
Citation: Farschtschi, S.; Lengl, M.;

Röhrl, S.; Klenk, C.; Hayden, O.;

Diepold, K.; Pfaffl, M.W. Digital

Holographic Microscopy in Veterinary

Medicine—A Feasibility Study to

Analyze Label-Free Leukocytes in

Blood and Milk of Dairy Cows.

Animals 2024, 14, 3156. https://

doi.org/10.3390/ani14213156

Academic Editors: Sébastien

Buczinski and Marta I. Miranda

Castañón

Received: 2 September 2024

Revised: 29 October 2024

Accepted: 1 November 2024

Published: 3 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Digital Holographic Microscopy in Veterinary Medicine—A
Feasibility Study to Analyze Label-Free Leukocytes in Blood and
Milk of Dairy Cows
Sabine Farschtschi 1,* , Manuel Lengl 2 , Stefan Röhrl 2 , Christian Klenk 3, Oliver Hayden 3 , Klaus Diepold 2

and Michael W. Pfaffl 1

1 Division of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of
Munich, 85354 Freising, Germany; michael.pfaffl@tum.de

2 Chair of Data Processing, TUM School of Computation, Information and Technology, Technical University of
Munich, 80333 Munich, Germany; m.lengl@tum.de (M.L.); stefan.roehrl@tum.de (S.R.); kldi@tum.de (K.D.)

3 Heinz-Nixdorf-Chair of Biomedical Electronics, TUM School of Computation, Information and Technology,
Technical University of Munich, TranslaTUM, 81675 Munich, Germany; christian.klenk@tum.de (C.K.);
oliver.hayden@tum.de (O.H.)

* Correspondence: sabine.farschtschi@tum.de

Simple Summary: Milk contains immune cells that migrate from the bloodstream into the mammary
gland. As this influx increases during an immune reaction, the number of leukocytes is routinely
measured for diagnostic purposes in veterinary medicine. In addition to the total number, the
individual cell types can be differentiated for a more in-depth analysis. In this study, we demonstrate
that digital holographic microscopy (DHM) can be used to identify leukocyte populations in bovine
milk and blood without the need for extensive and costly sample preparation steps, such as cell
staining. For this, we used different cell types that were isolated from milk and blood samples of
dairy cows to train and test machine learning methods. We then applied these methods to analyze
unknown milk and blood samples and compared the output with established analytical methods.
Although the results varied, our findings show that DHM is a promising and reliable diagnostic tool.

Abstract: For several years, the determination of a differential cell count of a raw milk sample has
been proposed as a more accurate tool for monitoring the udder health of dairy cows compared
with using the absolute somatic cell count. However, the required sample preparation and staining
process can be labor- and cost-intensive. Therefore, the aim of our study was to demonstrate the
feasibility of analyzing unlabeled blood and milk leukocytes from dairy cows by means of digital
holographic microscopy (DHM). For this, we trained three different machine learning methods, i.e.,
k-Nearest Neighbor, Random Forests, and Support Vector Machine, on sorted leukocyte populations
(granulocytes, lymphocytes, and monocytes/macrophages) isolated from blood and milk samples
of three dairy cows by using fluorescence-activated cell sorting. Afterward, those classifiers were
applied to differentiate unlabeled blood and milk samples analyzed by DHM. A total of 70 blood
and 70 milk samples were used. Those samples were collected from five clinically healthy cows at
14-time points within a study period of 26 days. The outcome was compared with the results of
the same samples analyzed by flow cytometry and (in the case of blood samples) also to routine
analysis in an external laboratory. Moreover, a standard vaccination was used as an immune stimulus
during the study to check for changes in cell morphology or cell counts. When applied to isolated
leukocytes, Random Forests performed best, with a specificity of 0.93 for blood and 0.84 for milk cells
and a sensitivity of 0.90 and 0.81, respectively. Although the results of the three analytical methods
differed, it could be demonstrated that a DHM analysis is applicable for blood and milk leukocyte
samples with high reliability. Compared with the flow cytometric results, Random Forests showed
an MAE of 0.11 (SD = 0.04), an RMSE of 0.13 (SD = 0.14), and an MRE of 1.00 (SD = 1.11) for all blood
leukocyte counts and an MAE of 0.20 (SD = 0.11), an RMSE of 0.21 (SD = 0.11) and an MRE of 1.95
(SD = 2.17) for all milk cell populations. Further studies with larger sample sizes and varying immune
cell compositions are required to establish method-specific reference ranges.
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1. Introduction

