted in the middle
of the aquarium, offset so as to prevent the males from seeing each other. Before each mate choice trial, the stimulus females and the
transparent separations were removed, and the test female was introduced in the neutral zone between the separators.
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Table 1. Ethogram with stickleback behaviours. The behaviours were assigned into five categories as stated on the left. Column ‘subj.’
indicates whether the behaviour was exhibited by males (m) or females (f), and column ‘mod.’ denotes whether the behaviour was
recorded along with a modifier specifying the fish that was the target of the action.

behaviour description subj. mod. reference

overt aggression bite quick movement towards
another fish, with mouth
opening and closing, with
physical contact

m, f yes [85]

charge/lunge/attack fast movement towards
another fish, increasing
acceleration

m, f yes [85]

chase one fish attacks and follows
while the other fish flees

m, f yes [79]

fear flee accelerating movement away
from another fish or stimulus;
constantly swimming against
the wall

m, f no [85]

freezing immobile near the bottom
or near the surface of the
aquarium

m, f no [85]

show belly spine pelvic spine erected and
pointing towards another fish

m, f no [86]

nest-directed behaviour build pushing nesting material
into position, changing nest
structure, removing nesting
material

m no [87]

collect gathering of nesting material
and transport to the nest

m no [87]

dig biting or digging at the
substratum, rearrangement of
sediment

m no [87]

fan fanning the nest with pectoral
fins

m no [88]

glue pressing the cloacal opening
against the nest and gliding
forward while assuming an
upward-angled posture

m no [87]

return male swims back to his own
nest

m no [89]

courtship behaviour dorsal pricking male jerkily pushes the female
towards the water surface
with the dorsal surface

m no [90]

in nest fish creeps through the nest m no [79]

lead–follow male leads the female to the
nest; female follows leading
male to the nest

m no [79]

show nest entrance male points towards the nest
entrance

m no [79]

tremble male gives the female’s rump
several prods with a trembling
motion after it has entered the
nest

m no [79]

zigzag dance swift series of sideways jumps
towards the female

m no [88]

at nest entrance female inspects nest entrance,
or enters with the head only

f no [91]

head-up posture head is turned upwards;
female displays belly full of
eggs

f yes [92]

pusha fish nudges the other fish with
the snout, no biting

m, f yes [93]

(Continued.)
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in the middle of the aquarium to prevent the males from seeing each other. This neutral space in the
middle served for the introduction of the female at the beginning of each trial. After 30 min of acclima-
tion time, the transparent panels of the male compartments were opened, and the observation began.
The areas left and right of the opaque separators in the middle were defined as littoral or pelagic male
sides based on the male in residence at either end. For analysis of female time budget, the time spent
on each side was measured. All males were stocked in the aquaria on the same day. The experimental
trial was then performed after 4 days up to two weeks to give the males enough time to establish
territories and build nests. Variation in time was due to some males requiring more time for nest
building, but the time was always equal for the littoral and pelagic males in each aquarium. Nest
building material comprised a tray (15 × 15 cm2) of sand (grain size = 0.4–1.0 mm) and 100 green
polyester threads (5 cm). Two females were placed temporarily in the middle of the aquarium in order
to stimulate nest-building behaviour in the males [97], and these females were removed prior to the
mate choice trials. The nests were examined for completeness. Nests with a well-defined structure and
visible entrance were considered complete [98].

2.3. Morphometric and colourimetric measurements
Each specimen was weighed to the nearest 0.1 g and photographed with a Pentax K-3 II digital camera
(Ricoh Company Ltd, Japan). The condition of the fish was measured with Fulton’s condition factor,
calculated with the formula K = weight/length3 [99]. Standard length of the fish was derived from the
photos using ImageJ (v. 1.54d) [100]. Male nuptial colouration was measured as described by Berner
et al. [39]. In the first step, mean RGB values (representing red, green, and blue colour channels) of
male nuptial colouration were obtained from a defined area on the cheek (figure 3) with ImageJ.
Hue (dominant wavelength) was then derived from the RGB values using the rgb2hsv function of the
GrDevices package, and relative luminance (perceived brightness) was calculated using the formula
0.2126*R + 0.7152*G + 0.0722*B [39].

