){ biomimetics

Article

A Multi-Strategy Siberian Tiger Optimization Algorithm for
Task Scheduling in Remote Sensing Data Batch Processing

Ziqi Liu 1©, Yong Xue >*{, Jiaqi Zhao (0, Wenping Yin 23, Sheng Zhang 2{”, Pei Li 2

check for
updates

Citation: Liu, Z.; Xue, Y.; Zhao, J.; Yin,
W.; Zhang, S.; Li, P,; He, B. A
Multi-Strategy Siberian Tiger
Optimization Algorithm for Task
Scheduling in Remote Sensing Data
Batch Processing. Biomimetics 2024, 9,
678. https://doi.org/10.3390/
biomimetics9110678

Academic Editor: Heming Jia

Received: 5 October 2024
Revised: 2 November 2024
Accepted: 4 November 2024
Published: 6 November 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Botao He 2

School of Computer Science and Technology, China University of Mining and Technology,

Xuzhou 221116, China; 1zq677@cumt.edu.cn (Z.L.); jiagizhao@cumt.edu.cn (J.Z.)

School of Environment and Spatial Informatics, China University of Mining and Technology,

Xuzhou 221116, China; yin@cumt.edu.cn or wenping.yin@tum.de (W.Y.); shengzhang@cumt.edu.cn (S5.2.);
tb22160010a41@cumt.edu.cn (P.L.); mint_tao@cumt.edu.cn (B.H.)

Big Geospatial Data Management, Technical University of Munich, 85521 Ottobrunn, Germany
Correspondence: yxue@cumt.edu.cn

Abstract: With advancements in integrated space—air-ground global observation capabilities, the
volume of remote sensing data is experiencing exponential growth. Traditional computing models
can no longer meet the task processing demands brought about by the vast amounts of remote sensing
data. As an important means of processing remote sensing data, distributed cluster computing’s task
scheduling directly impacts the completion time and the efficiency of computing resource utilization.
To enhance task processing efficiency and optimize the allocation of computing resources, this study
proposes a Multi-Strategy Improved Siberian Tiger Optimization (MSSTO) algorithm based on the
original Siberian Tiger Optimization (STO) algorithm. The MSSTO algorithm integrates the Tent
chaotic map, the Lévy flight strategy, Cauchy mutation, and a learning strategy, showing significant
advantages in convergence speed and global optimal solution search compared to the STO algorithm.
By combining stochastic key encoding schemes and uniform allocation encoding schemes, taking
the task scheduling of aerosol optical depth retrieval as a case study, the research results show
that the MSSTO algorithm significantly shortens the completion time (21% shorter compared to
the original STO algorithm and an average of 15% shorter compared to nine advanced algorithms,
such as a particle swarm algorithm and a gray wolf algorithm). It demonstrates superior solution
accuracy and convergence speed over various competing algorithms, achieving the optimal execution
sequence and machine allocation scheme for task scheduling.

Keywords: workflow; task scheduling; remote sensing data; Siberian Tiger Optimization;
metaheuristic; optimal assignment

1. Introduction

As a crucial means of obtaining information about the Earth’s surface, remote sensing
data are widely used in disaster management, smart agriculture, climate and environ-
mental research, forest fire detection, urban management, and many other fields [1-3].
Recently, the volume of remote sensing data has surged due to the accumulation of histori-
cal data and ongoing improvements in sensor technology, exhibiting distinct “Big Data”
characteristics [4,5]. Confronted with the vast quantities of remote sensing data, traditional
single-machine computing models can no longer meet the demand for efficient process-
ing, necessitating the adoption of more advanced computing and processing methods.
High-performance computing (HPC) refers to the configuration of computing systems and
environments with multiple processors or machines, creating clusters or resources con-
nected through different technologies to perform intricate computing tasks more rapidly [5].
As the main computing framework for HPC, distributed cluster computing is extensively
employed to handle large-scale remote sensing data [5]. Under the distributed cluster com-
puting framework, workflows can decompose each remote sensing computing task into