The determination of the somatic cell count (SCC) of a milk sample has long been
used to monitor the udder health of dairy cows [1]. For this purpose, the absolute number
of body cells contained in a raw milk sample is calculated in order to ascertain the total
quantity of leukocytes that have crossed the blood–milk barrier during lactation. In case of
an inflammation of the mammary gland (mastitis), a large number of immune cells migrate
into the udder tissue and eventually end up in the secreted milk via diapedesis, causing an
increase of the SCC. Thus, the SCC value can give a rough estimate to distinguish between
a healthy and a diseased udder [2]. However, as the leukocytes in milk consist of different
immune cell subtypes with various functions during an immune response [3,4], it can be
useful to determine the individual components through a differential cell count (DCC) to
gain a deeper insight into the immunological status of the mammary gland. Furthermore,
given the fact that milk samples are frequently available and can be taken non-invasively,
they are a convenient sample material. Therefore, several DCC-based biomarkers have
been proposed in recent years, as extensively reviewed by Farschtschi et al. [5], to assess
the health status of a bovine mammary gland. Many of those markers are based on flow
cytometry [6–8]. However, since staining with fluorochrome-conjugated antibodies and
flow cytometric analysis are time-consuming and cost-intensive, new and comparatively
simple methods are preferable. Such methods could facilitate the implementation of DCC
determination in routine dairy diagnostics, such as the monthly Dairy Herd Improvement
(DHI) testing.

Digital holographic microscopy (DHM) is one such promising approach that could
help overcome these drawbacks [9,10]. It is a flexible quantitative phase imaging technique
that allows researchers to investigate the kinetic and morphological properties of intact
single cells free of labeling costs while preserving a high number of cellular characteristics.
Moreover, DHM can be combined with a microfluidic system enabling high throughput
rates that yield results with thorough statistical validity. In recent years, several promising
DHM studies have been presented in various fields of human medicine. Gupta et al. [11]
and Vercruysse et al. [12] outlined the possibility of distinguishing different subsets of
leukocytes in human blood. In hematology, Ugele et al. [13] and Paidi et al. [14] demon-
strated the advantages of holographic cell imaging for the diagnosis and monitoring of
human leukemia. Kim et al. [15] could show the versatility of the approach for the screening
of hematologic disorders. Regarding immunothrombosis, Klenk et al. [16] and Nishikawa
et al. [17] proved that this technology is capable of capturing volatile biomarkers and using
them for the prediction of previously barred disease progressions in humans. By taking
this a step further and refining the setup for a specific use case, real-time analysis can be
achieved [18]. These examples illustrate the flexible application of the DHM technology for
hematology and immunothrombosis diagnostics. To the best of our knowledge, comparable
approaches in veterinary medicine are still lacking. However, its use in veterinary medicine
is especially advisable, as many standardized tests are still very expensive, time-consuming,
or even unavailable, and the computer vision-based DHM approach could provide a quick
remedy without an extensive sample preparation and staining process.

Thus, the aim of our study was to investigate the feasibility of using high-throughput
DHM in combination with machine learning algorithms to analyze unlabeled single leuko-
cytes. For this, we worked with bovine blood samples, as this method has already been
successfully applied to human hematology. In addition, we focused on raw milk samples
from the same dairy cows in order to transfer the knowledge gained from blood analysis to
this complex biofluid and to ascertain whether any changes in milk cell populations were
also reflected in blood.
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2. Methods
2.1. Animal Study

This feasibility study was conducted on five clinically healthy Brown Swiss cows
between first and third lactation (176–254 days in milk) with a daily milk yield between
23.8 kg and 31.8 kg (for details, see Supplementary Table S1). All cows were kept under
optimal conditions in compliance with good agricultural practices at Veitshof, a research
station of the TUM School of Life Sciences (Technical University of Munich in Freising,
Germany). They were housed in a cubicle housing system with rubber-coated slatted floors
and milked twice a day in a 2 × 2 tandem milking parlor (GEA WestfaliaSurge GmbH,
Bönen, Germany). All animals had ad libitum access to fresh water and were fed on average
a daily feed ratio of 18 kg corn silage, 14 kg grass silage, and 1.5 kg hay, supplemented
with 1.5 kg high-protein rape and soy extraction meal (deuka Kompopur 404, Deutsche
Tiernahrung Cremer, Düsseldorf, Germany) and 190 g mineral mix (Complett Keragen
Longlife, Josera, Kleinheubach, Germany). Additionally, 0.5 kg concentrated feed (deuka
MK 194-UDP, Deutsche Tiernahrung Cremer, Düsseldorf, Germany) per liter of delivered
milk was added to the diet to meet the energy need for the respective performance.

