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Abstract—Medical applications, such as telemedicine or smart
operation rooms, place stringent requirements on the underlying
network architecture. 6G as the next-generation communication
standard currently in research promises to satisfy the needs
of such applications by utilizing advances in technology and
networking concepts. One crucial concept for medical applica-
tions is the capability of using computing resources within the
network. By placing the applications on such processing nodes in
different locations within the Radio Access Network (RAN), the
performance metrics of a medical application, such as latency,
throughput, and availability can be optimized. However, problems
arise when the available processing capabilities are not sufficient
for all requested medical applications. In this paper, we formulate
an Integer Linear Program (ILP) to address the problem of
processing medical applications within the network when the
processing capabilities are not sufficient. We consider the priority
and different service levels of application functions and aim to
place as many applications as possible with the best possible
service quality. Additionally, we take into account that some
applications must run in the network even if their priority is low.
Furthermore, we propose a heuristic in order to obtain a good
solution quickly. The evaluation of our solution and comparison
to existing approaches shows an increase of accepted demands
in the network by up to 35%.

Index Terms—6G, Prioritization, Heuristic, In-Network Com-
puting, Medical Technology.

I. INTRODUCTION

The fifth generation of mobile networks, 5G, initially
promised to provide one flexible communication network for
every application and demand. However, with the deployment
of 5G cellular systems the limitations of 5G for future ap-
plications, such as virtual reality and connected autonomous
systems became visible. These challenges are expected to
be addressed in the next-generation communication standard,
6G, which is currently in the focus of widespread research
activities. 6G is envisioned to tremendously increase data rates
and availability and to decrease the latency. This is achieved
not only by technological advances such as higher frequency
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ranges, but also through a holistic design of applications, the
underlying communication network, and in-network comput-
ing capabilities [1], [2].

One area which will especially benefit from the new features
of 6G is the medical sector [3], [4]. Medical applications
place a number of different performance demands on the
communication network. In-network computing plays a crucial
role in satisfying these demands [2]. In particular, modular
parts of a medical application, in this paper referred to as
Modular Application Functions (MAFs) as introduced in [5],
can be dynamically executed on various processing resources
within the network. Note that the concept of placing MAFs
extends the similar concept of VNFs by not only consider-
ing network-related functions, but also the applications. This
allows to take application-specific requirements into account,
enabling closer interaction between network and application.
The main challenge is the optimal placement of such MAFs
on processing nodes in a communication network. Existing
work [6], [7], and [8] already covers a large area of aspects for
placing VNFs. However, the existing literature does not take
into account the special requirements of medical applications.
In a first step, the authors in [9] combine the VNF placement
approach and the requirements of medical applications. In their
approach, they optimize the placement costs of VNF chains.

In contrast, in this paper we consider a scenario where
the available networking and processing capabilities are not
sufficient to fulfill the demands of all requested medical
applications. For this purpose, we formulate an Integer Lin-
ear Program (ILP) with the focus on admitting as many
applications as possible to the network. Furthermore, for
each MAF we consider the priority and different levels of
service regarding the performance in terms of latency and
throughput. The strategy is to execute higher prioritized MAFs
with higher levels of service while lower prioritized MAFs
experience lower levels of service or are terminated com-
pletely. Additionally, we also consider that some MAFs are
non-terminable, i.e., they must be admitted to the network
even if their priority is low and once placed, their execution



cannot be terminated until their task is completed. That means
that higher prioritized MAFs may experience lower service
levels or are even terminated as the non-terminable MAF
must be placed with at least the lowest possible service level.
Examples of such non-terminable applications are logistics,
documentation or administrative tasks, etc. Since the time to
find an optimal placement solution is considerably large, we
furthermore propose a heuristic with reduced execution time.
Finally, we evaluate our approach and compare it with the
approach in [9] as a baseline. The main message of this paper
is that the co-design of MAFs and the network in terms of
available and required performance constraints and the priority
can significantly increase the overall number of admitted
applications within a network, especially in scenarios with
insufficient resources. Furthermore, the main contributions of
this paper are:

• We formulate an ILP to optimize the admittance ratio
of MAFs in the network considering different levels of
service, priorities and non-terminability of certain MAFs.

• We introduce a heuristic in order to obtain a near-optimal
solution in a more reasonable time.

• We evaluate our results and compare them to existing so-
lutions showing the capabilities of our proposed method.

