
Citation: Liu, Z.; Xue, Y.; Zhao, J.; Yin,

W.; Zhang, S.; Li, P.; He, B. A

Multi-Strategy Siberian Tiger

Optimization Algorithm for Task

Scheduling in Remote Sensing Data

Batch Processing. Biomimetics 2024, 9,

678. https://doi.org/10.3390/

biomimetics9110678

Academic Editor: Heming Jia

Received: 5 October 2024

Revised: 2 November 2024

Accepted: 4 November 2024

Published: 6 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A Multi-Strategy Siberian Tiger Optimization Algorithm for
Task Scheduling in Remote Sensing Data Batch Processing
Ziqi Liu 1 , Yong Xue 2,* , Jiaqi Zhao 1 , Wenping Yin 2,3 , Sheng Zhang 2 , Pei Li 2 and Botao He 2

1 School of Computer Science and Technology, China University of Mining and Technology,
Xuzhou 221116, China; lzq677@cumt.edu.cn (Z.L.); jiaqizhao@cumt.edu.cn (J.Z.)

2 School of Environment and Spatial Informatics, China University of Mining and Technology,
Xuzhou 221116, China; yin@cumt.edu.cn or wenping.yin@tum.de (W.Y.); shengzhang@cumt.edu.cn (S.Z.);
tb22160010a41@cumt.edu.cn (P.L.); mint_tao@cumt.edu.cn (B.H.)

3 Big Geospatial Data Management, Technical University of Munich, 85521 Ottobrunn, Germany
* Correspondence: yxue@cumt.edu.cn

Abstract: With advancements in integrated space–air–ground global observation capabilities, the
volume of remote sensing data is experiencing exponential growth. Traditional computing models
can no longer meet the task processing demands brought about by the vast amounts of remote sensing
data. As an important means of processing remote sensing data, distributed cluster computing’s task
scheduling directly impacts the completion time and the efficiency of computing resource utilization.
To enhance task processing efficiency and optimize the allocation of computing resources, this study
proposes a Multi-Strategy Improved Siberian Tiger Optimization (MSSTO) algorithm based on the
original Siberian Tiger Optimization (STO) algorithm. The MSSTO algorithm integrates the Tent
chaotic map, the Lévy flight strategy, Cauchy mutation, and a learning strategy, showing significant
advantages in convergence speed and global optimal solution search compared to the STO algorithm.
By combining stochastic key encoding schemes and uniform allocation encoding schemes, taking
the task scheduling of aerosol optical depth retrieval as a case study, the research results show
that the MSSTO algorithm significantly shortens the completion time (21% shorter compared to
the original STO algorithm and an average of 15% shorter compared to nine advanced algorithms,
such as a particle swarm algorithm and a gray wolf algorithm). It demonstrates superior solution
accuracy and convergence speed over various competing algorithms, achieving the optimal execution
sequence and machine allocation scheme for task scheduling.

Keywords: workflow; task scheduling; remote sensing data; Siberian Tiger Optimization;
metaheuristic; optimal assignment

1. Introduction

As a crucial means of obtaining information about the Earth’s surface, remote sensing
data are widely used in disaster management, smart agriculture, climate and environ-
mental research, forest fire detection, urban management, and many other fields [1–3].
Recently, the volume of remote sensing data has surged due to the accumulation of histori-
cal data and ongoing improvements in sensor technology, exhibiting distinct “Big Data”
characteristics [4,5]. Confronted with the vast quantities of remote sensing data, traditional
single-machine computing models can no longer meet the demand for efficient process-
ing, necessitating the adoption of more advanced computing and processing methods.
High-performance computing (HPC) refers to the configuration of computing systems and
environments with multiple processors or machines, creating clusters or resources con-
nected through different technologies to perform intricate computing tasks more rapidly [5].
As the main computing framework for HPC, distributed cluster computing is extensively
employed to handle large-scale remote sensing data [5]. Under the distributed cluster com-
puting framework, workflows can decompose each remote sensing computing task into

