
Performance Evaluation of Acoustic Model
Implementation in SeisSol Using Roofline Model

Jinwen Pan
TUM School of Computation, Information and Technology

Technical University of Munich
Garching, Germany
jinwen.pan@tum.de

Abstract—SeisSol is a high-performance software framework
widely used for simulating seismic wave propagation and dynamic
rupture processes. The incorporation of the acoustic wave model,
which is crucial for accurately representing the natural processes
in SeisSol, presents new performance challenges. The acoustic
wave model, consisting of four partial differential equations
(PDEs), is a special case of the elastic wave model, which
comprises nine PDEs. Based on this, in the current version
of SeisSol, the acoustic model is implemented by setting the
second Lamé parameter to zero within the elastic model, which
leads to unnecessary resource usage. We implement a standalone
acoustic model for SeisSol’s proxy application, evaluate its
performance improvements using the roofline model, and analyze
its cache utilization. Although the performance bottlenecks have
not significantly changed, the runtime and memory data volume
have been reduced by approximately half under several typical
test conditions, while the last-level cache (LLC) miss rate has
increased by up to about 17%. Additionally, the process of
building the roofline model on the Leibniz Supercomputing
Center (LRZ)’s CoolMUC-2 cluster, along with its advantages
and limitations, is discussed.

Index Terms—acoustic wave, computational seismology,
roofline model, high-performance computing

I. INTRODUCTION

Seismic wave propagation simulations have become an
essential tool for understanding earthquake dynamics, pre-
dicting ground motion, and informing hazard assessments.
These simulations are critical for engineers, geophysicists, and
disaster management authorities in their efforts to mitigate
earthquake risks. As earthquake phenomena involve highly
complex physical processes, accurate simulations must capture
intricate interactions between geological layers, fault lines, and
various material types in the subsurface environment. One of
the leading software frameworks in this domain is SeisSol,
a high-performance computing (HPC) application that uses
the Arbitrary high-order DERivative Discontinuous Galerkin
(ADER-DG) method to simulate seismic wave propagation
and dynamic rupture processes [1]. The ADER-DG method
combines the DG spatial discretization with the ADER tempo-
ral discretization. The DG method handles complex geometries
with high-order accuracy in an explicit semi-discrete form
while ensuring local conservation, making it well-suited for
simulating conservation laws, which are the primary physical
models in seismic simulations [2]. The ADER method, on
the other hand, predicts time evolution through local Taylor

expansions and corrects neighboring elements, allowing it to
achieve arbitrary accuracy in both time and space as a one-
step method [3]. Because of these properties SeisSol is capable
of delivering highly accurate results at large scales, making it
a valuable resource in both academic research and practical
applications.

The accuracy of seismic simulations also depends heavily
on the physical models used to represent the materials through
which seismic waves travel. SeisSol currently supports various
materials, such as isotropic elastic [4], poroelastic [5], vis-
coelastic [6], off-fault plastic [7], and elastic-acoustic coupled
materials [8]. In this context, the incorporation of acoustic ma-
terials has become increasingly important. Acoustic materials,
such as air, water, and certain geological layers, have distinct
properties that affect the speed and attenuation of seismic
waves. These materials are especially relevant in regions
with heterogeneous subsurface structures, such as sedimentary
basins or areas with varying rock densities. By integrating
acoustic material models into SeisSol, the simulation can more
accurately capture the complex behavior of seismic waves,
leading to more reliable predictions of ground motion and
hazard scenarios.

In practice, since acoustic waves are a special case of
elastic waves, the current version of SeisSol models acoustic
materials by setting the second Lamé parameter in the elastic
model to zero while still retaining the 9-dimensional PDEs
description. Although this approach ensures compatibility and
flexibility, it does not take full advantage of the simplified
nature of the acoustic model, which can be described by only
4 PDEs. Consequently, there is room to improve both runtime
and memory usage by decoupling the acoustic model from
the elastic formulation, thus allowing for a more efficient
standalone implementation.

To assess these performance limitations, we implement a
standalone acoustic wave model for SeisSol’s proxy appli-
cation. We then evaluate the performance improvements of
this implementation using the roofline model, one of the
most effective tools for performance analysis and optimiza-
tion in HPC applications [9]. The roofline model provides
a clear, visual representation of a program’s performance
by balancing two critical metrics: computational performance
(measured in floating-point operations per second, or FLOPS)
and memory bandwidth (the rate at which data are moved



between memory and processing units). By plotting these two
metrics, the roofline model helps identify whether a program’s
performance is constrained by the processing power of the
CPU (computation-bound) or by the memory access speed
(memory-bound). This insight is particularly valuable when
optimizing scientific software like SeisSol, as different simu-
lation scenarios may have varying computational and memory
demands. Through performance testing on the CoolMUC-2
cluster at the LRZ, we demonstrate that the standalone acoustic
implementation reduces both the runtime and memory data
volume by approximately 50%, without significantly altering
the performance bottlenecks. Additionally, a cache usage anal-
ysis reveals that the cache miss rate of this implementation
fluctuates under different test conditions, with a maximum
increase of approximately 17%.

II. PHYSICAL MODELS

SeisSol supports various physical models, such as elastic,
poroelastic, and viscoelastic models. Since the primary focus
of this project is to evaluate and compare the performance of
elastic and acoustic models with varying degrees of freedom
(DOFs), this section will only cover the elastic and acoustic
models and their relationship. Due to space limitations, certain
details, such as boundary conditions and seismic sources, will
be omitted. A complete discussion can be found in [10].
Throughout this report, we will describe the three-dimensional
space using a Cartesian coordinate system x = (x, y, z)T ,
along with a time coordinate t.

A. Elastic Wave Model

In seismic modeling, particle perturbations are typically
considered small. Therefore, wave propagation in elastic solids
can be described using the linear elastic wave equations. In
this subsection, we will derive these equations following [10],
[11], and [12].

At a given time t, the displacement of a particle located at
x0 in three-dimensional space can be expressed as

u(x0, t) =

u1(x0, t)
u2(x0, t)
u3(x0, t)

 . (1)

After a small perturbation δx, the new displacement of the
particle can be linearly approximated as

u(x0 + δx, t) ≈ u(x0, t) + Jδx, (2)

where J is the Jacobian matrix with entries Jij = ∂ui

∂(x0)j
.

The Jacobian matrix can be split into the symmetric strain
matrix ε and the skew-symmetric rotation matrix Ω with εij =
1
2 (Jij + Jji) and Ωij =

1
2 (Jij − Jji) respectively.

Consider an infinitesimal cube near any point within a
material. The diagonal components of the strain matrix rep-
resent normal strains, which indicate the relative extent of
stretching or compression of the cube along the coordinate
axes (dimensionless). The off-diagonal components represent
shear strains, which indicate the relative extent of shear

deformation within the plane defined by the corresponding
subscript (dimensionless).

Strain within a material leads to the generation of internal
forces that maintain the material’s stability, known as stress
(measured in Pa). Similarly, at any point in the material, we
can define a stress matrix σ. The diagonal components of
this matrix represent normal stresses, indicating the tensile or
compressive forces acting on the cube along the coordinate
axes. The off-diagonal components represent shear stresses,
which act within the planes defined by the corresponding
subscript. Based on the assumption of static equilibrium in
solids, the stress matrix is also symmetric.