In order to assess if an immune stimulus would influence the cell morphology or the
cell counts, all cows were vaccinated during the trial with Bovilis Rotavec Corona (Intervet
Deutschland GmbH, Unterschleißheim, Germany). This vaccine contains deactivated
strains of the bovine rotavirus (UK-Compton serotype G6 P5), the bovine coronavirus
(strain Mebus), and E. coli (CN7985 serotype 0101:K99:F41). The vaccination was applied to
the healthy cows by a veterinarian as recommended by the manufacturer. All cows were
examined at least on every sampling day, and their health status was documented.

This whole study was conducted in concordance with the German Animal Welfare Act
(TierSchG) and the German regulations on the welfare of animals used for experiments or
other scientific purposes (Tierschutz-Versuchstierverordnung, TierSchVersV). The animal
study was permitted by the government of Upper Bavaria in Munich, Germany (reference
number ROB-55.2-2532.Vet_03-17-70). Figure 1 provides a schematic overview of the
workflow and the applied methods.
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Figure 1. Schematic overview of the workflow.  Figure 1. Schematic overview of the workflow.

2.2. Sampling and Cell Isolation

Blood and milk samples were taken before and after the vaccination, according to the
sampling scheme (see Figure 2). Within a total study period of 26 days, four blood and four
milk samples were collected from each study animal before the vaccination (i.e., on days 1, 3,
5, and 8) and ten samples each were taken after vaccination (i.e., on days 9, 10, 11, 12, 15, 17,
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19, 22, 24, and 26). The respective sampling procedure and the cell isolation protocol were
performed as described in detail by Farschtschi, Mattes, Hildebrandt, Chiang, Kirchner,
Kliem, and Pfaffl [8]. In brief, fresh milk samples were collected in the milking machine
throughout the whole morning milking process. As the samples were brought directly
to the laboratory, no preservative was added. The milk samples were centrifuged three
times, and the cell pellets were washed after each centrifugation with DPBS (Dulbecco’s
Phosphate Buffered Saline, Sigma Aldrich, Co., Saint Louis, MO, USA).
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Figure 2. Sampling scheme of blood and milk samples. Blood and milk samples were collected from
each of the five cows at 14 time points. All cows were vaccinated on day 8 after sampling.

On the same day, the blood samples were obtained from the jugular vein after morning
milking. After incubation with an ACK lysis buffer (0.15 M NH4Cl, 13 mM KCl, 0.1 mM
Na2EDTA, pH 7.4, sterile filtered), the samples were centrifuged three times, and the cell
pellets were washed with the same lysis buffer.

Subsequently, the isolated milk and blood cell numbers were determined using a TC10
Automated Cell Counter (Bio-Rad Laboratories Inc., Hercules, CA, USA). For the analysis
in the digital holographic microscope, 3 × 106 milk or blood cells were transferred into a
separate tube and mixed with 1 mL of cold FACS buffer (DPBS with 2% fetal bovine serum
(Sigma Aldrich, Co., Saint Louis, MO, USA) and 0.01% NaN3). For the flow cytometric
analysis, samples with 1 × 106 cells in 1 mL FACS buffer were prepared. Throughout all
the aforementioned sample preparation steps, samples and reagents were kept on ice.

The results of these blood and milk samples were later included in the Vaccination
Dataset; see below.

2.3. Flow Cytometric Analysis

For the flow cytometric (FACS) analysis, milk and blood leukocyte samples were
stained with a viability dye and fluorochrome-labeled antibodies (Supplementary Material,
Tables S2 and S3) and fixated for overnight storage, summarized in detail by Farschtschi,
Mattes, Hildebrandt, Chiang, Kirchner, Kliem, and Pfaffl [8]. On the following day, the
samples were analyzed using a BD LSRFortessa flow cytometer (Becton, Dickinson and
Company, Franklin Lakes, NJ, USA) and the corresponding BD FACSDiva software v8.
Raw FACS data were assessed with FlowJo software v10 (Becton, Dickinson and Company,
Franklin Lakes, NJ, USA). In the first step, debris, doublets, and dead cells were excluded.
Subsequently, leukocytes (CD45+) were differentiated into granulocytes (SSChigh), mono-
cytes/macrophages (SSCmid), and lymphocytes (SSClow). For an exemplary gating, see
Supplementary Material, Figure S1.