The remainder of the paper is structured as follows. In
Section II, existing related work is described. Medical applica-
tions and the proposed model are introduced in Section III. In
Section IV, we formulate an ILP to solve the prior described
problem. In order to reduce the processing time, a heuristic
algorithm is proposed in Section V. The results are presented
in Section VI. Finally, Section VII concludes the paper.

II. RELATED WORK

Recent work covers various aspects of the placement of
VNFs. The authors in [6] introduce an ILP for the joint
VNF chain placement and resource allocation. They focus on
minimizing the end-to-end latency, service costs, and VNF
migration frequency. The idea of VNF migration is also used
in [10], where the objective is to minimize the overall power
consumption, especially during low traffic periods. Liu et
al. [11] investigate the VNF reconfiguration problem with the
focus on optimized reconfiguration costs and resource con-
sumption in IoT networks. Jointly optimizing radio and VNF
resource allocation, the authors in [12] propose an approach
to minimize the overall deployment costs while guaranteeing
end-to-end delay requirements. In [13], the authors aim to
minimize the slice performance degradation by optimizing
VNF migration based on traffic prediction. The authors in [14]
and [15] further optimize the resource usage while considering
stringent time constraints by leveraging parallel and shared
VNF processing. Akahoshi et al. [16] loose the assumption of
a fixed computation resource usage of a VNF and dynamically
resize them in order to optimize resource usage and therefore
minimize the deployment costs. The authors in [17] introduce
with Holu a fast heuristic framework for solving the joint VNF
placement and routing problem considering power consump-
tion and resource constraints in the network in reasonable time.

Recently, some works started to leverage Machine Learning
(ML) and Artificial Intelligence (AI). The authors in [18]
introduce a VNF resource allocation framework using a neural
network to predict and allocate VNFs on available process-
ing capabilities in order to minimize the overall costs and
performance impacts. Chen et al. [19] utilize ML in their
proposed framework in order to reduce the end-to-end delay
while optimizing the acceptance ratio of VNF chains. A
further framework for VNF placement and traffic prediction
in a 5G O-RAN architecture is introduced in [20]. Focusing
more on the reliability and availability, the authors in [7]
formulate an optimization problem for the placement of VNF
chains in 5G networks. The authors in [21] target the dy-
namic VNF placement, resource allocation, and traffic routing
within 5G networks considering various real-world parameters.
Promwongsa et al. [8] already target the next generation
of networks, 6G, and introduce a joint VNF placement and
scheduling problem for latency sensitive VNFs focusing on
the optimal determination of whether to reuse an existing VNF
or to place a new one.

While the previous works cover a wide area of aspects when
placing VNFs within network processing capabilities, none of
them consider the VNF placement based on priorities. The
problem of placing MAFs is similar to the placement of VNFs.
However, especially for critical applications such as medical
applications prioritization plays a crucial role in scenarios
where the available networking and processing capabilities are
not sufficient to serve all applications. In a first step, placing
VNF chains with priority has been investigated in [22]. The
authors there formulate an optimization problem to minimize
the total deployment costs considering VNF sharing and
two types of service: priority and best-effort. In contrast to
their work, in this paper we propose an approach tailored
to medical application scenarios. In particular, the goal of
our optimization is to maximize the admission ratio utilizing
prioritization and service level degradation.

Hentati et al. [9] take a first step to combine medical
applications and VNF placement for the scenario of a one-
to-one remote robotic surgery. Based on the requirements
of such a scenario, they formulate a joint placement and
scheduling optimization problem as ILP, considering haptic
and video traffic. In particular, they aim to minimize the
deployment costs constrained by end-to-end latency, reliability,
and throughput aspects. In contrast to their work, in this
paper we consider multiple medical use cases and therefore
cover additional aspects. Moreover, we focus on the scenario
when the available networking and in-network processing
capabilities are not sufficient to serve all demands of different
medical applications. In such a scenario, we aim to maximize
the number of served demands. Hereby, we consider the
priority of MAFs and different levels of service. Additionally,
we take into account that some applications must run in the
network even though their priority is low. We then compare
our approach to the one in [9] and show the improvements
our approach offers.



III. PROBLEM FORMULATION

In this section, first the two considered medical use cases
are described. Consequently, we show the envisioned 6G RAN
architecture to be used for such use cases. This lays the
foundation for the system model which is followed by the
model assumptions.