Biomimetics 2024, 9, 678. https:/ /doi.org/10.3390/biomimetics9110678

https://www.mdpi.com/journal /biomimetics

https://doi.org/10.3390/biomimetics9110678
https://doi.org/10.3390/biomimetics9110678
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0009-0001-0483-5502
https://orcid.org/0000-0003-3091-6637
https://orcid.org/0000-0002-3564-5090
https://orcid.org/0009-0002-2056-0091
https://orcid.org/0000-0002-5287-4063
https://orcid.org/0009-0000-3697-2256
https://orcid.org/0009-0002-4904-1287
https://doi.org/10.3390/biomimetics9110678
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics9110678?type=check_update&version=2

Biomimetics 2024, 9, 678

2 0f 23

multiple relatively independent subtasks and allocate these subtasks to different computing
nodes for parallel execution, thereby significantly improving computing efficiency [6,7].
However, due to the complexity of the distributed computing environment, workflow task
scheduling faces numerous challenges, such as the heterogeneity of computing resources,
task dependencies, 1/O capabilities, and load balancing. These issues directly impact the
execution efficiency of remote sensing tasks and the utilization of resources. Therefore,
selecting a scientific scheduling scheme and reasonably utilizing heterogeneous computing
resources to maximize computing capabilities has become crucial [8].

In a heterogeneous distributed cluster computing environment, task scheduling for
remote sensing data can be considered a variant of the flexible job shop scheduling prob-
lem (FJSP) [9]. This problem is fundamentally an intricate NP-hard problem, and tradi-
tional mathematical optimization methods struggle to solve it within a reasonable time
frame [10,11]. The solution methods for FJSP are mainly divided into heuristic algorithms
and metaheuristic algorithms. Heuristic algorithms guide the search direction based on spe-
cific rules and can provide relatively good solutions, but they are usually not optimal [12].
Metaheuristic algorithms, as more general heuristic algorithms, are applicable to a wide
range of fields and are not tailored to the specific conditions of a problem [9]. Recently,
an increasing number of metaheuristic algorithms have been applied to the FJSP problem,
including genetic algorithms (GAs) [13-15], particle swarm optimization (PSO) [16], ant
colony optimization (ACO) [17], and grey wolf optimization (GWO) [18], among others.
Many scholars have conducted research on remote sensing task scheduling based on heuris-
tic and metaheuristic algorithms. Zhang et al. [9] introduced a task scheduling approach
for managing large volumes of remote sensing data in batch processing to reduce over-
all completion times. They developed a hierarchical task queue system for optimizing
task allocation dynamically, focusing on the workflow granularity in the processing of
remote sensing data. Sun et al. [19] proposed a metaheuristic scheduling strategy based
on a quantum-inspired evolutionary algorithm (QEA). This method divides tasks based
on the data dimensions of remote sensing images and executes scheduling computations
within a distributed setting, effectively shortening the total execution time. In addition,
Du et al. [20] proposed a workflow task scheduling algorithm that leverages deep reinforce-
ment learning. This algorithm treats the processing of remote sensing data as a scheduling
issue within a directed acyclic graph framework, integrating the Markov decision pro-
cess and methods for calculating fitness. It capitalizes on the strengths of reinforcement
learning and deep neural networks to empirically decrease the processing time for remote
sensing data.

Despite the achievements of the aforementioned studies, many shortcomings still
exist. Heuristic algorithms can obtain effective and relatively good solutions for small-
scale problems. However, for large-scale scheduling problems, it is difficult to achieve
optimal solutions within an acceptable time frame. In addition, existing metaheuristic
algorithms often encounter difficulties escaping local optima and typically exhibit slow
convergence rates, which can lead to less-than-ideal performance in task scheduling. The
Siberian Tiger Optimization (STO) algorithm is a novel swarm intelligence algorithm that
primarily models the hunting and combat tactics of Siberian tigers against bears. It has
excellent convergence and optimization capabilities and has been applied in many engi-
neering fields [21]. Viji and Dhanka [22] combined the STO algorithm with an enhanced
Wasserstein generative adversarial network to investigate the energy utilization efficiency
of hybrid power systems and the lifespan of fuel cells, providing recommendations for
optimal control strategies and structural designs. In this study, the STO method was em-
ployed to optimize the operational parameters of fuel cell devices. Lakshmiprabha and
Kumar [23] proposed a hybrid approach based on the STO algorithm and stacked deep
residual networks, analyzing the efficiency and economic evaluation of the integration
of pumped storage and alkaline fuel cells, thereby minimizing overall operational costs.
Kurapati and Ramachandran [24] introduced a novel convolutional neural accelerator ar-
chitecture based on the STO algorithm, aimed at enhancing CNN performance in prediction