2.4. Data preparation
The behavioural data were arranged with two sets of entries for each female individual, one listing
the frequency of all behaviours displayed in the context of the littoral male and another in the context
of the pelagic male. Some behaviours were recorded with a modifier to specify the subject and object
of the action (e.g. subject = female, behaviour = bite, modifier = right male; see table 1). Behaviours
without modifiers were assigned to the male on whose side of the aquarium the female was positioned

Table 1. (Continued.)

behaviour description subj. mod. reference

agonistic behaviour approach movement towards another
fish

m, f yes [85]

circling fish circle around each other m, f yes [85]

frontal display standing while orienting to
the face of the other fish

m, f no [85]

jolt sudden, jerky movement after
being bitten or after physical
contact; whole-body shudder

m, f no [94]

lateral display standing while orienting
side-on to the other fish,
holding position laterally

m, f no [95]

pendulum fish moves back and forth
several times; in males this
often happens at the edge of
the territory

m, f no [96]

tail beat side-to-side sweeping of the
tail; sometimes touching the
other fish with the tail in a
beating motion

m no [85]

aThe behaviour ‘push’ was considered as a courtship behaviour in females and as an agonistic behaviour in males.
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at that moment. Behaviours were grouped into higher-level categories, as indicated in table 1, by
summation of the count data. The count data were normalized for the time the female spent on each
respective male’s side by dividing each count by this time. Data from one female that spawned during
the experimental trial were excluded from all behavioural analyses since they were not comparable
with those of other subjects.

2.5. Statistical analysis

2.5.1. Phenotypic characterization

A linear model (LM) was used to test for differences in standard length, weight, condition and male
nuptial colouration of littoral and pelagic sticklebacks. In this analysis, weight was log-transformed.
The data were tested for normality with a Lilliefors test [101] in the package nortest [102]. If the data
did not fulfil the criteria for parametric testing, a paired Wilcoxon rank sum test [103] was used. To test
the association between nest completeness and male ecotype, the number of complete and incomplete
nests was compared between male ecotypes using Fisher’s exact test [104].

2.5.2. Female time budget

A generalized linear mixed-effects model (GLMM) with Gaussian error distribution and a square root
link function was used to analyse how female origin affected the time spent on the side of the littoral
and pelagic male. This model included time on the respective male side as a dependent variable
and male and female ecotypes as explanatory variables (electronic supplementary material, table S1).
Estimated marginal means were obtained from the model using the emmeans package [105]. As two
dependent time measures were analysed per female, female individuals were included as a random
factor in this model.

2.5.3. Ecotype effects

Linear mixed-effects models (LMMs) were used to test the effect of male and female origin on
the frequency of specific behaviours. In these models, a specific male or female behaviour was the
dependent variable, and male and female ecotypes were used as explanatory variables. If the interac-
tion of male and female ecotype was significant, it was inferred that the identity of the mating partner
had an effect on the behaviour of the fish. As the behaviour of each female was simultaneously
recorded in the context of both a littoral and pelagic male, it was necessary to account for the depend-
ency between these two measures, and for that reason, male and female individuals were included
as random factors in the models. The marginal effect of mating partner origins on the frequency of
behaviours was calculated based on model fits with the ggpredict function of the package ggeffects [106].
To control for male phenotype, male nuptial colouration (hue) was included in the LMMs in a post

Figure 3. Assessment of male nuptial colouration. The green area defines the polygon from which mean RGB values were obtained.
The polygon spans from the end of the mouth opening to the eye and the operculum.
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hoc analysis (presented in table 2). A paired Wilcoxon rank sum test [103] was used to compare the
frequency of behaviours displayed towards potential mating partners from the same and opposite
ecotype.

2.5.4. Mate characteristics effects

To test the effect of mate characteristics and mate behaviour in inducing aggressive behaviour, linear
mixed-effects models (LMMs) were fitted for female subjects (model 1) and male subjects (model 2),
and this analysis was performed separately for littoral and pelagic ecotypes:model 1:  female behaviour ∼ β0 + β1 Lm + β2 Km + β3 Cm + β4 Nm + β5 Aggrm + β6Agonm + β7Courtm +β8 Nestm + ε1 + ε2model 2:  male behaviour ∼ β0 + β1 Lf + β2 Kf + β3 Aggrf + β4 Agonf + β5 Courtf + β6 Fearf + ε1 + ε2