A. Medical Use Cases

In the following, the two considered medical use cases,
namely the semiautonomous telerobotic examination suite and
context-sensitive medical environment, are introduced. Both
use cases are also mentioned in the early stages of 3GPP
6G development [23]. Note that these are only two examples
for this optimization approach. Various other medical or non-
medical applications such as virtual and augmented reality
(VR/AR) applications could also be included, adding to the
overall traffic within a network [24].

1) Semiautonomous Telerobotic Examination Suite: The
development of high-precision telemedical applications aims
to address regional imbalances in medical care, e.g., by
enabling remote diagnostic examinations [3]. As the evolution
of telemedical use cases has progressed from pure video-
conferencing solutions to more immersive telepresence and
even robotics-driven physical interaction scenarios [25]–[27],
the demands on the underlying communication networks are
steadily increasing. The semiautonomous telerobotic examina-
tion suite considered in this paper uses several high-definition
video streams from multiple camera sources to transport both
conventional and depth images [28]. These streams place large
demands on the minimum and maximum throughput offered
by the network. As an example, streaming uncompressed depth
images can require bandwidths between around 100 Mbps and
1 Gbps per stream [29]. Additionally, safe robotic teleoper-
ation requires low-latency connections between system end-
points [30]. While the exact latency requirements are variable
and dependent on the specific data streams, delays of more
than about 100 ms have been shown to significantly decrease
performance and user experience in telesurgical settings [31].
In in-network computing robotics scenarios such as the ex-
amination suite considered here, where parts of the robotic
application are placed on network resources, the interaction
between system components poses additional requirements on
the underlying network infrastructure [32].

2) Context-Sensitive Medical Environment: The context-
sensitive medical environment aims to integrate medical situ-
ational information in patient and process models, which are
updated with real-time data, in order to improve patient care
and reduce the workload of medical professionals within the
hospital [3]. This approach allows physicians, external medical
experts, or even future robotic solutions to receive the right
information at the right time. Furthermore, this information
can trigger changes in other medical applications following
the approach of the project OR.net [33], enabling a context-
sensitive adaptation of assistive functions. Patient monitoring
as an exemplary application is envisioned to integrate state-
of-the-art AI algorithms to automatically adjust according to
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Fig. 1. Envisioned 6G RAN architecture to execute the Modular Application
Functions (MAFs) of our two use cases consisting of Access Points (APs),
Processing Units (PUs) and switches, similar to [5].

the clinical situation and current process information. With
the increasing integration of AI algorithms in medical ap-
plications, the demand for substantial computing resources is
steadily increasing [34], [35]. Using an in-network computing
approach enables the use of resources within the communica-
tion network, which can provide sufficient processing power
to satisfy demands [36].

From a medical perspective, it is possible, to a limited
extent, to define priorities for different system components,
data streams and MAFs. A mechanism for prioritization of
medical and non-medical applications has been introduced
in [37]. Prioritization of applications is beneficial to ensure
patient safety and process reliability in scenarios where the
network cannot satisfy the requirements of all requested de-
mands. As an example, in the prior described use case, the
transmission of high-resolution image data from clinician to
patient has a lower priority than from patient to clinician,
as the latter is essential to make an accurate diagnosis and
to ensure the safety of the patient during the interaction
with the robotic examination system. Similarly, an in-network
trajectory planner has a higher priority than an ML application
providing enhanced diagnostic insights, due to the safety-
critical role of the former in the robotic control pipeline. In the
second use case, the context-sensitive medical environment, an
AI tracking algorithm has a lower priority than calculating and
displaying vital parameters during surgery. Even considering
a single application, the importance of various data streams
differs according to the contextual situation and can therefore
be prioritized. This principle can be seen in intra-operative
vital parameter tracking, where real-time ECG data is more
critical than a patient’s current body temperature.

B. Envisioned Architecture of Future 6G Medical RANs

Both use cases should use the same underlying communica-
tion infrastructure. Fig. 1 shows an example of the envisioned
6G RAN architecture using MAFs as introduced in [5], which
is useful for, but not limited to medical applications. Hereby,
Access Points (APs) abstract the transmission technology,
such as 6G, 5G, and LiFi, and provide a wireless connection
between the RAN and the examination suite or the monitoring



system. Processing Units (PUs) are processing capabilities
which are used to run MAFs. Note that PUs differ in their
processing capabilities to run more or less demanding MAFs
and distance to the APs, introducing higher or lower latency.
All components are interconnected with switches, which are
programmable leveraging domain-specific languages such as
P4 [38] and SDN-enabled for advanced networking orches-
tration. As their behavior is fully programmable, they can
potentially run smaller MAFs on line-rate.

