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Abstract

Space-level circulation design rationale refers to the underlying logic and principles that
guide the arrangement of pathways, connections, and spaces within a building to facilitate
movement and accessibility. Capturing and reusing this rationale is crucial for designers,
as it enables the efficient adaptation of existing designs to new contexts, preserving both
functionality and intent while reducing the time and effort required for rework. Tradition-
ally, reasoning about circulation design has relied on manual interpretations, conceptual
sketches, and designer intuition, often resulting in incomplete or ambiguous representa-
tions of spatial relationships. These approaches, while creative, lack the systematic rigour
necessary for ensuring consistency and adaptability across diverse design scenarios.
This thesis explores the application of graph-based analysis techniques, including graph
clustering algorithms and centrality-based node analyses, to reason space-level circulation
design rationale. The method computes space-level topological relationships by leveraging
IFC schema relationships and utilizing a voxel-grid-based approach, establishing graph-
based representations of IFC models. These representations provide a systematic means
of understanding space-level organization and connectivity. This research demonstrates
the potential of integrating graph-based concepts into building design and verification
processes, highlighting the effectiveness of graphs for the representation and analysis of
circulation entities.
Keywords — Circulation Design Rationale, Voxel-based Analysis, Graph Theory, Commu-
nity Detection



Zusammenfassung

Das Konzept der raumbezogenen Zirkulationsdesign-Rationalität bezieht sich auf die
zugrunde liegende Logik und die Prinzipien, die die Anordnung von Wegen, Verbindungen
und Räumen innerhalb eines Gebäudes leiten, um Bewegung und Zugänglichkeit zu
erleichtern. Die Erfassung und Wiederverwendung dieser Rationalität ist für Planer von
entscheidender Bedeutung, da sie eine effiziente Anpassung bestehender Entwürfe an
neue Kontexte ermöglicht, wobei sowohl Funktionalität als auch Intention erhalten bleiben
und der Zeit- und Arbeitsaufwand für Nachbearbeitungen reduziert wird. Traditionell stützte
sich das Erschließen von Zirkulationsdesigns auf manuelle Interpretationen, konzeptionelle
Skizzen und die Intuition der Planer, was oft zu unvollständigen oder mehrdeutigen
Darstellungen räumlicher Beziehungen führte. Diese Ansätze sind zwar kreativ, es mangelt
ihnen jedoch an der systematischen Strenge, die erforderlich ist, um Konsistenz und
Anpassungsfähigkeit in unterschiedlichen Entwurfsszenarien zu gewährleisten.
Diese Arbeit untersucht die Anwendung graphbasierter Analysetechniken, einschließlich
Graph-Cluster-Algorithmen und zentralitätsbasierter Knotenanalysen, zur Erschließung
der raumbezogenen Zirkulationsdesign-Rationalität. Die Methode berechnet topologische
Beziehungen auf Raumebene, indem sie IFC-Schema-Beziehungen nutzt und einen
voxelgitterbasierten Ansatz anwendet, um graphbasierte Darstellungen von IFC-Modellen
zu erstellen. Diese Darstellungen bieten einen systematischen Ansatz zum Verständnis
der Organisation und Konnektivität auf Raumebene. Diese Forschung zeigt das Potenzial
der Integration graphbasierter Konzepte in Entwurfs- und Verifizierungsprozesse der
Architektur auf und unterstreicht die Wirksamkeit von Graphen für die Darstellung und
Analyse von Zirkulationselementen.
Schlüsselwörter — Zirkulationsdesign-Rationalität, Voxel-basierte Analyse, Graphentheo-
rie, Gemeinschaftserkennung
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Chapter 1

Introduction

Building design harmonizes ideas into tangible solutions, balancing creativity and precision
within a dynamic and often uncertain environment (WIGGINS, 1989). This process merges
aesthetics, functionality, and compliance, requiring designers to navigate abstract concepts
and practical constraints. A critical component of this endeavour is design rationale—the
principles and intentions that guide decision-making (HORNER & ATWOOD, 2006). Effec-
tively articulating and preserving this rationale is essential for the immediate success of a
design and also for its adaptability and reuse in future design and construction tasks (TANG

et al., 2006). The evolution of architectural practices has highlighted the importance of
understanding and reasoning behind design decisions (AL-SAYED et al., 2010). However,
achieving clarity in design rationale faces both technical and organizational challenges.
Improving the clarity of design rationale can enhance scientific understanding and commu-
nication, ultimately benefiting individual projects and the industry as a whole (CHACHERE

& HAYMAKER, 2011).

Digital methods have become indispensable in contemporary architectural design work-
flows. Building Information Modeling (BIM) has emerged as a transformative paradigm
for managing and coordinating building data throughout a project’s lifecycle (EASTMAN

et al., 2018). BIM enables multidisciplinary collaboration by integrating diverse types
of information—geometric, semantic, and parametric—within a digital framework. The
adoption of BIM streamlines the design, construction, and maintenance processes by
promoting efficiency, reducing errors, and enhancing decision-making (BORRMANN et al.,
2018). The effectiveness of BIM relies on the interoperability of its tools and systems,
necessitating standardized methods for data exchange and representation.

Industry Foundation Classes (IFC) is an open international standard for sharing data
developed by buildingSMART International (buildingSMART INTERNATIONAL, 2024a).
IFC serves as a universal schema for structuring building information, enabling data
exchange between disparate BIM tools and software. As an open and neutral standard,
IFC facilitates the representation of geometric, semantic, and spatial relationships within
building models (buildingSMART TECHNICAL, 2024b). This interoperability is critical for
fostering collaboration across disciplines and ensuring that all stakeholders have access to
consistent and accurate project data. Despite its success, however, IFC models primarily
focus on explicit geometric and semantic data while often neglecting the implicit reasoning
and design rationale embedded in architectural decisions (KRIJNEN & TAMKE, 2015). For
instance, while an IFC model can represent the dimensions and placement of a corridor, it
typically does not convey why that corridor was designed to connect specific spaces or its
intended role in circulation design.
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In building design practice, design exchange scenarios frequently arise, where building
models are transferred between stakeholders or adapted for new contexts (EASTMAN

et al., 2018). These exchanges require a clear understanding of the underlying design
rationale to ensure the integrity of the design is preserved (BAYRAKTAR SARI & JABI, 2024).
For example, during project modifications or extensions, the absence of rationale behind
circulation layouts or structural decisions may lead to inefficiencies or errors. The current
limitations in communicating design rationale during IFC-based data exchange represent
a significant challenge (KRIJNEN & TAMKE, 2015; ZAHEDI et al., 2022). Addressing
these challenges is essential to enable seamless design adaptation and effective reuse of
building information.

Reasoning of IFC models involves employing logical and inferential techniques to extract
and interpret embedded knowledge, which is vital for understanding and communicating
design rationale (ZAHEDI et al., 2022). This reasoning process is particularly pertinent
when addressing circulation design rationale. Circulation constitutes a fundamental aspect
of spatial planning. In the context of spatial accessibility planning, the 2010 ADA Standards
for Accessible Design define a "Circulation Path" as: "An exterior or interior way of passage
provided for pedestrian travel, including but not limited to, walks, hallways, courtyards,
elevators, platform lifts, ramps, stairways, and landings." (ADA STANDARDS, 2010). Spatial
planning, including circulation design, is multifaceted and requires meticulous planning
and coordination (J. K. LEE et al., 2010). Errors in this area can lead to considerable
inefficiencies and potential safety hazards (NOURIAN, 2016). The necessity to reason
about the underlying design rationale for circulation elements is further emphasized by
the lack of explicit representations in current IFC models (J. WU et al., 2024). Therefore,
developing techniques that can infer and articulate circulation design rationale from IFC
models is imperative.

Architects and designers generally use hand-drawn "sketch models" as showcased in
Figure 1.1 in the early stages of design. This intuitive and abstract approach to space
planning underlines the challenges faced when trying to translate early-stage design
concepts into detailed models that conform to parametric standards and retain the original
design rationale (JABI, 2014). This thesis aims to address the challenge of reasoning IFC
models to elucidate circulation design rationale. By concentrating on methodologies that
enhance the interpretability and usability of IFC data, the research aims to improve design
reasoning, thereby facilitating better design reuse and adaptability.

1.1 Research goal

Understanding the rationale behind circulation design in architectural spaces is essential
for enhancing the overall design process. Ensuring effective and efficient circulation
presents significant challenges as buildings become increasingly complex (SHIN & LEE,
2019). Current digital modelling practices, particularly those leveraging IFC standards,
provide promising avenues for managing and analyzing building data. However, a notable



Figure 1.1: A typical architect’s sketch from the early design stages (JABI, 2014)

gap remains regarding the reasoning behind the embedded design logic within these
models, especially in relation to circulation design. This gap hinders the transferability and
adaptability of building designs across different contexts (J. WU et al., 2024). To bridge
this gap, this thesis focuses on addressing the following key research question:

“How can the embedded logic for circulation design in IFC data models be
reasoned and represented to improve transferability in architectural building
design?”

This question emphasizes the necessity of extracting and interpreting the design rationale
embedded in circulation elements, which are often represented in an abstract and implicit
manner within IFC models. The main objective is to create a robust methodology that
connects space-level representation with a high-level conceptual understanding of design
goals, facilitating effective reasoning about design choices. To tackle the research question,
this thesis proposes a comprehensive three-phase framework. Firstly, IFC processing
involves processing the IFC model to identify and extract essential building elements within
the context of circulation design. Utilizing IfcOpenShell1, an open-source software library,
the model is parsed to capture geometric and semantic data of key entities, which are
subsequently prepared for further analysis (IFCOPENSHELL.ORG, n.d.). This preparation
entails converting complex geometries into a more manageable format that establishes
fundamental space-level relationships within the model. Secondly, space-level relationship
reasoning concentrates on analyzing the connectivity and adjacency of various spaces

1https://ifcopenshell.org/



within the building. This analysis aims to reveal how spaces interconnect both horizontally
and vertically, offering insights into accessibility and flow within the structure.

Finally, graph-based analysis involves translating the space-level data into a graph struc-
ture, with building spaces represented as nodes and their relationships as edges. Graph
algorithms are employed to uncover patterns and communities within the building’s layout,
revealing the space-level organization and circulation strategies. This process aids in
visualizing and interpreting the design rationale, providing a clearer understanding of how
spaces are structured to facilitate movement and accessibility. In summary, this frame-
work offers a systematic approach for analyzing and reasoning about circulation design
within IFC models. By integrating space-level analysis with graph-based methods, the
research presents a comprehensive means of understanding and transferring architectural
circulation design rationale across diverse contexts.

1.2 Thesis structure

The thesis is organized into five chapters, each contributing to the overall objective
of reasoning IFC models space-level circulation design rationale. Chapter 2 provides
a comprehensive literature review, examining existing methodologies and identifying
gaps that the current research aims to address. Chapter 3 details the methodology
employed in the research, describing the approaches and tools used to achieve the study’s
objectives. Chapter 4 discusses the prototype implementation, including a case study
that demonstrates the practical application of the proposed framework. Finally, Chapter 5
concludes the thesis by summarizing the findings, limitations and suggesting directions for
future research.



Chapter 2

State of the art

BIM has revolutionized the AEC industry over the past two decades. By enabling efficient
collaboration and streamlining workflows, BIM has significantly improved project coordi-
nation, reduced errors, and optimized construction processes. BIM-related technologies
have become essential tools for stakeholders in the AEC sector, fostering innovation and
driving efficiency across the industry (BORRMANN et al., 2018; EASTMAN et al., 2018).
Figure 2.1 illustrates the evolution of design communication from 2D drawings to IFC
models.