where β0 is the intercept, β1–β8 represent the estimated coefficients for the variables, and the error
terms ε1 and ε2 represent among-male and among-female variation, respectively. The following
variables were added to the model: L = length, K = Fulton’s condition factor, C = nuptial colouration
(hue), n = nest quality (1–3), Aggr = aggressive behaviour, Agon = agonistic behaviour, Court =
courtship behaviour, Fear = fearful behaviour, Nest = nest-directed behaviour. Variable subscript letters
m and f indicate whether the variable describes a male or female trait. Following the principle of
parsimony, non-significant variables (p < 0.05) were removed stepwise from these models by taking out
variables with the highest p-value first. The statistical values for each variable were extracted at the
time of removal, and the reduced model was always compared to the previous model using the least
squares method (using the Wald chi-square test, car package) to confirm the legitimacy of removal.
The marginal effect of the remaining variables in the minimum adequate model was calculated with
the ggeffect function of the ggeffects package [106]. All mixed-effects models were fitted with the
lme4 package [107], and F-statistics and denominator degrees of freedom were computed with the
Kenward–Roger method [108]. Effect sizes (partial eta-squared, η²) were calculated based on the sum
of squares from the LMM models using the effectsize package [109]. Effect sizes can be interpreted as
follows: 0.01 ≤ η² < 0.06, small; 0.06 ≤ η² < 0.14, medium; η² ≥ 0.14, large [110]. Behavioural variables

Table 2. Effect of male and female ecotype (LIT/PEL), and male nuptial colouration (hue) on the frequency of higher-category
behaviours. Analysis of variance (ANOVA) tables for LMMs with the formula behavioural category ~ ecotype male*ecotype female +
male nuptial colouration. Significant terms are presented in bold font.

behavioural category ecotype male ecotype female ecotype male:ecotype
female

male nuptial colouration
(hue)

male aggression F1,16.89 =7.164

p = 0.0160

F1,11.29 = 0.575

p = 0.464

F1,10.48 = 3.675

p = 0.083

F1,20.24 = 2.321

p = 0.143

male courtship F1,19.12 = 0.869

p = 0.363

F1,10.37 = 1.048

p = 0.329

F1,10.14 = 0.001

p = 0.976

F1,20.73 = 3.073

p = 0.094

male nest-directed behaviour F1,20.29 = 0.944

p = 0.343

F1,10.47 = 0.706

p = 0.420

F1,10.47 = 0.426

p = 0.528

F1,20.50 = 2.574

p = 0.124

male agonistic behaviour F1,19.30 = 3.197

p = 0.089

F1,10.96 = 0.009

p = 0.925

F1,10.96 = 0.235

p = 0.636

F1,20.26 = 3.517

p = 0.075

female aggression F1,12.65 = 0.375

p = 0.551

F1,14.88 = 1.081

p = 0.315

F1,10.57 = 15.557

p = 0.0025

F1,17.42 = 3.808

p = 0.067

female courtship F1,13.34 = 0.222

p = 0.645

F1,13.05 = 1.117

p = 0.310

F1,10.15 = 1.466

p = 0.254

F1,18.49 = 1.044

p = 0.320

female fear F1,11.21 = 0.027

p = 0.873

F1,19.27 = 0.073

p = 0.790

F1,11.07 = 0.0582

p = 0.814

F1,14.49 = 1.706

p = 0.212

female agonistic behaviour F1,13.89 = 0.243

p = 0.630

F1,15.27 = 4.110

p = 0.061

F1,12.86 = 0.7193

p = 0.412

F1,19.37 = 0.128

p = 0.724
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were square root transformed in all models. All statistical analyses were conducted using R Statistical
Software (v. 4.2.2 [111]) and RStudio (v. 2023.06.0 [112]).model 2:  male behaviour ∼ β0 + β1 Lf + β2 Kf + β3 Aggrf + β4 Agonf + β5 Courtf + β6 Fearf + ε1 + ε2

3. Results
3.1. Phenotypic characterization
Littoral and pelagic males differed significantly in standard length (LM, F1,22 = 44.346, p < 0.001)
and weight (LM, F1,22 = 23.437, p < 0.001), with littoral males being larger than pelagic males (figure
4). Fulton’s condition was not significantly different between both male ecotypes (paired samples
Wilcoxon test, V = 55, p = 0.233). Littoral males displayed a more intense nuptial colouration than
pelagic males, as indicated by significantly lower values for both hue (LM, F1,22 = 4.957, p = 0.037)
and relative luminance (LM, F1,22 = 8.613, p = 0.008). There was no statistically significant association
between ecotype and nest completeness (two-sided Fisher’s exact test, p = 0.089). Littoral and pelagic
females did not differ significantly in standard length (LM, F1,22 = 2.739, p = 0.112), weight (LM, F1,22 =
0.969, p = 0.336) and Fulton’s condition (LM, F1,22 = 1.098, p = 0.306).