C. System Model

The envisioned RAN architecture is structured as a (logical)
fully meshed graph G = (N,L), where N consists of physical
nodes, i.e., APs, PUs, and switches, which are all linked
together through connections L. Note that real networks may
not provide direct physical connections between two nodes.
In order to achieve a fully-meshed graph in such a scenario,
virtual links need to be added to abstract the path between
two nodes into a direct connection. In the considered graph,
only PUs can process MAFs (N

′ ⊂ N ). Each processing
unit n′ has a computational resource capacity cn

′

cpu and an
availability ϕn. Switches form another subset of nodes, i.e.,
N

′′ ⊂ N . The connection (u, v) between node u and node
v can transmit a limited data rate, c

(u,v)
π , and experience

propagation delay, d(u,v). Each MAF, a ∈ A, in the network
has a terminability characteristic ka, indicating whether an
MAF is non-terminable, i.e., ka = 1, or not, i.e., ka = 0.
Additionally, the priority pa ranks the importance on an as-
cending scale. Furthermore, each MAF has a specific demand
for computational resources γa to run on a processing node,
and an availability ϕIa . The required data rate of an MAF is
denoted as λh,a and represents the maximum achieved traffic
peak. The data rate and the latency τh,a of an MAF correspond
to a service level h of different service levels h ∈ H . The
different service levels represent an upper and a lower bound
of the performance of an MAF. The level of service is given
to an MAF by a network controlling entity responsible for
placing all MAFs. Varying the level of service for each MAF
based on its priority allows to accept more demands within
the network. An example for varying service is the change of
video encoding schemes to lower resolution in order to reduce
the required throughput. Note that for the determination of
MAF attributes different aspects, such as ethical ones, need to
be considered. The MAFs are now placed on nodes within a
demand. Each demand d ∈ D consists of a source node sd,
a destination node td and a required MAF rd. It has specific
performance requirements such as a minimum data rate fπd

,
a maximum end-to-end delay ftod , and a required availability
level ϕRd

, for reliable service access. Note that even though
PUs may differ in their characteristics, as mentioned in [5], in
this paper we do not consider it in the first step. In the medical
context, the overall acceptance ratio of demands is of interest.
Thus, in this paper we aim to maximize the acceptance ratio
of demands within the network considering the importance of
each individual demand.

The optimization problem at hand is categorized as an ILP
problem, given that the decision variables must be integers
due to the discrete nature of resource allocation. Fractional
variables are impractical, emphasizing the requirement for
whole units in allocation decisions, ensuring that resources
are fully and effectively utilized.

D. Assumptions

• In order to simplify the data flow modeling, we assume
fully meshed networks, where each node is directly
connected to all other nodes. Thus, if there is no physical
link between two nodes, the direct connection between
both is virtually added, abstracting the path between the
two nodes.

• There are enough computing resources available to at
least execute all non-terminable MAFs.

• The analysis method considers one MAF at a time,
excluding interactions between MAFs, i.e., MAF chains
are not considered and are deferred to future work.

• Multiple instances of the same MAF can be deployed
across the network for multiple demands.

• Each demand uses one instance of an MAF; sharing
MAFs is part of the future work.

• MAFs do not change the throughput, i.e., the incoming
throughput to each MAF is the same as the outgoing.

• The optimization model ignores task rescheduling or re-
source reallocation times, concentrating on static resource
allocation and immediate MAF performance. This implies
that MAFs are not terminated after the processing since
they potentially need to process data in the future.

• All MAFs comply to the performance limit given to them
by the placement controller. This ensures no unwanted
behavior within the network.

IV. OPTIMIZATION PROBLEM

Based on the described model and assumptions, in the
following the optimization problem for medical applications
is formulated. The decision variables are as follows:

• xn′

a,d ∈ {0, 1}: Indicates whether MAF a is deployed
for demand d on processing node n′, with 1 meaning
deployed and 0 otherwise.

• y
(u,v)
d ∈ {0, 1}: Denotes whether demand d utilizes the

link between nodes u and v in the network, with 1 for
usage and 0 otherwise.

• zd ∈ {0, 1}: Indicates whether the traffic for the demand
d is admitted to the network, with 1 indicating admission
and 0 otherwise.

• mn′

h,a,d ∈ {0, 1}: Shows whether a specific service level
h is selected for MAF a in relation to demand d on
processing node n′, with 1 if selected and 0 otherwise.

