

Analysing the Impacts of the 9-Euro-Ticket on Mode Choice using GPS Panel Data & Discrete Choice Models

Friederike Beck

Santiago Álvarez-Ossorio Martínez Klaus Bogenberger Allister Loder

TRB, Washington, D.C.

January 7, 2025

TRBAM-25-02529

Measuring a Policy Intervention

Fare Innovation: The 9-Euro-Ticket

Crisis to Opportunity: Germany's Transformative Fare Innovation

Call for Inquiry: Uncertain Impact of FFPT on Travel Behavior

Diverse FFPT Policies: Variations in scope and context complicate drawing generalized conclusions. Research Gap: Limited comparative and review studies on the impacts of FFPT policies. (Feamley, 2013; Kębłowski, 2019) Post-COVID-19 Surge: 60% of US urban networks applied temporary FFPT, with notable policies in Germany (€9 ticket) and Spain (fare-free trains). (Štraub et al., 2023)

► Induced demand → FFPT leads to an overall rise in PT trips (Brand, 2008; Kębłowski, 2019; Cats et al., 2017; Straub & Jaroš, 2019; Hess, 2017)

Limited substitution effects for motorized travel (Feamley, 2013; Cats et al., 2017; Bull et al., 2021; Liebensteiner et al., 2024)

Window of Opportunity for Research

Window of Opportunity: "Mobilität.Leben" Study

Passive to (Semi-) Passive Travel Diaries

A Rich but Challenging Data Source

A 3-month subset of the Mobilität.Leben panel data:

Intervention Period: Second month (July) of the 9-Euro-Ticket

Post-Intervention Period: September & October, 9-Euro-Ticket was no longer in effect

How did the German fare policy intervention of the 9-Euro-Ticket impact the Value of Travel Time Savings (VTTS) across various modes of transportation?

Defining the Choice Set: Essential data processing and filtering steps for using discrete choice modeling (Tsoleridis et al. 2022)

Estimating Weighted VTTS: Critical metric for project evaluation and policy appraisal.

Data Processing & Methods

Theory-Driven Modeling Approach

Discrete Choice Modeling (Hensher & Johnson, 1981; Ben-Akiva & Lerman, 2018)

- Statistical framework used to analyze and predict decision-making
- Individuals select one option from a finite set of alternatives
- Based on the behavioral theory of Random Utility Maximization (RUM)

Stated Preference Data

- · Control of experimental design
- Includes non-existing alternatives
- Cheap → Many responses per participant

- Behavioral incongruences and biases
- Non-consequentiality of the choices?

GPS-Based Revealed Preference Data

- High amount of granular data at lower cost
- Data generation is quasi-automatic
- Observes <u>all</u> trips → "perfectly" accurate
- Multiple-day data
- Noisy data
- Heavy processing & expertise needed
- Still not mature / validated enough?

Raw Tracks, Real Choices: From GPS Data to Behavioral Models

Friederike Beck I Impacts of the 9-Euro-Ticket on Mode Choice I TRB Annual Meeting 2025

ПП

Data on Non-Chosen Modes: Including Alternatives

Data: Information on chosen (observed) trips

Challenge: Obtain data for non-chosen alternatives and their attributes

Generate: Travel times, access/egress and waiting times for chosen and non-chosen modes

Usage of APIs:

TomTom Routing API:

Provides travel times and distances based on typical conditions for that time of day and day of the week

OpenTripPlanner API:

Utilizes Munich's transportation network and real GTFS data. Data reflects scheduled services available on the exact day of each trip

Data Enhancement: Including Cost and Weather

TomTom API & OpenTripPlanner API Data on Munich's transit authority and Survey Input Data on from the German Weather Service (DWD)

More details in Dahmen et al. (2023)

Generated Trip:

Deviation Between Observed and Generated Trips

Friederike Beck I Impacts of the 9-Euro-Ticket on Mode Choice I TRB Annual Meeting 2025

300

200

200

100

Observed Travel Time by PT (min)

Filtering Method to Set the Choice Set Right

Short-distance urban mobility < 35 km

Standard Modes: Walk, Bike, Car, PT, Walk as access/egress mode

Purposeful Trips: Shopping, leisure, commutes, home

Filtering trips with a high deviation ratio

Exclusion of recreational and round trips

Prioritization of Data Quality Over Quantity

Modeling the 9-Euro-Tickets Impact

Estimation of two separate multinomial logit (MNL) models:

→ Comparison of VTTS
Increased Robustness: Bootstrapping and weighting of VTTS
Control for Heteroscedasticity in the Choice Set: Scale for distance bands
Key Challenge: Lack of consideration for individual preference heterogeneity

Results & Policy Implications

Particularly Strong Effects on the VTTS for PT

The Intervention Shifts VTTS:

- Walking ~1-2x
- Driving ~ 1-2x
- Cycling ~3-4x
- Public transportation ~3-5x

VTTS by Trip Purpose

Traditional Approach:

Projected savings in travel time drive project appraisals and cost-benefit analysis

The Twist:

Lower VTTS \rightarrow Long-term behavioral change Lower VTTS \rightarrow Decline in projected benefits?