3.2. Female time budget
The ecotype of the female test subject had no significant effect on the time spent with the littoral versus
pelagic male (non-significant interaction in the GLMM; electronic supplementary material, table S1).
Females generally preferred the pelagic male side over the littoral male side (χ2 = 5.862, d.f. = 1, p =
0.015; electronic supplementary material, table S1). Pelagic females spent on average 27 min on the
pelagic male side and 17 min on the littoral male side, while littoral females spent on average 22 min
on the littoral male side and 23 min on the pelagic male side (estimated marginal means by the GLMM;
see electronic supplementary material, figure S2).

Figure 4. Phenotypic characterization of littoral (red) and pelagic (blue) sticklebacks involved in the mate choice experiment.
(a) Standard length of males and females visualized by a violin plot showing data distribution, median and interquartile range.
Coloured dots represent data points. (b) Male nuptial colouration was visualized by a kernel density plot showing the distribution of
hue (dominant wavelength) across male individuals. Hue values are given on an angular scale (0–360°), and a colour bar is depicted to
facilitate interpretation.
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3.3. Frequency of higher-category behaviours
The frequency of aggressive behaviour in littoral and pelagic females depended on the ecotype of
the male they encountered, as indicated by a significant interaction of male and female ecotypes
(LMM, F1,10.57 = 15.557; p = 0.002). Littoral females were more aggressive towards pelagic males, and
pelagic females were more aggressive towards littoral males (figure 5). Not distinguishing between
female ecotypes, females were generally significantly more aggressive towards the male of the opposite
ecotype than towards the male of the same ecotype (paired samples Wilcoxon test, V = 103, p<0.01).
Female courtship behaviour, agonistic behaviour and fearful behaviour were not significantly affected
by the male ecotype (table 2). Except for the effect of male ecotype on female aggression, littoral and
pelagic females did not generally differ in their behaviour. However, in males, a general behavioural
difference was found between the ecotypes. Littoral males were generally more aggressive than pelagic
males (LMM, F1,16.89 = 7.164; p = 0.016), and this was independent of the ecotype of the encountered
female. No significant differences were found in male courtship, agonistic or nest-directed behaviour,
and male behaviour was generally unaffected by female ecotype.

3.4. Traits and behaviours of the mating partner affecting aggression
While aggression in littoral females was best explained by male length (table 3, model 1, p < 0.001;
figure 6) and male courtship behaviour (table 3, model 1, p = 0.019), aggression in pelagic females
was best explained by male aggression (table 3, model 1, p = 0.035). Aggression in littoral females
significantly decreased with increasing male length (r = −0.497, n = 24, p = 0.013) and was positively
related to the frequency of male courtship behaviour. Aggression in pelagic females was positively

Figure 5. Marginal effect of mating partner origin (LMM) on the frequency of higher-category behaviours, displayed by littoral (LIT)
and pelagic (PEL) sticklebacks during encounters with a littoral (red bar) or pelagic (blue bar) potential mating partner. The bar plots
show mean and standard errors. Significant effects of male ecotype, female ecotype, and their interaction (ecotype male : ecotype
female) are noted above the bar plots. Asterisks indicate significance level: ***p < 0.001; **p < 0.01; *p < 0.05. For more details, see
table 2.
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related to male aggression (figure 6). Among female traits and behaviours, fearful behaviour was
significantly associated with male aggression, in both littoral males (table 3, model 2, p < 0.001) and
pelagic males (table 3, model 2, p = 0.22). In both male ecotypes, aggression was positively related to
female fearful behaviour. Moreover, aggression in littoral males was significantly associated with
female aggression (table 3, model 2, p = 0.038), with a positive relation between both behaviours. All
effect sizes (η²) reported in table 3 can be interpreted as large [110].

4. Discussion
This study gives initial evidence that females of an emerging stickleback ecotype pair exhibit a mating
preference for pairings within the same ecotype, although both ecotypes use the same littoral areas
within the lake for reproduction. Males of the littoral ecotype turned out to be significantly larger,
more aggressive and more intensely coloured than pelagic males and tended to complete nest building
more often. Nevertheless, interactions of reproductive females did not primarily depend on these male
traits, as females of both ecotypes were significantly more aggressive towards males of the different
ecotypes. This finding indicates that females reject males of different ecotypes as mating partners, and
the implications of this finding are discussed in the light of an assortative process that might support
further adaptation of the two ecotypes to their respective littoral and pelagic habitats.