2.4. Cell Sorting

To obtain isolated samples of the different leukocyte populations, the blood and milk
cells of three of the cows were sorted with a BD FACSAria Fusion flow cytometer (Bec-
ton, Dickinson and Company, Franklin Lakes, NJ, USA) and BD FACSDiva software v8.
After excluding doublets and dead cells, granulocytes (SSChighCD45+CD11b+) and mono-
cytes/macrophages (SSCmidCD45+CD14+) were selected and separated. In a different run,
several lymphocyte subpopulations, i.e., gd T cells (SSClowCD45+gdTCR+), T helper cells
(SSClowCD45+CD4+), cytotoxic T cells (SSClowCD45+CD8+), NK cells (SSClowCD45+CD335+)
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and B cells (SSClowCD45+CD21+), were collected and pooled. A detailed list of the used
reagents can be found in the Supplementary Material (Tables S2 and S3).

These isolated blood and milk samples were included in the Isolation Dataset;
see below.

2.5. Digital Holographic Microscopy (DHM)

Through the interference of an object beam and a reference beam, quantitative phase
information of cells can be obtained. Differences in phase shifts within a cell are a result of
minor differences in refractive indices and cell heights [19,20]. These phase shifts can later
be translated into brighter and darker areas of the image, creating a contrast that allows
the differentiation of cells and cell components without the use of expensive antibodies of
color staining. In combination with a microfluidic channel, samples can be measured in
flow at high throughput rates, drastically reducing the measurement time. Furthermore,
the design with four sheath flows ensures that all cells are in the same focal plane so that
the risk of occlusion can be neglected. A detailed description of the imaging technique can
be found elsewhere [21].

In this work, we used a customized microscope with an SLED for flow cytometry,
allowing us to measure single cells with high precision. Although our approach shares most
of its properties with common off-axis DHM [20], it is a common-path phase microscopy
method using a low-coherence Köhler illumination for parallelized cell imaging at 105 fps.
The microfluidic channel is built using a 50 × 500 µm polymethyl methacrylate that employs
four sheath flows to center the bloodstream in the focal plane and to avoid contact with
the channel walls [13,21]. In our study, we recorded about 10,000 images per measurement
with, on average, 5 cells/frame.

Prior to the measurement with the DHM, the blood and milk leukocyte samples were
centrifuged (5 min, 500× g) and then diluted in 300 mL of a solution containing 99.95% PBS
and 0.05% PEO (polyethylene oxide with a molecular weight of 4 × 106 Da, Sigma Aldrich,
Co., Saint Louis, MO, USA).

2.6. Additional Analysis of Blood Samples by an External Laboratory

In addition, EDTA blood and serum samples were sent to a commercial veterinary
laboratory (Laboklin GmbH & Co. KG, Bad Kissingen, Germany) for the determination of
routine biomarkers and a differential blood count. Standard differential blood cell counts
were performed with an ADVIA 2120i (Siemens Healthcare GmbH, Erlangen, Germany).

2.7. Data Processing
2.7.1. Pre-Processing

The DHM setup used provides images with a resolution of 512 × 384 pixels using a 40×
NA 0.55 objective, where each pixel value represents the phase shift at that position. As each
of these images can contain multiple cells, they need to be preprocessed to obtain usable
single-cell patches. Initially, we eliminate possible background noise and artifacts caused
by the microfluidic channel by subtracting the median taken from a set of 1000 images. This
step is feasible because the channel environment can be assumed to be static throughout
the whole recording session. Following that, we utilize threshold segmentation, setting a
threshold of 0.8 to identify individual cells. For each detected cell covering an area of at
least 357 µm² (equivalent to 30 pixels), we extract an image patch of 96 × 96 pixels. Cells
smaller than this threshold are usually remnants of the isolation process. The phase shift
values stored in each pixel of the image patch serve as input for the subsequent feature
extraction.

2.7.2. Feature Extraction

Different populations of milk and blood leukocytes have varying morphological
appearances. We computed a set of 24 hand-crafted cellular features (Supplementary
Material, Table S4) that describe, e.g., the optical volume, the contrast, the size, or the
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optical height of the cells [13,14,22]. Later, this catalog of 24 cellular features serves as input
for the classification models.

2.7.3. Dataset

During our experiments, we worked with two datasets. The Isolation Dataset contains
the sorted cells of three cows (compare section “Cell Sorting”) and is used to teach the
models the existing cellular differences. The inherent imbalance in this dataset, caused
by the biologically uneven distribution of cell types, underscores the need for applying
an appropriate sampling technique to avoid overfitting the later trained models. As the
number of samples in the minority classes is quite small, under-sampling would result
in too small datasets. To avoid overfitting on the few existing samples, we applied a
synthetic minority over-sampling technique [23] that interpolates additional samples based
on a nearest-neighbor approach. This results in 51,995 samples per class for blood and
9713 samples per class for milk. The Vaccination Dataset contains the samples of all cows
for all measurement days (compare Figure 2).

