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Abstract
Substructure decoupling identifies a subsystem within a mechanical system by removing the measured dy-
namics of other subsystems from that of the assembly. Challenges persist in this procedure in the presence of
inaccessible and flexible interfaces, measurement errors and noise. Various approaches address these issues:
the Virtual Point Transformation (VPT) reduces noise at boundary DoFs but fails to capture the interface
flexibility. The extended decoupling interface can help to overcome this limitation by involving internal
DoFs in the decoupling but leads to major error propagation. The Singular Vector Transformation (SVT)
reduces errors at internal DoFs but lacks a physical description of the interface. This work proposes different
approaches to decoupling that combine VPT, the extended interface, and SVT to retain the interface flex-
ibility and to smooth measurement errors at all DoFs while describing the interface topology with physical
coordinates. Advantages are demonstrated on a laboratory benchmark structure using experimental data.

1 Introduction

In the context of frequency-based substructuring [1], substructure decoupling is particularly useful for identi-
fying the dynamic behavior of subsystems that are part of a larger mechanical system but are difficult to
model or experimentally characterize individually. Different types of decoupling methods are available in
literature [2–4]. The one defined within the Lagrange Multiplier - Frequency Based Substructuring (LM-
FBS) [5], also known as dual substructure decoupling [6, 7], identifies the unknown subsystem by removing
the dynamics of the remaining (residual) subsystem from that of the assembly. In this case, the subsystems
involved are characterized by their Frequency Response Functions (FRFs), which correspond to the interface
DoFs (DoFs between which the subsystems are connected in the assembled configuration) and to the internal
DoFs (not belonging to the interface). Compatibility and equilibrium conditions need to be imposed on the
DoFs shared between the assembly and the residual subsystem. Unlike coupling procedures, where these
conditions can only be imposed on the interface DoFs, dual decoupling allows to define different types of
interfaces [8–10]. The most straightforward are the standard (interface DoFs only) and the extended (inter-
face and internal DoFs) interfaces. However, challenges remain in accurately performing decoupling when
dealing with inaccessible and flexible interfaces between components, as well as in the presence of meas-
urement error and noise. In these cases, the FRFs at the interface DoFs (translational and rotational) cannot
be directly measured and must be retrieved using other techniques. One technique commonly used for this
task is the Virtual Point Transformation (VPT) [11], that reduces the measured dynamics at some boundary
DoFs near the interface using a set of generalized coordinates associated with six rigid Interface Deformation
Modes (IDMs). These generalized coordinates can be thought of as the physical translational and rotational
coordinates of a virtual point placed in the inaccessible interface region. A side advantage of this technique
is that it helps mitigate the presence of measurement noise. In performing decoupling, compatibility and
equilibrium conditions can now be imposed only on the set of rigid interface dynamics. In this sense, the
decoupling compatibility conditions are said to be weakened [12, 13], i.e. they are imposed on a reduced
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subspace where only the dynamics relevant for the decoupling are represented, in a least-squares sense. Con-
sequently, weakening the decoupling by the VPT prevents the dynamics of the flexible interface from being
captured. To overcome this problem, the extended decoupling interface can be helpful. In fact, including a
set of measured internal DoFs in the decoupling process improves the controllability and observability of the
flexible interface dynamics. However, errors at the internal DoFs are not mitigated and may propagate into
the solution. Another approach commonly used to weaken interface compatibility conditions is the Singular
Vector Transformation (SVT) [14]. Here, decoupling is performed in a reduced space extracted from direct
measurements at the interface and internal DoFs. These DoFs are distributed to fully control and observe
the interface dynamics. The SVT helps to mitigate errors at all measured DoFs while retaining the flexible
interface dynamics. The drawback of this approach is that the interface is now represented by generalized
singular coordinates, i.e. the topology described by the physical translational and rotational coordinates
is lost. This can be a limitation in some applications, e.g. joint identification or where a direct physical
attachment enables a simple/interpretable connection between components.