4.1. Phenotypic characterization of the ecotypes
While the reproductively mature littoral and pelagic females used in the experiment did not differ in
standard length, weight or condition, differences in these morphometric measurements were apparent
in breeding males. Littoral males in the random sample were significantly longer and heavier than
pelagic males. There seems to be a general trend for larger body size in the littoral ecotype in Lake
Constance, a finding also reported by [72]. A larger body size of the littoral ecotype also characterizes
the British Columbian benthic–limnetic species pairs [41–44], suggesting this size difference reflects
adaptation to alternative environments, as has been concluded in other studies investigating such
variation in stickleback [45–47,50,51,113]. These studies proposed an important role of biomechanical
constraints on the feeding apparatus and other environmental factors, such as the spatial distribu-
tion of food resources, in shaping stickleback morphology. In Lake Constance, pelagic sticklebacks
consume mainly cladocerans and copepods, while littoral sticklebacks typically feed on insect larvae
and gammarids [113–116]. Recently [117], it was found that this pelagic prey contains a higher content
of polyunsaturated fatty acids that are essential for sticklebacks and rare in the littoral prey items.
Exploitation of this high-value food resource might require a small body size in sticklebacks, allowing
for a higher foraging efficiency on small prey items [45].

Within sex, neither ecotype differed in the frequencies of courtship, agonistic, fearful and nest-
directed behaviours. However, in the case of aggression, the littoral ecotype showed a significantly
higher frequency of behaviour than the pelagic ecotype, and this was exclusively observed in males.
The level of aggression co-varied with body size and weight, which were both greater in littoral
males than in pelagic males. This finding is in concordance with reports from the British Columbian

Figure 6. Marginal effect (LMM) of mating partner traits and behaviour on aggression in littoral and pelagic sticklebacks. The shaded
grey bands represent 95% confidence intervals.
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benthic–limnetic species pairs [63], where benthic males court more aggressively [118] and exhibit a
greater propensity for destroying the nests of competitors [55]. Furthermore, the British Columbian
benthic females engage in nest raids, while such behaviour was never observed in limnetic females
[87,119]. One possible explanation for higher aggression in the littoral ecotype might be that this
behaviour is beneficial in competition for food resources. The heterogeneous littoral environment may
reward competitive behaviour, while lack of macrophytes and structure in the pelagic zone limits the
opportunity to monopolize food resources. Thus, aggression may be more adaptive for the littoral
ecotype than the pelagic complement.

Another result in our study was that on average, littoral males exhibited a more intense red
colouration than pelagic sticklebacks. The red colour is caused by the deposition of carotenoids in the
skin of the male throat [120]. Male sex hormones (androgens) mediate the quantity of carotenoid that is
diverted to breeding colouration versus somatic maintenance [68,121], while simultaneously facilitat-
ing aggressive behaviour [122,123]. There may thus be a causal relationship between the increased
aggression and more intense red colouration of littoral males.

4.2. Mating preferences
In both ecotypes, the reproductively mature males were building nests and actively courting the
females during the experimental trials. The females often responded to these males with a head-up
posture, a typical female courtship behaviour that signals spawning readiness [92]. This confirms that
the male–female interactions in the experiment reflect a true mating context. It is surprising that only
one female laid eggs in the experiment, given that all fish were in full breeding condition, only gravid
females were used and the trials were performed right after the peak of the spawning season [124].
This was a pelagic female that spawned in the nest of a pelagic male. Three other females inspected
the nest entrance and were close to spawning. Two of them were at the nest of a male of the same
ecotype, while only one was at the nest of a male of the different ecotype. The limited space in the
aquarium offers a possible explanation for why the females rarely spawned. Males often interfered
with the male–female interactions at the other male’s nest as they passed the visual barrier in the
middle of the aquarium. Such interference might have disrupted the courtship sequence in many
observed interactions and hindered the females from laying eggs.