The objective function, shown in (1), is designed to maxi-
mize the value of accepted demands, focusing on high-priority
healthcare services to ensure the most effective service amidst
an increased number of network demands. It incorporates



a penalty W for not accepted demands, to incentivize the
maximization of request acceptances in the network, and is

max
∑
d∈D

(
zd · prd ·

∑
n′∈N ′

∑
h∈H

mn′

h,rd,d
· λh,rd

−W · (1− zd)

)
.

(1)

This objective function is subject to various constraints, en-
suring that performance, placement, and routing requirements
are fulfilled. Next, we will formulate all of them.

Starting with the performance related constraints, constraint
(2) ensures that demands utilizing non-terminable MAFs are
always integrated into the network:

krd ≤ zd, ∀d ∈ D. (2)

Constraint (3) guarantees that the deployed MAFs meet the
minimum data rate requirements of the demands:

xn′

rd,d
· fπd

≤
∑
h∈H

mn′

h,rd,d
· λh,rd , ∀n′ ∈ N ′, d ∈ D. (3)

Constraint (4) caps the cumulative delay experienced by de-
mands, incorporating both processing and propagation delays:

zd·ftod ≥
∑

n′∈N ′

∑
h∈H

mn′

h,rd,d
· τh,rd+∑

u∈N

∑
v∈N,(u,v)∈L

(y
(u,v)
d + y

(v,u)
d ) · d(u,v), ∀d ∈ D.

(4)

Constraint (5) is an approximation based on [39] and [40]. It
aims at ensuring that the network availability aligns with the
stringent availability requirements of the demand:

ϕRd
· zd ≤ 1−

(
(1− ϕsd) +

∑
m∈N

xm
rd,d
· (1− ϕIrd

ϕm)+

∑
n∈N

∑
v ̸=n∈N

(1− xn
rd,d

)y
(v,n)
d (1− ϕn)

)
, ∀d ∈ D.

(5)
More on the placement site, constraint (6) guarantees that the
required MAF for a demand is installed on a single processing
node within the network, provided the demand is accepted:

zd ≤
∑

n′∈N ′

xn′

rd,d
≤ 1, ∀d ∈ D. (6)

Constraint (7) mandates that exactly one MAF is activated for
each accepted demand, preventing any redundant activation
that could otherwise strain network resources:∑

n′∈N ′

∑
a∈A

xn′

a,d = zd, ∀d ∈ D. (7)

Constraint (8) limits CPU allocation per processing node to
prevent overloads:∑

d∈D

∑
a∈A

xn′

a,d · γa ≤ cn
′

cpu, ∀n′ ∈ N ′. (8)

Constraint (9) enforces a strict one-to-one correspondence
between an MAF and its service type for each demand:∑

h∈H

mn′

h,rd,d
= xn′

rd,d
, ∀n′ ∈ N ′, d ∈ D. (9)

Constraint (10) guarantees that the total data rate of demands
on link (u, v) must not exceed the capacity of the link:

c(u,v)π ≥
∑

n′∈N ′

∑
d∈D

∑
h∈H

zd · (y(u,v)d + y
(v,u)
d ) ·mn′

h,rd,d
· λh,rd ,

∀u, v ∈ N, u ̸= v, (u, v) ∈ L.
(10)

Constraint (11) controls the node activation by setting nodes
that cannot host MAFs, i.e., non-processing nodes, for the
demand to 0: ∑

n/∈N ′

xn
rd,d

= 0, ∀d ∈ D. (11)

In order to correctly route traffic flows, constraints (12)-(14)
ensure the flow conservation from source to destination node
for each demand:∑

u∈N,u̸=sd

y
(sd,u)
d = zd, ∀d ∈ D. (12)

∑
v∈N,v ̸=u

y
(u,v)
d −

∑
v∈N,v ̸=u

y
(v,u)
d = 0,

∀d ∈ D, u ∈ N\{sd, td}.
(13)

∑
u∈N,u̸=td

y
(u,td)
d = zd, ∀d ∈ D. (14)

Constraint (15) mandates that for any intermediate node in-
coming flows must match outgoing flows, ensuring network
flow conservation:

y
(v,u)
d ≤

∑
b∈N,b̸=u,v

y
(u,b)
d ,

∀d ∈D,u ∈ N\{sd, td}, v ̸= u ∈ N.