2.7.4. Classification

Three different standard classifiers, i.e., k-Nearest Neighbor, Random Forests, and
Support Vector Machine, were evaluated for the analysis of the extracted features. In order
to keep the complexity low and to provide reasonable explainability, the focus was put on
classical machine learning methods instead of black box neural networks. In comparison
to applying convolutional neural networks directly on the images, this approach allows
all decisions made to be traced back to human-understandable cell characteristics. An
overview of the successful application of the selected classifiers was provided by Poostchi
et al. [24]. The k-Nearest Neighbor (kNN) [25] algorithm takes the k-nearest neighbors of
an unknown sample into account and selects the label that is most represented among these
neighbors. Random Forests (RFs) [26] combine the output of several decision trees [27]
to assign a label. Each tree starts with all samples, and at each node, a single feature is
used to split the samples into two groups. After several nodes, the tree ends up with pure
groups that belong to one label. The Support Vector Machine (SVM) [28] approach tries to
find a hyperplane in a multidimensional space that best separates the given samples. The
optimal separation is reached when the distance between the hyperplane and the samples
is maximized.

2.7.5. Evaluation

Within our experiments we use several metrics for evaluating the predictive models
regarding the different aspects of model performance. Accuracy measures the proportion of
correct predictions out of all predictions made, giving an overall sense of model correctness.
Sensitivity is the ability of a model to correctly identify positive cases, making it crucial for
contexts such as medical diagnoses where detecting true positives is important. Specificity
measures the ability to correctly identify negative cases, which is essential when minimizing
false positives is critical. On the error side, Mean Absolute Error (MAE) calculates the
average magnitude of errors in a model’s predictions without considering direction, giving
a straightforward measure of accuracy. Mean Relative Error (MRE) is similar but expresses
errors as a percentage, which is useful for comparing performance across different scales.
Finally, Root Mean Square Error (RMSE) is the square root of the average squared errors,
placing higher emphasis on larger errors, making it effective in identifying substantial
prediction deviations. Each subsection of Section 2.8 names the metrics that are used for
the individual experiment, respectively.

2.8. Experiments
2.8.1. Evaluation of the Different Classifiers and Their Hyperparameters

As a first step, we conducted an exhaustive grid search to identify the classifier
and parameter combination best suited for these given data. The combinations explored
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during this search are detailed in the Supplementary Material, Table S5. The experiment is
performed on the Isolation Dataset. To assess and compare the final models, 30% of these
data are reserved for testing purposes. The remaining 70% of samples undergo a 5-fold
cross-validation process, as described by Kohavi [29], where each parameter combination is
trained five times. During each iteration, one subset is designated for validation while the
others are used for training. The comparison is evaluated in terms of accuracy, specificity,
and sensitivity [30]. After finding the best parameters for all classifiers, they are re-fitted
using all data to ensure maximal usage of available information.

2.8.2. Classifying Unknown Test Subjects

Approaching a scenario closer to real-world application, we evaluate the efficacy of
our developed methods in classifying blood and milk samples from unknown individuals.
Using the Isolation Dataset, we divide these data such that always two cows are used
for training, and the remaining one is used for testing. The performance is once again
evaluated in terms of accuracy, specificity, and sensitivity.

2.8.3. Prediction of Unlabeled Cells and Comparison of These DHM Results to Results of
Flow Cytometric Analysis and to Results of External Laboratory

In this experiment, we employ the three classifiers from above with their respective
best parameter sets to analyze the Vaccination Dataset. For every measurement date and
each cow, we predict the type for each cell and determine their proportions within the
sample. To evaluate the results, we compare the shares with the values from the flow
cytometric analysis, both visually and quantitively, regarding the MAE, MRE, and RMSE.
In addition, the results of the blood analysis carried out by the external laboratory are
likewise compared with the blood results of the Vaccination Dataset. Moreover, the cell
count progressions over time were examined for changes before and after vaccinations.

3. Results
3.1. Visualization of Analyzed Cells

The detected cells in blood and milk samples were displayed as phase images, in
which the degree of phase shift (measured in rad) between the cell and the reference beam
was visualized. For illustrative purposes, false-color images were created for a selection
of the analyzed cell populations by assigning a color to certain phase shift values. For
exemplary false-color phase images, see Figure 3.