According to the generalized Hooke’s law, under the as-
sumption of small perturbations, stress and strain are linearly
related through a fourth-order tensor C. Based on symmetry
and thermodynamical considerations, C actually only has 21
independent entries [13], [14]. Here, we do not present the
stress-strain relationship in tensor form. Instead, for conve-
nience, we express this relationship under the assumption of
isotropy as

σij = λδij

3∑
k=1

εkk + 2µεij , (3)

where λ and µ are the Lamé parameters which are material-
specific and δij is the Kronecker delta. In addition, the bulk
modulus K = λ + 2

3µ can be defined, which measures the
incompressibility of a material. By differentiating both sides
of (3) with respect to time, and incorporating the definitions
of the strain matrix and velocity, we can derive six of the nine
elastic wave equations, given by

∂σij

∂t
= λδij

3∑
k=1

∂vk
∂xk

+ µ(
∂vi
∂xj

+
∂vj
∂xi

), (4)

because the stress matrix has 6 independent entries due to
symmetry.

Consider an arbitrary three-dimensional domain Ω within a
material, along with its boundary ∂Ω. According to Newton’s
second law, the rate of change of momentum equals the net
force acting on the domain. This net force consists of the
traction forces T (n) (Pa) applied on the domain boundary and
the body forces f (N/m3) acting within the domain. Therefore,
we have

∂

∂t

∫
Ω

ρ
∂u

∂t
dV =

∫
∂Ω

T (n) dS +

∫
Ω

f dV, (5)

where n is the unit normal vector of dS (note that in the
integral, dS is a scalar instead), and ρ is the density of
the material. The components of the traction force can be
expressed in terms of stress as Ti =

∑3
j=1 σjinj . Applying

the divergence theorem, the surface integral in (5) can be
converted into a volume integral. Therefore, in any dimension
i, (5) can be written as∫

Ω

ρ
∂2ui

∂t2
dV =

∫
Ω

3∑
j=1

∂σji

∂xj
+ fi dV, (6)



where we assume the density is constant. In seismic simula-
tions, we can typically rewrite (6) into a stronger differential
form as

ρ
∂vi
∂t

=

3∑
j=1

∂σij

∂xj
+ fi, (7)

where we utilize both the definition of velocity and the sym-
metry of the stress matrix. We ultimately obtain the remaining
three of the nine elastic wave equations.

By combining (4) and (7), the system of elastic wave
equations can be written in matrix form as

∂q

∂t
+A(x)

∂q

∂x1
+B(x)

∂q

∂x2
+C(x)

∂q

∂x3
= 0. (8)

Here, q is defined as (σ11, σ22, σ33, σ12, σ23, σ13, v1, v2, v3)
T ,

which is a vector function of x and t, meaning the elastic
model is described by nine quantities at any spacetime co-
ordinates. A(x), B(x), and C(x) are flux matrices in the
directions of the three coordinate axes respectively, which may
vary with position since the Lamé parameters and density of
the material may also vary spatially. Under the assumption
of isotropy, these matrices have the same set of eigenvalues
(−cp,−cs,−cs, 0, 0, 0, cs, cs, cp), where cp =

√
λ+2µ

ρ and

cs =
√

µ
ρ are defined as the velocities of primary waves (P-

waves) and secondary waves (S-waves), respectively. There-
fore, the set of eigenvalues correspond to two S-waves and
one P-wave in each direction. P-waves and S-waves are two
common types of waves in earthquakes, both classified as
body waves. P-waves are compressional waves, where particle
motion is in the same direction as wave propagation, and they
travel faster. S-waves, on the other hand, are shear waves,
where particle motion is perpendicular to the direction of
wave propagation, and they travel slower. For brevity, using
the definition Â(x,n) = n1A(x) + n2B(x) + n3C(x), we
only present the result of the linear combination of the flux
matrices:

Â(x,n) =



0 0 0 0 0 0 −n1(λ+ 2µ) −n2λ −n3λ
0 0 0 0 0 0 −n1λ −n2(λ+ 2µ) −n3λ
0 0 0 0 0 0 −n1λ −n2λ −n3(λ+ 2µ)
0 0 0 0 0 0 −n2µ −n1µ 0
0 0 0 0 0 0 0 −n3µ −n2µ
0 0 0 0 0 0 −n3µ 0 −n1µ

−n1

ρ 0 0 −n2

ρ 0 −n3

ρ 0 0 0

0 −n2

ρ 0 −n1

ρ −n3

ρ 0 0 0 0

0 0 −n3

ρ 0 −n2

ρ −n1

ρ 0 0 0


,

(9)
which is the flux matrix of the infinitesimal plane defined by
any unit normal vector n near x.

B. Acoustic Wave Model

In seismic simulations, in addition to modeling the motion
of solid particles, it is also necessary to simulate the flow
of fluids, which is typically described using the acoustic wave
model. In this subsection, we derive the model following [10],
[15], and [16].

Consider an arbitrary three-dimensional domain Ω with its
boundary ∂Ω. The mass of the fluid within the domain is a
conserved quantity, meaning its rate of change is equal to the

surface integral of the mass flux across the boundary of the
domain, given by:∫

Ω

∂ρ

∂t
dV +

∫
∂Ω

ρv · n dS = 0. (10)

Similarly to the previous subsection, we apply the divergence
theorem and rewrite (10) in its differential form:

∂ρ

∂t
+∇ · (ρv) = 0. (11)

In addition, momentum is also a conserved quantity. Its
rate of change is not only directly contributed by the surface
integral of the momentum flux on the boundary but also by
the net force acting on the fluid. This net force consists of the
integral of the pressure p (Pa) exerted on the domain’s surface
and the integral of the body forces f (N/m3) acting within the
domain, expressed as

∂ρv

∂t
+∇ · (v ⊗ ρv + Ip)− f = 0, (12)

where we omit the application of the divergence theorem and
directly present the equation in its differential form to avoid
repetition. Here, I is a 3-dimensional identity matrix, and the
divergence of a 3× n matrix A, denoted as ∇ ·A, is defined
as producing a n-dimensional vector with

(∇ ·A)i =
∂a1i
∂x1

+
∂a2i
∂x2

+
∂a3i
∂x3

, (13)

where aij are the entries of A. The symbol ⊗ represents the
Kronecker product, which takes two vectors a and b, and
outputs a matrix with (a ⊗ b)ij = aibj . Furthermore, it can
also take a m×n matrix A and a p×q matrix B, and produce
a pm× qn block matrix:

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 . (14)

Finally, in our case, f = (0, 0,−ρg)T , where g is the
gravitational acceleration on Earth and the pressure p is a
function of a single variable ρ (density) under the assumption
of isentropic flow [17].