The Big Question

Will (almost) fare-free innovations undermine future investments?

Future Research

- Improved understanding of behavioral effects for other fare policy interventions
- Improved understanding of the implications for transit agencies and funding

Key Insights for Effective Data Collection

ПΠ

Opportunity:

GPS-based RP data offers significant potential for policy assessment, enabling realistic insights and reducing certain biases present SP data.

Beyond Quantity:

Methods must advance to extract meaningful insights from noisy data, ensuring quality complements the growing data volume.

Purpose-Driven Data Collection:

- Fit for purpose
- Inherently validated and enriched
- Appropriate methods for processing and modeling

Thank You for Your Attention!

Download the Paper:

Stay in Touch!

Friederike Beck Friederike.beck@tum.de

LinkedIn:

References

ΠП

Ben-Akiva, M., & Lerman, S. R. (2018). Discrete choice analysis: Theory and application to travel demand. The MIT Press. ISBN: 9780262536400

Brand, R. (2008). Co-evolution of technical and social change in action: Hasselt's approach to Kebłowski, W. (2019). Why (not) abolish fares? Exploring the global geography of fare-free urban mobility. Built Environment, 34(2), 189-199. public transport. Transportation, 46(4), 1–13. https://doi.org/10.1007/s11116-019-09986-6

Bull, O., Muñoz, J. C., & Silva, H. E. (2021). The impact of fare-free public transport on travel Liebensteiner, M., Losert, J., Necker, S., Neumeier, F., Paetzold, J., & Wichert, S. (2024). behavior: Evidence from a randomized controlled trial. Regional Science and Urban Economics, 86, Article 103616. https://doi.org/10.1016/j.regsciurbeco.2021.103616

Cats, O., Susilo, Y., & Reimal, T. (2017). The prospects of free-fare public transport: Evidence Štraub, D., Kebłowski, W., & Maciejewska, M. (2023). From Bełchatów to Żory: Charting from Tallinn. Transportation, 44(5), 1083-1104. https://doi.org/10.1007/s11116-016-9695-5

Dahmen, V., Álvarez-Ossorio Martinez, S., Loder, A., & Bogenberger, K. (2023). Making large-scale semi-passive GPS travel diaries valuable: A guality enhancement method. Proceedings of the Transportation Research Board (TRB) 103rd Annual Meeting.

Fearnley, N. (2013). Free fares policies: Impact on public transport mode share and other transport policy goals. International Journal of Transportation, 1(1), 75-90. https://doi.org/10.14257/ijt.2013.1.1.05

Hess, D. B. (2017). Decrypting fare-free public transport in Tallinn, Estonia. Case Studies on Transport Policy, 5(4), 690-698. https://doi.org/10.1016/j.cstp.2017.09.005

Hensher, D. A., & Johnson, L. W. (1981). Applied discrete-choice modelling (1st ed.). Routledge. https://doi.org/10.4324/9781351140768

Almost fare free: Impact of a cheap public transport ticket on mobility patterns and infrastructure quality (CESifo Working Paper No. 11229). CESifo.

Poland's geography of fare-free public transport programmes. Journal of Transport Geography, 111, Article 103650. https://doi.org/10.1016/j.jtrangeo.2023.103650

Straub, D., & Jaroš, V. (2019). Free fare policy as a tool for sustainable development of public transport services. Human Geographies - Journal of Studies and Research in Human Geography, 13(1), 23-37. https://doi.org/10.5719/hgeo.2019.131.3

Tsoleridis, P., Choudhury, C. F., & Hess, S. (2022). Deriving transport appraisal values from emerging revealed preference data. Transportation Research Part A: Policy and Practice. 165(1), 225-245. https://doi.org/10.1016/j.tra.2022.08.016

Appendix

DR between Generated and Observed Trips:

	$ Distance_{observed} - Distance_{generated} $
$DR_{distance}$ –	$Distance_{generated}$
$DR_{traveltime} =$	$= \frac{ TT_{observed} - TT_{generated} }{TT_{observed}}$
<i>ti ui ci ti ti ti</i>	TIgenerated

TABLE 1: Correlation and Deviation Ratios for Different Travel Modes

	Main Mode			
Data quality before filtering for dev. ratio	Car	РТ	Bicycle	Walk
Correlation distance Correlation travel time Mean dev. ratio distance Mean dev. ratio travel time Maximum dev. ratio distance Maximum dev. ratio travel time	0.95 0.73 0.23 0.57 51.28 92.22	0.89 0.17 0.17 0.39 18.88 123.53	0.96 0.62 0.20 0.51 73.29 117.35	0.74 0.50 0.39 0.87 139.65 233.85
Data quality after filtering for dev. ratio				
Correlation distance Correlation travel time Mean dev. ratio distance Mean dev. ratio travel tim Maximum dev. ratio distance Maximum dev. ratio travel time	0.97 0.92 0.11 0.28 1.00 1.00	0.97 0.90 0.11 0.16 0.39 0.39	0.98 0.92 0.11 0.25 0.99 1.00	0.96 0.90 0.14 0.26 0.73 0.73