Figure 2.1: Brief timeline of BIM evolution (ROZMANITH, 2014)

A key aspect of BIM is its ability to enable model exchange using the IFC format. As
an open standard, IFC facilitates seamless data interoperability between various soft-
ware tools, playing a crucial role in OpenBIM (buildingSMART INTERNATIONAL, n.d.;
buildingSMART TECHNICAL, 2024b). This ensures that all stakeholders can access
discipline-specific data efficiently, promoting smoother project execution (GU & LONDON,
2010). However, a persistent challenge lies in capturing design intent within IFC models
(ZAHEDI et al., 2022). The difficulty in representing the underlying reasoning behind
design decisions within these models can hinder their effectiveness in certain complex
projects, such as hospitals, where the design rationale must be meticulously defined and
adhered to (BAYRAKTAR SARI & JABI, 2024). To address this, spatial reasoning plays a
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crucial role in understanding building geometry and layout, offering valuable insights into
spatial relationships and the architectural organization of a building (BORRMANN & BEETZ,
2010). Additionally, methods such as voxelization provide a robust way to break down and
analyze complex spatial layouts using a grid-based system, which aids in establishing
and understanding spatial relationships (MITKO ALEKSANDROV & DIAKITE, 2024). Fur-
thermore, graph-based representations serve as another effective tool for visualizing and
interpreting spatial relationships, contributing to a more comprehensive spatial analysis to
effectively capture the interactions between different spatial components in a building’s
design (EISENSTADT et al., 2024a). Building on these methods, community detection
enhances spatial reasoning by revealing functional zones and circulation clusters within
the building, exposing the implicit architectural principles that guided the original design
decisions about movement through the building (EISENSTADT et al., 2024a; SHAHRIARI,
2019). The combination of the aforementioned techniques provides a comprehensive
framework for understanding the reasons behind design choices.

2.1 Circulation rationale in building design

One of the main concepts in architectural theory and practice is movement through
space. The circulation framework of a building is a crucial component in structuring
its layout, making it a subject of interest for professionals engaged in post-occupancy
review, including architects (NATAPOV et al., 2019). It is essential to prioritize effective
circulation design to fulfil both functional and aesthetic objectives in architecture. This
contributes significantly to the overall user experience and operational efficiency of a
building (ARAFAT et al., 2024). Circulation in architecture can be broadly categorized
into two types: horizontal circulation, encompassing corridors and pathways enabling
movement on a single level, and vertical circulation, including stairs, ramps, elevators, and
escalators facilitating movement between different levels (SHIN & LEE, 2019). Both types
are crucial to ensure that users can navigate a building freely and comfortably (NATAPOV

et al., 2019; SULLY, 2024). Moreover, building circulation design significantly impacts
overall design quality, particularly in the early stages of building design (CHING, 2023).

Every building design incorporates various implicit considerations and specialized knowl-
edge. Figure 2.2 illustrates the design process reasoning and levels of abstraction defined
by its governing factors (ABUALDENIEN & BORRMANN, 2021). Each building project must
adhere to a range of owner requirements, regulations, and boundary conditions. Architec-
tural principles and concepts are selected and applied at the conceptual level to meet client
needs and express them through the design. These concepts are then further developed
by modelling and detailing each component, which includes geometric and semantic data,
spatial relationships, and functional dependencies at the design level (ABUALDENIEN &
BORRMANN, 2021).

Some prominent examples of implicit knowledge in spatial configurations for building
circulation design are as follows:



Figure 2.2: Design reasoning depicted using abstraction layers (ABUALDENIEN & BOR-
RMANN, 2021)

1. Natural Wayfinding: Designers intuitively arrange corridors and pathways to guide
people naturally without excessive signage. For instance, main corridors often align
with sightlines to popular destinations like lobbies, exits, or focal points (e.g., a central
staircase or atrium), helping users navigate intuitively (GROSS & ZIMRING, 1990).

2. Hierarchy of Spaces: Architects understand that circulation paths should reflect the
importance of spaces. Primary pathways are often wider and more direct, leading
to major areas, while secondary or tertiary paths branch off to less frequently used
areas. This hierarchical structuring helps users differentiate between main routes
and side passages (SHAHRIARI, 2019).

3. Strategic Placement of Nodes and Intersections: Designers often place intersections,
waiting areas, or lounges at key points where people need to decide on directions or
take breaks, such as near elevator lobbies or main entry points. This arrangement
minimizes congestion and facilitates smoother transitions between spaces (SABRY,
2024).

Architectural circulation design has traditionally been approached through conceptual
design sketches and spatial analysis, with circulation features primarily assigned to building
plans. In classical architectural practice, architects would supplement specific plans with
additional diagrams to illustrate circulation systems and other spatial features. These
conceptual designs, reflecting architectural styles and designer attitudes in the primary
analysis stage, were often informal and not included in official building documentation or
construction presentations (J. K. LEE & KIM, 2014; NATAPOV et al., 2019).

To convey such conceptual design logic, design rationale systems have emerged as
valuable tools for documenting and communicating design decisions (HORNER & ATWOOD,
2006). Circulation design rationale specifically focuses on the reasoning and justification
behind the arrangement and flow of movement within a built environment. This aspect



of design considers how users navigate through spaces, addressing both functional
and aesthetic dimensions (NATAPOV et al., 2019). The rationale for circulation design
encompasses various elements, including user experience (ease of wayfinding, clear
visibility, walkability, etc), safety, accessibility, and spatial organization.

One of the key methods used to analyze and optimize circulation paths is space syntax.
Space syntax is a set of analytical methods used to study the spatial configuration of
buildings or urban areas, focusing on how spatial layouts influence movement patterns,
accessibility, and social interactions (DETTLAFF, 2014). It allows architects and planners
to predict human behaviours and social activities based on the spatial configuration of
both indoor and outdoor environments (NATAPOV et al., 2015). Space syntax provides a
configurative description of spatial networks, breaking spaces into components that can
be represented as maps and graphs. This analytical method has been widely adopted in
various domains such as architecture, urban design, and interior design. It helps designers
foresee movement patterns and spatial interactions even before the physical development
of buildings or urban systems, making the design process more evidence-based and
data-driven. By integrating space syntax analysis into BIM models, designers can capture
and visualize the spatial relationships and circulation logic embedded within the building
design (see figure 2.3) (S. WU et al., 2004). Visualizing space syntax becomes particularly
easy because these relationships are inherently embedded in BIM models. The ability
to evaluate circulation design using these visual representations allows designers to
understand how their models perform in terms of movement flow and spatial accessibility,
ensuring that reused models maintain their intended circulation logic even when adapted
to new contexts.

Figure 2.3: Space syntax illustrated: (1) Simple building plan, (2) annotated spatial
accessibility plan, (3) justified graph of the accessibility plan (DAWES & OSTWALD, 2018)

2.2 Leveraging IFC for space-level analysis

The term openBIM refers to a collaborative approach to the design, realization, and
operation of buildings, emphasizing the importance of open standards and workflows
to foster collaboration for all project participants (buildingSMART INTERNATIONAL, n.d.).
This approach enhances interoperability among different software tools and stakeholders,
promoting a more efficient and collaborative workflow in the construction industry (SIBENIK,
2022). However, current digital collaboration practices are relatively rudimentary. This
scenario is compounded by the proprietary nature of data formats, which restricts accessi-
bility and control over information. For example, architectural models authored in older



software iterations often encounter compatibility issues or data loss when accessed from
current software versions (NOARDO et al., 2021). Traditional openBIM typically involves
exporting and exchanging standardized files like IFC. In contrast, native openBIM aims to
simplify workflows by directly utilizing shared, open-standard data formats. Furthermore,
architectural data created using proprietary BIM authoring tools, as seen in traditional
openBIM, often entails subscription fees, which can limit accessibility (MOULT, 2022).

Figure 2.4: Comparison of native openBIM and traditional openBIM workflows (BONSAI

DOCUMENTATION, 2024)

IFC provides the foundation to openBIM data exchanges (ALFIERI, n.d.; buildingSMART IN-
TERNATIONAL, n.d.). IFC is a standardized, digital description of the built environment and
provides a standardized data format for vendor-neutral data exchange. It is a data schema
that may be used for many use cases, including representing buildings and associated
activities, for example, designing, constructing, and maintenance (buildingSMART TECH-
NICAL, 2024b). IFC provides a detailed vocabulary for both alphanumeric information and
the classification of architectural components.

However, IFC files often lack crucial information for practical use. While tools like the Solibri
Model Checker are effective for automating building code compliance verification, they
rely on predefined criteria that require accurate BIM model specifications (GREENWOOD

et al., 2010). The performance of these tools can be negatively impacted by poor design
practices, insufficient details from users, and language differences in component labelling.
To improve model reuse and support advanced computations and planning, it is essential
to reason IFC models semantically.

A Model View Definition (MVD) specifies a subset of the overall IFC schema that is
customized for a particular data exchange scenario (buildingSMART TECHNICAL, 2024c).
Different MVDs are created for specific purposes within a single IFC project, including
Architectural, Structural Analysis, Energy Analysis, and more (buildingSMART TECHNICAL,
2024d). These model views ensure consistency and predictability across various software
platforms for specific configurations. Depending on the exchange requirements, different
types of design information—such as engineering properties, 3D geometry, and topological
information—can be included in the view. There are three base MVDs that represent the
foundational levels of software implementation for IFC: the Coordination View (IFC2x3),



the Reference View (IFC4), and the Alignment View (IFC 4.3) (buildingSMART TECHNICAL,
2024c). Additional exchange requirements can be defined on top of these base MVDs.

Figure 2.5: IFC Model hierarchy representation (CHEN et al., 2021)

The IfcSpace entity in IFC defines functional areas or volumes, representing spaces within
a building model (buildingSMART INTERNATIONAL, 2024c). IfcSpace entities provide a
fundamental structure for representing spatial data in BIM models, capturing the various
areas that make up a building’s layout. These spaces are organized by associating them
with specific building stories, sites, or space collections. This hierarchical representation,
shown in Figure 2.5, allows for effective management of spatial data across different levels
of a building model (CHEN et al., 2021).

IfcRelSpaceBoundary is used to establish spatial relationships between IfcSpace and other
building elements. This entity defines relationships between spaces and elements such
as doors, walls, and openings (buildingSMART INTERNATIONAL, 2024b). By connecting
IfcSpace entities with structural components, IfcRelSpaceBoundary enables an analysis
of spatial interactions and accessibility pathways. This relationship modelling allows for
the identification of direct and indirect access points, which is critical for understanding
movement paths and connections across spaces (WEISE et al., 2011).

IFC-enabled spatial analysis has shown great potential in enhancing the evaluation of
building circulation. For instance, J. K. LEE and KIM (2014) illustrate how BIM, through IFC
space objects, supports computational modelling, visualization, and circulation analysis
within buildings, moving from traditional agent-based to space-object-centred approaches.
DIAKITE et al. (2022) developed ifc2indoorgml, an open-source tool that translates IFC
models into IndoorGML, leveraging IfcSpace and IfcRelSpaceBoundary for spatial data
processing. S. WU et al. (2004) proposed an automated method for analyzing build-
ing layout accessibility, which uses IFC to streamline design data transfer and improve
accessibility assessments. BURUZS et al. (2022) proposed a framework using graph
neural networks to enrich IFC BIM models with room function classifications by leveraging
geometric algorithms and spatial connectivity information. Moreover, SHIN and LEE (2019)
introduced the Indoor Walkability Index to quantify walkability in BIM models, helping
designers assess and improve building circulation for enhanced functionality. Together,



these studies underscore the versatility and analytical strength of IFC in supporting spatial
analysis, accessibility, and connectivity within building models.

2.3 Space-level voxelization

Voxelization is a technique that converts continuous three-dimensional space into a discrete
set of volumetric elements called voxels (volumetric pixels). This process transforms
complex spatial geometries into a regular grid of cubic units, enabling efficient spatial
analysis and computation (RIDZUAN et al., 2022). Voxelization involves the discretization
of 3D space into consistently sized, axis-aligned cubic cells, with each voxel representing
a discrete unit of spatial occupation and potentially associated attributes. Analogous to
pixels in 2D imagery, voxels are the fundamental unit of 3D spatial representation, enabling
regular and easily manageable spatial data structures (MITKO ALEKSANDROV & DIAKITE,
2024).