We use letters with a subscript 0 to denote physical quanti-
ties in the model under steady-state conditions. In equilibrium,
∂p0

∂x1
= ∂p0

∂x2
= ∂p0

∂t = ∂ρ0

∂x1
= ∂ρ0

∂x2
= ∂ρ0

∂t = 0 and v0 = 0.
Therefore, (12) reduces to

∂p0
∂x3

= −ρ0g. (15)

In addition, we define the bulk modulus in equilibrium as
K0 = ρ0

dp0

dρ0
. Using the chain rule, we have

∂p0
∂x3

=
K0

ρ0

∂ρ0
∂x3

, (16)

which results in
∂ρ0
∂x3

=
ρ0
K0

∂p0
∂x3

. (17)

In non-equilibrium conditions, the physical quantities
(v(x, t), ρ(x, t), p(x, t))T can be considered as the sum of



the equilibrium quantities (v0(x), ρ0(x), p0(x))
T and the

time-dependent perturbations (v′(x, t), ρ′(x, t), p′(x, t))T .
Similarly, K = ρ0

dp
dρ is defined and as in [15], we assume

K = K0.
Now, we can rewrite (11) as

∂ρ′

∂t
+∇ · ((ρ0 + ρ′)v′) =

∂ρ′

∂t
+∇ · (ρ0v′) +∇ · (ρ′v′) = 0.

(18)
Next, we try to simplify this equation. Using a Taylor expan-
sion, we have

p(ρ) ≈ p(ρ0) + ρ′
dp

dρ
(ρ0) = p0 +

ρ′

ρ0
K, (19)

which results in
ρ′ = p′

ρ0
K

, (20)

because p = p0 + p′. Due to ∂ρ0

∂x1
= ∂ρ0

∂x2
= 0, using the

definition of divergence and the chain rule, we obtain

∇ · (ρ0v′) = ρ0∇ · v′ − ρ0
K0

ρ0gv
′
3, (21)

where we apply (15) and (17). ∇ · (ρ′v′) can be considered
negligible because, compared to the other two terms in (18), it
involves the multiplication of two small perturbations. Finally,
by inserting (20) and (21) into (18), we arrive at

∂p′

∂t
+K

3∑
k=1

∂v′k
∂xk

− ρ0gv
′
3 = 0, (22)

where we divide both sides of the equation by ρ0

K and drop the
subscript of K because of the previous assumption K = K0.

Similarly, (12) can be rewritten with perturbations as

∂(ρ0+ρ′)v′

∂t +∇ · (v′ ⊗ ((ρ0 + ρ′)v′)) +∇ · (I(p0 + p′)) + (ρ0 + ρ′)ge3 = 0,

(23)
where e3 = (0, 0, 1)T . Because ρ′v′ ≈ 0 and v′iv

′
j ≈ 0, the

first term can be approximated as ρ0
∂v′

∂t and the second term
can be approximated as 0. Using the definitions ∂p0

∂x1
= ∂p0

∂x2
=

0 and (15), the third term can be simplified as ∇·(Ip′)−ρ0ge3.
By inserting (20), the fourth term can be rewritten as ρog(1+
p′

K )e3. Finally, by combining these, (23) can be simplified as

ρ0
∂v′

∂t
+∇ · (Ip′) + ρ0gp

′

K
e3 = 0, (24)

where we replace the approximate equality sign with an
equality sign.

Since v′ is a three-dimensional vector, (22) and (24) to-
gether form the acoustic wave system consisting of four PDEs.
Considering the material parameters of the Earth’s oceans, the
terms involving gravitational acceleration g in the system can
be neglected [8]. Thus, the system can be written in a matrix
form similar to (8):

∂qac

∂t
+Aac(x)

∂qac

∂x1
+Bac(x)

∂qac

∂x2
+Cac(x)

∂qac

∂x3
= 0,

(25)
where qac = (p′, v′1, v

′
2, v

′
3)

T and Aac(x), Bac(x), and
Cac(x) are flux matrices. They also share the same set

of eigenvalues (−cac, 0, cac), where cac is the acoustic
wave speed given by cac =

√
K
ρ0

. The linear combination

Âac(x,n) = n1A
ac(x) + n2B

ac(x) + n3C
ac(x) is given

by

Âac(x,n) =


0 n1K n2K n3K
n1

ρ0
0 0 0

n2

ρ0
0 0 0

n3

ρ0
0 0 0

 . (26)

The acoustic wave model is essentially a special case of
the elastic wave model. In the elastic wave model, if we set
µ = 0, the normal stresses in all three directions become
equal, and the shear stresses reduce to zero. Although the
solution vector still has nine dimensions, only four of them
are independent and necessary. By retaining only these four
independent variables, (8) reduces to (25). This aligns with the
physical interpretation: in a fluid, the pressure (corresponding
to the negative of the stress in a solid) is equal in all directions,
and the fluid’s ability to flow means there are no shear strains
or shear stresses. It is important to note that normal stress
and pressure are opposites, as compressive stress in solids is
defined as negative, while compressive pressure in fluids is
positive.

In the current version of SeisSol, the acoustic wave model
is implemented by setting µ = 0 in the elastic wave model
(with nine DOFs). To create a standalone acoustic model for
SeisSol’s proxy application, we duplicate the source code of
the elastic implementation and modify the matrices used for
numerical computations and their dimensions, as well as the
functions responsible for reading and writing these matrices,
to accommodate the new physical model with four DOFs.
However, we do not modify the functions related to the
computations themselves, as the form of the PDEs describing
both models is the same. Finally, the CMake system is also
updated to reflect the configuration and build process for
the acoustic implementation. To verify the correctness of the
acoustic model, we extract the modified functions and compare
their outputs with those from the elastic implementation with
µ = 0. In the next section, we will evaluate the performance
improvements of the standalone acoustic wave model with
only four DOFs.

III. PERFORMANCE EVALUATION

Many large-scale simulation software packages often come
with a proxy application or mini application. These applica-
tions are typically simple and lightweight but capture the core
computational characteristics of the main simulation program.
They allow for performance evaluation and tuning of the main
application to some extent without requiring complex inputs or
consuming significant computational resources. In this section,
we evaluate and compare the performance of SeisSol’s proxy
application based on the elastic (with µ = 0) and acoustic
models.



A. Test System and Software Environment

Since the target application is a shared-memory application
and, throughout this work, it runs only on a single node,
network-related system parameters are omitted, and unless
otherwise specified, the following parameters refer to those
only on a single node (the complete information can be
obtained at the LRZ):

• Cluster Name: CoolMUC-2 of Linux Cluster at LRZ
• CPU Name: Intel(R) Xeon(R) CPU E5-2697 v3
• CPU Base Frequency: 2.60 GHz
• CPU Type: Intel Xeon Haswell EN/EP/EX Processor
• Number of Sockets: 2
• Number of NUMA Domains: 4
• Number of Cores per Socket: 14
• Number of Threads per Core: 2
• Cache Topology: L1d (32 KBytes per core), L1i (32

KBytes per core), L2 (256 KBytes per core), and L3 (8.75
MBytes per NUMA domain)

• Memory Capacity: 128 GByte
• Memory Bandwidth: 120 GByte/s (stream)
• Operating System: SUSE Linux Enterprise Server 15 SP1

Due to platform limitations, we did not fix the clock frequency.
However, across all experiments, no significant imbalance or
substantial deviation from the base frequency among the cores
was observed. On a single node, although there are four
NUMA domains, when considering NUMA effects, the first
two domains share the same local and remote memory access
latencies, as do the other two domains, because the memory
is physically distributed across two sockets.