(15)

Constraint (16) requires that for any accepted demand with
MAF rd on node n′, the path must include n′, activated by at
least one incoming link:

zd · xn′

rd,d
≤

∑
u∈N,u̸=n′

y
(u,n′)
d , ∀d ∈ D, ∀n′ ∈ N ′. (16)

Constraint (17) prevents activating service levels on nodes
unable to host MAFs:∑

h∈H

mn
h,rd,d

= 0, ∀n /∈ N ′, ∀d ∈ D. (17)

Constraints (18) and (19) guarantee that a node with a de-
ployed MAF for a demand only exchanges traffic with its
source or destination node, while blocking other nodes:

xn
rd,d
· y(u,n)d = 0, ∀d ∈ D, n ∈ N, u ̸= sd /∈ N ′′. (18)

xn
rd,d
· y(n,u)d = 0, ∀d ∈ D, n ∈ N, u ̸= td /∈ N ′′. (19)

Constraint (20) deactivates the source-destination link if the
destination is not the selected MAF node:

y
(sd,td)
d ≤ xtd

rd,d
, ∀d ∈ D. (20)



Constraints (21) to (23) mandate that traffic from the source
to the destination passes only through switches and the node
activated for the required MAF:

y
(u,n)
d + y

(n,u)
d ≤ xn

rd,d
,

∀d ∈ D, n ̸= sd, td /∈ N ′′, u ̸= n, td ∈ N ′.
(21)

∑
u∈N

y
(u,sd)
d = 0, ∀d ∈ D. (22)

∑
u∈N

y
(td,u)
d = 0, ∀d ∈ D. (23)

In summary, the optimization problem can be written as

max
∑
d∈D

(
zd · prd ·

∑
n′∈N ′

∑
h∈H

mn′

h,rd,d
· λh,rd

−W · (1− zd)

)
,

(P1a)

s. t. (2)− (23). (P1b)

V. PROPOSED HEURISTIC

Solving the optimization problem introduced in Section IV
may take a long time. Therefore, in this section we first present
a heuristic to find near-optimal solutions faster. Then, we
provide a time complexity analysis for the proposed heuristic.

A. Description

The placement problem is classified as NP-hard, rendering
the brute-force method ineffective. This holds especially in
extensive scenarios. To overcome the issues of scalability,
we introduce a heuristic method, named Modular Application
Function Allocation Prioritization (MAFAP), that is efficient,
has a low complexity, and is therefore quick in providing
solutions close to the optimum. It unfolds in two stages:
i) It assigns the demands within the network at the lowest
possible service level; ii) It enhances the service provided to
the demand.

The first step is outlined in Algorithm 1. Hereby, the
heuristic assesses potential nodes and paths to align with the
requirements of each demand while satisfying the already
mentioned constraints. For that, all demands are organized by
their terminability and by their priority. For the chosen path
from source to destination, the heuristic aims to minimize the
utilization percentage across all links in the route. In that way,
requests are guided to paths with ample capacity. The outcome
is a tuple that includes the selected node for MAF placement,
the path, and the service level for the placed demand or
an error code if the placement fails. In the second stage,
detailed in Algorithm 2, existing demands may be upgraded
based on the remaining network resources, prioritizing high-
priority MAFs. If an upgrade is viable, the service level of
the demand is elevated, enhancing service quality without
necessitating replacement. By varying the number of iterations
in the second step, the execution time and the acceptance ratio
achieved by the heuristic can be adjusted for each individual
scenario. This refined greedy technique considers various

network configurations in a local search manner, aiming to
optimize the acceptance ratio while still providing the best
possible service level.

Algorithm 1 Place network demands
Require: G, demand info, app func, app serv, link info
Ensure: select node, select path, select serv if possible,

otherwise error
1: select node, select path, select serv ← None
2: for all nodes in G considering capacity do
3: if node does not have enough capacity then
4: Go to the next node
5: end if
6: for all services meeting demand do
7: for all paths through node do
8: if path meets delay and capacity constraints then
9: Calculate path availability

10: if path availability meets demand then
11: Update selection variables
12: if suitable service found then
13: Break loop
14: end if
15: end if
16: end if
17: end for
18: end for
19: end for
20: if no node selected then
21: return error
22: else
23: Deduct resources from G
24: end if
25: return select node, select path, select serv

Algorithm 2 Upgrade level of service for demand
Require: G, demand info, path, serv, app serv, link info
Ensure: Upgraded service identifier or None