Biomimetics 2024, 9, 678. https://doi.org/10.3390/biomimetics9110678 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics9110678
https://doi.org/10.3390/biomimetics9110678
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0009-0001-0483-5502
https://orcid.org/0000-0003-3091-6637
https://orcid.org/0000-0002-3564-5090
https://orcid.org/0009-0002-2056-0091
https://orcid.org/0000-0002-5287-4063
https://orcid.org/0009-0000-3697-2256
https://orcid.org/0009-0002-4904-1287
https://doi.org/10.3390/biomimetics9110678
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics9110678?type=check_update&version=2

Biomimetics 2024, 9, 678 2 of 23

multiple relatively independent subtasks and allocate these subtasks to different computing
nodes for parallel execution, thereby significantly improving computing efficiency [6,7].
However, due to the complexity of the distributed computing environment, workflow task
scheduling faces numerous challenges, such as the heterogeneity of computing resources,
task dependencies, I/O capabilities, and load balancing. These issues directly impact the
execution efficiency of remote sensing tasks and the utilization of resources. Therefore,
selecting a scientific scheduling scheme and reasonably utilizing heterogeneous computing
resources to maximize computing capabilities has become crucial [8].

In a heterogeneous distributed cluster computing environment, task scheduling for
remote sensing data can be considered a variant of the flexible job shop scheduling prob-
lem (FJSP) [9]. This problem is fundamentally an intricate NP-hard problem, and tradi-
tional mathematical optimization methods struggle to solve it within a reasonable time
frame [10,11]. The solution methods for FJSP are mainly divided into heuristic algorithms
and metaheuristic algorithms. Heuristic algorithms guide the search direction based on spe-
cific rules and can provide relatively good solutions, but they are usually not optimal [12].
Metaheuristic algorithms, as more general heuristic algorithms, are applicable to a wide
range of fields and are not tailored to the specific conditions of a problem [9]. Recently,
an increasing number of metaheuristic algorithms have been applied to the FJSP problem,
including genetic algorithms (GAs) [13–15], particle swarm optimization (PSO) [16], ant
colony optimization (ACO) [17], and grey wolf optimization (GWO) [18], among others.
Many scholars have conducted research on remote sensing task scheduling based on heuris-
tic and metaheuristic algorithms. Zhang et al. [9] introduced a task scheduling approach
for managing large volumes of remote sensing data in batch processing to reduce over-
all completion times. They developed a hierarchical task queue system for optimizing
task allocation dynamically, focusing on the workflow granularity in the processing of
remote sensing data. Sun et al. [19] proposed a metaheuristic scheduling strategy based
on a quantum-inspired evolutionary algorithm (QEA). This method divides tasks based
on the data dimensions of remote sensing images and executes scheduling computations
within a distributed setting, effectively shortening the total execution time. In addition,
Du et al. [20] proposed a workflow task scheduling algorithm that leverages deep reinforce-
ment learning. This algorithm treats the processing of remote sensing data as a scheduling
issue within a directed acyclic graph framework, integrating the Markov decision pro-
cess and methods for calculating fitness. It capitalizes on the strengths of reinforcement
learning and deep neural networks to empirically decrease the processing time for remote
sensing data.