Biomimetics 2024, 9, 678

30f23

and data broadcasting applications, significantly improving the efficiency of hardware
accelerators while reducing power consumption and latency. Additionally, Al-Sarray and
Rahebi [25] presented a method that integrates 1D CNN and LSTM networks for detecting
attacks in software-defined networks. In the second step of this method, the STO algo-
rithm was applied to enhance the efficiency of the deep learning network, and in the third
step, the STO algorithm was utilized for feature selection. This illustrates the widespread
application of the STO algorithm across various fields. However, optimizing task schedul-
ing within workflows for batch processing of remote sensing data is a high-dimensional,
discrete optimization problem, and the current STO algorithm has certain limitations in
addressing such issues. In view of this, this study takes aerosol optical depth retrieval as
an example and proposes a Multi-Strategy Improved Siberian Tiger Optimization (MSSTO)
algorithm by combining Tent chaotic map, Lévy flight strategy, Cauchy mutation, and
learning strategy to improve the original STO algorithm. Subsequently, by introducing
the random key encoding scheme (RK) and uniform distribution encoding scheme (UD),
the continuous optimization is converted into discrete optimization, effectively addressing
the task scheduling problem in remote sensing data batch processing workflows within
diverse cluster computing environments. The principal contributions of this research are
summarized as follows:

* Proposed the MSSTO algorithm, which integrates Tent chaotic map sequences, Lévy
flight strategy, Cauchy mutation, and learning strategy into the STO algorithm, ef-
fectively improving the efficiency of finding optimal solutions. Conducted extensive
performance comparison analyses, where the MSSTO algorithm was compared with
eleven swarm intelligence algorithms, demonstrating its superiority across multiple
benchmark problems.

¢ To make the MSSTO algorithm more suitable for task scheduling in remote sensing
data batch processing workflows, this study introduced the RK encoding scheme for
task sequences and the UD encoding scheme for machine sequences, achieving an
effective mapping from continuous optimization to discrete optimization.

* Optimized the task scheduling process using the MSSTO algorithm, obtaining the op-
timal sequence of task execution and the best machine allocation scheme, significantly
improving the execution efficiency of remote sensing tasks.

The remaining chapters of this paper are organized as follows: Section 2 delineates
the problem definition. Section 3 outlines the methodologies. Section 4 assesses the
effectiveness of the proposed methods using benchmark test sets. Section 5 introduces the
application of remote sensing data task scheduling. Finally, Section 6 provides a summary
and outlook of the research.

2. Problem Definition

Suppose that the tasks for processing remote sensing data involve n images. The
processing of each image corresponds to a task unit, with each unit further segmented
into p sequential processes for completion. In this sequence, each process must wait for
the completion of its preceding process before it can start. Within a distributed cluster
computing environment, there are m computers, denoted as ¢y, ¢, ¢, . . ., ¢. The perfor-
mance differences between each computer primarily stem from variations in their hardware
configurations. The makespan of the same process may vary significantly across differ-
ent hardware configurations. To systematically describe this problem, this paper defines
a series of variables and equations to quantify and analyze the execution details of task
units on each computer.

1, if t;; is executed before t,;
x(Eij, tgr, cx) = {O g 1 1)

otherwise

Biomimetics 2024, 9, 678

40f23

where x(tij, tals ¢x) indicates whether the jth process of task t; is executed before the 1th
process of task f, on the k' computing node.

1, ift;; is executed by compute node ¢
vty cr) = i yeomp @
0, otherwise

y(tij, cx) represents whether the j" process of task t; is executed on the k' computing node.

The task scheduling in workflows for batch processing of remote sensing data can be
viewed as a variant of the FJSP [26]. The primary goal of this scheduling issue is to minimize
the makespan, which is to obtain a scheduling strategy that minimizes the completion time
of all tasks. This objective can be expressed as follows:

makespan = min(FTpax) 3)

Additionally, the scheduling must adhere to the following conditions:

1. The finish time for a process of a task must be at least the total of its start time plus its
processing time.

ST(t;j) < FT(t;j) + exe(tij, o) X y(tij, cx),

. . (4)
(i=12...,mj=12,...,p;k=1,2,...,m)

where ST (t;;) represents the start time of the jt" process of task tij, FT(t;j) denotes the
finish time of the j process of task t;, and exe(t;;, c) indicates the execution time of
the j! process of task t; on the k" computing node.