1: Extract req af from demand info
2: select serv ← None
3: Restore capacity for current service along path
4: for all services matching req af do
5: if all links in path have enough capacity then
6: select serv ← serv-1
7: end if
8: end for
9: if select serv ̸= serv then

10: Deduct capacity for new service along path
11: return select serv
12: else
13: Restore original capacity if no upgrade is possible
14: return None
15: end if

B. Complexity Analysis
In this subsection, we present the computational complexity

analysis of the proposed MAFAP heuristic, which is based



on a local search algorithm. First, demands are sorted on the
basis of different criteria. The sorting operation is O(D logD),
where D is the number of demands. Hereby, the heuristic
iterates through each demand and potentially through each
node and service level in the graph for the placement. If
there are D demands, N nodes, and S services, the worst-
case scenario would be O(DNS). Internal operations such
as calculating the utility percentage for each path adds an
additional O(n · p) complexity, where p is the number of
paths and n is the average path length. Sorting these paths
based on utility percentage potentially reaches a complexity
of O(p log p). Depending on the number of paths identified,
p grows much larger than n and therefore dominates the total
complexity of internal operations.

Considering these aspects, the overall time complexity of
the Local Search algorithm is given by O(D logD +DNS ·
p log p). This complexity suggests that the algorithm operates
in polynomial time for common scenarios.

VI. EVALUATION

In this section, we show results related to Section IV and the
corresponding heuristic presented in Section V. Additionally,
they are compared to state-of-the-art approaches.

A. Setup Description

For the evaluation, we investigate the performance and
the impact of various parameters on it for the optimization
problem (Optimal), introduced in Section IV, and the corre-
sponding heuristic MAFAP, presented in Section V. The results
are compared to those of two other approaches:

• Optimal Joint Placement and Scheduling Algorithm
(OJPSA): This approach is adapted from the optimization
problem presented in [9]. In particular, only one MAF and
not a chain is considered. In order to align their approach
with our optimization problem, we relax the assumptions
of time slots and instead add the routing constraints of
the optimization problem in this paper. Additionally, a
limited capacity for each link is added since the authors
in [9] assume unlimited possible traffic on each link in
contrast to the approach in this paper.

• Random: This simple strategy employs a method that
randomly places demands, adhering to constraints such
as minimum data rate, availability, and maximum end-to-
end delay. However, the terminability property or other
service levels than the optimal one are not considered.

All tests were conducted on a common KVM processor. The
CPU configuration includes 8 physical cores and 8 logical
processors, with the capability to utilize up to 8 threads. For
solving the optimization problem, the Gurobi Optimizer [41]
is used. In our optimization formulation, the weight W as-
sociated with rejecting a demand is set to 10. This weight
shows a balanced distribution of acceptance ratio and level of
service with respect to the data rates λh,a used in our scenario.
Higher values of W result in potentially more accepted MAFs
on the cost of lower level of service. Vice versa, lower values
of W lead to fewer accepted MAFs but with higher level of

service. The used parameters for the demands, links and nodes
are summarized in Table I. We evaluate a varying number
of demands to be placed based on the considered topology.
Hereby, each demand uses one out of seven MAFs with
different characteristics (see Table II). We selected these values
deliberately to cover many possible medical applications with
various different requirements, as described in Section III.

TABLE I
SIMULATION PARAMETERS

Parameter Value

cn
′

cpu uniform(3, 6)

c
(u,v)
π randint(0.5, 1.5) Gbps
d(u,v) uniform(1, 8) ms
fπd uniform(0.5, 400) Mbps
ftod uniform(20, 60) ms
avRd

one 9 to five 9s

All results are obtained for the scenario of the larger
topology, except for the evaluation of the impact of a different
number of service levels which uses the smaller topology.

1) Larger Topology: In this scenario, the network consists
of 12 nodes: 3 APs, 7 PUs, and 2 switches. 90 demand requests
are to be placed within the network, where 18% include non-
terminable MAFs, each offering 5 levels of data rate and
processing delay. MAFAP evaluates 60 configurations, i.e.,
iterations, to enhance the acceptance ratio.