To highlight the discriminative power of the selected features, they can be visualized
in scatter plots. These plots show a similar pattern to those obtained from flow cytometric
analysis, where the cell types form dense clusters that can be distinguished from one
another. For exemplary scatter plots of both methods, see Figure 4. Alternatively, each
feature can be presented in a kernel density estimate (KDE) plot to exhibit the differences of
the separate cell types. For KDE plots of all 24 features, see Supplementary Figures S2–S7.

3.2. Efficacy of Trained Classifiers to Identify Sorted Cells of the Test Set

Of the three classifiers tested on the Isolation Dataset, RFs performed best. The sorted
blood cells included in the test set could be identified with a specificity of 0.93 and a
sensitivity of 0.90. For the milk cells, a specificity of 0.84 and a sensitivity of 0.81 could be
achieved. Using SVM, a specificity of 0.92 and a sensitivity of 0.91 were reached for blood
cells, and a specificity of 0.80 and a sensitivity of 0.82 for milk cells. With kNN, blood cells
could be identified with a specificity and a sensitivity of 0.90 and 0.87, respectively, and
milk cells with a specificity of 0.82 and a sensitivity of 0.76. For details of the different
populations, see Supplementary Material, Tables S6–S11.
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To visualize the performance of the different classifiers, confusion matrices were
plotted as exemplarily shown for RF in Figure 5 for blood cells and in Figure 6 for milk cells.
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3.3. Outcome of the Classification of an Unknown Test Subject

When the three selected classifiers were trained on the Isolation Dataset of two cows
and tested on the Isolation Dataset of the respective third cow, all classifiers performed
similarly well, with RF being slightly superior. In detail, RF reached a mean specificity
in blood of 0.82 (SD = 0.2) and milk of 0.78 (SD = 0.04), with a mean sensitivity of 0.84
(SD = 0.04) and 0.78 (SD = 0.05), respectively. SVM identified the blood cells in the test
set with a mean specificity of 0.82 (SD = 0.01) and a mean sensitivity of 0.84 (SD = 0.04).
For milk cells, SVM was performed with a mean specificity of 0.73 (SD = 0.07) and a
mean sensitivity of 0.79 (SD = 0.04). In this 3-fold cross-validation, kNN achieved a mean
specificity of 0.82 (SD = 0.03) in blood and 0.76 (SD = 0.04) in milk. The mean sensitivity
in blood was 0.81 (SD = 0.04) and 0.73 (SD = 0.05) in milk. For further details, please see
Supplementary Material, Tables S12–S17.

3.4. Comparison of DHM Results to Results Obtained with Flow Cytometry and Blood Counts of
the External Laboratory

The values obtained by DHM were not overall consistent compared with the results of
the FACS analysis and the differential blood counts analyzed by the external laboratory. Dis-
played cell count progressions over time for all analysis methods can be found in Figure 7,
exemplarily for one cow. For all cell counts, refer to Supplementary Figures S18–S20. The
overall results obtained by RF for all blood cell types showed an MAE of 0.11 (SD = 0.04), an
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RMSE of 0.13 (SD = 0.14), and an MRE of 1.00 (SD = 1.11) when compared with flow cyto-
metric data. When focusing on the different blood cell populations, monocytes were those
with the highest MRE of 2.48 and the highest cow individual differences, which resulted
in an SD of 0.67. For blood granulocytes and blood lymphocytes, the MRE levels were
considerably lower, i.e., 0.29 and 0.23, respectively, with less variance between individuals,
i.e., SD values of 0.15 and 0.06, respectively. The differences in DHM results (determined
with RF) and flow cytometric results were more pronounced for milk cells. The comparison
for all cell types revealed an MAE of 0.20 (SD = 0.11), an RMSE of 0.21 (SD = 0.11), and
an MRE of 1.95 (SD = 2.17). Here, macrophages were the cell population with the highest
MRE (3.99) and the highest variation between subjects (SD = 2.38). Milk lymphocytes could
be identified with an MRE of 1.27 (SD = 1.31). In milk, the best agreement between the
two analysis methods was achieved for granulocytes, resulting in an MRE of 0.58 and
the lowest cow-individual differences (SD = 0.58). A similar pattern was found when
comparing the results of kNN and SVM with the outcome of the flow cytometric analysis
of blood and milk cells. In addition to the flow cytometric results, the DHM blood values
were compared with the differential blood count obtained at the external laboratory. The
overall comparison of all blood cells resulted in an MAE of 0.14 (SD = 0.06), an RMSE of
0.15 (SD = 0.06), and an MRE of 0.20 (SD = 0.07). The best agreement was documented for
granulocytes (MRE = 0.16) with the lowest SD value of 0.02. For granulocyte counts, an
MRE of 0.25 and an SD value of 0.07 could be achieved. For results of kNN and SVM, as
well as the detailed results of all cows, please see Supplementary Material, Tables S18–S20.
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cow #963, analyzed by DHM and FACS.