2. The start time of a process within the same task must be subsequent to the finish time

of the preceding process.

ST(tij41)) = FT(t;),

. . ()
(i=12...,mj=12,...,p—1)

3. The finish time of the final process in a task must be earlier than the overall completion
time of all tasks.
FT(t;y) < FTmax, (i=1,2,...,n) (6)

4. Atany given time, each computing node is capable of executing only one workflow
process.
ST(ti]') + Ex@(ti]’, Ck) < ST(tqZ) + M(l — x(t,-]-, tqlrck))

i:1,2,...,n;j:1,2,...,p (7)
k=12,...,mq=12,...,n
I1=1,2,...,p;M =

lth

where ¢, represents the ["! process of task f;.

5. Every workflow process must be carried out by a single computing node exclusively.

y

y(tij,) =1,
= 8)
2, ..,

(i=1 nj=12,...,p)

3. Methods
3.1. Siberian Tiger Optimization
3.1.1. Prey Hunting
In nature, Siberian tigers primarily exhibit two typical behavior patterns: prey hunting

and fighting with a bear [21]. In the design of the STO algorithm, the algorithm first
simulates the hunting behavior of Siberian tigers for position updating. In this strategy,

Biomimetics 2024, 9, 678

50f23

once a target prey is identified, the Siberian tiger commences an attack and pursues the
prey throughout the chase. The prey hunting stage can be segmented into two phase: the
attack phase and the chase phase [21].

In the attack phase, the positions of the members in the STO algorithm undergo
sudden and extensive changes, thus improving the algorithm’s ability to search globally
and explore within the search space. The proposed prey position of each Siberian tiger is
determined based on the better-performing members of the population. The proposed prey
position is given by the following formula:

PP, ={X; | ke {1,2,..., N} ANF < E} U {Xpest })

where PP, represents the prey set, Xp.s; denotes the current optimal solution, N is the total
population size, and F; denotes the fitness value for the i individual. Subsequently, an
individual is randomly selected from PP;, denoted as TP}, to serve as the attack target for
the i member. Finally, the positions of the individual members are updated according to
Formula (10).

Xt =it i (TP — Lij-xi),

(10)
(i=12,...,N;j=1,2,...,m)

P1S1
i,j

hunting attack phase, x; ; represents the value for the i'" member in the j dimension, ri

In which x indicates the new position of the individual member during the prey

is a random value between (0, 1), TP;j indicates the jth dimension of TP, I; ; is a random
number selected from the set {1,2}, and m represents the dimension of the variables.
Subsequently, the new population is obtained according to Formula (11).

P1S1 pP1S1
&_{& EP1S1 < F an
X; else
where Fip 151 denotes the fitness value of XZP 151 In the chase phase, the Siberian tiger
enhances the algorithm’s local search and exploitation capabilities by changing its position
in the prey attack area, thereby achieving better solutions. This process mainly calculates
new positions near the attack location using Formula (12) and obtains the new population

using Formula (13).

P152 o ri,j . (Mb—lb)
N £ (12)
(i=12...,N;j=12,....m;t=1,2,...,T)

X

where xIP].152

chase phase, ub and [b represent the maximum and minimum limits, respectively, and ¢
denotes the current iteration number.

P1S2 P1S2
&:{& FP182 < F,

indicates the new position of the individual member during the prey hunting

13
X; else 13)

3.1.2. Fighting with a Bear

Siberian tigers often engage in fights with a bear, primarily to compete for food re-
sources and protect their own safety. Therefore, during the second phase of the STO
algorithm, the update strategy of the algorithm’s members simulates the fighting behav-
ior between Siberian tigers and bears.The strategy in this phase is mainly divided into
two parts: attack and conflict [21].

In the attack phase, to simulate the Siberian tiger’s attack behavior towards the bear,
other members in the algorithm are regarded as potential bears, and a target is randomly

Biomimetics 2024, 9, 678

6 of 23

selected from them for the attack. This process improves the algorithm’s ability to search
globally. The specific formula is as follows:

P21 _ {xi,j +rijc (xkj—Lj-xij) Fe<F (14)

ij
! Xij i (xi;— Lij-xi;) else

where x; denotes the position of the selected a bear, and k is randomly chosen from the
set {1,2...i—1,i+1...N}, xf]251 indicates the new position of the individual member
in the attack phase of fighting with the bear, and F; represents the fitness value of xy.
Subsequently, the new population is obtained according to Formula (15).