In this work, different approaches to weaken the interface compatibility conditions are tested. They combine
the concepts of VPT, the extended decoupling interface and of the SVT approaches. The overall advantage is
that the improved controllability/observability of the flexible interface dynamics is ensured by the extended
interface concept, while the measurement errors are smoothed both at the interface and at the internal DoFs.
In addition, the interface topology described by the translational and rotational coordinates is maintained
and represented by the virtual point DoFs. The effectiveness of the proposed solutions over state-of-the-art
methods is evaluated on a laboratory benchmark structure using experimental data.

2 Theoretical background

This Section describes the theoretical background of standard (Section 2.1) and weakened (Section 2.2) dual
decoupling. Two common approaches to weaken compatibility conditions, the Virtual Point Transformation
(VPT) and the Singular Vector Transformation (SVT), are described in Sections 2.3 and 2.4, respectively.

2.1 Dual substructure decoupling

The dual decoupling [6, 9], allows to identify the dynamic behavior of an unknown mechanical subsystem U
starting from the known FRFs YRU of an assembled mechanical system RU containing U and the known
FRFs YR of the remaining (residual) subsystems R (see Fig. 1). In the following, it is considered that
the FRFs (accelerances) of the residual subsystem R are known on three different sets of DoFs, reported
in Fig. 1: the interface DoFs c, between which R and U are connected in the assembled configuration;
the boundary DoFs b, which are close to the interface and are able to control/observe all its dynamics; the
internal DoFs i, which do not belong to the interface region. Note that the DoFs b will not be directly used
in the coupling or decoupling of the substructures, but will be exploited to approximate the behavior at the
interface, as explained later (e.g. Fig. 2). Similarly, the FRFs of the assembled system are defined on the
same DoFs of RU , plus a set of DoFs v representing the internal DoFs of the unknown subsystem that
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Figure 1: Dual substructuring procedure to identify the dynamic behaviour of the unknown subsystem U .
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cannot be measured when disassembled. In the LM-FBS framework, decoupling is performed starting from
the uncoupled equations of motion of the assembled system and of a fictitious subsystem with an FRF matrix
opposite in sign to that of the residual subsystem:

u = Y(f + g) ⇔
{
uRU

uR

}
=

[
YRU 0
0 −YR

]({
fRU

fR

}
+

{
gRU

gR

})
(1)

where Y is the FRF matrix of the subsystems to be decoupled in block diagonal format, u is the response
vector, f is the vector of the externally applied forces, g is the vector of disconnection forces between RU
and R. To perform decoupling in the dual approach, compatibility (strictly enforced) and equilibrium (auto-
matically satisfied) conditions must be imposed between some DoFs shared by RU and R. This is done
using the signed Boolean matrices Bu and Bf as follows:

{
Buu = 0

g = −Bf
Tλ

(2)

where λ are the Lagrange multipliers that represent the disconnection force intensities. The set of DoFs on
which compatibility and equilibrium conditions are imposed forms what is called the decoupling interface.
The most basic one contains only the interface DoFs c (standard interface). However, one can use the
so-called extended interface, where these compatibility and equilibrium conditions are imposed on both
interface c and internal i DoFs. Solving the system of equations formed by Eq. (1) and (2) results in the
following one-line equation:

u =
[
Y −YBf

T
(
BuYBf

T
)+

BuY
]
f = Y

U
f (3)

where Ȳ
U is the FRF matrix of the identified unknown subsystem and (·)+ indicates the Moore-Penrose

pseudo-inverse operator. Care must be taken when inverting the matrix product BuYBf
T , also called the

Interface Flexibility Matrix (IFM), because it can lead to large error propagation if it is ill-conditioned and
measurements are affected by errors and noise. Note that only some elements of ȲU should be retained. In
particular, those corresponding to the DoFs belonging to the unknown subsystem, i.e. the interface DoFs c
and the internal DoFs v of U .