The full dependencies for SeisSol can be found in its
documentation. Due to space limitations, we only list the
specific compiler and MPI implementation used, as well as
the external software employed for the performance analysis:

• intel-oneapi-compilers/2021.4.0
• intel-oneapi-mpi/2021.4.0-intel
• likwid/5.2.2-intel21

The names of these packages correspond to the names of
the environment modules on the system. Although the MPI
implementation is not used by the shared-memory target
application, it is required by many other modules of SeisSol,
making it essential for a complete build.

B. Target Application

The complete source code for SeisSol can be accessed in
this GitHub repository. After properly installing all dependen-
cies, the entire project is built using CMake and Make (with
the option to build only the proxy application). A variety
of build flags and their predefined options are supported.
Selections such as the physical model, the order of the
numerical method, the host architecture, and the data precision
all need to be specified at this stage. A higher order of the
numerical method usually results in greater accuracy, but it
also necessitates smaller time steps and more basis functions,
which demand additional computational time and resources.
Theoretically, the increase in computation time due to the

reduced time step and the increased number of basis functions
follows the factors 2O−1

2o−1 and O(O+1)(O+2)
o(o+1)(o+2) respectively, where

O and o represent the higher and lower orders of numerical
accuracy, respectively. For order O, in the elastic model, the
number of numerical unknowns is given by O(O+1)(O+2)

6 ×9,
where the 9 in the equation represents the dimension of the
PDEs describing the elastic model. It is important to note that
the unknowns here refer to the numerical unknowns that need
to be solved for each discrete cell at every time step, not the
unknowns in the theoretical system of PDEs. Therefore, for a
self-contained acoustic model, the 9 in the equation should be
replaced with 4. Informing the compiler about the architecture
of the host is also crucial for optimized compilation. The com-
piler can generate optimized machine code based on the SIMD
instruction set, pipelining characteristics, cache architecture,
and memory access patterns specific to the host architecture.
Finally, unless otherwise specified, all experiments in this
report were conducted using double precision.

The target application is a shared-memory C++ program
parallelized with OpenMP, and it can be executed like any
typical OpenMP program. Besides configuring the number
of threads and their pinning, the target application requires
only three inputs: the number of timesteps (timesteps), the
number of cells (cells), and the kernel choice (kernel).
These can be specified on the command line when running the
program. Since all experiments were conducted on a cluster,
a SLURM script is used to submit jobs. The full script is
provided by the LRZ. The proxy application does not provide
an option to configure material parameters, so it is necessary
to modify the source code and recompile it when setting µ for
the elastic model.

In this work, we only consider selecting the kernel
all for the application because it contains all avail-
able kernels, such as neigh, local, and ader. In
this case, the main logic of the program is to per-
form timesteps iterations, where in each iteration, func-
tions void computeLocalIntegration() and void
computeNeighboringIntegration() are executed
sequentially. For simplicity, we can assume that in these two
functions, some numerical operations reflecting the full com-
putational characteristics of SeisSol are executed in parallel
on each cell using OpenMP with static scheduling. Given the
main purpose of this work, we will no longer delve further
into the details of the source code or the implementation of
numerical methods, but will instead focus more on program
performance from a hardware perspective.

The target application records and reports the kernel’s
execution time itself, and this was used for all experiments
rather than the total program runtime or the time measured
by external software. Prior to starting the timing, the kernel
is run for one time step on all cells to exclude the overhead
of the operating system initializing the OpenMP thread pool
and the first loading of the last-level cache (LLC). This
ensures more accurate timing, which is especially important
for shorter runtimes. In addition to the computation time, the
proxy application also reports a non-zero FLOP number and

https://doku.lrz.de/linux-cluster-10745672.html
https://seissol.readthedocs.io/en/latest/index.html
https://github.com/SeisSol/SeisSol
https://doku.lrz.de/example-parallel-job-scripts-on-the-linux-cluster-10746636.html


a hardware FLOP number. The former refers to the number
of floating-point operations (FLOPs, note the distinction from
FLOPS, which refers to the number of FLOPs per second) in
numerical computations that are unavoidable because of the
non-zero operands (theoretically, if the operands of a FLOP
are known to be zero before the execution, the FLOP is
unnecessary). The latter refers to the actual number of FLOPs
executed by the machine. Therefore, the hardware FLOP count
is always greater than or equal to the non-zero FLOP count and
is used to construct the roofline models. Finally, the theoretical
amount of data required for the numerical computation is
output in bytes, but for accuracy considerations, this metric is
not used to calculate the actual bandwidth because of caching.

C. Roofline Models

The construction of the roofline models utilizes LIKWID
with reference to this tutorial. LIKWID is a toolkit for
performance analysis and monitoring, specifically designed
for the hardware performance counters of modern processors.
The building of a roofline model involves two parts. First,
the roofline is drawn based on the peak performance and
peak bandwidth of the node. The roofline is specific to the
machine, so experiments with different configurations running
on the same node can reuse the same roofline. Second, points
representing the actual performance and bandwidth of the
application are added to the roofline. Whether benchmarking
the machine or conducting the performance analysis on the
target application, we always utilize all 28 physical cores
available on a single node.

In a roofline model, performance specifically refers to
the computational performance of a processor. This can be
characterized by various metrics, such as FLOPS, CPI (cycles
per instruction), clock frequency, throughput, and latency.
When constructing roofline models, one of these metrics can
be flexibly chosen to represent the single-node computational
performance of a system. However, in the field of scientific
computing, FLOPS is the most commonly used metric, typi-
cally expressed in units like GFLOPS, TFLOPS, or PFLOPS.
The vertical axis of the roofline model represents performance,
so the peak performance is shown as a horizontal line in the
model. The simplest way to determine the peak performance
is by consulting the machine’s documentation. For example,
the peak FLOPS can be obtained by multiplying the number
of cores, instruction width (introduced by vectorization), the
number of fused multiply-add (FMA) operations, the number
of instructions per cycle, and the maximum clock frequency.
However, compared to self-measured or actual performance
during use, this is an overly ideal and theoretical estimate.
Many factors limit the practicality of using this result to build
a roofline model. For instance, no real-world application or
benchmark can be fully parallelized and vectorized. Addi-
tionally, the maximum number of FMA operations supported
by a single machine instruction may not align with the
computational patterns of the application. Furthermore, when
calculating the ideal number of instructions processed per
cycle, issues such as cache misses, branch prediction failures,

and pipeline underutilization are often overlooked. Finally,
due to power consumption and thermal constraints, processors
typically cannot sustain maximum frequency over extended
periods. Therefore, obtaining the peak FLOPS by running
appropriate benchmarks is a more practical approach.