Despite the achievements of the aforementioned studies, many shortcomings still
exist. Heuristic algorithms can obtain effective and relatively good solutions for small-
scale problems. However, for large-scale scheduling problems, it is difficult to achieve
optimal solutions within an acceptable time frame. In addition, existing metaheuristic
algorithms often encounter difficulties escaping local optima and typically exhibit slow
convergence rates, which can lead to less-than-ideal performance in task scheduling. The
Siberian Tiger Optimization (STO) algorithm is a novel swarm intelligence algorithm that
primarily models the hunting and combat tactics of Siberian tigers against bears. It has
excellent convergence and optimization capabilities and has been applied in many engi-
neering fields [21]. Viji and Dhanka [22] combined the STO algorithm with an enhanced
Wasserstein generative adversarial network to investigate the energy utilization efficiency
of hybrid power systems and the lifespan of fuel cells, providing recommendations for
optimal control strategies and structural designs. In this study, the STO method was em-
ployed to optimize the operational parameters of fuel cell devices. Lakshmiprabha and
Kumar [23] proposed a hybrid approach based on the STO algorithm and stacked deep
residual networks, analyzing the efficiency and economic evaluation of the integration
of pumped storage and alkaline fuel cells, thereby minimizing overall operational costs.
Kurapati and Ramachandran [24] introduced a novel convolutional neural accelerator ar-
chitecture based on the STO algorithm, aimed at enhancing CNN performance in prediction

Biomimetics 2024, 9, 678 3 of 23

and data broadcasting applications, significantly improving the efficiency of hardware
accelerators while reducing power consumption and latency. Additionally, Al-Sarray and
Rahebi [25] presented a method that integrates 1D CNN and LSTM networks for detecting
attacks in software-defined networks. In the second step of this method, the STO algo-
rithm was applied to enhance the efficiency of the deep learning network, and in the third
step, the STO algorithm was utilized for feature selection. This illustrates the widespread
application of the STO algorithm across various fields. However, optimizing task schedul-
ing within workflows for batch processing of remote sensing data is a high-dimensional,
discrete optimization problem, and the current STO algorithm has certain limitations in
addressing such issues. In view of this, this study takes aerosol optical depth retrieval as
an example and proposes a Multi-Strategy Improved Siberian Tiger Optimization (MSSTO)
algorithm by combining Tent chaotic map, Lévy flight strategy, Cauchy mutation, and
learning strategy to improve the original STO algorithm. Subsequently, by introducing
the random key encoding scheme (RK) and uniform distribution encoding scheme (UD),
the continuous optimization is converted into discrete optimization, effectively addressing
the task scheduling problem in remote sensing data batch processing workflows within
diverse cluster computing environments. The principal contributions of this research are
summarized as follows:

• Proposed the MSSTO algorithm, which integrates Tent chaotic map sequences, Lévy
flight strategy, Cauchy mutation, and learning strategy into the STO algorithm, ef-
fectively improving the efficiency of finding optimal solutions. Conducted extensive
performance comparison analyses, where the MSSTO algorithm was compared with
eleven swarm intelligence algorithms, demonstrating its superiority across multiple
benchmark problems.

• To make the MSSTO algorithm more suitable for task scheduling in remote sensing
data batch processing workflows, this study introduced the RK encoding scheme for
task sequences and the UD encoding scheme for machine sequences, achieving an
effective mapping from continuous optimization to discrete optimization.

• Optimized the task scheduling process using the MSSTO algorithm, obtaining the op-
timal sequence of task execution and the best machine allocation scheme, significantly
improving the execution efficiency of remote sensing tasks.

The remaining chapters of this paper are organized as follows: Section 2 delineates
the problem definition. Section 3 outlines the methodologies. Section 4 assesses the
effectiveness of the proposed methods using benchmark test sets. Section 5 introduces the
application of remote sensing data task scheduling. Finally, Section 6 provides a summary
and outlook of the research.

2. Problem Definition

Suppose that the tasks for processing remote sensing data involve n images. The
processing of each image corresponds to a task unit, with each unit further segmented
into p sequential processes for completion. In this sequence, each process must wait for
the completion of its preceding process before it can start. Within a distributed cluster
computing environment, there are m computers, denoted as c1, c2, c2, . . . , cm. The perfor-
mance differences between each computer primarily stem from variations in their hardware
configurations. The makespan of the same process may vary significantly across differ-
ent hardware configurations. To systematically describe this problem, this paper defines
a series of variables and equations to quantify and analyze the execution details of task
units on each computer.

x(tij, tql , ck) =

{
1, if tij is executed before tql

0, otherwise
(1)