Figure 2.6: Illustration of (a) 4-neighbor and (b) 8-neighbor grid-based analytical tech-
niques. (GOLDSTEIN et al., 2020)

Algorithms that involve geometry can generally be classified into two categories: vector-
based and grid-based, depending on how they represent spatial information. The frame-
work proposed in this thesis draws heavily from recent advancements in grid-based
methodologies. Vector-based geometric representations use interconnected elements
such as points, lines, curves, polygons, surfaces, and polyhedra. These methods offer
the advantage of high precision and efficiency by employing dense configurations of
points and surfaces in critical areas while simplifying less significant regions with fewer
elements. However, practitioners often find it challenging to model only the most essential
features accurately. Another advantage is that many architectural design tools already
use vector-based methodologies (GOLDSTEIN et al., 2023).In contrast, grid-based ge-
ometric representations utilize a uniform array of points, each assigned specific states
or characteristics. These approaches use traversal methods such as graph, tree, or
array algorithms to process points by spreading information to predefined neighbouring
points (Y. XU et al., 2021). In a 2D grid context, neighbouring points typically include the
four adjacent points along the primary axes or potentially the eight points that include
diagonal connections (GOLDSTEIN et al., 2020). This distinction is illustrated in Figure 2.6,



which depicts two common grid-based neighbourhood systems: the 4-neighbour grid and
the 8-neighbour grid. The 4-neighbour grid connects each grid point to its immediate
horizontal and vertical neighbors, while the 8-neighbour grid extends these connections to
include diagonal neighbors as well. These grid-based configurations are integral to spatial
traversal and analysis algorithms, providing a structured framework for spatial connectivity
and information propagation.

Grid-based analytical techniques are characterized by their simplicity and reliability. By
modelling architectural spaces and physical elements through discrete 2D cells or 3D
voxels, these methods avoid the geometric complications that often challenge vector-
based algorithms, such as small gaps and thin overlapping regions. Moreover, while
vector-based methods may require complex re-meshing to optimize model resolution, grid-
based approaches provide a straightforward mechanism for adjusting the balance between
computational speed and analytical precision by modifying grid spacing (GOLDSTEIN et al.,
2023).

Voxelization has been applied in thermal forecasting for indoor environments to improve the
spatial precision of temperature modelling. For instance, BJØRNSKOV and JRADI (2022)
employs voxelized space segmentation to facilitate modular, neural network-based temper-
ature prediction across different spatial zones. In pedestrian-hazard interaction modelling
within BIM frameworks, MITKO ALEKSANDROV and DIAKITE (2024) utilize voxelization to
construct a connectivity graph among entities such as IfcSpace, IfcDoor, and IfcWindow,
enabling detailed hazard distribution and pedestrian movement analysis by defining navi-
gable and uniquely classified voxels. The SpaceAnalysis tool is a notable example of a
visual programming package that implements 2D grid-based spatial algorithms, and it uses
a 8-neighbour grid approach for establishing connections (GOLDSTEIN et al., 2020). For
thermal analysis of IFC-based building models, KRIJNEN et al. (2021) demonstrates that
voxelization addresses the challenges of boundary representation geometries by providing
a topologically consistent model. This consistency is crucial in retrofit scenarios, where
voxelization allows for reliable before-and-after thermal performance comparisons across
different design configurations.

2.4 Graph representation of building design data

Graph-based representations have been essential in architectural design, providing a
means to model and analyze spatial relationships within buildings, as highlighted by
EISENSTADT et al. (2024a). These representations are particularly significant within BIM,
where they enable a topological approach to architectural analysis, supporting more
abstract and strategic design decisions. A graph is a mathematical object composed of
a finite and non-empty set of nodes, also called vertices, and a finite, unordered set of
edges. Vertices represent points in the graph structure, which edges may connect (BONDY,
MURTY, et al., 1976; P. ZHANG & CHARTRAND, 2006). Since graphs are dimensionally
independent, visualizing their structure can often be misleading. Edges may appear to



intersect when they exist entirely independently, and vertices may be positioned closely
together without any direct relationship. This abstraction and deceptive dimensionality
are essential to understand when relating graph structures to geometric objects. The
complexity of a two-dimensional representation of graph structures increases significantly
once a certain number of nodes and edges is reached. Vertices and edges in graphs are
usually labelled with letters or numbers for easy reference. A key characteristic of graph
edges is that they can be weighted, which creates a hierarchy among them and changes
the classification of the graph from unweighted to weighted (BONDY, MURTY, et al., 1976).

Figure 2.7: Graph-based representation of space-level relationship reasoning done on IFC
model of a house

In the early stages of design, architects often use graph-based sketches like bubble
diagrams to conceptualize spatial relationships and visualize connections before creating
detailed floor plans (ROTH & HASHIMSHONY, 1982). Such diagrams allow designers to
explore functional relationships and potential configurations without focusing on precise
geometry, facilitating a flexible approach to space planning and early decision-making
(H. LEE et al., 2014). Despite their value, graph representations are not yet widely adopted
in BIM processes. This limited use may stem from the challenge of abstracting the IFC
structure into graph form. However, the IFC’s hierarchical organization, in which objects
can be represented as nodes and relationships as edges, offers a foundation for more
extensive graph-based integration in BIM (S. XU, 2018).

The integration of graph representations within IFC structures could enhance architectural
workflows by enabling metadata such as relative distances, documenting conceptual
connections, and facilitating automated analyses of spatial configurations. Such integration
would support space planning, help evaluate resource efficiency, and encourage abstract
thinking in design by focusing on functional relationships over specific measurements (JABI

& CHATZIVASILEIADI, 2021). A topological approach in architectural analysis, emphasizing
relationships over geometric details, presents distinct advantages. Topological graphs
can highlight circulation paths and spatial organization without reliance on dimensions,
offering organizational clarity and the flexibility to adapt geometry as needed (NATAPOV

et al., 2015). Tools like TopologicPy1, a Python API for decomposing architectural objects
1https://github.com/wassimj/topologicpy



into topological components, exemplify the potential of computational approaches to
architectural topology. These tools enable designers to break down spaces and analyze
their relationships more systematically, signalling the increasing role of computational
methods in architectural design (AISH et al., 2018).

Recent research has introduced many graph-based methods in architectural design.
LUDWIG ENGLERT (2024) developed a Linked Data approach using the Building Topology
Ontology to identify potential building service issues early on, enabling feasibility checks for
service lines and room relationships without detailed modelling. This method’s compatibility
with standards like ifcOWL and LBD ontologies supports integration into current workflows.

In design support, LANGENHAN et al. (2013) created a system that uses sketch-based
input and subgraph matching to find similar building configurations in BIM databases,
aiding iterative design through topological pattern matching. Additionally, JABI et al. (2023)
explored combining TopologicPy with the Deep Graph Library, merging graph theory with
machine learning to enhance spatial relationship analysis within architectural data. These
advances underscore the potential of graph-based approaches for early decision-making,
workflow efficiency, and design adaptability.

2.5 Graph-based analyses

2.5.1 Community detection

Community detection is a fundamental aspect of analyzing graph-based systems, as it
facilitates the identification of groups of nodes that exhibit dense internal connections
while maintaining sparser connections with other groups. This concept originated in social
network analysis during the early 20th century and has since found applications in various
fields, including biology, engineering, economics, and urban planning (FORTUNATO, 2010).
Communities, clusters, or modules signify entities that share common properties or roles
within the system. For instance, in the context of building graphs, these communities might
correspond to clusters of spaces that serve similar functions or have strong accessibility
relationships.

Real-world graph networks, such as those representing building data, exhibit character-
istics that distinguish them from random graphs. Unlike the uniformity typically found in
random graphs, real networks are inherently heterogeneous, characterized by diverse
degree distributions and significant local clustering (M. E. NEWMAN, 2013). These vari-
ations often reveal community structures, where specific groups of nodes are densely
interconnected, reflecting organized patterns in either spatial or functional arrangements.
Community detection has both structural and practical significance. Structurally, it helps
simplify complex graphs, uncover hierarchical relationships, and enhance the analysis of
interconnected subsystems (FORTUNATO, 2010).



Although graph clustering may seem intuitive, it is not a well-defined problem. Key concepts
such as community and partition lack rigorous definitions and are often fraught with
ambiguities. These ambiguities frequently necessitate a combination of arbitrary decisions
and common sense for resolution, resulting in a wide variety of clustering methods in the
literature (JAVED et al., 2018). Notably, the identification of structural clusters is meaningful
only in sparse graphs, where the number of edges (E) is comparable to the number of
nodes or vertices (V ). In contrast, for dense graphs (where E ≫ V ), the edge distribution
becomes overly homogeneous, causing communities to lose significance and shifting the
focus toward data clustering methods that depend on similarity measures or distances
(FORTUNATO, 2010). One of the most widely used methods for community detection is

Figure 2.8: Commnity detection based on Girvan-Newman algorithm (PUSIC, 2024)

the algorithm proposed by M. E. J. NEWMAN and GIRVAN (2004). The algorithm is based
on the concept of edge centrality, a measure of the importance of an edge in the graph,
determined by its participation in specific processes (PROF. DR. MARKUS KRÖTZSCH,
2020). The steps of the algorithm are as follows (also illustrated in Fig. 2.8) (PROF. DR.
MATTHIAS SCHUBERT, 2014):

1. Compute the centrality of all edges.

2. Remove the edge with the highest centrality. In the case of ties, one of the edges is
chosen randomly.

3. Recalculate the centralities on the modified graph.

4. Repeat steps 2 and 3 until no edges remain.

M. E. J. NEWMAN and GIRVAN (2004) highlighted the concept of edge betweenness,
which measures the number of shortest paths that traverse a particular edge between all
pairs of nodes. Edges that connect different communities often exhibit high betweenness
values as they facilitate numerous shortest paths between clusters. This type of analysis
is instrumental in identifying functional zones, circulation patterns, and organizational
hierarchies, thereby informing more cohesive design decisions. It illuminates the spatial
divisions within a building’s layout, ultimately enhancing our understanding of spatial
interactions and optimizing functionality and flow (EISENSTADT et al., 2024b).



2.5.2 Centrality metrics

The concept of centrality was initially developed within the field of social sciences and
subsequently applied to various other disciplines, including biology, urban planning, and
spatial science. Within social networks, particular structures have become the focus of
study, encompassing human groups, organizations, communities, markets, society, and
the global system (NAMTIRTHA et al., 2023). The analysis of social networks centres
on interpersonal relationships, a discipline referred to as sociometry. Centrality pertains
to the position of an individual or organization that possesses a strategic advantage in
influencing or controlling the community or organization in question. Such an individual
or organization is regarded as central. Centrality can be defined for any node within a
network, while centralization is used to characterize the network as a whole (BORGATTI &
EVERETT, 2006).

FREEMAN (1977) formalized measures of centrality based on graph theory, initiating the
conceptualization of social networks as simple graph structures. Key terms such as
adjacency, degree, geodesic, path, and cycle were defined, forming the foundation of
centrality theory. Freeman subsequently identified and simulated various centralities using
straightforward patterns. For instance, within a star-shaped configuration, individuals
situated at the centre are structurally more central. These basic point centralities serve as
the groundwork for the formalization of graph centralities.

Numerous centrality measures exist within the existing literature; however, this research
concentrates on betweenness centrality. Other centrality measures, including degree
and closeness centrality, will be discussed briefly to elucidate the rationale for selecting
betweenness centrality as the most pertinent concept for this study. Degree centrality
assesses the ratio between the number of nodes directly linked to specific nodes and the
overall number of nodes within the network (PENG et al., 2018). In the context of social
networks, degree and closeness centrality signify how efficiently the information can reach
an individual, whereas, in spatial science, they indicate the accessibility of one location
from others. Betweenness centrality, on the other hand, quantifies the significance of a
node in facilitating connections among other nodes. It is calculated by determining the
number of shortest paths traversing a node divided by all possible shortest paths within
the network. Consequently, an increased occurrence of shortest paths intersecting a node
correlates with a higher value of that node’s betweenness centrality (NOURIAN, 2016).
Moreover, betweenness centrality is also crucial for analyzing circulation and accessibility
in architectural layouts (NOURIAN, 2016). The following are the centrality metrics briefly
explained (J. ZHANG & LUO, 2017):

- Degree Centrality: This metric is defined as the quantity of edges connected to a
node within the graph. As illustrated in Fig. 2.9(A), the central node exhibits a degree
of 6.