The likwid-bench command in LIKWID provides
various streaming-access benchmarks, some of which
can be used to measure the peak FLOPS. This access
pattern is quite common in scientific applications, such
as sequential reading and writing of a matrix. The
naming convention for these kernels follows this format:
peakflops[_precision][_vectorization][_fma].
The kernel precision can be either single or double (with
double precision as the default if not specified). The
vectorization options include scalar (default if not specified),
SSE, AVX, and AVX512, corresponding to instruction widths
of 64 bits (or 32 bits for single precision), 128 bits, 256 bits,
and 512 bits, respectively. The test system supports up to the
256-bit AVX2 instruction set. When FMA is enabled, each
instruction can handle both a multiply and an add operation
simultaneously; otherwise, it defaults to handling only one
operation. The kernels load a specified amount of data from
contiguous memory into the L1 cache of each core averagely
(the striding allocation feature of likwid-bench is used
to avoid utilizing logical cores), perform numerous multiply
and add operations, and measure the FLOPS. As a result,
factors like load operations and loop mechanics are ignored,
and the time is almost exclusively due to pure processor
computation. In all the experiments conducted in this paper,
we disabled simultaneous multithreading (SMT), which is
common in scientific computing. This is because the software
threads in most scientific applications typically have balanced
workloads and share the same pipeline resources. As a result,
SMT often fails to fully utilize idle hardware resources
to improve throughput. Instead, it can introduce additional
latency and power consumption due to hardware scheduling.
Furthermore, SMT does not provide additional cache or
memory bandwidth at the hardware level for a single core,
which leads to contention for cache and memory bandwidth
when accessing large datasets or matrices in parallel.

Another input for constructing a roofline model is the max-
imum data throughput, with the most typical metric being the
maximum memory bandwidth of a single node. Similarly, de-
pending on the perspective of interest, data throughput can also
be measured by cache bandwidth at various levels, network
bandwidth, or I/O bandwidth. Since the horizontal axis of the
roofline model represents computational intensity (measured in
FLOP/Byte), the maximum data throughput uniquely defines
a line passing through the origin. Together with the horizontal
line mentioned earlier, they form the piecewise function that
represents the complete roofline model. The performance and
bandwidth of an application running on this machine are
represented by points that lie below the curve of this function.
Similarly, the theoretical maximum memory bandwidth can be
obtained from the machine’s data sheet, which is calculated
by the manufacturer based on parameters such as memory

https://github.com/RRZE-HPC/likwid/wiki/Tutorial%3A-Empirical-Roofline-Model


type, channel configuration, and clock frequency. This figure
is often overly idealized, as actual memory bandwidth can
be influenced by factors like memory access patterns, cache
effects, load contention, and system configuration. Therefore,
the maximum memory bandwidth measured by benchmarking
under specific workloads or test conditions is more practical
and reproducible.
likwid-bench also provides various benchmarks for

measuring memory bandwidth, such as load (scalar
= A[i]), copy (A[i] = B[i]), stream (A[i]
= B[i] + scalar * C[i]), and triad (A[i] =
B[i] + C[i] * D[i]). The differences between these
benchmarks and their various versions lie in factors such as
read-write ratios, operation types, data precision, and support
for vectorization. Notably, each kernel has a corresponding
non-temporal version (indicated by _mem in the name),
which ensures that data are written directly to memory during
write operations, rather than being temporarily stored in the
cache or registers for reuse. In addition, likwid-bench
supports parallel first-touch initialization before starting
the benchmarks to avoid the impact of NUMA effects
on memory access performance, which is crucial when
measuring maximum memory bandwidth. Finally, referring
to the tutorial mentioned earlier, we always set the stream
size of the benchmarks that measure bandwidth to 2 GByte,
which naturally avoids the influence of cache effects on
measurement accuracy.

Using likwid-bench, we conducted multiple bench-
marks, repeating each test five times and averaging the re-
sults to reduce uncertainty caused by system performance
fluctuations. The corresponding computational performance
(represented by horizontal lines) and memory bandwidth
(represented by lines passing through the origin) are plotted
together in Fig. 1. These pairs form multiple roofline models.
For FLOPS, there is no significant difference between single-
precision and double-precision results. This could be due
to the processor’s hardware being well-optimized for double
precision computations or similar throughput for double and
single precision in the floating-point units. For the kernels
stream and stream_sp, there is also almost no difference
in bandwidth. Additionally, the introductions of AVX (×4) and
FMA (×2) yield performance gains that are almost in line with
theoretical expectations, indicating that the benchmarks nearly
fully utilize these hardware features, which is unlikely to be
the case in real-world applications. For memory bandwidth, the
read-write ratios of load, stream, and copy are 1:0, 2:1,
and 1:1, respectively. While reads and writes share the same
memory bandwidth, due to the hardware design, the bandwidth
is positively correlated with the read-write ratio, although not
linearly. The difference between stream_mem_avx_fma
and stream_avx_fma lies in that the former always ensures
data is written back to memory during write operations,
significantly increasing the measured bandwidth and providing
a more accurate reflection of the memory system performance.
Additionally, by comparing the read-write ratios of both, it
becomes evident that stream_avx_fma rarely writes data

Fig. 1. Roofline models based on LIKWID streaming-access benchmarks.
Except for the kernels peakflops_sp and stream_sp, whose data and
FLOPs are in single precision, all the other kernels use double precision.
When constructing a roofline model for a specific machine, it’s uncommon
to plot performance parameters for both single and double precision on the
same graph. Here, it’s done merely for comparison of the benchmark results.
Specifically, the blue dotted line representing peakflops_sp cannot form
a roofline model with the solid lines from other kernels; it can only combine
with the green dotted line representing stream_sp, and vice versa.

back to the memory. Finally, it is clear that even on the same
machine, selecting different benchmarks can have a signifi-
cant impact on roofline model construction and performance
analysis results.

After understanding that we should utilize benchmark re-
sults rather than theoretical values, we still need to address
another question: Which benchmark results can be considered
as the maximum computational performance and maximum
memory bandwidth of the machine? The most straightforward
approach is to conduct all available benchmarks on the test
system and select the combination with the highest results.
However, this may not always be meaningful for performance
analysis; it often also requires considering the characteris-
tics of the target application. For FLOPS, we have already
discussed the rationale behind the results of the benchmark
peakflops. Additionally, due to the hardware support of
the machine, we choose the version optimized for AVX with
FMA enabled. When measuring the memory bandwidth, an
important parameter is the read-write ratio. For example, on
x86-64 CPUs, the test load with purely sequential read
operations can typically achieve the maximum memory band-
width, thanks to optimizations like data prefetching. However,
selecting a kernel that more closely matches the read-write
ratio of the target application is usually more meaningful.
Therefore, we choose the kernel stream to match the read-
write ratio of approximately 2:1 (which will be discussed later)
of SeisSol-proxy. Furthermore, kernels that utilize sequential
access often achieve higher bandwidth compared to those that
use random access. Lastly, we select the non-temporal version
of the kernel. Although more frequent memory writes may



Fig. 2. Roofline models based on benchmarks and theoretical calculations.
The benchmarks used to measure the maximum performance and bandwidth
are peakflops_avx_fma and stream_mem_avx_fma, respectively.
The theoretical maximum performance is calculated by multiplying the
number of cores, the instruction width, the number of FMA operations, the
number of instructions per cycle, and the maximum clock frequency, while
the theoretical maximum bandwidth is obtained from Intel’s documentation.

increase testing time, this choice better reflects the actual
memory performance of the system, particularly for analyzing
applications that involve a significant amount of data write-
back operations. The temporal version of the kernel can also
be useful in certain situations, such as when evaluating the
data locality of an application or the impact of the machine’s
cache hierarchy on performance. The comparison of the
roofline models constructed based on theoretical calculations
and benchmark tests is illustrated in Fig. 2. For FLOPS, the
benchmark result is very close to the theoretical value because
the test conditions are highly idealized, with nearly 100%
parallelization, vectorization, and use of FMA operations. For
bandwidth, the test result differs significantly from the value
provided by Intel, as bandwidth is also affected by factors
such as specific memory modules, motherboard, and system
configuration.