Regarding the impact of vaccination on cell counts, the respective KDE plots of the
morphological features, shown in Supplementary Figures S8–S13, do not display any visu-
ally observable differences between cells sampled before and after the vaccination. Since
these plots did not indicate any noticeable differences, no additional statistical validation
was performed. Similarly, there were no visually significant changes in the percentages of
immune cell populations documented in blood and milk samples taken after the cows had
been vaccinated.

4. Discussion

Several studies have proposed the use of a DCC determined from raw milk samples
as an advanced tool for monitoring the udder health status of dairy cows [31–33] and
potentially even their general health status [8]; however, all previous approaches require
some degree of sample preparation and staining, which can be time-consuming and costly.
In this regard, the use of DHM can offer a clear advantage as no labeling is required.
Moreover, all detected particles can be observed directly during the DHM measurement as
grayscale phase images. In addition, once these data have been processed, each segmented
single-cell image can be displayed, e.g., as false-color phase images, and thereby examined.
This allows visual verification of the automatic classification performed by the analysis
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software. In contrast, using flow cytometry, false positive events can only be ascertained by
means of control samples, such as isotype or fluorescence minus one control [34].

When the three classifiers were tested with the Isolation Dataset, all performed with a
satisfactory outcome, especially for blood granulocytes and blood lymphocytes. However,
the results for milk cells were less accurate than those for blood cells. This could have been
caused by the lower number of milk cells contained in the Isolation Dataset. Furthermore,
the purification of a raw milk sample is more challenging than the isolation of leukocytes
from sterile blood samples and could have led to residual debris in the Isolation Dataset.
Particularly for milk macrophages, a reliable identification was difficult. This may be due
to the very limited number of macrophages available in the training set or the variable
appearance of this cell type in milk [35]. Moreover, the sorting of blood monocytes could
have been more precise if they had been labeled with antibodies directed against CD172a
instead of CD14, as this marker was described by Grandoni et al. [36] as superior in
identifying monocytes. To improve the accuracy of the analysis of the acquired DHM
data, convolutional neural networks could be applied as an alternative to classical machine
learning methods. Such deep learning algorithms are inspired by biological nervous
systems comparable to the human brain and have a high potential to differentiate and
recognize image patterns [37,38].

The results of the DHM analysis deviated from data acquired by means of flow
cytometry analysis and by the external laboratory. These noted inconsistencies between the
applied methods could be due to the different preparation methods or—in the case of the
external laboratory—the absence of cell isolation steps. It is known that sample preparation,
such as the use of a lysis buffer [39], can influence cell morphology. In addition, repeated
washing steps may result in the loss of cells. It is, therefore, advisable to define distinct
reference ranges for each method. In future studies, the milk sample preparation steps
should be optimized to minimize alterations or cell loss and to facilitate the application
of DHM in routine diagnostics. Given that other milk constituents, such as fat globules,
can also be detected by DHM [40], it should be feasible to differentiate leukocytes in
unprocessed whole milk samples.

No significant differences could be detected in the distribution of morphological
features before and after vaccination. Thus, it can be concluded that the determination of a
DCC can be reliably performed based on the morphology of leukocyte populations, even
in different health states. However, variations between the individual cows were observed.
Therefore, studies with larger sample sizes would be necessary to train the classifiers more
accurately and to establish reference ranges for the different leukocyte populations.

Given the great potential of this easy-to-apply, high-throughput method and the fact
that no cell staining is required, it seems worth pursuing this innovative approach further.
One possible area of application could be the monthly DHI testing, in which a DHM-based
DCC could be implemented to monitor udder health as an extension of the established SCC.
Furthermore, the development of a point-of-care test could be considered, for example, to
support mastitis diagnosis or selective dry cow therapy.