2.2 Weakened dual decoupling

In many applications, the FRFs at the interface DoFss c cannot be measured directly. Moreover, the presence
of measurement noise may affect the result of the decoupling. To deal with these applications, one possible
way is to weaken the compatibility conditions [9, 11, 12]. Compatibility and equilibrium conditions are
imposed using the signed Boolean matrices B̃u and B̃f , which operate in the reduced subspaces as follows:

{
B̃qq = B̃qRu

+u = 0

g = −(Rf
+)

H
B̃m

T
λm

(4)

where the matrices Ru and Rf reduce the physical displacements and forces to the sets of generalized re-
sponses q and forces m as follows: {

u = Ruq + µ

m = Rf
Hg

(5)

where µ are the remaining responses living outside the reduced subspace and (·)H denotes the complex
conjugate transpose operator, since in general Ru and Rf are complex-valued and frequency-dependent
matrices. Note that the compatibility as written in Eq. (4) expresses an approximate compatibility, since it is
enforced in a reduced space where only the interface dynamics relevant to the decoupling are represented in
a least-squares sense. Instead, the residual dynamics, which carry the effects of unwanted dynamics, noise,
and measurement error, are allowed to be incompatible. In this case, it is not strictly necessary to measure
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directly at the interface DoFs, but only to perform measurements close enough to the interface to allow for
the control/observation of its relevant dynamics.
Several methods, with different advantages/disadvantages, can be found in the literature to weaken the com-
patibility conditions. They differ mainly in the construction of the matrices Ru and Rf used for the response
and force reductions. To compare different approaches, these two matrices can be written in block diagonal
form to show how the reductions are performed separately on RU and R, and on their distinct sets of DoFs
(see the DoF partitioning in section 2.1):

Ru =




IRU
vv

RRU
u,ii

RRU
u,cc

RR
u,ii

RR
u,cc




Rf =




IRU
vv

RRU
f,ii

RRU
f,ii

RR
f,ii

RR
f,cc




(6)

where IRU
vv is an identity matrix indicating that the internal DoFs v of the unknown subsystem are not reduced.

2.3 Virtual Point Transformation

The Virtual Point Transformation (VPT) [11] can be seen as a way to weaken the compatibility conditions.
This technique reduces responses and forces at the boundary DoFs b of a subsystem using the transformation
bases RRU

u,bb and RR
f,bb, which are formed by a set of rigid Interface Deformation Modes (IDMs). In general,

these bases are frequency independent, since they depend only on the geometry of the subsystem and the
orientation of the sensors. The generalized coordinates associated with the IDMs can be thought of as the
translational and rotational DoFs of a virtual point (VP) located at the interface, and thus play the role of the
interface DoFs. An example of displacement reduction is shown in Fig. 2. Overall, the displacement and

𝑖

Figure 2: Example of virtual point displacement transformation on subsystem R. The displacements at the
boundary DoFs b are reduced to three virtual point displacements qy, qz and qθx , associated to three rigid
IDMs. These play the role of the coupling DoFs.
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force reductions in Eq. (5) take the following form:




uRU
v

uRU
i

uRU
b

uR
i

uR
b





=




IRU
vv

IRU
ii

RRU
u,bb

IR
ii

RR
u,bb








uRU
v

uRU
i

qRU
b

uR
i

qR
b





+





0

0

µRU
b

0

µR
b









gRU
v

gRU
i

mRU
b

gR
i

mR
b





=




IRU
vv

IRU
ii

RRU
f,bb

IR
ii

RR
f,bb




T 



gRU
v

gRU
i

gRU
b

gR
i

gR
b





(7)

The VPT has the advantage that the interface topology is described in terms of physical translational and
rotational coordinates, making it easy to connect or disconnect the subsystem with adjacent ones. Moreover,
by weakening the compatibility conditions (Eq. (4)) through the VPT, the measurement noise at the bound-
ary DoFs contained in the residual motion µRU

b and µR
b , remains incompatible. The drawback is that the

VPT does not account for the flexible motion of the interface that is not involved in the decoupling. The
combination of the VPT with the extended decoupling interface can help to overcome this problem, since
the inclusion of internal DoFs in the IFM improves the observability/controllability of the deformable dy-
namics [8, 9, 15]. However, this approach is generally affected by large error propagation, since redundant
dynamics can enter the IFM (thus worsening its conditioning) together with measurement errors and noise
present at the internal DoFs (which is not filtered).