Finally, to incorporate the target application into the
roofline model, its FLOPS and computational intensity need
to be determined. The former is calculated from the FLOP
and runtime output by SeisSol-proxy itself, while the lat-
ter is derived from the memory data volume reported by
likwid-perfctr divided by the runtime provided by
the application. likwid-perfctr can monitor and collect
various performance metrics through hardware performance
counters, organizing them into predefined event groups related
to common performance analysis scenarios such as cache
access, memory bandwidth, and floating-point performance.
We select the MEM event group, which provides numerous
statistics related to memory access. Specifically, it outputs
the amount of data read and written between each core and
memory, as well as the total data volume. This can be used
to calculate the actual read-write ratio of the application,

which differs from the theoretical data volume reported by the
program itself. Although the MEM group also reports runtime
and bandwidth, the recorded time includes overhead from
LIKWID’s configuration, which introduces significant absolute
error, especially when measuring shorter runtimes. Therefore,
we do not use this time or the bandwidth calculated from it.
Additionally, likwid-perfctr supports pinning threads,
which fixes the mapping of software threads to physical cores,
avoiding the activation of SMT and preventing performance
uncertainties due to thread floating. It is worth noting that we
do not use LIKWID’s Marker API to analyze specific regions
of the application. Since the proxy application is written
specifically for performance tuning, it does not contain many
non-performance-related code blocks. Thus, it is reasonable to
collect performance metrics for the entire program.

The complete roofline model for the elastic (with µ = 0)
implementation is shown in Fig. 3. The model can be divided
into two regions based on the horizontal axis. The first region
lies below the line passing through the origin, representing
memory bandwidth. Applications that fall within this region
are limited by memory bandwidth because they require a large
amount of data to be read from memory while performing
relatively few floating-point operations. The second region lies
below the horizontal line, representing computational perfor-
mance. Applications in this region are limited by the proces-
sor’s computational capability, as they perform many floating-
point operations but require relatively little data from memory.
The roofline model primarily addresses two key questions
regarding application performance: (1) Is the performance
bottleneck due to the memory bandwidth or the processor?
In other words, is the application memory-bound or compute-
bound? This question can be answered even without running
the program, as the computational intensity is determined
solely by the code. However, it’s important to note that the
parameters used when constructing the model can affect the
horizontal threshold dividing the regions. (2) What is the max-
imum achievable performance for the application, and how can
it be optimized? The maximum performance of the application
is defined by the roofline in each region. From the graph, it is
evident that compute-bound applications can always achieve
higher peak performance than memory-bound ones. Therefore,
optimizing the program to push the application’s performance
point toward the upper-right corner is desirable (though further
right movement has diminishing returns when beyond the
threshold). Moving the point to the right typically involves
optimizing memory access patterns, reducing unnecessary
memory accesses, making better use of caching, efficiently
utilizing the cache hierarchy, or compressing data to reduce the
amount of data transferred. Moving the point upward usually
involves increasing parallelism, vectorization, using more effi-
cient mathematical algorithms, or leveraging hardware features
such as SIMD and FMA instructions to improve computational
efficiency. When the application’s performance point is already
close to the roofline, regardless of the region, it indicates that
the performance is approaching the machine’s limits. In this
case, upgrading the hardware becomes a better option (e.g.,



Fig. 3. The roofline model for SeisSol-proxy based on the elastic implemen-
tation with µ = 0. A higher order indicates greater numerical accuracy and
a larger computational workload. cells refers to the number of cells that
need to be processed in parallel for each time step. Number of time steps:
100; kernel: all; number of threads: 28 (SMT disabled).

upgrading the memory for memory-bound applications or up-
grading the processor for compute-bound ones). Even for the
same application, as the numerical accuracy (order) increases,
SeisSol-proxy shifts from being memory-bound to compute-
bound. The performance differences between orders 6 and 8
are not significant, both being compute-bound, and further
performance improvements can be achieved by optimizing the
computation patterns. In contrast, for order 4, the performance
is slightly lower due to the memory bandwidth being nearly
maxed out, and further improvements would require upgrading
the memory or optimizing the memory access patterns. The
number of cells does not lead to significant performance
differences, but when the number of cells is 0.01M, the
computational intensity is slightly higher than in the other two
cases. This is because, with a smaller data size, the cache effect
becomes more pronounced, reducing the amount of data read
from memory.

The complete roofline model for the acoustic implemen-
tation is shown in Fig. 4. Its characteristics do not signifi-
cantly differ from those of the roofline model for the elastic
implementation, but this does not mean the performance of
the two implementations is identical in every aspect—this is
one of the limitations of the roofline model. In fact, due to
the reduced number of DOFs, both the runtime and memory
data volume of the acoustic implementation are reduced by
about half, as shown in Fig. 5. Note that this figure does
not display the dynamic changes in the program’s memory
data volume over time but rather the relationship between the
total memory data volume and the total runtime, which is why
it is represented by data points instead of lines. Logarithmic
axes are used to include all test cases in a single plot. The
black dashed line mathematically passes through the origin
with a slope equal to the maximum memory bandwidth.

Fig. 4. The roofline model for SeisSol-proxy based on the acoustic imple-
mentation. A higher order indicates greater numerical accuracy and a larger
computational workload. cells refers to the number of cells that need to be
processed in parallel for each time step. Number of time steps: 100; kernel:
all; number of threads: 28 (SMT disabled).

To compare memory bandwidth, parallel dashed lines can
be drawn through the data points, where the bandwidth is
reflected by the intercept (not mathematically equivalent) of
these lines in the plot. Hence, all data points fall below
the dashed line, consistent with the fact that the measured
memory bandwidth of the target application is lower than
the machine’s maximum memory bandwidth. Compared to
the elastic implementation, the acoustic implementation shows
lower memory bandwidth under various test conditions, with
this difference decreasing as the number of cells increases
and the order rises. Additionally, as the number of cells
increases and the order decreases, the memory bandwidth of
the application tends to approach the maximum. Similarly, as
shown in Fig. 6, compared to the elastic implementation, the
acoustic implementation consistently achieves lower FLOPS
across various test conditions, since the acoustic implementa-
tion is adapted from the elastic version by merely adjusting the
relevant tensors and their dimensions, without dedicated opti-
mization or independent design, but the variation in FLOPS is
much smaller than that of memory bandwidth. Furthermore,
the differences in FLOPS caused by varying the number
of cells and the order are also smaller compared to those
seen in memory bandwidth. These characteristics ultimately
make the computational intensity difference between the two
implementations not very significant. This implies that not all
performance differences between the two implementations can
be fully captured in the roofline model. Finally, due to the
smaller data size in the acoustic implementation, the relative
cache effect is more pronounced in the case of 0.01M cells
compared to the elastic implementation, causing these points
to be farther apart from the other two cases.