XPZSl FPZSl < F
Xi=4! l : (15)
X; else

In the conflict phase, the positions of individuals within the STO algorithm experience
slight changes, thus boosting the algorithm’s capabilities for local search and exploitation.
This process is implemented by Formula (16), and the new population is subsequently
obtained using Formula (17).

P2s2 _ o I’,',]‘ . (ub — lb)
ZE t ’ (16)
(i=12...,N;j=1,2,...,m;t=1,2,...,T)

X

where le 252

fighting with the bear.

indicates the new position of the individual member in the conflict phase of
XPZSZ FPZSZ < F
Xi=4! ! ! (17)

X; else

3.2. Multi-Strategy Improved Siberian Tiger Optimization

Although the STO algorithm has strong optimization capabilities and fast convergence,
it can still potentially become trapped in local optima, which restricts its computational
precision and could adversely affect the algorithm’s overall performance. To overcome
this limitation and enhance the efficiency of the STO algorithm, this study introduces the
following four strategies to improve the original algorithm.

3.2.1. Tent Map

In the STO algorithm, candidate solutions are typically initialized using pseudo-
random numbers, a strategy that helps optimize the global performance of the algorithm.
However, relying solely on pseudo-random numbers for initialization may lead to insuf-
ficient exploration of the population, thereby reducing its diversity [27]. To improve the
algorithm’s exploration ability and increase population diversity, this study introduces
chaotic mapping as a method to improve population initialization. Chaotic mapping trans-
forms the optimization variables into chaotic variables through linear mapping, utilizing
their ergodicity and randomness for the optimization search. The final solution is then lin-
early converted back into the optimization variable space, thereby enhancing the efficiency
of the optimization algorithm [28].

Among various chaotic mappings, the Tent map is widely used in many fields due to
its excellent uniform ergodic properties [29,30]. As a chaotic mathematical model, the Tent
map helps achieve a uniform distribution of the population, thus greatly enhancing the
quality of the initial solutions. Its mathematical expression is as follows:

Tent]v

55 0 < Tent; < 0.59
Tentj+1 - {105%entj !

(18)

Biomimetics 2024, 9, 678

7 of 23

where Tent; | represents a value in the interval (0,1). This study introduces the Tent
chaotic map in the initial phase of the STO algorithm. The optimized initialization formula
is as follows:

Xjj = Ib + Tent; - (ub —Ib) (19)

3.2.2. Lévy Flight

In the hunting attack phase of the STO algorithm, a position update is achieved by
generating a random step length using a simple uniform random number between the cur-
rent member and a randomly selected member (representing the bear’s position). Although
this method provides direct and uniform exploration within the search space, it may limit
the algorithm’s ability to explore extensively, making it difficult for the algorithm to avoid
local optima and prone to premature convergence. To enhance global search capabilities
and improve exploration efficiency, this study introduces the Lévy flight strategy [31]. The
Lévy flight strategy uses the Lévy distribution rather than the conventional uniform or
Gaussian distribution to generate step lengths [32]. The Lévy distribution is characterized
by a heavy-tailed probability distribution, which allows for occasional long jumps, enabling
the algorithm to perform a more extensive search around the current solution [33]. The
modified formula after incorporating Lévy flight into Formula (10) is as follows:

xll,’lel = Xi; + Li,]‘ . (TPZ',]‘ — Ii,]‘ . xi,]‘), 20)
(i=12,...,N;j=1,2,...,m)
where Li,j is generated based on the Lévy distribution using the Mantegna method:

First, generate two independent Gaussian random variables u ~ N(0,¢2) and v ~ N(0, 1),

where ¢ is given by Formula (21).