2.4 Singular Vector Transformation

Another possible approach to weaken the dual decoupling problem is to use the Singular Vector Transforma-
tion (SVT), as proposed in [14]. An important requirement for using this approach is that the response points
in both R and RU are at the same position. This also applies to the excitation points. The SVT reduces
the responses and forces at internal and boundary DoFs using common reduction bases. These bases are
extracted from the experimental measurements of the residual subsystem by performing the SVD, e.g. [16],
on the FRF matrix YR

rr:
YR

rr(ω) = UR(ω)ΣR(ω)(VR(ω))
H

(8)

where r denotes the set of internal and boundary DoFs, i.e., r = i ∪ b. The columns of UR and VR are the
frequency dependent left and right complex singular vectors of YR

rr, respectively. They carry the information
of the interface deformation and have the property of being orthogonal. The matrix ΣR contains the singular
values σ of YR

rr, which indicates the relevance of the associated singular vectors to the dynamics of the
subsystem. By examining the frequency distribution of the singular values, also called the Complex Mode
Indicator Function (CMIF) plot, a reduced number k of significant singular values can be selected along with
the corresponding set of k singular vectors UR,k and VR,k. These truncated sets are then used to reduce the
responses and forces of both the residual and the assembled systems as follows:





uRU
v

uRU
r

uR
r





=



IRU

vv
UR,k

UR,k








uRU
v

qRU
r

qR
r





+





0

µRU
r

µR
r









gRU
v

mRU
r

mR
r





=



IRU

vv
VR,k

VR,k



H




gRU
v

gRU
r

gR
r





(9)
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where the qr are the generalized singular coordinates associated with the k retained singular vectors, while µr
contains the dynamics associated with the low singular values and carries the effects of redundant measure-
ments and errors present in the data.
Weakening the compatibility conditions (Eq. (4)) by SVT allows to retain flexible interface dynamics while
avoiding direct measurements at the interface DoFs and averaging measurement errors/noise at both internal
and boundary DoFs. Interestingly, the reduction bases are frequency dependent, allowing the analyst some
leeway in constructing the best bases for efficiently describing the dynamics of the subsystems frequency by
frequency.
Despite the advantages of SVT, the reduced generalized coordinates at the interface lack physical interpretab-
ility, making operations such as joint identification and coupling with other substructures difficult.

3 Proposed new bases for weakening

In this Section, several approaches to weaken the interface compatibility conditions of decoupling are pro-
posed.

3.1 VPT and SVT

In the first proposed approach, the VPT is used to reduce the dynamics at the boundary DoFs b to the virtual
point (interface) DoFs, while the SVT is used to reduce the dynamics at the internal DoFs i. The internal
transformation is performed using a reduced frequency dependent basis extracted from the SVD of YR

ii (ω)

YR
ii (ω) = Ũ

R
(ω)Σ̃

R
(ω)(Ṽ

R
(ω))

H
(10)

by considering only the k singular vectors Ũ
R,k

and Ũ
R,k

associated with the largest k singular values. It
follows that the displacements and force reductions in Eq. (5) take the form below:





uRU
v

uRU
i

uRU
b

uR
i

uR
b





=




IRU
vv

Ũ
R,k

RRU
u,bb

Ũ
R,k

RR
u,bb








uRU
v

qRU
i

qRU
b

qR
i

qR
b





+





0

µRU
i

µRU
b

µR
i

µR
b









gRU
v

mRU
i

mRU
b

mR
i

mR
b





=




IRU
vv

Ṽ
R,k

RRU
f,bb

Ṽ
R,k

RR
f,bb




H 



gRU
v

gRU
i

gRU
b

gR
s

gR
b





(11)

Decoupling is then performed by imposing compatibility and equilibrium conditions on the virtual point
DoFs and on the retained singular coordinates k (extended decoupling interface). The overall advantage of
this approach is that the improved controllability/observability of the flexible interface dynamics is ensured
by the extended interface concept, while measurement errors on both the boundary and internal dynamics
are smoothed. Furthermore, the interface topology is described by the physical translational and rotational
coordinates associated with the virtual point, which makes later coupling of the identified part U with another
substructure easy. Note that a similar method could be defined by reducing the internal DoFs i with a rigid
VPT instead of the SVT. However, the SVT is preferred here to retain the internal flexible dynamics.
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3.2 VPT and partitioned SVT