The roofline model, as a visual tool for performance anal-
ysis, provides a unified standard for evaluating performance



Fig. 5. Memory data volume vs runtime for SeisSol-proxy based on the elastic
(µ = 0) and acoustic implementations. A higher order indicates greater
numerical accuracy and a larger computational workload. cells refers to
the number of cells that need to be processed in parallel for each time step.
Mathematically, the dashed line passes through the origin and has a slope
equal to the maximum bandwidth. Number of time steps: 100; kernel: all;
number of threads: 28 (SMT disabled).

across different platforms and applications in an easily un-
derstandable way. It helps identify performance bottlenecks
and guides optimization efforts. However, the roofline model
also has its limitations: (1) It is often based on simplified
assumptions, such as ideal memory access patterns and com-
putational models, which may lead to inaccurate performance
predictions in real-world scenarios; (2) The model may fail to
capture subtle performance characteristics like memory access
latency, cache effects, or thread contention, which can signif-
icantly impact performance in certain cases; (3) The model’s
effectiveness depends on accurate performance measurements
and system parameters. If the input data is incorrect, it can
result in misleading analysis; (4) While the roofline model is
applicable to many compute- and memory-intensive tasks, its
applicability may be limited in some contexts, such as GPU
computing, heterogeneous systems, or large-scale, network-
based multi-node systems; (5) In some dynamic application
scenarios, the performance may fluctuate over time or with
changes in input data, while the roofline model is typically
static and may not effectively capture this dynamic behavior.

D. Cache Usage Analysis

The roofline models we construct primarily focus on the
interaction between the main memory and processor. However,
when evaluating performance, the caches within the memory
subsystem are unavoidable. The LLC (L3 cache in the test
system) is the final and longest-latency level in the memory
hierarchy before the main memory. Any memory requests
that miss in the LLC will be serviced by local or remote
main memory, resulting in significant latency. Fig. 7 shows
the L3 cache miss rates, calculated as the total number of
L3 cache misses across all cores divided by the total number

Fig. 6. Number of double precision FLOPs vs runtime for SeisSol-proxy
based on the elastic (µ = 0) and acoustic implementations. A higher order
indicates greater numerical accuracy and a larger computational workload.
cells refers to the number of cells that need to be processed in parallel
for each time step. Mathematically, the dashed line passes through the origin
and has a slope equal to the peak performance. Number of time steps: 100;
kernel: all; number of threads: 28 (SMT disabled).

of memory requests, for the two implementations of SeisSol-
proxy on the test system by using the L3CACHE event group
of likwid-perfctr. When the order is 4, the L3 cache
miss rates of the acoustic implementation increase. At this
point, the L3 cache miss rate is highest for both models,
and it continues to rise with the number of cells, reaching
a maximum of 62% for the acoustic model. The gap between
the two models also widens, with a maximum difference of
17%. When the order is 6, the acoustic implementation still
shows a positive correlation with the number of cells, while
the elastic implementation fluctuates around 6%. As the order
increases, the L3 cache miss rates rapidly decline for both
implementations and by the time the order reaches 8, they are
nearly zero.

Similarly, the L2 cache miss rates are shown in Fig. 8. When
the order is 4, the L2 cache miss rates remain the highest,
peaking at approximately 22% for the elastic implementation.
However, these rates show little variation with increasing cell
count, and the values for the acoustic implementation are lower
than those for the elastic one. At orders 6 and 8, except for
the case of order 6 and cell count 0.10M, where the L2 miss
rate for the acoustic implementation significantly decreases,
the miss rates generally increase.

In the memory subsystem, typically only adjacent levels
of hardware can interact directly. The data paths between
different cache levels serve multiple functions and thus closely
influence performance. Fig. 9 illustrates the bandwidth be-
tween the L3 and L2 caches. A black dashed line representing
the maximum memory bandwidth is also added to the figure.
Although cache bandwidth generally exceeds memory band-
width, only when the order is 8 does the cache bandwidth
between L3 and L2 surpass this maximum value. A significant



Fig. 7. L3 cache miss rates of SeisSol-proxy based on the elastic (µ = 0)
and acoustic implementations. A higher order indicates greater numerical
accuracy and a larger computational workload. cells refers to the number
of cells that need to be processed in parallel for each time step. Number of
time steps: 100; kernel: all; number of threads: 28 (SMT disabled).

feature is that the cache bandwidth from L2 to L3 is negligible
compared to that from L3 to L2 (note that a logarithmic
scale is used on the vertical axis for better visualization). The
former is due to the L2 cache replacement under the write-back
policy, while the latter results from L3 cache hits. Additionally,
both may be influenced by cache coherence maintenance and
cross-core communication. For orders 6 and 8, the cell count
does not significantly affect the bandwidth between L3 and
L2 caches. However, the acoustic implementation increases
the L3 to L2 cache bandwidth and decreases the bandwidth
in the reverse direction. For order 4, in cases where the cell
count is 0.10M and 1.00M, the changes in cache bandwidth
between L3 and L2 induced by the acoustic implementation
are completely opposite.

When a processor accesses data or instructions, the L1 cache
is the first level of cache it interacts with, making its miss
rate and bandwidth crucial performance metrics. However, due
to the lack of hardware counter support, we did not conduct
related experiments.

False sharing is a common and significant performance issue
in multi-core systems. The root cause lies in the fact that the
unit of cache coherence across cores is a cache line. When
multiple cores attempt to access different variables (at least one
write) located in the same cache line, the processor constantly
exchanges and synchronizes the entire cache line, leading to
performance degradation. False sharing occurring at the LLC
has a particularly severe impact on performance due to the
need for memory synchronization, especially in multi-socket
nodes with remote memory access. Using the FALSE_SHARE
event group in likwid-perfctr, we measured both local
and remote false sharing occurrences at the LLC and the
amount of data updated as a result. For both implementations,
the values were negligible, so we do not present the results.

Fig. 8. L2 cache miss rates of SeisSol-proxy based on the elastic (µ = 0)
and acoustic implementations. A higher order indicates greater numerical
accuracy and a larger computational workload. cells refers to the number
of cells that need to be processed in parallel for each time step. Number of
time steps: 100; kernel: all; number of threads: 28 (SMT disabled).

Typically, when optimizing cache usage, strategies such as
adjusting data structures and memory access patterns or con-
figuring caches at the hardware level are considered. However,
the process is often complex and targeted. Even for the same
application, measured results can vary greatly under different
test conditions and on different machines, due to factors
such as varying cache architectures, memory hierarchies, and
workload characteristics. Moreover, optimizations based on a
specific scenario may even result in negative effects for other
scenarios.

Fig. 9. Bandwidth between the L2 and L3 caches of SeisSol-proxy based
on the elastic (µ = 0) and acoustic implementations. The horizontal dashed
line represents the maximum memory bandwidth. A higher order indicates
greater numerical accuracy and a larger computational workload. cells
refers to the number of cells that need to be processed in parallel for each
time step. Number of time steps: 100; kernel: all; number of threads: 28
(SMT disabled).