TABLE II
MAF PARAMETERS

MAF Type ka pa γa ϕIa λ [Mbps] τ [ms]
MAF1 1 2 0.3 0.99999 [5, 600] [6, 55]
MAF2 0 3 0.5 0.9999 [10, 800] [3, 50]
MAF3 1 4 0.6 1 [15, 650] [9, 48]
MAF4 0 5 0.45 0.99995 [3, 700] [7, 45]
MAF5 1 1 0.28 0.9999 [1, 300] [6, 52]
MAF6 1 3 0.37 0.99998 [10, 580] [2, 48]
MAF7 0 2 0.33 1 [6, 550] [6, 52]

2) Smaller Topology: The second scenario is similar to the
first, but now the network features 11 nodes (a reduction of
one PU) and accommodates 55 demands. This reduction is
implemented to address the prolonged duration required to
solve the optimization problem with increasing number of
service levels.

B. Evaluation

In the following, the obtained results for the described test
setup are presented and discussed. Hereby, we focus on the
overall performance and the impact of single parameters on it.

1) Acceptance Ratio: Fig. 2 displays the impact on the
acceptance ratio for the four allocation methods. The Optimal
method achieves 98.46%, closely followed by the MAFAP
method with 90.23%. The OJPSA method reaches 63.08%,
reflecting a decrease in demand fulfillment. The reason for
that significant difference lies in the various possible service
levels of our proposed approaches, whereas OJPSA always
assume the best possible service. Finally, the Random method
ranks lowest with an acceptance ratio of 52.31%.

2) Computation Time: Although the optimization method
scores the highest in acceptance ratio, it also requires more
resources and longer computation times, as shown in Fig. 3.
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Fig. 3. Comparison of simulation computation times.

Considering practicality, MAFAP presents the best balance,
offering a good compromise between performance and exe-
cution time. It lags slightly behind the optimization method
regarding the acceptance ratio but considerably cuts down on
resource use and processing time, making it preferable for
real-world scenarios where resources and time are limited.
Note that the execution time of MAFAP is almost 10× higher
than for OJPSA since more parameters are taken into account.
However, to the best of our knowledge the relevance of this in
medical use cases still needs to be investigated. In any case,
the number of iterations in the heuristic can be adapted for
faster execution time if needed.

3) Number of Accepted Non-Terminable Demands: Fig. 4
shows the number of accepted non-terminable demands in the
network. It can be observed that OJPSA and Random do not
place all crucial demands in the network. The reason lies in
their design, which does not consider such a property. This
renders them ineffective for scenarios where continuous oper-
ation is essential. In contrast, Optimal and MAFAP approaches
place all of the non-terminable demands by design.
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Fig. 4. Comparison of the percentage of non-terminable demands accepted
in each method.
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Fig. 5. Analyzing the acceptance ratios of the methods considering various
service levels.

4) Impact of Varying the Number of Service Levels: All
approaches are evaluated for the smaller topology across h
service levels. The results are shown in Fig. 5. Hereby, the first
component of each point on the x-axis represents the number
of data rate options λh,a and the second indicates compu-
tational delay (τh,a). It can be observed that the acceptance
ratios of OJPSA and Random do not change with a varied
number of service levels as they only consider maximum
possible service. In contrast, our proposed strategies are more
flexible, considering a range of service levels based on network
capacity. Consequently, the acceptance ratios are much higher.

5) Summary: After evaluating the network performance,
it is clear that Optimal and MAFAP significantly outperform
OJPSA , improving request acceptance ratio by up to 35%.
This improvement stems from their ability to adapt service
levels to the available resources. Although MAFAP has a lower
acceptance ratio than the Optimal solution, its reduced execu-
tion time renders it more practical for real-world applications.
Additionally, our proposed methods adeptly accommodate
the non-terminability feature, crucial in healthcare settings.
Intuitively, the consumption of processing and networking re-
sources of Optimal and MAFAP should be improved compared
to OJPSA due to the more granular placement options provided
with the different service levels. A thorough analysis of the
resource consumption as well as the costs of the placement is
deferred to future work.

VII. CONCLUSION

In this paper, we propose a new approach for placing MAFs
within the network in medical scenarios, where the available
computing and networking resources are potentially not suffi-
cient to serve all requested demands. For this, we formulate
an optimization problem as an ILP, considering the priority
and different levels of service for each MAF. Additionally,
we take the MAF terminability into account to ensure the
placement of non-terminable MAFs regardless of their priority.
Furthermore, we introduce a heuristic to solve such a problem
faster. Our results show an increased acceptance ratio by up
to 35% compared to baseline approaches. In the future, we
will extend our approach by considering chains of MAFs with
different priorities. Furthermore, we will evaluate our approach
in a medical testbed and consider other scenarios with different
comparison approaches.
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