- Closeness Centrality: Closeness centrality refers to the average shortest distance
between a given node and all other reachable nodes within the graph. As shown



Figure 2.9: Centrality measures illustrated (A) degree centrality; (B) closeness centrality;
(C) betweenness centrality (PENG et al., 2018)

in Fig. 2.9(B), node C demonstrates a higher closeness centrality, indicating its
proximity to all other nodes within the graph.

- Betweenness Centrality: Betweenness centrality quantifies the frequency with which
a vertex appears on the shortest paths between other nodes in the network, effec-
tively serving as a connective bridge. In Fig. 2.9(C), it is evident that node D has the
highest betweenness centrality, as it is included in the greatest number of shortest
paths.



Chapter 3

Methodology

In this chapter, the proposed enrichment approach is outlined, aiming to reason the space-
wise circulation design rationale derived from the design data extracted from the IFC model.
As illustrated in Figure 3.1, the approach comprises the following main components: 1) IFC
data extraction and processing, 2) Space-level relationship reasoning, and 3) Graph-based
circulation path reasoning. The results of the proposed methodology encompass the
following:

- Multi-level community detection: The identification of communities within the space-
level graph across different levels of granularity, including building-wide communities
and floor-specific communities.

- Centrality analyses: Performing centrality analyses at both the floor level and the
community level to assess the significance of spaces within their respective contexts.

Figure 3.1: Proposed approach for reasoning IFC models for space-level circulation design
rationale
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3.1 Input information

3.1.1 Input IFC data model

This study focuses on specific entities within the IFC schema that are crucial for under-
standing space-level connectivity relationships within buildings. An appropriate MVD
is essential to include key entities when analyzing these relationships. Therefore, the
Coordination View (IFC 2x3) or the Reference View (IFC 4/4.3) should be adopted as
the chosen MVD (buildingSMART TECHNICAL, 2024c). In this context, entities such as
IfcRelSpaceBoundary and IfcSpace are fundamental. They explicitly model the connec-
tivity relationships between related elements (like IfcDoor and IfcOpeningElement) and
spaces (IfcSpace). Capturing these entities in the selected MVD supports comprehensive
workflows for space-level analysis.

The key entities required for this proposed framework include IfcBuildingStorey, IfcSpace,
IfcRelSpaceBoundary, IfcVirtualElement, IfcDoor, IfcOpeningElement, and IfcStair.

3.1.2 Topological relationship terminology

This section clarifies the terms connectivity, adjacency, and accessibility as used in this
study. While these concepts are often used interchangeably in existing literature, they have
distinct meanings in the context of our analysis. Understanding these specific definitions
is essential for maintaining consistency throughout the study.

Figure 3.2: Relationship among connectivity, adjacency, and accessibility

Connectivity

Connectivity refers to the concept that describes how different spatial components within
a system are linked together. It provides a broad perspective on spatial relationships,



including both adjacency and accessibility. Understanding connectivity is essential for
analyzing the spatial network of a building and determining how its various components
interact to facilitate movement and functionality. In this study, we use connectivity as an
overarching term that encompasses both adjacency and accessibility (See Figure 3.2).
Space-level connectivity reflects not only physical proximity but also functional interactions,
offering a comprehensive view of spatial relationships.

Connectivity also considers the relationship between internal spaces and external envi-
ronments, often referred to as spatial connectivity to the outside. This is typically realized
through access points such as exit doors, which provide a crucial link between a building’s
interior and the exterior environment. This type of spatial connectivity is illustrated in
Figure 3.3.

Figure 3.3: Space-level connectivity between internal space and external environment

Horizontal adjacency

Adjacency refers to the direct physical closeness between two spatial entities, indicating
that they are neighbouring or share a boundary. This concept is essential for understanding
how spaces are organized within a building; however, in the context of this thesis, more
emphasis is laid on horizontal adjacency. Horizontal adjacency can be defined and
interpreted through various criteria:

1. Shared Wall: Two spaces are considered adjacent if they share any part of a common
wall or boundary, regardless of its size.

2. Proximity: Spaces that are immediately next to each other without any intervening
area are deemed adjacent.



Figure 3.4: Adjacency illustrated

3. Functionality: The functional relationships between spaces also influence adjacency.
Spaces designed for complementary purposes and intended to be easily accessible
are more likely to be considered adjacent (for example see Fig. 3.5). Functional
adjacency is explored further through network analysis in later sections.

Figure 3.5: Illustration of horizontal adjacency with two thin partition walls separating two
rooms.

Accessibility

Accessibility refers to the ability to transition from one space to another, focusing on the
practical aspects of spatial connections. It emphasizes how movement is facilitated within
a building, thereby ensuring functional and efficient circulation. Accessibility is divided into
two main types: horizontal accessibility and vertical accessibility.

Horizontal accessibility Horizontal accessibility relates to movement between spaces
on the same floor and can be achieved through the following means:



Figure 3.6: Developed approach for establishing space-level relationship reasoning

1. Through Doors: Spaces connected by doors allow for direct and controlled access,
establishing clear entry and exit points between rooms or areas.

2. Unobstructed Transitions: Spaces are considered horizontally accessible when there
are no physical barriers between them, such as walls or partitions.

3. Through Openings in Walls: Openings in walls allow access between spaces without
the need for a door.

Vertical accessibility Vertical accessibility pertains to movement between different
floors of a building and is supported by the following elements:

1. Stairs: Stairs provide direct vertical movement and serve as a primary means of
connecting multiple floors in most buildings.

2. Elevators: Elevators enable efficient vertical circulation, especially for individuals
with mobility challenges, offering a crucial alternative to stairs.

3.2 Space-level relationship reasoning

This section presents the process of analyzing IFC models to extract space-level data and
establish space-level topological relationships among circulation design elements within
buildings. To analyze these circulation design-related IFC elements, a custom Python
script is developed using the IfcOpenShell library, which enables direct extraction of IFC
data. The script processes fundamentally the space-level entities and space-boundaries
based on the IfcRelSpaceBoundary relationships. Understanding this spatial morphology
gives us a clear insight into how the layout of rooms influences the flow of movement
within a building. By breaking down the building into different sections (such as rooms or
hallways), we can construct a map that visualizes how these sections are interconnected.
The approach for reasoning is illustrated in Fig. 3.6.



The establishment of space-level relationships focuses on IfcSpace entities, consolidated
into three types of connections critical for understanding connectivity and circulation flow:

1. Horizontally accessible spaces: Two space entities have a direct and unobstructed
connection. The point of interface between the two entities can be IfcDoor, If-
cOpeningElement, or IfcVirtualElement. This connection typically indicates that the
spaces are adjacent and/or share a common boundary, allowing immediate access.

2. Horizontally adjacent spaces: These spaces can be accessed from the specified
space, but they require passing through one or more intermediate spaces. The
interface between the two space entities is usually a IfcWall.

3. Vertically accessible spaces: Two spaces are connected through IfcStair or Elevators
(IfcTransportElement).

The subsequent section delves into detail about how the individual connections are derived.

3.2.1 Space-level adjacency reasoning

The space-level adjacency reasoning process aims to identify the topological relationships
between space-level entities, such as rooms or corridors. Drawing inspiration from recent
work in spatial topological analysis (BJØRNSKOV & JRADI, 2022), the methodology involves
utilizing a voxel-based spatial discretization of the geometry of space entities extracted
from the IFC file. This section provides an overview of the framework used to reason
space-level adjacency, which can be broken down into three steps (see fig. 3.7): 1)
Geometry extraction, 2) Voxel grid-based analysis, 3) Adjacency detection.

Figure 3.7: IfcSpace entities representation using voxels

Geometry extraction

After extracting the 3D geometry of each space Sk, the next step involves voxelizing the
building into a 3D grid V , where each voxel represents a portion of usable space or is
designated as "neutral" if outside these areas. The voxelization begins by defining a



bounding box B that encloses all spaces. To determine the B, the spatial limits of the
building are assessed along the x, y, and z axes. For each space entity, the smallest and
largest values for the x, y, and z coordinates are extracted, and these values are organized
into lists to compute the overall minimum and maximum coordinates.

The grid resolution is set by a user-defined voxel size v. Using this, a voxel grid G is
created, where each voxel vijk is indexed by its coordinates along x-, y-, and z. The
center c of each voxel is checked to determine if it lies within the geometry of any space
Sk. Voxels with centers inside a space are assigned the corresponding space index k,
while those outside are marked as "neutral." The result is a 3D voxel array representing
the building’s spaces and surrounding areas. Each voxel is indexed to indicate whether it
belongs to a specific space or the neutral zone.

Voxel grid generation

After extracting the 3D geometry of each space Sk, the next step involves voxelizing the
building into a 3D grid V , where each voxel represents a portion of usable space or is
designated as "neutral" if outside these areas. The voxelization begins by defining a
bounding box B that encloses all spaces. To determine the B, the spatial limits of the
building are assessed along the x, y, and z axes. For each space entity, the smallest and
largest values for the x, y, and z coordinates are extracted, and these values are organized
into lists to compute the overall minimum and maximum coordinates. The process is
detailed in Algorithm 1.

Algorithm 1 Voxel grid generation algorithm
1: Input: S, v
2: Output: V (Voxel grid with space indices)
3: V ← ∅ ▷ Initialize empty voxel grid
4: B ← CalculateBoundingBox(S) ▷ Compute bounding box around all spaces
5: G← GenerateVoxelGrid(B, v) ▷ Generate grid based on bounding box and voxel size
6: for each voxel vijk ∈ G do
7: c← Center(vijk) ▷ Calculate center of current voxel
8: for each space Sk ∈ S do
9: if c ∈ Sk then ▷ Check if voxel center is inside space geometry

10: vijk ← AssignSpaceIndex(Sk) ▷ Assign space index to voxel according to
space entity

11: else
12: vijk ← Neutral ▷ Mark voxel as neutral if outside usable building space
13: end if
14: end for
15: end for
16: return V

The grid resolution is set by a user-defined voxel size v. Using this, a voxel grid G is
created, where each voxel vijk is indexed by its coordinates along x-, y-, and z. The center
c of each voxel is checked to determine if it lies within the geometry of any space Sk.



Voxels with centers inside a space are assigned the corresponding space index k, while
those outside are marked as "neutral."

Figure 3.8: Visual comparison of IFC house model (top left, 3D view; bottom left, top view)
and its voxel grid representation with v = 0.5m (top right, 3D view; bottom right, top view).

This method is applicable to both rectangular and non-orthogonal spaces, such as L-
shaped corridors or irregularly shaped rooms. While the bounding box B provides an outer
limit to the collective voxel grids, the precise shape of each space is accounted for during
the voxel-to-space assignment. This is achieved through geometry intersection checks
that test whether the voxel’s center lies within the actual geometry of Sk, ensuring that only
the voxels matching the actual shape of the space are assigned its index. It is important to
note that the proposed method does not rely on the Manhattan world assumption. While
the Manhattan world assumption typically assumes that spaces are orthogonally aligned
along grid axes, this method is designed to handle both orthogonal and non-orthogonal
geometries. For instance, it can process L-shaped corridors or irregularly shaped rooms,
where spaces may not be strictly aligned along orthogonal axes. The result is a 3D voxel
array representing the building’s spaces and surrounding areas. Each voxel is indexed to
indicate whether it belongs to a specific space or the neutral zone.

Horizontal adjacency detection

In this step, the algorithm analyzes the voxel grid V to detect space-level adjacencies
between different space entities. The algorithm works by comparing each voxel vijk in the
voxel grid with its adjacent voxels in the x-, y-, and z-directions, which correspond to the
adjacent positions (i± 1, j, k), (i, j ± 1, k), and (i, j, k ± 1), respectively. This procedure is
outlined in Algorithm 2.