T(1+p) sin(%ﬁ) ’
r(#)ﬁz@

where B € (1,2], typically B = 1.5; in this paper, f is also set to 1.5. Next, the Lévy step
length L; ; is calculated using the following formula:

o= (21)

u
Lij = 7 (22)

3.2.3. Cauchy Mutation

In the STO algorithm, traditional local exploration strategies often encounter the
dilemma of local optima when dealing with complex optimization problems. To further
enhance the algorithm’s exploration capabilities and effectively escape local optima, this
paper introduces a probability factor p and Cauchy mutation into the local exploration
parts of the two main phases of the STO algorithm (the hunting phase and the fighting with
brown bears phase). The improved formulas for Formulas (12) and (16) are as follows:

5o | Xpestj+ Cauchy(0,1) - Xpesrj 7 < p
b rr— ri,j'(ub_lb)

g Xij+ r>p (23)
(i=1,2...,N;j=12...,m;t=1,2,...,T)

Biomimetics 2024, 9, 678

8 of 23

where xlS]2 indicates the updated position of the individual member, p is the introduced

probability factor, set to 0.2 in this paper. Additionally, Cauchy(0, 1) represents the standard
Cauchy distribution function. Cauchy mutation generates random step lengths using the
standard Cauchy distribution, making it particularly suitable for scenarios that require
wide-range searches. The standard Cauchy distribution is known for its prominent heavy-
tailed characteristic, which can generate large random numbers far from the center. This
feature is particularly advantageous for exploring under-explored areas of the search space.
The formula for the standard Cauchy distribution is as follows:

flx) = 71?(1—1i—x2)' (—o0 < x < +00) (24)

3.2.4. Learning Strategy

Within the framework of the original STO algorithm, this paper introduces a novel
learning strategy. This strategy aims to promote mutual learning among the Siberian tiger
algorithm members after hunting and fighting with brown bears. Specifically, the individ-
ual members in the algorithm are divided into four different roles: followers, discoverers,
thinkers, and fluctuators [34]. Followers tend to move closer to better-performing individu-
als; discoverers not only move closer to the best individual but also away from the worst
individual; thinkers focus on the differences between the best and worst individuals and
strive to narrow this gap; fluctuators exhibit a certain level of volatility, which gradually
decreases as the number of iterations increases. Through mutual learning among these
different roles, the aim is to enhance the diversity and convergence performance of the STO
algorithm, thereby improving its ability to solve high-dimensional optimization problems.
The detailed formulas are provided below:

3
Xij 10 (Xpestj — Xij) 9>
Xij+1ij - (Xbest,j — i)
P3
i =9 —rij (Xuorstj — Xij) (25)

VANAN
TSI

1<q
Xij+7ij - (Xpestj — Xworstj) 1 <4
xij- (14 (1= %) -sin(27r)) g < i

where xf]3 represents the updated position of the individual member, X051, is the current
worst solution, and T indicates the total number of iterations. Subsequently, the new
population is obtained according to the following formulas:
XP® FP<F
Xi=4 ! : (26)
X; else

The pseudocode for the above model is shown in Algorithm 1.

3.3. Continuous to Discrete Encoding Scheme

The MSSTO algorithm is primarily designed for continuous optimization problems;
however, task scheduling in remote sensing data batch processing workflows is a discrete
problem. To efficiently implement the MSSTO algorithm in the task scheduling for remote
sensing data batch processing workflows, this study employs the random key encoding
scheme (RK) [35] to achieve an efficient mapping of task sequences from continuous space
to discrete space. The mapping of machine sequences is achieved using the uniform
distribution encoding scheme (UD).

Biomimetics 2024, 9, 678

9 of 23

Algorithm 1 The Multiple-strategy Siberian Tiger Optimization Algorithm

1:

2: Output: The optimal solution achieved by MSSTO.
3: Generate the initialization matrix using Formula (19).
4: Calculate the fitness value for each member of the population.
5. fort =1to T do
6: fori=1to pop do
7: Obtain the set of prey for the i-th member using Formula (9).
8: Obtain the Lévy step length L; ; using Formula (22).
9: Calculate the new position of the i member in the 1st stage using Formula (20).
Xll?lel — X+ L,',j : (TP,',]' — Ii,]' . x,',]')
10: Update the position of the i member using Formula (11).
11: Calculate the new position of the i member in the 2nd stage using Formula (23).
P1S2 Xbest,j + CuuCh]/(O/ 1)- Xbest,j r<p
Xijt rij(ub—1b)
Xij+ = r>p
12: Update the position of the i" member using Formula (13).
13: Randomly select a member Xj as the position of the bear.
14: Calculate the new position of the i member in the 1st stage using Formula (14).
P51 Xjj+tij (xk,j — Ii,j . x,',]') F < F
vl x,-,]' + Tl'/]' . (xi,j — Ik,j . xi,]-) else
15: Update the position of the i member using Formula (15).
16: Calculate the new position of the i member in the 2nd stage using Formula (23).
282 {Xbest,j + CauChy(Orl) ‘Xbest,j r<p
i,j I’i,]‘-(ubflb)
xjj+ r>p
17: Update the position of the " member using Formula (17).
18: end for
19: Calculate the new position of the i" member in the 3rd stage using Formula (25).
Xij+ i (Xpest,j — Xij) q>3
Xij+ i (Xpest,j — Xij)
sz]3 “— —7ii (Xworst,j = Xij) 3<q<3
Xij+Tij- (Xhest,j - Xworst,j) % <gq< %
xij- (14 (1= %) -sin(27r)) g <}
20: Update the position of the i member using Formula (26).
21: Save the current best solution Xj,;.
22: end for