The second approach proposed to weaken the compatibility conditions is a slight modification of the one
proposed in Section 3.1. The difference is that the internal responses and forces are reduced using a small set
of p singular vectors, this time extracted from measurements performed on both the internal and boundary
DoFs, i.e. coming from Eq. (8). More specifically, the restriction of the first p singular vectors UR,p and VR,p

to the internal DoFs i is considered, i.e., UR,p
i and V

R,p
i , respectively. The displacement and force reductions

in Eq. (5) then take the form below:




uRU
v

uRU
i

uRU
b

uR
i

uR
b





=




IRU
vv

U
R,p
i

RRU
u,bb

U
R,p
i

RR
u,bb








uRU
v

qRU
i

qRU
b

qR
i

qR
b





+





0

µRU
i

µRU
b

µR
i

µR
b









gRU
v

mRU
i

mRU
b

mR
i

mR
b





=




IRU
vv

V
R,p
i

RRU
f,bb

V
R,p
i

RR
f,bb




H




gRU
v

gRU
i

gRU
b

gR
s

gR
b





(12)

Again, within the decoupling, compatibility and equilibrium conditions are imposed on the set of virtual point
DoFs and on the retained p singular coordinates. With respect to the approach in Section 3.1, this should
further mitigate the presence of noise at the internal DoFs, since the singular vectors used for displacement
and force reduction at these DoFs are extracted from a richer dataset (measurements at b and i DoFs instead
of just at i DoFs).

3.3 VPT and orthogonalized SVT

Both approaches proposed in Sections 3.1 and 3.2 can help mitigate the noise on the boundary and internal
FRFs involved in the extended interface. However, including internal DoFs in the decoupling interface may
introduce redundant dynamics into the interface problem. In fact, if the rigid motion is well captured by the
interface DoFs using their IDMs, then the rigid body motion of the internal DoFs would already be adequately
represented by the VPT. Thus, the basic idea of the approach proposed here is to introduce into the interface
problem only the deformable behavior of the internal DoFs to improve the controllability/observability of
the dynamics not captured by the VPT. This is achieved by constructing reduction bases for the displacement
and force transformations at the internal DoFs that represent only their deformable behavior. In this regard,
a VPT is performed on the residual subsystem R to reduce the responses and forces at the internal DoFs i,
to the virtual point DoFs. The transformation matrices RR

u,ii and RR
f,ii are constructed, which rigidly span

the subspaces of the internal response and the forces, respectively, by 6 IDMs. Next, the transformation
basis RR

u,ii and the full set of singular vectors Ũ
R
(ω) extracted from the FRFs YR

ii (ω) are stacked column-
wise in a matrix A:

A =
[
RR

u,ii Ũ
R
(ω)

]
(13)

The QR decomposition is applied to A to extract a set of orthonormal vectors that span its column space:

QuR = A ⇒
[
Q

rigid
u Qdef

u (ω)
]
R = A (14)

Note that the first six vectors Qrigid
u obtained are frequency independent and form an orthonormal basis for

the 6 rigid IDMs of VPT1, while the remaining vectors Qdef
u (ω) are frequency dependent. These last vectors

1The classical VPT rigid IDMs do not form an orthogonal set because they have the property of being orthogonal with respect
to the mass and stiffness matrices of the system.
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form an orthonormal basis for the flexible motion of the internal DoFs i, which lies outside the space spanned
by Q

rigid
u . The same is done for the internal forces:

B =
[
RR

f,ii Ṽ
R
(ω)

]
⇒

[
Q

rigid
f Qdef

f (ω)
]
R̂ = B (15)