If two adjacent voxels, say vijk and vi+1,j,k, belong to different spaces (i.e., have different
space indices), this indicates a potential adjacency between those spaces (see fig. 3.9).
The adjacent voxel detection is refined by ensuring that only non-neutral voxels are



Algorithm 2 Adjacency detection algorithm
1: Input: V , n
2: Output: A
3: A← ∅ ▷ Initialize empty adjacency dictionary
4: for each voxel vijk ∈ V do
5: if vijk ̸= Neutral then ▷ Skip neutral voxels
6: for each adjacent voxel vpqr within range n do
7: if vpqr ̸= Neutral and vijk ̸= vpqr then ▷ Check if adjacent voxel belongs to a

different space
8: A← AddAdjacency(vijk, vpqr) ▷ Add adjacency between spaces
9: end if

10: end for
11: end if
12: end for
13: A← RemoveDuplicates(A) ▷ Remove duplicate and self-adjacencies
14: return A

considered. Voxels marked as neutral (outside usable building space) are excluded from
adjacency checks.

To further ensure accurate adjacency detection, a search for adjacent voxels is extended
to a predefined range of n-search-blocks, where n is the user-defined maximum number
of adjacent voxel layers to check. The algorithm searches in all three directions within
this range, looking for voxel pairs that belong to different spaces but are space-wise
adjacent. After adjacency pairs are identified, the algorithm filters out any duplicates
and self-adjacencies (where a space is adjacent to itself), resulting in a clean adjacency
mapping. The adjacency data is refined by filtering out connections between spaces on
different storeys, using metadata that indicates the storey of each space.

The final output of the algorithm is an adjacency dictionary, A, where each key is a space
index Sk and its corresponding value is a list of space indices representing the adjacent
spaces. Neutral spaces are excluded from this dictionary to focus only on meaningful
adjacencies between usable building spaces.

3.2.2 Determination of space-level topological relationships

The determination of space-level topological relationships assesses how spaces (rep-
resented as IfcSpace entities) are interconnected based on architectural features such
as doors, walls, and stairs. This analysis relies on a previously computed adjacency
dictionary, denoted as A. Through this examination, three primary types of connections
between spaces are identified: horizontally accessible (Hacc), horizontally adjacent (Hadj),
and vertically accessible (Vacc). Each of these relationships is defined according to the
specific criteria outlined in the IFC schema.



Figure 3.9: Illustration of horizontal adjacency detection

Horizontal accessibility

Horizontal accessibility between spaces can be established through three methods involv-
ing architectural components like doors, openings, or virtual elements.

- Through doors: In this scenario, two IfcSpace entities are directly connected by an
IfcDoor. The connection is identified through the IfcRelSpaceBoundary relationship,
which links the spaces to the door. This space-to-space relationship is already a part
of the adjacency dictionary. When two spaces are found to be adjacent, and one is
linked to a door, it confirms that there is horizontal accessibility between them.

- Through openings: The second method for establishing horizontal accessibility
involves openings within walls. In this case, an IfcOpeningElement creates a void in
an IfcWall that connects two adjacent spaces. The relationship chain starts with the
IfcRelSpaceBoundary, which links the IfcSpace to the IfcWall. The wall is then linked
to the IfcOpeningElement through another relationship called IfcRelVoidsElement
(see Fig. 3.10). For this connection to be valid, a specific condition must be
satisfied: min(YIfcRectangleProfileDef) = min(YIfcOpeningElement) where, YIfcRectangleProfileDef

represents the minimum Y -coordinate of the profile that defines the opening’s



geometry, and YIfcOpeningElement corresponds to the minimum Y -coordinate of the
opening itself. This condition ensures that the opening is located at the base of the
wall (and is not a window element), making it suitable for connecting the two spaces.

- Through virtual element: The third method involves IfcVirtualElement entities, which
represent non-physical boundaries. In this case, the IfcSpace entities are linked to
the IfcVirtualElement through a second-level IfcRelSpaceBoundary relationship.

Figure 3.10: Relationship between IfcSpace and IfcOpeningElement

Horizontal adjacency

Horizontal adjacency connections between spaces are established when two spaces are
adjacent but separated by a physical barrier, such as a wall. In this case, the relationship
involves the IfcWall element. Two IfcSpace entities are linked to a wall through the
IfcRelSpaceBoundary relationship, which confirms that the spaces are next to each other
but not directly accessible without moving through an additional space (see Fig. 3.11).
This form of connection indicates that although the spaces are in close proximity, there is
no direct passage between them. Occupants are required to navigate through intermediate
spaces in order to reach their destination.

Figure 3.11: Space boundary relationship representation of wall element

Vertical accessibility

Vertical accessibility connections between spaces are established by stairs that facilitate
movement between floors. To confirm such connections, we analyze the bounding boxes
of the IfcStair and the connected IfcSpace entities. The bounding box of the IfcStair is
denoted as BIfcStair, while the bounding boxes of the connected spaces are denoted as
BIfcSpace1

and BIfcSpace2
. A vertical connection exists when (also see fig. 3.12):

BIfcStair ∩ BIfcSpace1
̸= ∅ and BIfcStair ∩ BIfcSpace2

̸= ∅



It is important to note that this analysis method has a drawback when the stairway
intersects with multiple IfcSpace entities on the same horizontal level. Hence, such cases
shall be excluded.

Figure 3.12: Establishing vertical accessibility between two spaces

3.3 Graph-based reasoning on circulation paths

Following the space-level analysis and topological relationships, the data is transformed
into a graph-based representation to facilitate visualization and further analysis. The
space-level relationships are modelled as an undirected graph G = (V,E), where V

represents the set of vertices corresponding to individual spaces, and E represents the
set of edges corresponding to the relationships between spaces. For any vertex v ∈ V , a
set of attributes Av is defined:

Av = idv, typev, levelv

where idv is the Globally Unique Identifier (GUID) (buildingSMART TECHNICAL, 2024a) of
the space, typev denotes the LongName (which contributes solely to the labelling of nodes
and is not used in any further graph-based analysis) (buildingSMART INTERNATIONAL,
2024c), levelv indicates the floor level as per IfcBuildingStorey. Similarly, for each edge
e ∈ E connecting vertices vi and vj , a set of attributes Ae is defined:

Ae = typee, typee ∈ {Hacc, Hadj, Vacc}, where typee indicates the relationship type.

The figure 3.13 provides an illustrative example of a graph-based representation of space-
level relationship reasoning conducted on an IFC model of a house (the dotted lines
represent the virtual room separation lines or IfcVirtualElement). This graphical repre-
sentation visually encodes the space-level relationships among various spaces within the
building (computed in Section 3.2.1 and 3.2.2), emphasizing their space-level connectivity.



Figure 3.13: Graph-based representation of space-level relationship (right) reasoning
done on IFC model of a house (left)

In this graph, vertices (v ∈ V ) symbolize the space entities from the IFC model. The
vertices are colour-coded to indicate the level (levelv) of each space; for example, yellow
represents the ground floor, while grey denotes the first floor. This colour-coding helps
visually distinguish between different building levels, with the exception of exit nodes, which
are solely intended to represent exits and enhance graph-based analytics. The edges
(e ∈ E) in the graph capture the relationships between spaces and are characterized by
their attributes Ae. The figure represents these edges in the following ways:

- Solid edges indicate typee = Hacc, showcasing horizontal accessibility.

- Dotted edges correspond to typee = Hadj, illustrating horizontal adjacency.

- Red edges signify typee = Vacc, representing vertical accessibility.

- Green edge highlights a specific instance of spatial connectivity where an internal
space connects to the external environment, such as an exit door leading outside.

3.3.1 First-level community detection

At its core, the main task of all clustering algorithms is the automatic segmentation of
provided data entities into coherent groups (clusters) to enable the exploration of cluster
data separately from the entire dataset. Formally, given a set of spaces S = s1, s2, ..., sn,
the clustering process aims to find a partition C = c1, c2, ..., ck such that:

k⋃
i=1

ci = S and ci ∩ cj = ∅ for i ̸= j

where each cluster ci represents a group of spatially or functionally related spaces. For
architectural space-wise analysis, hierarchical clustering methods like Girvan-Newman
are suitable because they do not require a predefined number of clusters, reveal the
hierarchical structure of space-wise organization, and can identify both strong and weak
connections between spaces.



Figure 3.14: Flowchart of Girvan-Newman algorithm used for community detection

The algorithm operates on the principle of iteratively removing edges with high between-
ness centrality, which act like bridges between communities. This process continues
until the network breaks down into individual communities. The composition of these
communities and their number, based on the highest modularity value achieved, are then
considered. A visual representation of this process is provided in Fig. 3.14. The edge
betweenness centrality Cbetw(e) for an edge e is defined as:

Cbetw(e) =
∑
s,t∈V

σst(e)

σst

where σst is the total number of shortest paths between vertices s and t, and σst(e) is the
number of those paths passing through edge e. Community detection in a graph involves
several key steps aimed at identifying spatial clusters based on the graph’s structure. This
can be achieved by progressively removing edges with high centrality and observing the
resulting connected components.

Edge filtering

In the first step of the process, the graph undergoes pre-processing to remove edges
representing indirect connections, such as walls, as these are not relevant for direct
community detection. The specific pre-processing approach depends on the level and
type of analysis. In Global edge analysis, all edge types, including horizontal accessibility
(Hacc), horizontal adjacency (Hadj), and vertical accessibility (Vacc), are retained without
filtering, resulting in a graph G = (V,E), where E includes all edge types. In Horizontal
adjacency edge analysis, performed at the floor level, only horizontal adjacency edges
are considered, and vertical accessibility edges are filtered out, resulting in a subgraph
G′ = (V ′, E′), where E′ = {e ∈ E : typee ̸= Vacc}. Further restricting the analysis to
Horizontal accessibility edges excludes both horizontal adjacency and vertical accessibility
edges, producing a filtered subgraph G′′ = (V ′′, E′′), where E′′ = {e ∈ E : typee = Hacc}.



Calculating betweenness centrality and iterative edge removal

For each edge e in the edge-filtered graph, the betweenness centrality Cbetw(e) is cal-
culated. Betweenness centrality identifies edges that often occur on the shortest paths
between nodes. After the centrality is computed, the edges are sorted in descending
order of their betweenness centrality scores. Once ranked by their centrality, the algorithm
iteratively removes the edge with the highest centrality from the graph. After each edge
removal, the betweenness centrality of the remaining edges is recalculated to account for
the changes in the graph structure. This process is repeated until a stopping criterion is
met, as depicted in Fig. 3.15, where the removal of edges with the highest betweenness
values is illustrated.

Figure 3.15: Betweenness centrality values calculated and edges with highest between-
ness removed

The stopping criterion is determined based on the modularity value Q, which measures
the quality of the detected community structure. It can also be expressed as:

Q ∝
∑
s∈S

[(#edges within cluster s)− (expected # edges within cluster s)]

where S represents the set of all communities in the graph. The expected number of edges
between nodes i and j of degrees ki and kj is given by kikj

2m . This expression emphasizes
that modularity evaluates how much the actual number of edges within a group exceeds
the expected number of edges if edges were distributed randomly. The modularity formula
is:

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(ci, cj)

where:

- Aij is the adjacency matrix of the graph.



- ki and kj are the degrees of nodes i and j.

- m is the total number of edges in the graph.

- δ(ci, cj) is 1 if nodes i and j are in the same community, and 0 otherwise.

The stopping criterion is reached when the modularity Q is maximized. The identified
communities at this stage represent the most meaningful community structure. The
graph illustrated in fig. 3.16 showcases the modularity trend during the Girvan-Newman
community detection process for Fig. 3.15. The x-axis represents the number of edges
removed from the graph, while the y-axis shows the corresponding modularity value at
each step. The maximum modularity observed (in this case Q = 0.4411) before the steady
decline represents the optimal point for community detection. This analysis is crucial as
it ensures that the detected communities are not arbitrary but are, instead, well-defined
clusters based on the graph’s structure. The modularity trend thus guides the process by
showing where the separation of communities is strongest, enabling a more meaningful
detection of the underlying structure.