Biomimetics 2024, 9, 678 4 of 23

where x(tij, tql , ck) indicates whether the jth process of task ti is executed before the lth

process of task tq on the kth computing node.

y(tij, ck) =

{
1, if tij is executed by compute node ck

0, otherwise
(2)

y(tij, ck) represents whether the jth process of task ti is executed on the kth computing node.
The task scheduling in workflows for batch processing of remote sensing data can be

viewed as a variant of the FJSP [26]. The primary goal of this scheduling issue is to minimize
the makespan, which is to obtain a scheduling strategy that minimizes the completion time
of all tasks. This objective can be expressed as follows:

makespan = min(FTMAX) (3)

Additionally, the scheduling must adhere to the following conditions:

1. The finish time for a process of a task must be at least the total of its start time plus its
processing time.

ST(tij) ≤ FT(tij) + exe(tij, ck)× y(tij, ck),

(i = 1, 2, . . . , n; j = 1, 2, . . . , p; k = 1, 2, . . . , m)
(4)

where ST(tij) represents the start time of the jth process of task tij, FT(tij) denotes the
finish time of the jth process of task tj, and exe(tij, ck) indicates the execution time of
the jth process of task ti on the kth computing node.

2. The start time of a process within the same task must be subsequent to the finish time
of the preceding process.

ST(ti(j+1)) ≥ FT(tij),

(i = 1, 2, . . . , n; j = 1, 2, . . . , p− 1)
(5)

3. The finish time of the final process in a task must be earlier than the overall completion
time of all tasks.

FT(tip) ≤ FTMAX , (i = 1, 2, . . . , n) (6)

4. At any given time, each computing node is capable of executing only one workflow
process.

ST(tij) + exe(tij, ck) ≤ ST(tql) + M(1− x(tij, tql , ck)) i = 1, 2, . . . , n; j = 1, 2, . . . , p
k = 1, 2, . . . , m; q = 1, 2, . . . , n
l = 1, 2, . . . , p; M→ ∞

 (7)

where tql represents the lth process of task tq.
5. Every workflow process must be carried out by a single computing node exclusively.

m

∑
k=1

y(tij, ck) = 1,

(i = 1, 2, . . . , n; j = 1, 2, . . . , p)

(8)

3. Methods
3.1. Siberian Tiger Optimization
3.1.1. Prey Hunting

In nature, Siberian tigers primarily exhibit two typical behavior patterns: prey hunting
and fighting with a bear [21]. In the design of the STO algorithm, the algorithm first
simulates the hunting behavior of Siberian tigers for position updating. In this strategy,

Biomimetics 2024, 9, 678 5 of 23

once a target prey is identified, the Siberian tiger commences an attack and pursues the
prey throughout the chase. The prey hunting stage can be segmented into two phase: the
attack phase and the chase phase [21].

In the attack phase, the positions of the members in the STO algorithm undergo
sudden and extensive changes, thus improving the algorithm’s ability to search globally
and explore within the search space. The proposed prey position of each Siberian tiger is
determined based on the better-performing members of the population. The proposed prey
position is given by the following formula:

PPi = {Xk | k ∈ {1, 2, . . . , N} ∧ Fk < Fi} ∪ {Xbest} (9)

where PPi represents the prey set, Xbest denotes the current optimal solution, N is the total
population size, and Fi denotes the fitness value for the ith individual. Subsequently, an
individual is randomly selected from PPi, denoted as TPi, to serve as the attack target for
the ith member. Finally, the positions of the individual members are updated according to
Formula (10).

xP1S1
i,j = xi,j + ri,j · (TPi,j − Ii,j · xi,j),

(i = 1, 2, . . . , N; j = 1, 2, . . . , m)
(10)

In which xP1S1
i,j indicates the new position of the individual member during the prey

hunting attack phase, xi,j represents the value for the ith member in the jth dimension, ri,j

is a random value between (0, 1), TPi,j indicates the jth dimension of TPi, Ii,j is a random
number selected from the set {1, 2}, and m represents the dimension of the variables.
Subsequently, the new population is obtained according to Formula (11).