Note: The correlation and deviation ratios are calculated based on observed and generated travel data before and after

DR between Generated and Observed Trips:

	$ Distance_{observed} - Distance_{generated} $
$DR_{distance}$ –	$Distance_{generated}$
DR _{traveltime} =	$=\frac{ TT_{observed} - TT_{generated} }{TT}$
	^{I I} generated

TABLE 1: Correlation and Deviation Ratios for Different Travel Modes

	Main Mode			
Data quality before filtering for dev. ratio	Car	РТ	Bicycle	Walk
Correlation distance	0.95	0.89	0.96	0.74
Correlation travel time	0.73	0.17	0.62	0.50
Mean dev. ratio distance	0.23	0.17	0.20	0.39
Mean dev. ratio travel time	0.57	0.39	0.51	0.87
Maximum dev. ratio distance	51.28	18.88	73.29	139.65
Maximum dev. ratio travel time	92.22	123.53	117.35	233.85
Data quality after filtering for dev. ratio				
Correlation distance	0.97	0.97	0.98	0.96
Correlation travel time	0.92	0.90	0.92	0.90
Mean dev. ratio distance	0.11	0.11	0.11	0.14
Mean dev. ratio travel tim	0.28	0.16	0.25	0.26
Maximum dev. ratio distance	1.00	0.39	0.99	0.73
Maximum dev. ratio travel time	1.00	0.39	1.00	0.73

Note: The correlation and deviation ratios are calculated based on observed and generated travel data before and after

applying corrections

ПП

DR between Generated and Observed Trips:

	$ Distance_{observed} - Distance_{generated} $
DR distance –	$Distance_{generated}$
$DR_{traveltime} =$	$= \frac{ TT_{observed} - TT_{generated} }{m}$
	<i>IT</i> generated

TABLE 1: Correlation and Deviation Ratios for Different Travel Modes

	Main Mode			
Data quality before filtering for dev. ratio	Car	РТ	Bicycle	Walk
Correlation distance	0.95	0.89	0.96	0.74
Correlation travel time Mean dev. ratio distance	0.73 0.23	0.17 0.17	0.62 0.20	0.50 0.39
Mean dev. ratio travel time	0.57	0.39	0.51	0.87
Maximum dev. ratio distance Maximum dev. ratio travel time	51.28 92.22	18.88 123.53	73.29 117.35	139.65 233.85
Data quality after filtering for dev. ratio				
Correlation distance	0.97	0.97	0.98	0.96
Correlation travel time	0.92	0.90	0.92	0.90
Mean dev. ratio distance	0.11	0.11	0.11	0.14
Mean dev. ratio travel tim	0.28	0.16	0.25	0.26
Maximum dev. ratio distance	1.00	0.39	0.99	0.73
Maximum dev. ratio travel time	1.00	0.39	1.00	0.73

Note: The correlation and deviation ratios are calculated based on observed and generated travel data before and after

applying corrections

пп

DR between Generated and Observed Trips:

	$ Distance_{observed} - Distance_{generated} $
$DR_{distance} =$	Distance _{generated}
DR _{traveltime} =	$= \frac{ TT_{observed} - TT_{generated} }{TT_{generated}}$

TABLE 1: Correlation and Deviation Ratios for Different Travel Modes

	Main Mode			
	Car	РТ	Bicycle	Walk
Data quality before filtering for dev. ratio				
Correlation distance	0.95	0.89	0.96	0.74
Correlation travel time	0.73	0.17	0.62	0.50
Mean dev. ratio distance	0.23	0.17	0.20	0.39
Mean dev. ratio travel time	0.57	0.39	0.51	0.87
Maximum dev. ratio distance	51.28	18.88	73.29	139.65
Maximum dev. ratio travel time	92.22	123.53	117.35	233.85
Data quality after filtering for dev. ratio				
Correlation distance	0.97	0.97	0.98	0.96
Correlation travel time	0.92	0.90	0.92	0.90
Mean dev. ratio distance	0.11	0.11	0.11	0.14
Mean dev. ratio travel tim	0.28	0.16	0.25	0.26
Maximum dev. ratio distance	1.00	0.39	0.99	0.73
Maximum dev. ratio travel time	1.00	0.39	1.00	0.73

Note: The correlation and deviation ratios are calculated based on observed and generated travel data before and after applying corrections.

Filtering Trips Based On Random Utility Theory

Friederike Beck I Impacts of the 9-Euro-Ticket on Mode Choice I TRB Annual Meeting 2025

ПП

The 9-Euro-Ticket: Integrating Systems and Reducing Costs

ТШΠ

Results of the Comprehensive Filtering

SP vs RP data: a new (old) topic

Historical context

- Technological advances have disrupted the game in the last 10-20 years
 - Smartphones + Internet connectivity 0
 - Accurate GPS \cap
 - Decreasing cost for processing and storage of big data Ο
 - External data sources to enrich the models (weather data, land-use, ...) Ο

Ο . . .

Collection of high accuracy panel data for long time periods at relatively low cost -> "New" ٠ **RP** data