Figure 3.16: Modularity trend for Girvan-Newman community detection algorithm to
determine optimal number of clusters

Identifying connected components

At each step of the edge removal process, the connected components of the graph are
identified. A connected component is a subset of nodes where each node is reachable
from any other node within the subset. These connected components represent potential
spatial clusters. However, modularity-based approaches cannot detect small communities
in large networks. Small communities are often merged into larger ones because such
merging results in a higher Q value. This leads to a loss of granularity in the detected



community structure. Further analysis will be performed in the next section to address this
drawback and identify smaller sub-communities.

Figure 3.17: Cluster no. 1 formed by
Community Detection

Figure 3.18: Cluster no. 2 formed by
Community Detection

3.3.2 Sub-community analysis

A sub-community refers to a smaller, cohesive grouping within a larger community, created
by decomposing an excessively large community into more manageable units to enable
detailed and focused analysis. This analysis will be conducted in two distinct phases:

Second-level community detection

In this phase, the identified communities in Section 3.3.1 are taken as a basis. While
these larger communities offer insights, they often contain complex internal structures that
need further examination. The goal is to break down communities into smaller units for
further analysis, allowing exploration of hierarchical structures and a multi-level view of the
network.

Sub-cluster analysis

The second phase involves sub-cluster analysis, which examines smaller clusters by
using centrality-based metrics. These metrics assess the importance of nodes in the
sub-community’s structure and connectivity (see fig. 3.19). The centrality metrics listed
below will be used for analysis:
Degree Centrality (Cdeg): Measures the number of direct connections a node has. A high
degree centrality indicates that a node plays a significant role within a network. The degree



centrality (Cdeg), defined as:

Cdeg(i) =
deg(i)

|N | − 1

where, deg(i) represents the number of direct connections for node i and |N | denotes the
total number of nodes.
Betweenness Centrality (Cbetw): This metric is already discussed in section 3.3.1.

Figure 3.19: Centrslity analysis based on betweenness centrality values

The graph in Figure 3.19 illustrates the betweenness centrality analysis applied to the
first-floor layout of the IFC model of an office building. The nodes, representing rooms or
spaces, are positioned according to their space-level horizontal accessibility within the
layout. The analysis reveals distinct roles of the nodes based on the centrality measure
used: According to degree centrality, only two spaces, "Flur 1.OG Ost" (Corridor on the
first floor, East) and "Flur 1.OG West" (Corridor on the first floor, West), emerge as key
nodes due to their high number of direct space-level connections with other spaces. These
corridors function as key hubs, connecting various rooms. It is important to note that the
names of the nodes in the graph, such as "Flur 1.OG Ost" and "Büro Mueller II," are derived
from the "LongName" attribute of the IfcSpace entity. This attribute provides descriptive
labels for spatial elements in the IFC model. However, when examining betweenness
centrality, additional insights arise. In addition to "Flur 1.OG Ost" and "Flur 1.OG West,"
"Flur 1.OG Treppe" (Staircase on the first floor) becomes a critical node. The staircase
space entity functions as a bridge between different spatial clusters, facilitating movement
across various sections of the building. Comparing degree and betweenness centrality
reveals the complementary nature of these measures in understanding the space-level
network. Degree centrality identifies nodes like "Flur 1.OG Ost" and "Flur 1.OG West" as
essential hubs with the highest number of direct connections. These corridors enhance



localized accessibility by directly linking neighboring spaces. For instance, "Büro Schmid
I" and "Büro Mueller IV" rely on these corridors for immediate navigation. On the other
hand, betweenness centrality highlights nodes that serve as strategic connectors within
the network. While "Flur 1.OG Ost" and "Flur 1.OG West" remain significant, the analysis
also identifies "Flur 1.OG Treppe" as a vital node. For example, a user traveling from
"Buero IL" to "WC Damen" (Ladies’ restroom) would pass through "Flur 1.OG Treppe,"
which acts as a bridge between clusters. This metric underscores the importance of
nodes that lie on the shortest paths between spaces, even if they have fewer direct
connections. In summary, degree centrality identifies highly connected hubs such as
corridors, while betweenness centrality uncovers nodes with strategic significance in
maintaining circulation flow. Together, these measures offer a better understanding of the
space-level network, highlighting both localized and global connectivity within the building.



Chapter 4

Case study and results

4.1 Experiments

This chapter presents a case study and the demonstration of results, aimed at testing
and validating the functionality of the proposed framework. Medical clinic building model
shall be taken as input for this chapter (“Medical Clinic”, 2016). The chosen model is
formatted in IFC version 2x3 and exported using the Coordination View of the MVD
standard (buildingSMART TECHNICAL, 2024c). The building comprises of two floors, each
housing a variety of departments that reflect real-world complexity, including medical,
dental, pediatric, and imaging suites (see fig. 4.1). The first floor contains 153 space
entities, while the second floor has 109 space entities.

In this model, each IfcSpace entity also includes attributes for "LongName" and "Name",
providing additional semantic context (buildingSMART INTERNATIONAL, 2024c). The
"LongName" attribute typically describes the functional designation of the space, such as
MECH. YARD. The "Name" attribute serves as a shorthand identifier for the space and is
labelled using an alphanumeric scheme, such as 1A31, 1D32, 2B22, 2C12, and 1DC7.
The labelling convention encodes spatial and organizational information which shall be
used for validation purposes. For example:

- The first symbol represents the floor number.

- The second symbol denotes the zone to which the space belongs. This zoning
reflects the intended spatial organization of the building, as illustrated in Figure 4.2
and 4.4.

- For instance, in the label 1DC7, the third character, ’C’, signifies circulation spaces.
These circulation areas are essential for movement within the building and are
visually represented in Figure 4.3 and 4.5.

The structured approach adopted in this chapter is designed to thoroughly assess the
capabilities of the framework in managing and interpreting spatial and relational aspects
of building environments already presented in chapter 3. In the next three pages, we
will present the following layouts: 1) Floor plans and a 3D view of the case study model,
2) Zoning representation based on the LongName attribute of IfcSpace entities, and 3)
Circulation entities representation based on the LongName attribute of IfcSpace entities.
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Floor plan of the medical clinic: first floor

Floor plan of the medical clinic: second floor

3D perspective view of the
medical clinic

Figure 4.1: Floor plans and 3D View of the medical clinic



Figure 4.2: Case study model first floor zoning representation based on
IfcSpace labels

Figure 4.3: Case study model first floor circulation entities representation
based on IfcSpace labels



Figure 4.4: Case study model second floor zoning representation based
on IfcSpace labels

Figure 4.5: Case study model second floor circulation entities represen-
tation based on IfcSpace labels



4.2 Space-level relationship reasoning findings

4.2.1 Space-level horizontal adjacency findings

Figure 4.6: Space-level horizontal adjacency result of first floor of case study model
represented in graph format

Existing studies on adjacency computation have predominantly leveraged the IfcRelSpace-
Boundary entity to establish space-level relationships between rooms and other building
elements (DIAKITE et al., 2022; J. K. LEE & KIM, 2014). However, this relationship entity
often struggles to represent these relationships effectively, particularly when two thin parti-
tion walls separate two rooms (see Figure 4.7). To overcome this limitation, a voxel-based
approach offers an explicit space-wise representation, allowing for objective analysis of
Ifcspace connections. For the case study model, a voxel grid distance v = 0.5 was taken,
and the number of adjacent voxel search blocks n = 2 was considered. These parameters
were chosen to avoid tiny gaps and other geometric anomalies by accounting for search
blocks during adjacency computation. Also, as illustrated in figure 4.6, there are no isolated
nodes here in this graph as every space entity has an adjacent space entity as opposed to
figure 4.8 where isolated nodes are formed as some spaces are accessible only through
external environment. This graph will have more edges (as compared to graphs from sec-
tion 4.2.2), as adjacency does not require direct access. Figure 4.6 represents space-level
proximity, emphasizing physical layout rather than functional connections.



Figure 4.7: Illustration of space-level horizontal adjacency with two thin partition walls
separating two rooms.

4.2.2 Space-level accessibility findings

Horizontal accessibility

After computing horizontal accessibility, it is essential to refine the network through an initial
filtering step that removes specific nodes. As illustrated in Figure 4.8 (top-left quadrant),
isolated clusters can be identified within the graph. These clusters are accessible only
through the external environment and do not contribute to the main circulation network of
the building (see Fig. 4.9). To resolve this issue, a giant component filter is implemented.
This method isolates the largest connected component of the graph, which comprises
the nodes that form the core of the network (PEREZ & GERMON, 2016). As a result,
extraneous clusters that do not support the primary circulation function are effectively
removed. However, in case indirect edges are considered, these isolated nodes are taken
into consideration.

Figure 4.8: Space-level horizontal accessi-
bility result of first floor of case study model
represented in graph format. Isolated clus-
ters are evident in the top left quadrant.

Figure 4.9: Magnified look at the isolated
clusters identified in Figure 4.8.



Vertical accessibility

In the case study model, elevators were represented not through the prescribed IfcTrans-
portElement entity, but rather as IfcSpace entities labelled "Elevator" (See fig. 4.10). This
modelling approach constitutes a drawback, as it deviates from the integration of elevator
spaces into the vertical accessibility analysis.

Figure 4.10: Elevator as IfcSpace in Case Study Model

4.3 Graph-based circulation path reasoning findings

Building on the findings from space-level relationship analysis, graph-based reasoning
serves as an effective methodology for representing the results. Additionally, it facilitates
further analysis through graph analytics and community detection techniques (see Table
4.1 for an overview of the analyses conducted).

Table 4.1: Overview of analyses conducted
Analysis Type Description

Community Detection
Global edge analysis Considers all edges in the space-level topological

graph
Horizontal adjacency edge
analysis

Considers horizontal adjacency edges

Horizontal accessibility
edge analysis

Considers horizontal accessibility edges

Levels of Community Detection
First-Level Initial community detection analysis
Second-Level Refined community detection for large communities

Centrality Analysis
Building Storey Level Centrality metrics analyzed at the storey level
Community Level Centrality metrics analyzed within individual first-level

communities



4.3.1 Multi-level community detection findings

In this section, scenarios shall be presented as already discussed in section 3.3.1, however,
implemented on the case study model.

Global edge analysis

In global edge analysis (first-level community detection), a total of 9 communities were
identified, with 6 on the first floor and 4 on the second floor, matching the number of
zones defined in the IfcSpace-based zoning plan (see figure 4.11 and 4.12). However,
differences in spatial grouping emerge upon closer analysis. For instance, on the first
floor, zones such as FF-C and FF-D appear more fragmented in the community detection
results, with spaces grouped into multiple smaller communities.

Horizontal adjacency edge analysis

In horizontal adjacency edge analysis (community detection), a local analysis was con-
ducted focusing on the first floor, as it contains more rooms and is spatially more complex
compared to the second floor. The analysis identified a total of 8 communities on the first
floor, reflecting a finer subdivision of communities emphasizing more on adjacency. The
modularity value still reflects a reasonably strong community structure. However, it is lower
than the modularity value achieved in horizontal accessibility edge analysis. This implies
that the division into communities is less pronounced, with more connections crossing
between communities. Some discrepancies were noted in the community detection results
(see fig. 4.13). For instance, the toilet located in the top middle part of the corridor from
FF-3 is categorized as part of community FF-5; however, it logically belongs to FF-3 due
to its horizontal accessibility from that room. Similarly, two interaction stations have been
incorrectly classified under community FF-7, as they are horizontally accessible through
the corridor from community FF-8.

Community Name Number of Rooms Percentage (%)
FF-1 32 20.8
FF-2 19 12.3
FF-3 21 13.6
FF-4 19 12.3
FF-5 19 12.3
FF-6 10 6.5
FF-7 15 9.7
FF-8 19 12.3

Total Rooms 154 100.0

Table 4.2: Community-wise distribution of rooms and their percentages for horizontal
adjacency edge analysis



Horizontal accessibility edge analysis

In horizontal accessibility edge analysis, the analysis of the first floor identified a total
of 11 communities, indicating a more granular division of spaces compared to horizon-
tal adjacency edge analysis. This higher number of communities suggests a detailed
fragmentation of spatial relationships based on accessibility. A modularity of 0.823 sug-
gests a stronger division of the graph into well-defined communities. Nodes within each
community are more densely connected to each other and less connected to nodes in
other communities. Here, the communities are formed based on circulation spaces as the
"central" node, with rooms around them grouped into the same community. For example,
the FF-1 community is a well-demarcated cluster with the corridor at its centre, and the
horizontally accessible rooms surrounding it are considered part of the community (see
fig. 4.14). This reflects the space-wise hierarchy and the role of circulation in defining the
functional grouping of spaces.