Input: The population size pop, maximum number of iterations T, problem dimension
dim, and objective function.

In a task scheduling scenario involving n tasks, each containing p processes, the

dimension length of the MSSTO algorithm is set to 2(n x p). The first (n x p) real numbers
are used to represent the task sequence, while the latter (n x p) real numbers are used to
represent the machine sequence. The conversion of the task real number sequence to the
scheduling operation sequence involves three steps [36]: First, the first (n x p) real numbers
obtained by the algorithm are sorted in ascending order. Second, the ranks of these real
numbers are displayed as an integer sequence in ascending order. Finally, according to the

Biomimetics 2024, 9, 678

10 of 23

RK encoding scheme, these ranks are converted into a discrete task sequence. The formula
for the RK encoding scheme is as follows:

O=(xmodn)+1, (k=1,2,...,nxp) (27)

where O represents the discrete values of the task sequence, x; represents the k' value in
the integer sequence, 1 represents the total number of tasks, and p indicates the number of
processes for each task. For example, suppose there are 3 tasks, each containing 3 processes,
ie, n = 3, p = 3. For n x p real numbers [0.2,0.15,0.26,0.73,0.46,0.12,0.96,0.59, 0.31],
as shown in Figure 1a, first sort these real numbers in ascending order. For example,
0.12 is the smallest value and its rank is first, and so on, generating an integer sequence
[3,2,4,8,6,1,9,7,5]. Then, the integer sequence is processed according to the RK encoding
scheme. Using the first value 3 in the sequence as an example, according to Formula (27),
we calculate (3 mod 3) + 1 = 1. Similarly, the calculation is performed for all integer values
to eventually obtain the execution sequence for each process of every task.

(a) Real values (©)

02 [015 [026 |0 [046 [012 [09 | 05 | o3

0S [11 {31 {21 {32 | 12 22 {13 23 {33

4 8 6 1 9 7 5

Job indexes BK '}
encoding
1 3 2 3 1 2 1 2 3

7 (11 e 30 e 20 32 e 12 e 22 o 13 e 23 (33

[
|
Integer series(x) |
|
I
|

(b) Machine A

11— 31 o 21 32 b 12 o 22 o 13 23 (33

b 4 M1 13 33

M3 o M4 M4 M3 (M3 (M2 - MI) M2 —»{ MI Time

Figure 1. (a) RK encoding example diagram; (b) machine coding example diagram; (c) execute Gantt
diagram.

After obtaining the execution sequence of the tasks, it is necessary to assign each
process of each task to the specified machines for execution. To perform this step, the latter
(n x p) real values of the machine sequence need to be mapped to discrete sequence values.
This study employs a uniform distribution scheme based on the size of the real values to
achieve the mapping from continuous to discrete. The specific steps are as follows: first,
the latter (n x p) real values obtained by the algorithm are divided into n groups, each
containing p values. Each group of values corresponds to the processes of a task from the
first to the n'" task. Second, the machine number corresponding to each real value should
be calculated using the following formula:

Al — {(ykJrn)-(m—l)Hw/

2n
(k=nxpnxp+1,...,2(nxp))

(28)

where M represents the discrete values of the machine sequence, vy represents the k value
in the real number sequence, —n < y; < n, m denotes the total number of machines, n
indicates the total number of tasks, and p refers to the number of processes for each task.
Suppose there are currently four machines, M1 to M4, and the execution order of the
tasks has been determined according to the RK encoding scheme. Now, using the uniform
distribution scheme, map the real values to these four machines. As shown in Figure 1b,
there is a set of real numbers [1.6,0.26, —2.3,2.93, —1.5, —0.56,2.42,1.72, —2.67|. First, divide
them into three groups based on the number of tasks, with each group containing three