To exclude the rigid internal dynamics from the decoupling process, the responses and forces at these DoFs
are reduced using a subset s of the deformable representation vectors Qdef

u (ω) and Qdef
f (ω), i.e. Qdef,s

u (ω)

and Qdef,s
f (ω). The displacement and force reductions in Eq. 5 then take the form below:





uRU
v

uRU
i

uRU
b

uR
i

uR
b





=




IRU
vv

Qdef,s
u

RRU
u,bb

Qdef,s
u

RR
u,bb








uRU
v

qRU
i

qRU
b

qR
i

qR
b





+





0

µRU
i

µRU
b

µR
i

µR
b









gRU
v

mRU
i

mRU
b

mR
i

mR
b





=




IRU
vv

Qdef,s
f

RRU
f,bb

Qdef,s
f

RR
f,bb




H 



gRU
v

gRU
i

gRU
b

gR
s

gR
b





(16)

At this point, decoupling is performed using an extended interface. The advantage here is that the redundancy
between the interface and the internal set of reduced DoFs is removed. However, the rigid dynamics of the
internal DoFs are not involved in the decoupling. This may have a negative impact on the extended interface
approach.
Note that as an alternative to the QR decomposition, one could extract a set of deformable representation
vectors using the following relationship:

Qdef
u (ω) = (I−RR

u,iiR
R
u,ii

+
)RR

u,ii (17)

where the term (I−RR
u,iiR

R
u,ii

+
) is an orthogonal projector onto the complement of the column space of RR

u,ii.
The same holds for the extraction of the basis Qdef

f (ω).

3.4 Enhanced VPT

Following the approach proposed in Section 3.3, yet another way to improve the VPT transformation tech-
nique is proposed here. The aim is to extend the VPT response and rigid reduction bases with a set of
independent vectors extracted from measurements, which are able to represent the interface deformation.
The first step of this procedure is to perform the SVD on the set of boundary FRFs YR

bb of the residual
subsystem R:

YR
bb(ω) = Û

R
(ω)Σ̂

R
(ω)(V̂

R
(ω))

H
(18)

Then, the rigid transformation basis RR
u,bb from the VPT and the full set of singular vectors Û

R
(ω) are

stacked column-wise in a matrix C to which the QR decomposition is applied:

C =
[
RR

u,bb Û
R
(ω)

]
⇒

[
Q

rigid
u,b Qdef

u,b(ω)
]
R = C (19)

At this point, an orthonormal set of representation vectors is available, where the first 6 ones represent
an orthonormal basis for the rigid IDMs, while the remaining vectors span the deformable motion of the
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interface. One can therefore think of using a truncated basis Q
j
u,b, formed by the full set Qrigid

u,b and by j

deformable vectors Q
def,j
u,b (ω), to reduce the boundary dynamics so that both the rigid and the dominant

deformable are represented. By doing so, the basis vectors for the space of rigid body motion at the interface
are altered, meaning that it is no longer possible to ensure that they correspond to the six motions of a
physical virtual point. Nevertheless, the resulting deformable basis Qdef,j

u,b (ω) is still orthogonal to the rigid
IDMs, i.e.:

(RR
u,bb)

H
Q

def,j
u,b (ω) = 0 (20)

It follows that an extended VPT basis for response reduction can be constructed as follows:

Q
j
u,b =

[
RR

u,bb Q
def,j
u,b (ω)

]
(21)

The same process can be repeated for the force. The result is the following enhanced force reduction basis:

Q
j
f,b =

[
RR

f,bb Q
def,j
f,b (ω)

]
(22)

These bases can now be used within a decoupling approach where a standard interface is sufficient to preserve
the deformable dynamics of the interface. However, the main assumption is that the interface is flexible,
otherwise the retained singular vectors would only carry noise and measurement errors.
Note that to obtain the deformable representation vectors in Qdef

u,b(ω) and Qdef
f,b (ω), the QR decomposition

here can be replaced by orthogonal projectors, similar to what is proposed in Section 3.3 (see Eq. (17)):

Qdef
u,b(ω) = (I−RR

u,bbR
R
u,bb

+
)RR

u,bb and Qdef
f,b (ω) = (I−RR

f,bbR
R
f,bb

+
)RR

f,bb (23)

Moreover, instead of directly using the deformable representation vectors (despite the method employed to
obtain them), they could be exploited to infer the residual dynamics on a set of extended geometrical VPT
IDMs. The concept of extended geometrical IDMs is described in [17].
As a final remark, the approach proposed in this Section could also be applied to the whole set of DoFs r =
i ∪ b, improving the decoupling solution thanks to the large overdetermination of the interface.