5. Conclusions

In this first feasibility study, the applicability of DHM measurements to identify bovine
leukocyte populations was demonstrated for both blood and milk cells. The different
machine learning methods were trained and successfully tested on isolated blood and
milk leukocyte populations, with milk being the more challenging medium to work with.
However, when compared with established cell analysis methods, the results were not
overall consistent. To address this, further studies with more test subjects and samples of
various breeds are needed to overcome the high inter-animal variation and to establish
method-specific reference ranges.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani14213156/s1, Figure S1: Exemplary gating strategy; Figure S2:
Density of morphological features of different blood leukocyte populations. A: Contrast. B: Corre-
lation. C: Dissimilarity. D: Energy. E: Entropy. F: Homogeneity. G: Area. H: Aspect Ratio; Figure
S3: Density of morphological features of different blood leukocyte populations. I: Biconcavity. K:
Circularity. L: Density. M: Discocyte Error. N: Mass Center Shift. O: Optical Height Mass. P: Optical
Height Min. Q: Optical Height Mean; Figure S4: Density of morphological features of different blood
leukocyte populations. R: Optical Height Std. S: Radius Max. T: Radius Min. U: Radius Mean. V:
Radius Std. W: Solidity. X: Steepness. Y: Volume; Figure S5: Density of morphological features of
different milk leukocyte populations. A: Contrast. B: Correlation. C: Dissimilarity. D: Energy. E:
Entropy. F: Homogeneity. G: Area. H: Aspect Ratio; Figure S6: Density of morphological features of
different milk leukocyte populations. I: Biconcavity. K: Circularity. L: Density. M: Discocyte Error.
N: Mass Center Shift. O: Optical Height Mass. P: Optical Height Min. Q: Optical Height Mean;
Figure S7: Density of morphological features of different milk leukocyte populations. R: Optical
Height Std. S: Radius Max. T: Radius Min. U: Radius Mean. V: Radius Std. W: Solidity. X: Steepness.
Y: Volume; Figure S8: Density of different morphological features of blood cells before and after
vaccination. A: Contrast. B: Correlation. C: Dissimilarity. D: Energy. E: Entropy. F: Homogeneity. G:
Area. H: Aspect Ratio; Figure S9: Density of different morphological features of blood cells before
and after vaccination. I: Biconcavity. K: Circularity. L: Density. M: Discocyte Error. N: Mass Center
Shift. O: Optical Height Mass. P: Optical Height Min. Q: Optical Height Mean; Figure S10: Density of
different morphological features of blood cells before and after vaccination. R: Optical Height Std. S:
Radius Max. T: Radius Min. U: Radius Mean. V: Radius Std. W: Solidity. X: Steepness. Y: Volume;
Figure S11: Density of different morphological features of milk cells before and after vaccination.
A: Contrast. B: Correlation. C: Dissimilarity. D: Energy. E: Entropy. F: Homogeneity. G: Area. H:
Aspect Ratio; Figure S12: Density of different morphological features of milk cells before and after
vaccination. I: Biconcavity. K: Circularity. L: Density. M: Discocyte Error. N: Mass Center Shift.
O: Optical Height Mass. P: Optical Height Min. Q: Optical Height Mean; Figure S13: Density of
different morphological features of blood cells before and after vaccination. R: Optical Height Std. S:
Radius Max. T: Radius Min. U: Radius Mean. V: Radius Std. W: Solidity. X: Steepness. Y: Volume;
Figure S14: Cell count progressions over time, DHM results analyzed using k-Nearest Neighbor
classification; Figure S15: Cell count progressions over time, DHM results analyzed using Random
Forest classification; Figure S16: Cell count progressions over time, DHM results analyzed using
Support Vector Machine classification; Table S1: Detailed information about the cows used in this
study Table S2: Concentration of viability dye; Table S3: Concentrations of antibodies; Table S4:
Descriptions of features; Table S5: Combinations explored for each classifier; Table S6: Specificity of
trained classifiers to identify sorted blood cells of test set; Table S7: Sensitivity of trained classifiers
to identify sorted blood cells of test set; Table S8: Precision of trained classifiers to identify sorted
blood cells of test set; Table S9: Specificity of trained classifiers to identify sorted milk cells of test set;
Table S10: Sensitivity of trained classifiers to identify sorted milk cells of test set; Table S11: Precision
of trained classifiers to identify sorted milk cells of test set; Table S12: Outcome of classification of
blood cells of unknown test subject using k-Nearest Neighbor classification; Table S13: Outcome of
classification of milk cells of unknown test subject using k-Nearest Neighbor classification; Table S14:
Outcome of classification of blood cells of unknown test subject using Random Forest classification;
Table S15: Outcome of classification of milk cells of unknown test subject using Random Forest
classification; Table S16: Outcome of classification of blood cells of unknown test subject using
Support Vector Machine classification; Table S17: Outcome of classification of milk cells of unknown
test subject using Support Vector Machine classification; Table S18: Comparison of DHM results to
FACS results for blood cells; Table S19: Comparison of DHM results to FACS results for milk cells;
Table S20: Comparison of DHM results to results of external laboratory for blood cells.
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