IV. CONCLUSION AND FUTURE WORK

In this paper, we efficiently implement the 4-DOF acous-
tic model, a special case of the 9-DOF elastic model, in
SeisSol-proxy by tuning tensor parameters within the existing
elastic framework. The roofline models built on the LRZ’s
CoolMUC-2 system show that the performance bottlenecks of
this standalone implementation remain largely unchanged, as
they are governed by inherent limitations in the computational
kernels. They also provide valuable insights to identify the
architectural boundaries of SeisSol-proxy’s performance and
highlight potential optimization directions on the test system.
Additionally, under various typical test conditions, the runtime
and memory data volume of the implementation are reduced
by about 50%, while the cache hit rate fluctuates, with a
maximum increase of approximately 17% and a maximum
decrease of about 6%.

Looking ahead, several avenues for future work have
emerged. First, the current work focuses on the proxy appli-
cation designed specifically for performance tuning within the
SeisSol framework. While this mini application demonstrates
the feasibility of implementing the acoustic model, it serves as
a preliminary step towards a more comprehensive implemen-
tation. Future research will aim to extend this mini application
into the full acoustic model in SeisSol. This involves not
only enhancing the model’s capabilities to handle complex
seismic wave phenomena but also rigorously evaluating its
performance against a broader set of benchmarks to understand
its behavior in real-world scenarios. This future work will
ultimately contribute to a more robust and efficient tool for
simulating seismic events.

Second, due to the characteristics of the roofline model,
all experiments were conducted on a single node. While
this approach provides valuable insights within a constrained
environment, it is crucial to consider scalability in future work,
especially for applications running on multi-node clusters.
This includes evaluating the model’s efficiency when scaling
across multiple nodes and understanding how factors such
as communication overhead and load balancing affect overall
performance. By conducting these scalability tests, we aim to
ensure that the full implementation can effectively leverage
the capabilities of modern cluster architectures, ultimately fa-
cilitating more realistic and large-scale seismic simulations in
real-world applications. Additionally, it is also worth exploring
the construction of a three-dimensional roofline model that
accounts for computational power, memory bandwidth, and
network bandwidth in distributed memory systems.

Finally, while this study focuses on multi-threaded CPU
performance, future work could extend the roofline analysis
to GPU-based executions of SeisSol. Given the increasing
importance of GPU acceleration in HPC, analyzing how the
acoustic model performs on GPU architectures will be crucial
for pushing the limits of seismic simulations. This would
also involve investigating the interplay between GPU memory
bandwidth and computational throughput, as well as exploring
hybrid CPU-GPU implementations.

ACKNOWLEDGMENT

I would like to express my sincere gratitude to Professor
Michael Bader for giving me the opportunity to be involved
in this project. His support and trust have been instrumental
in the success of this work. I am also deeply thankful to my
advisors, Vikas Kurapati and Sebastian Wolf, who consistently
provided me with detailed and insightful feedback in a timely
manner. Their expertise and dedication greatly contributed
to my research experience, and I am truly grateful for their
invaluable guidance and support.

REFERENCES

[1] L. Krenz, C. Uphoff, T. Ulrich, A.-A. Gabriel, L. S. Abrahams, E. M.
Dunham, and M. Bader, “3D acoustic-elastic coupling with gravity:
the dynamics of the 2018 Palu, Sulawesi earthquake and tsunami,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’21, (New York, NY,
USA), pp. 1–14, Association for Computing Machinery, Nov. 2021.

[2] J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin
Methods, vol. 54 of Texts in Applied Mathematics. New York, NY:
Springer, 2008.

[3] V. A. Titarev and E. F. Toro, “ADER: Arbitrary High Order Godunov
Approach,” Journal of Scientific Computing, vol. 17, pp. 609–618, Dec.
2002.

[4] M. Dumbser and M. Käser, “An arbitrary high-order discontinuous
Galerkin method for elastic waves on unstructured meshes — II. The
three-dimensional isotropic case,” Geophysical Journal International,
vol. 167, pp. 319–336, Oct. 2006.

[5] J. De la Puente, M. Dumbser, and H. Igel, “Discontinuous Galerkin
Methods for Wave Propagation in Poroelastic Media,” Geophysics,
vol. 73, Sept. 2008.

[6] M. Käser, M. Dumbser, J. De La Puente, and H. Igel, “An arbitrary high-
order Discontinuous Galerkin method for elastic waves on unstructured
meshes — III. Viscoelastic attenuation,” Geophysical Journal Interna-
tional, vol. 168, pp. 224–242, Jan. 2007.

[7] S. Wollherr, A.-A. Gabriel, and C. Uphoff, “Off-fault plasticity in three-
dimensional dynamic rupture simulations using a modal Discontinuous
Galerkin method on unstructured meshes: implementation, verification
and application,” Geophysical Journal International, vol. 214, pp. 1556–
1584, Sept. 2018.

[8] L. S. Abrahams, L. Krenz, E. M. Dunham, A.-A. Gabriel, and T. Saito,
“Comparison of methods for coupled earthquake and tsunami mod-
elling,” Geophysical Journal International, vol. 234, pp. 404–426, July
2023.

[9] S. Williams, A. Waterman, and D. Patterson, “Roofline: An Insightful
Visual Performance Model for Floating-Point Programs and Multicore
Architectures,” Tech. Rep. 1407078, Sept. 2009.

[10] L. D. S. Krenz, A Fully Coupled Model for Petascale Earthquake-
Tsunami and Earthquake-Sound Simulations. PhD thesis, Technische
Universität München, 2024.

[11] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems. Cam-
bridge Texts in Applied Mathematics, Cambridge: Cambridge University
Press, 2002.

[12] P. M. Shearer, “Introduction to Seismology,” May 2019. ISBN:
9781316877111 Publisher: Cambridge University Press.

[13] K. Aki and P. Richards, Quantitative Seismology, 2nd edition. Mill
Valley, California New York: University Science Books,U.S., 2nd edi-
tion ed., Apr. 2009.

[14] L. D. Landau, L. P. Pitaevskii, A. M. Kosevich, and E. M. Lifshitz,
Theory of Elasticity: Volume 7. Amsterdam Heidelberg: Butterworth-
Heinemann, 3rd edition ed., Jan. 1986.

[15] G. C. Lotto and E. M. Dunham, “High-order finite difference modeling
of tsunami generation in a compressible ocean from offshore earth-
quakes,” Computational Geosciences, vol. 19, pp. 327–340, Apr. 2015.

[16] W. A. Strauss, Partial Differential Equations: An Introduction. New
York: John Wiley & Sons Inc, 2nd edition ed., Dec. 2007.

[17] P. K. Kundu, I. M. Cohen, and D. R. Dowling, Fluid Mechanics.
Academic Press, 6th edition ed., June 2015.


	Introduction
	Physical Models
	Elastic Wave Model
	Acoustic Wave Model

	Performance Evaluation
	Test System and Software Environment
	Target Application
	Roofline Models
	Cache Usage Analysis

	Conclusion and Future Work
	References