Males and females courted mating partners of both ecotypes as frequently, and thus courtship
behaviour did not specifically indicate a preference. Rejection of mating partners, however, might
serve as an indirect indication of preferences. Female aggression can be observed in various contexts,
including competition for rank, territory and resources [96,125–127]. Here, female aggression was
significantly affected by the interaction of male and female ecotypes, suggesting that females discrimi-
nated between male ecotypes and selectively directed more aggression towards the male of different
ecotypes. This pattern in female aggression can be interpreted as a rejection of the courtship attempts
performed by males of different ecotypes. Aggression has been implied in other vertebrate systems as
a mechanism that can lead to reproductive isolation [128–130]. Thus, the divergent aggressive response
of sticklebacks found in this study might represent a reproductive barrier.

The reason for stickleback females to reject males of different ecotypes could stem from divergent
traits, including differences in body size, male colouration and behaviour. A post hoc analysis probing
for mate characteristics effects showed that aggression in littoral females was negatively related to male
body size. This finding indicates a rejection of the smaller pelagic males. In contrast, male body size
had no significant effect on aggression in pelagic females. Overall, this suggests that littoral females
discriminate against the significantly smaller pelagic males while pelagic females do not turn away
from them. Body size plays an important role in stickleback mate choice. Size assortative mating
has been reported in benthic–limnetic [54] and anadromous–freshwater stickleback species pairs [37],
where males cease courtship and become aggressive when the size difference between mating partners
increases [37,55]. Differences in the behavioural profiles of males of different ecotypes could also
contribute to the assortative process, for instance, when pelagic and littoral females begin to respond
differently to male behaviour. Specifically, greater aggression in reproductive males might start to
discourage courtship and mating in females of the pelagic ecotype but stimulate those behaviours in
littoral females [118]. Similarly, a preference for intense male colouration is common in sticklebacks
[54], and so variation in sensory biases between females of the two ecotypes might also contribute
to an assortative process [61,131]. In the following, we discuss how the observed barriers in mating
behaviour could lead to reproductive isolation.
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4.3. Mechanisms that lead to reproductive isolation
There are several non-exclusive pathways that might, in sequence or simultaneously, lead to reproduc-
tive isolation between ecotypes. In theory, these pathways diverge from a common mating system in
which females choose males endowed with attractive traits. Across taxa, and especially in fish species
that exhibit parental care, male body size is often subject to female sexual selection [132–134]. Females
usually prefer larger males, who can be expected to perform better in defence of the eggs [135] and
thereby increase recruitment success [136]. Intense breeding colouration is usually also a favoured
trait [54,68] since it signals high fitness of the male [121]. The pelagic females in Lake Constance are
remarkable in their apparent rejection of littoral males with these attributes, suggesting that ecotype
plays a more important role in mate choice than established mating traits. In addition to the visual cues
measured in this study, it is possible that females use olfactory cues to recognize males of the same
ecotype [66,67]. The ecotype-related behavioural barriers might be complemented by other forms of
pre- and postzygotic isolation.

Spatial or temporal separation during reproduction are common facilitators of reproductive
isolation [5]. In the lake environment, such separations might arise due to temperature differences in
the habitats occupied by the emerging ecotypes. In spring, the pelagic zone heats up more slowly than
the littoral [137], and this gradient could result in relatively slower maturation of pelagic stickleback
[138]. Hence, reproductive pelagic males and females might arrive later at the spawning sites, which
they share with littoral males. Littoral males may thus first occupy the prime nesting sites, which are
better vegetated than surrounding areas [139], and they may furthermore be better able to defend
these sites since they are more aggressive and larger in size than pelagic competitors [135]. This could
lead to micro-partitioning of spawning habitats, as also observed in the British Columbian lakes,
where benthic sticklebacks breed in areas with dense vegetation while limnetic sticklebacks spawn
on bare sediment [43,63,140]. If females differ in attraction to these microhabitats, this could enhance
reproductive isolation, in addition to temporal separation.

5. Conclusion
The findings of this study provide the first evidence of emerging behaviour-related reproductive
isolation between two ecotypes of stickleback in Lake Constance. Aggressive behaviour was highest
in pairings of different ecotypes. Although the underlying reasons for female aggression towards
males of different ecotypes remain unknown, we interpret it as rejection. Yet, littoral males are larger,
more intensely red-coloured and more aggressive than males of the pelagic ecotype. The divergent
aggressive response could feasibly represent an early behavioural differentiation on the spectrum of
behaviours that facilitate reproductive isolation of the ecotypes during the early stage of divergence
with still weak genetic differentiation.
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size.
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