Community Name Number of Rooms Percentage (%)
FF-1 8 5.5
FF-2 13 9.0
FF-3 15 10.3
FF-4 7 4.8
FF-5 20 13.8
FF-6 13 9.0
FF-7 17 11.7
FF-8 22 15.2
FF-9 10 6.9
FF-10 15 10.3
FF-11 5 3.4
Total rooms 145 100

Table 4.3: Community-wise distribution of rooms and their percentages for horizontal
accessibility edge analysis



(a) First-level community detection as per global edge analysis
(b) Zoning representation based on IfcSpace labels

Figure 4.11: First-level community detection comparison as per global edge analysis (case study model first floor)



(a) First-level community detection as per global edge analysis (b) Zoning representation based on IfcSpace labels

Figure 4.12: First-level community detection comparison as per global edge analysis (case study model second floor)



(a) First-level community detection as per horizontal adja-
cency edge analysis

(b) Zoning representation based on IfcSpace labels

Figure 4.13: First-level community detection comparison as per horizontal adjacency edge analysis (case study model first floor)



(a) First-level community detection as per horizontal accessibility
edge analysis

(b) Zoning representation based on IfcSpace labels

Figure 4.14: First-level community detection comparison as per horizontal accessibility edge analysis (case study model first floor)



Figure 4.15 illustrates the second-level community detection within the larger clusters identified in the first-level community detection, focusing
specifically on FF-8 and FF-10 (as those are larger identified first-level communities). This detailed breakdown highlights how sub-communities (or
second-level communities) are organized around key circulation nodes. In the case of FF-8, two distinct sub-communities emerge. The sub-community
1 is centred around 1BC2 - CORRIDOR, which serves as the key circulation node connecting several spaces within the sub-cluster. The sub-community
2, however, is formed around 1B04 - LAB. Although 1B04 is not classified as a circulation entity according to the fig. 4.3, it plays a critical role as a
restricted-access space frequently used by staff.

(a) Second-level community detection: FF-8 (b) Second-level community detection: FF-8

(c) Second-level community detection: FF-10 (d) Second-level community detection: FF-10

Figure 4.15: Second-level community detection of horizontal accessibility edge analysis: FF-8 and FF-10



Comparison of first-level community detection analyses

This section compares the findings across the three levels of edge analysis—Global
Edge Analysis, Horizontal Adjacency Edge Analysis, and Horizontal Accessibility Edge
Analysis—focusing on community distribution, and alignment with the zoning based on
IfcSpace labels.

(a) Global edge analysis (b) Horizontal adjacency
edge analysis

(c) Horizontal accessibility
edge analysis

Figure 4.16: Comparison of IfcSpace entities - "INTERACTION STATION" across com-
munity detection findings (zoomed-in views of the IfcSpace entities - "INTERACTION
STATION" taken from fig. 4.11 (a), 4.13 (a), 4.14 (a))

As shown in Figure 4.16, the two IfcSpace entities labelled "INTERACTION STATION" are
misclassified in both the global edge analysis (Figure 4.16 (a)) and the horizontal adjacency
edge analysis (Figure 4.16 (b)). These entities should belong to the same community as the
IfcSpace entity "CORRIDOR." The reason for this misclassification is that both the global
edge analysis and horizontal adjacency edge analysis only consider adjacency edges. In
these analyses, the IfcSpace entities associated with "INTERACTION STATION" have a
higher number of adjacency edges connecting them to entities such as "STAFF LOUNGE,"
"SUPER," and "TECH. WORK STATION." This results in their incorrect classification within
the community comprising these entities. However, this issue is resolved by applying
the horizontal accessibility edge analysis, which considers accessibility edges instead of
adjacency edges. Through this approach, the "INTERACTION STATION" spaces exhibit
stronger relationships with the "CORRIDOR," leading to their correct classification.

As shown in Figure 4.17, the classification of certain spaces varies across different
analytical approaches. For the spaces "JAN. CL." and "ELEV. EQUIP.," the global edge
analysis (Figure 4.17 (a)) and the zoning representation (Figure 4.17 (d)) incorrectly group
these entities with the left-side community. This misclassification occurs because the global



(a) Global edge analysis (b) Horizontal adjacency edge analysis

(c) Horizontal accessibility edge analysis (d) Zoning representation based on Ifc-
Space labels

Figure 4.17: Comparison of IfcSpace entities - "JAN. CL." and "ELEV. EQUIP." across
community detection findings (zoomed-in views of the IfcSpace entities - "JAN. CL." and
"ELEV. EQUIP." taken from fig. 4.11 (a), 4.13 (a), 4.14 (a), 4.11 (b))

edge analysis relies on the higher number of edge connections in that direction. In contrast,
both the horizontal adjacency analysis (Figure 4.17 (b)) and the horizontal accessibility
analysis (Figure 4.17 (c)) correctly classify these spaces with the "CORRIDOR" community,
accurately reflecting their functional relationship with circulation spaces. The zoning
representation’s misclassification emphasizes the limitations of spatial-only classification
approaches, as it relies on visual proximity rather than functional relationships. For the
"CHIEF LOG OFFICE," the horizontal adjacency edge analysis misclassifies this space by
grouping it with the right-side community due to its higher number of edge connections in
that direction.

In Figure 4.18, the spaces "ISOLATION INTERACTION STATION" and "ISOLATION
TOILET" are misclassified in the zoning representation based on IfcSpace labels. However,
the horizontal accessibility edge analysis correctly classifies these spaces by considering
space-level accessibility relationships with "CORRIDOR".

Figures 4.19 and 4.20 illustrate the modularity trends for horizontal adjacency edge
analysis and horizontal accessibility edge analysis, respectively. These analyses evaluate
how modularity, a measure of the quality of community structure, evolves as edges are
progressively removed from the network. The comparison highlights that the space-level
horizontal adjacency graph, with its higher edge density, forms more robust communities



(a) Horizontal accessibility edge
analysis

(b) Zoning representation based on
IfcSpace labels

Figure 4.18: Comparison of IfcSpace entities - "ISOLATION INTERACTION STATION"
and "ISOLATION TOILET" across community detection findings (zoomed-in views of the
IfcSpace entities - "ISOLATION INTERACTION STATION" and "ISOLATION TOILET"
taken from fig. 4.11 (a), 4.13 (a), 4.14 (a))

that are less dependent on specific edges. This structural advantage ensures greater
resilience in maintaining community integrity under disruptions. On the other hand,
the space-level horizontal accessibility graph, with fewer edges, exhibits a more fragile
community structure that is prone to fragmentation when critical edges are removed. This
difference is also reflected in the number of communities produced by both analyses,
where the horizontal adjacency graph tends to produce fewer, larger communities, while
the horizontal accessibility graph results in a greater number of smaller, more fragmented
communities.

Figure 4.19: Modularity trend for horizon-
tal adjacency edge analysis

Figure 4.20: Modularity trend for horizon-
tal accessibility edge analysis

Comparison of modularity trend



4.3.2 Centrality analysis

The centrality analysis will be conducted on two levels to provide a comprehensive under-
standing of the space-wise hierarchy and connectivity within the building.
Building Storey Level: At this level, centrality metrics will be calculated for the entire
building storey. This analysis will help identify key nodes that play a significant role in
overall accessibility throughout the storey. It will also reveal how different spaces interact
on a broader scale, highlighting areas of high centrality that function as critical hubs within
the space-level network.
Community level (communities formed by first-level community detection): At this more
detailed level, centrality metrics will be applied to the individual communities identified
through first-level community detection. This will provide insights into the internal struc-
ture and connectivity within each community. For instance, it will highlight which nodes
are central within their respective communities and how space-level relationships are
organized around these key points. This localized analysis is essential for understanding
the functionality and accessibility of spaces at a granular level, such as the influence of
circulation nodes on adjacent rooms.

The difference in centrality values between these two levels will arise from the scope of
analysis: at the building storey level, the values will reflect the broader, global connectivity
across the entire space, while at the community level, they will provide a more detailed
picture of the role of nodes within smaller, more defined clusters of spaces.

Building storey level

Degree centrality and betweenness centrality analyses were performed for graphs based
on horizontal adjacency edge analysis and horizontal accessibility edge analysis. The
centrality analysis for horizontal adjacency edge analysis produced ambiguous results
due to the high number of edges, making it ineffective. In contrast, the centrality analysis
for horizontal accessibility edge analysis was successful, revealing key circulation entities
from a storey-level perspective. The analysis identified the following circulation spaces:
1C18 - PHYSICAL EXAM (located in the top left of the plan); 1B04 - LAB (positioned in
the bottom right of the plan); and 1A16 - PHARM. DISP. (found in the top right of the plan).
Although these spaces are not included in the IfcSpace-based circulation plan, their names
suggest they represent restricted circulatory areas. For instance, in 1B04 - LAB and 1A16
- PHARM. DISP., the primary contributors to circulation are likely to be staff members. In
contrast, for 1C18 - PHYSICAL EXAM, both staff and patients designated for physical
exams would mainly contribute to the circulatory traffic (this was highlighted in both degree
centrality and betweenness centrality analyses, see fig. 4.23 and 4.24). The table 4.4
presents the top ten degree and betweenness centrality values for the first-floor case study
model horizontal accessibility edge analysis. As observed, "PHYSICAL EXAM" and "LAB"
exhibit higher degree centrality values. However, these spaces do not feature among
the top ten for betweenness centrality. This indicates that while degree centrality reflects
the immediate connectivity of a space, betweenness centrality provides a more reliable



measure of its significance in facilitating movement and access throughout the building.
This discrepancy emphasizes that betweenness centrality more effectively captures the
functional roles of spaces that enable circulation across different areas.

Degree Centrality Betweenness Centrality
LongName Community Index Value LongName Community Index Value
CORRIDOR FF-7 15 WAITING / ACTIVITY AREA FF-3 6940
WAITING / ACTIVITY AREA FF-3 14 CORRIDOR FF-5 4195
CORRIDOR FF-8 12 CORRIDOR FF-6 3608
CORRIDOR FF-5 11 CENTRAL WAITING FF-8 3274
CORRIDOR FF-6 10 CORRIDOR FF-7 3072
CORRIDOR FF-10 9 CORRIDOR FF-10 2661.5
CORRIDOR FF-4 8 CORRIDOR FF-8 2627
PHYSICAL EXAM FF-9 7 CORRIDOR FF-3 2339.5
CORRIDOR FF-1 7 CORRIDOR FF-10 2204
LAB FF-8 6 CORRIDOR FF-5 1974

Table 4.4: Degree and Betweenness Centrality Values - Building Storey Level (horizontal
accessibility edge analysis)

Figure 4.21: Degree centrality anal-
ysis

Figure 4.22: Betweenness centrality
analysis

Comparison of circulation spaces for horizontal adjacency edge analysis (building storey
level)



Figure 4.23: Degree centrality analysis Figure 4.24: Betweenness centrality analysis
Figure 4.25: Circulation entities representation
based on IfcSpace labels

Comparison of circulation spaces for horizontal accessibility edge analysis (building storey level)



Community level

In addition to the building storey level analysis, centrality metrics were applied to the
communities identified through first-level community detection. However, due to ambiguous
results from the building storey level analysis in horizontal adjacency edge analysis, this
scenario was not analyzed at the community level. This analysis for horizontal accessibility
edge analysis, on the other hand, offered a deeper understanding of the localized space-
level dynamics that may not be as apparent in the broader storey-level analysis.