Biomimetics 2024, 9, 678

11 of 23

processes. For example, the first group is associated with Task 1, the second group with
Task 2, and the third group with Task 3. Next, determine on which machine each process
should be executed according to Formula (28). For example, for the real number 1.6, using

Formula (28), we calculate: [%'3(471) + 1—‘ = 3. This means that the first process of

Task 1 should be executed on machine M3. Using this method, the final machine allocation
sequence obtained is [3,3, 1,4, 2,2,4, 3, 1]. Finally, by combining the task execution sequence
and the machine allocation sequence, a Gantt chart can be generated to show the execution
of tasks on machines, as illustrated in Figure 1c.

4. Algorithm Performance Evaluation

This section compares the MSSTO algorithm with the STO algorithm and 10 advanced
algorithms on the CEC-2017 and CEC-2022 test suites. These 10 advanced algorithms are
mainly divided into two categories: (1) highly cited algorithms—particle swarm optimiza-
tion (PSO) [16], grey wolf optimizer (GWO) [18], whale optimization algorithm (WOA) [37],
and African vultures optimization algorithm (AVOA) [38]; (2) advanced algorithms—dung
beetle optimizer (DBO) [39], subtraction-average-based optimizer (SABO) [40], golden
jackal optimization (GJO) [41], crayfish optimization algorithm (COA) [42], adaptive spiral
flying sparrow search algorithm (ASFSSA) [43], and snake optimizer (SO) [44]. The config-
uration of parameters for the compared algorithms is provided in Table 1. All algorithms
have a maximum of 500 iterations, with a population size set to 30. Each algorithm was
executed independently 30 times to ensure result stability and reliability. Testing was
conducted on a computer equipped with an Intel(R) Core(TM) i7-10700F CPU and 8 GB of
RAM, using MATLAB R2018b.

Table 1. Compare the parameter settings of the algorithms.

Algorithms Name of the Parameter Value of the Parameter
PSO w, cl, c2 08,1515
GWO a ©0,2)
WOA P 0.4
AVOA L1, L2, w,pl,p2,p3 0.8,02,25,0.6,04, 0.6
COA temp (20, 35)
DBO P_percent 0.2
GJO EO, E1 [0, 1],[0,1.5]
SO T1,7T2,C1,C2,C3 0.25,0.6,0.5,0.05,2
ASFSSA P_percent, w 0.2,]0,1]

4.1. CEC-2017 Evaluation

To thoroughly assess the performance of the MSSTO algorithm, this section employs
the CEC-2017 test suite for comparative analysis. The CEC-2017 test suite consists of
29 objective functions. Specifically, C17-F1 to C17-F3 are unimodal functions, C17-F4 to
C17-F10 are multimodal functions, C17-F11 to C17-F20 are hybrid functions, and C17-F21
to C17-F30 are composite functions. Note that C17-F2 has been excluded from the test suite
due to its instability [45]. When evaluating the algorithms using the CEC-2017 test suite,
this study conducted tests at 30, 50, and 100 dimensions.

Figures 2—4 present the results of the 12 algorithms on the CEC-2017 test suite at
three dimensions in the form of box plots. From these figures, it can be observed that the
MSSTO algorithm achieves lower median fitness values on most test functions, indicating
its effectiveness in finding better solutions. Additionally, the MSSTO algorithm exhibits
smaller variance and fewer outliers, indicating its high consistency and stability across
multiple runs. This demonstrates the algorithm’s robustness and adaptability.

Biomimetics 2024, 9, 678

12 of 23

iiii fééié iéii'f §§E§§

FELFEF TS T8 PR N & & FEFEFTT LTS8

Figure 3. Boxplot of MSSTO and competitor algorithms on the CEC-2017 test suite (dimension = 50).

The convergence curves for certain functions from the CEC-2017 test suite are illus-
trated in Figures 5-7. On multiple functions, the MSSTO algorithm converges significantly
faster than the other algorithms. For example, on functions F3, F15, and F17, the MSSTO al-
gorithm significantly reduces the fitness value in the initial iteration stages, de<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>