4 Experimental application

To assess the advantages and drawbacks of the approaches proposed in Section 3 to weaken the decoupling,
the same experimental measurements used in [14] are employed. The target benchmark is called the AM
structure and represents the assembled system RU . It is composed of an A-shaped (unknown subsystem U )
and of an S-shaped (residual subsystem R) aluminum components, which are joined together with an M10
hexagon head screw with a locking nut. To obtain the FRFs needed for the decoupling, three different roving
hammer SIMO impact test campaigns are conducted separately on the assembled system RU (Fig. 3(a)), the
residual subsystem R and the unknown subsystem U (Fig. 3(b)). This last one will be used to validate the
results. The responses (accelerations) are measured with triaxial accelerometers. During the tests on RU
and U , the unknown subsystem is connected to a vibration-free table through two cylindrical supports, as
shown in Fig. 3(a). Instead, the residual subsystem is suspended with soft bungees to simulate free-floating
conditions. A total of 9 accelerometers (2 on U and 7 on R) and 27 impact points (6 on U and 21 on R)
are homogeneously distributed on the assembled system to fully control/observe all the relevant dynamics
for the decoupling procedure. The set of measurement channels (blue arrows) and excitations (red arrows) is
shown in Fig. 4, which also reports the DoF partitioning according to Section 2.1. Responses and excitations
are placed in a collocated manner between RU and R. To perform the VPT, a virtual point is placed right in
the middle of the connection region between R and U . Its DoFs play the role of the coupling DoFs c.
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(a) Assembled system RU . (b) Unknown subsystem U .

Figure 3: Experimental measurement campaign on the different subsystem involved in the decoupling.

S2z

S2y

H1𝑖 DoFs

𝑏 DoFs

𝑣 DoFs

R
U

Figure 4: Response (blue arrows) and excitation (red arrows) DoFs selected on the assembled structure RU .

5 Results

In this Sections, the results obtained using the weakening methods proposed in Section 3 are presented and
compared with other state-of-the-art approaches.
Fig. 5 shows the identified FRFs of the unknown subsystem U corresponding to its internal DoFs v (see
Fig. 4), obtained with the combined VPT and SVT decoupling approach (blue line) presented in Section 3.1.
The results are compared with those obtained using other well-established approaches, i.e. VPT with both
standard (light green) and extended (dark green) decoupling interfaces and SVT (in red). The reference
(directly measured) FRFs are also reported by the dashed black line. Notably, the VPT with the standard
interface (light green line) is far from the true FRFs in different frequency ranges due to the impossibility
of retaining the deformable interface motion. On the other hand, the results of the extended interface are
highly scattered, indicating that the corresponding interface problem is ill-conditioned. Nevertheless, no
regularization technique was used here to improve the conditioning of the interface problem. The latter
result can be improved using the combined VPT and SVT approach proposed in Section 3.1. In particular,
after observing the CMIF plot of the internal FRFs YR

ii shown in Fig. 6(a), only the first six singular vectors
(not shaded) are used to reduce the responses and forces at the internal DoFs. In this way, measurement errors
and noise at the internal DoFs are averaged, and only the relevant dynamics are included in the decoupling.
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Figure 5: Comparison of the resulting accelerance FRFs of the unknown subsystem U obtained with the
VPT and SVT approach and other well-established methods. The measured FRF is reported by the dashed
black line.
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Figure 6: CMIF plots used in the VPT and SVT (a) and in SVT (b) approaches. In both cases, only the first
6 singular values are retained.