Figure 4.26: Degree centrality analysis
Figure 4.27: Betweenness centrality
analysis

Comparison of circulation spaces for horizontal accessibility edge analysis (community
level)

The community FF-8 based on horizontal accessibility edge analysis, as illustrated in
Figure 4.28, was analyzed using community-level and building storey-level centrality
metrics. The corresponding centrality values for degree and betweenness metrics are
presented in Table 4.5. The findings reveal differences in how spaces are ranked based
on their centrality values across these two levels of analysis. At the community level,
most spaces’ degree and betweenness centrality rankings are relatively consistent, with
minor variations. However, one notable exception is the "CENTRAL WAITING" space.
In the degree centrality analysis, "CENTRAL WAITING" is ranked fifth, indicating fewer
direct connections than other community spaces. In contrast, the betweenness centrality
analysis ranks "CENTRAL WAITING" fourth. It suggests that while it does not have many
direct connections, it is a bridge or intermediary for movement between other spaces.
At the building storey level, the rankings for "LAB" and "CENTRAL WAITING" exhibit
more pronounced differences. In the degree centrality analysis, "LAB" is ranked higher
than "CENTRAL WAITING," reflecting its relatively greater number of direct connections
at this level. Conversely, the betweenness centrality analysis assigns a higher rank to



"CENTRAL WAITING," recognizing its role as a critical pathway in the overall circulation of
the floor. These differences underscore the varying importance of these spaces depending
on the centrality metric used. From a practical perspective, "CENTRAL WAITING" holds
significant importance in the context of the building’s functionality. It is directly connected
to the main entrance and serves as the primary corridor, facilitating access to various
floor areas. In contrast, the "LAB" is a restricted-access space primarily used by staff and
certain patients with specific permissions. This restricted access reduces its overall role in
the floor’s circulation network despite its higher degree of centrality at the building storey
level. These results highlight the complementary nature of degree and betweenness
centrality metrics in understanding space-level circulation entities. While degree centrality
identifies spaces with extensive direct connections, betweenness centrality provides insight
into the strategic importance of spaces as connectors within the circulation network.

Figure 4.28: Community FF-8 from first-level community detection

Community level
Degree Centrality Betweenness Centrality

LongName Community Index Value LongName Community Index Value
CORRIDOR FF-8 12 CORRIDOR FF-8 163.5
LAB FF-8 6 LAB FF-8 98
CORRIDOR FF-8 5 CORRIDOR FF-8 59.5
CORRIDOR FF-8 3 CENTRAL WAITING FF-8 24
CENTRAL WAITING FF-8 2 CORRIDOR FF-8 20

Building Storey Level
Degree Centrality Betweenness Centrality

CORRIDOR FF-8 12 CENTRAL WAITING FF-8 3274
LAB FF-8 6 CORRIDOR FF-8 2627
CORRIDOR FF-8 5 CORRIDOR FF-8 1465
CENTRAL WAITING FF-8 4 CORRIDOR FF-8 656
CORRIDOR FF-8 4 LAB FF-8 650

Table 4.5: Community level and building storey level centrality values

The community FF-5 is based on horizontal accessibility edge analysis, as illustrated in
Figure 4.29. There is a vertical corridor and a horizontal corridor within this community FF-
5. However, at the building storey level, the vertical corridor exhibits a higher betweenness
value, while at the community level, the horizontal corridor shows a greater betweenness
centrality value, as detailed in the tables 4.6 and 4.7.



Figure 4.29: Community FF-5 from first-level community detection

Building Storey Level
GUID LongName Community Index Betweenness Centrality Value
0ztdC3L1HAzhbhMHypqcak CORRIDOR FF-5 4195
0ztdC3L1HAzhbhMHypqcaa CORRIDOR FF-5 1974
0ztdC3L1HAzhbhMHypqcaZ CORRIDOR FF-5 1516
0ztdC3L1HAzhbhMHypqcAu PROVIDER CUBICLES FF-5 648
0ztdC3L1HAzhbhMHypqcA7 SPECIMEN COLL. LAB FF-5 143

Table 4.6: Betweenness centrality values of FF-5 at building storey level

Community-level
GUID LongName Community Index Betweenness Centrality Value
0ztdC3L1HAzhbhMHypqcaZ CORRIDOR FF-5 97
0ztdC3L1HAzhbhMHypqcaa CORRIDOR FF-5 39
0ztdC3L1HAzhbhMHypqcAu PROVIDER CUBICLES FF-5 33
0ztdC3L1HAzhbhMHypqcAU INTERACTION STATION FF-5 33
0ztdC3L1HAzhbhMHypqcak CORRIDOR FF-5 25

Table 4.7: Betweenness centrality values of FF-5 at community level

4.4 Additional validation examples

The following figures illustrate space-level relationship findings and graph-based circulation
path reasoning findings of an IFC model of office building.

Figure 4.30: 3D perspective view of office building



Figure 4.31: Horizontal accessibility edge analysis of office building (nodes are coloured as storey level)



Figure 4.32: Floor plan of office building: ground floor

Figure 4.33: Community Detection of the graph obtained from horizontal
accessibility edge analysis of office building: ground floor (nodes are
coloured as identified community)



Figure 4.34: Degree centrality analysis (in hierarchical graph format
and nodes having value<2 are filtered out) of the graph obtained from
horizontal accessibility edge analysis of the office building (nodes are
coloured as storey level)

Figure 4.35: Betweenness centrality analysis (in hierarchical graph format
and nodes having value=0 are filtered out) of the graph obtained from
horizontal accessibility edge analysis of the office building (nodes are
coloured as storey level)



Chapter 5

Conclusions

5.1 Contribution

The study addresses the challenges in analyzing space-level circulation design rationale
in IFC models by proposing a graph-based methodology that integrates space-level
topological detection, community detection, and centrality analysis. The main contributions
of the study are outlined as follows:

- Resolving issues with incomplete or missing IfcRelSpaceBoundary data: The pro-
posed approach reinforces space-level horizontal adjacency detection by addressing
limitations posed by incomplete or missing IfcRelSpaceBoundary data. Utilizing a
voxel-based system with adjustable resolution, the method reliably detects space-
level horizontal relationships, even in cases where explicit boundary information
is unavailable. This includes detecting adjacencies through complex geometric
configurations such as double walls and irregularly shaped spaces. Furthermore,
the methodology accommodates configurable thresholds for connectivity and adja-
cency detection, providing flexibility to adapt to diverse architectural layouts. Unlike
traditional approaches constrained by the Manhattan world assumption, this method
supports the analysis of both orthogonal and non-orthogonal geometries, including
L-shaped corridors and irregular rooms.

- Community detection in space-level topological relationships: The study introduces
a multi-level community detection framework to analyze spatial organizations at
various topological scales. By applying the Girvan-Newman algorithm, the framework
identifies hierarchical community structures, offering insights into the organization of
spaces within a building. Large communities detected during the first-level analysis
are further subdivided, enabling a granular understanding of spatial clustering.
This capability ensures comprehensive community detection across diverse cases,
ranging from localized clusters to building-wide topological relationships.

- Identification of key circulation nodes through centrality analysis: The method in-
corporates centrality-based analyses to identify critical circulation nodes at multiple
levels, including building storey and community levels. Degree centrality is used
to highlight nodes with extensive direct connections, marking them as important
hubs for localized accessibility. Betweenness centrality, on the other hand, identifies
nodes that serve as essential pathways for movement between spaces, emphasizing
their role in maintaining overall connectivity. By integrating these metrics, the study
offers a dual perspective that enhances the understanding of space-level connectivity
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and the significance of circulation nodes within each community. This multi-level
analysis aids in identifying key spatial elements that are crucial for efficient circulation
planning.

This study contributes to enhancing IFC models by integrating graph-based methodologies
for space-level circulation design rationale. By using voxelization and community detection,
the approach enriches IFC data, addressing issues like incomplete boundary information
and supporting diverse geometries. Additionally, it enables the reuse of IFC models for
different design scenarios, offering a tool for analyzing circulation design across various
building layouts.

5.2 Limitation

Several limitations of this study are acknowledged and indicate areas for potential improve-
ment.

- Uniform treatment of space-level relationships: The current methodology operates
as an unweighted analysis, treating all relationships between space-level entities
uniformly. This approach overlooks critical variations that could influence circulation
patterns, such as differences in door sizes, plan area of space-level entities, or
specific geometric features. For instance, a narrow doorway might naturally limit
the flow of movement compared to a large, open passage, yet both are treated
equivalently in the current model. Similarly, larger spaces with higher capacity or
functional importance (e.g., meeting rooms or atriums) may play a more significant
role in circulation dynamics but are not given additional weight in the analysis.
Incorporating these factors in future iterations, potentially through weighted graphs
or customized metrics, could lead to a more accurate and nuanced understanding of
space-level relationships.

- Neglect of node distance in graph-based analysis: The proposed methodology does
not consider the physical distance between nodes in the generated graphs. This
limitation can lead to an oversimplification of relationships, as spatial proximity often
plays a critical role in circulation design. For example, two spaces connected via a
long corridor may have less interaction or movement between them compared to ad-
jacent spaces, even if the graph treats these connections equivalently. Incorporating
distance-based weighting in graph representation could enhance the methodology
by better reflecting real-world circulation dynamics.

- Lack of multi-floor community relationships: A limitation of the proposed methodology
is its inability to identify communities that establish meaningful relationships among
multiple floors of a building. While the vertical adjacency analysis highlights the
space-level connections between different levels (e.g., via stairs or elevators), the
community detection algorithm operates primarily within the context of individual
floor plans. As a result, the methodology cannot reveal how spaces across floors



function together as part of an interconnected system. This limitation reduces
its effectiveness for analyzing circulation patterns in multi-storey buildings where
cross-floor interactions play a critical role, such as vertically integrated workspaces.
Future advancements could focus on extending the community detection process
to consider cross-floor relationships, providing a more holistic view of building-wide
spatial organization.

- Reliance on a single centrality metric: This methodology relies on individual centrality
metrics—such as degree centrality or betweenness centrality—during the reasoning
process. However, using only one centrality metric may result in an incomplete
understanding of the space-level topological relationships within the building. For
example, degree centrality identifies spaces with the highest number of direct con-
nections, emphasizing local importance, while betweenness centrality highlights
spaces that act as critical connectors within the overall graph. Both metrics provide
complementary insights and ignore one in favour of the other risks overlooking
key space-level entities. A combined consideration of multiple centrality metrics is
essential to capture both the local and global significance of spaces, leading to a
more comprehensive reasoning process.

- Computational complexity: One of the primary challenges lies in the computational
intensity of the voxel-based approach. The resolution of the voxel grid directly
impacts the processing time and memory usage, with finer grids offering greater
accuracy at the cost of higher resource consumption. This becomes particularly
problematic for large or complex building models, where the number of voxels can
grow exponentially. For example, high-rise buildings or large-scale facilities with
intricate spatial layouts may require substantial computational resources, making
the approach less practical for real-time analysis or integration into iterative design
workflows. Optimization techniques, such as parallel processing, could help mitigate
this limitation.

5.3 Future work

In light of the findings and in response to the noted limitations, several directions for future
research are proposed. A further direction is the incorporation of parametrization, which
could allow the method to dynamically adapt to different design parameters. Additionally,
exploring the use of Graph Neural Networks (GNNs) offers an opportunity to leverage
AI-driven methods to automate the identification of circulation features and spatial re-
lationships, improving efficiency in large-scale building models (BURUZS et al., 2022).
The integration of weighted spatial relationships is essential, as it enables the method to
account for factors such as door dimensions, wall thickness, and geometric influences on
movement. This enhancement is expected to provide a more nuanced understanding of
interactions at the spatial level. Additionally, refining the community detection process is
vital for generating more precise insights into spatial organization. Improving the analysis
of vertical adjacency is also crucial. Developing methodologies that better represent and



analyze vertical connections, including multi-level circulation dynamics, would significantly
broaden the method’s applicability. By pursuing these avenues, the proposed method
possesses the potential to evolve into a more comprehensive framework for architectural
space-level analysis, yielding deeper insights and expanding its range of applications.
Finally, enhancing the IFC model’s robustness to incomplete data could improve the
method’s reliability and adaptability across different project scenarios. This could involve
designing a methodology to handle variability in model quality.
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