Therefore, the scattering is reduced compared to the VPT with extended interface (dark green), although it is
still significant at low frequencies. This may be due to the presence of redundant rigid dynamics introduced
by the internal DoFs. Anyway, the ability to reconstruct the dynamic behavior of U is improved, although
significant discrepancies remain for high frequencies. A sensitivity study on the VPT and SVT approach
showed that the best results come from a compromise between a small amount (low redundancy/error) and a
large amount (high flexible content) of retained singular vectors. However, it is not easy to find this balance
manually.
Fig. 5 also shows that the SVT approach outperforms all other methods because it uses only the minimum
amount of information required (extracted from a larger data set) within the decoupling, while allowing to
maintain the flexibility of the interface. Again, six singular vectors were used to reduce the responses and
forces at the DoFs r (boundary plus internal) of R, as suggested by the CMIF of YR

rr shown in Fig. 6(b).

In Section 3.2 the VPT and partitioned SVT approach was proposed. It is compared with the VPT and SVT
one in Fig. 7, where only the first six singular vectors are retained in both cases. The two approaches seem
to give similar results in the frequency range of interest.

To improve the conditioning of the IFM at low frequencies, the VPT and orthogonalized SVT approach
proposed in Section 3.3 is applied. As shown in Fig. 8, the orthogonalization of the singular vectors Ũ

R

and Ṽ
R

seems to allow the separation of the flexible internal dynamics from the rigid ones. Within the
decoupling, compatibility and equilibrium are successively imposed on the VP DoFs and on the dynamics
associated with the first s (here s = 2) deformable basis vectors. In this way, the rigid internal dynamics
are not included in the IFM, thus avoiding redundancies with the rigid interface ones. The results obtained
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Figure 7: Accelerance FRFs of the unknown subsystem U obtained with the “VPT and SVT” (Section 3.1)
and “VPT and partitioned SVT” (Section 3.2) methods. The measured FRF is reported by the dashed black
line.
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Figure 8: CMIF plot of the measured FRF matrix YR
ii and of the same matrix transformed with the deform-

able and rigid orthogonalized vectors.

with this approach are shown in Fig. 9 by the red line. There are only small improvements compared to the
VPT solutions with standard interface (e.g. peak at 940Hz). Compared to the SVT and VPT approaches
(blue curve), the scattering is reduced in the mid-frequency range, but remains significant at low frequencies.
Overall, removing the rigid contribution of the internal DoFs seems to remove much useful information for
the reconstruction.

The condition number (CN) of the interface flexibility matrix for the compared reduction strategies is shown
in Fig. 10. As expected, the CN of VPT and SVT with and without orthogonalization is lower than that
of the VPT approach with extended interface, proving that they have better performances in terms of error
propagation while still allowing to maintain the interface flexibility. On the other hand, the VPT and parti-
tioned SVT approach have a higher CN over frequency than the VPT with extended interface. Notably, the
conditioning of the SVT approach is much better, although the desired physical interface topology is lost.

Finally, the enhanced VPT approach proposed in Section 3.4 was tested on the benchmark structure using
experimental data. However, the results were not in line with expectations, probably due to the lack of
sufficient data at the interface to guarantee correct controllability/observability of the interface deformable
dynamics.
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Figure 9: Accelerance FRFs of the unknown subsystem U obtained with the “VPT and SVT” (Section 3.1)
and “VPT and orthogonalized SVT” (Section 3.3) methods. The measured FRF is reported by the dashed
black line.
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Figure 10: Condition number of the different procedure implemented.

6 Conclusions

In this paper, several approaches to weaken the decoupling compatibility conditions have been proposed. In
applications where direct measurements at the interface between components are not possible, these meth-
ods allow the interface topology to be described in terms of physical translational and rotational coordinates,
while providing improved substructure decoupling. The effectiveness of the proposed approaches was eval-
uated using experimental data of a laboratory benchmark.

Most of the proposed methods aim at improving the VPT with extended decoupling approach. The results
show that the VPT and SVT approach successfully reduces the scatter in the solution. The VPT and par-
titioned SVT approach does not provide relevant improvements compared to the VPT and SVT one. The
VPT and orthogonalized SVT successfully allow to improve the conditioning of the IFM with a consequent
reduction of the scatter in the results, but this method needs further formalization. In addition, another
approach, i.e. the enhanced VPT, has been proposed to improve decoupling while avoiding the extended
interface concept. This could have positive impact on coupling procedures. However, this method did not
give satisfactory results and needs further investigation in applications where interface flexibility is much
more relevant.
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