Xi =

{
XP1S1

i FP1S1
i < Fi

Xi else
(11)

where FP1S1
i denotes the fitness value of XP1S1

i . In the chase phase, the Siberian tiger
enhances the algorithm’s local search and exploitation capabilities by changing its position
in the prey attack area, thereby achieving better solutions. This process mainly calculates
new positions near the attack location using Formula (12) and obtains the new population
using Formula (13).

xP1S2
i,j = xi,j +

ri,j · (ub− lb)
t

,

(i = 1, 2, . . . , N; j = 1, 2, . . . , m; t = 1, 2, . . . , T)
(12)

where xP1S2
i,j indicates the new position of the individual member during the prey hunting

chase phase, ub and lb represent the maximum and minimum limits, respectively, and t
denotes the current iteration number.

Xi =

{
XP1S2

i FP1S2
i < Fi

Xi else
(13)

3.1.2. Fighting with a Bear

Siberian tigers often engage in fights with a bear, primarily to compete for food re-
sources and protect their own safety. Therefore, during the second phase of the STO
algorithm, the update strategy of the algorithm’s members simulates the fighting behav-
ior between Siberian tigers and bears.The strategy in this phase is mainly divided into
two parts: attack and conflict [21].

In the attack phase, to simulate the Siberian tiger’s attack behavior towards the bear,
other members in the algorithm are regarded as potential bears, and a target is randomly

Biomimetics 2024, 9, 678 6 of 23

selected from them for the attack. This process improves the algorithm’s ability to search
globally. The specific formula is as follows:

xP2S1
i,j =

{
xi,j + ri,j · (xk,j − Ii,j · xi,j) Fk < Fi

xi,j + ri,j · (xi,j − Ii,j · xk,j) else
(14)

where xk denotes the position of the selected a bear, and k is randomly chosen from the
set {1, 2 . . . i− 1, i + 1 . . . N}, xP2S1

i,j indicates the new position of the individual member
in the attack phase of fighting with the bear, and Fk represents the fitness value of xk.
Subsequently, the new population is obtained according to Formula (15).

Xi =

{
XP2S1

i FP2S1
i < Fi

Xi else
(15)

In the conflict phase, the positions of individuals within the STO algorithm experience
slight changes, thus boosting the algorithm’s capabilities for local search and exploitation.
This process is implemented by Formula (16), and the new population is subsequently
obtained using Formula (17).

xP2S2
i,j = xi,j +

ri,j · (ub− lb)
t

,

(i = 1, 2, . . . , N; j = 1, 2, . . . , m; t = 1, 2, . . . , T)
(16)

where xP2S2
i,j indicates the new position of the individual member in the conflict phase of

fighting with the bear.

Xi =

{
XP2S2

i FP2S2
i < Fi

Xi else
(17)

3.2. Multi-Strategy Improved Siberian Tiger Optimization

Although the STO algorithm has strong optimization capabilities and fast convergence,
it can still potentially become trapped in local optima, which restricts its computational
precision and could adversely affect the algorithm’s overall performance. To overcome
this limitation and enhance the efficiency of the STO algorithm, this study introduces the
following four strategies to improve the original algorithm.

3.2.1. Tent Map

In the STO algorithm, candidate solutions are typically initialized using pseudo-
random numbers, a strategy that helps optimize the global performance of the algorithm.
However, relying solely on pseudo-random numbers for initialization may lead to insuf-
ficient exploration of the population, thereby reducing its diversity [27]. To improve the
algorithm’s exploration ability and increase population diversity, this study introduces
chaotic mapping as a method to improve population initialization. Chaotic mapping trans-
forms the optimization variables into chaotic variables through linear mapping, utilizing
their ergodicity and randomness for the optimization search. The final solution is then lin-
early converted back into the optimization variable space, thereby enhancing the efficiency
of the optimization algorithm [28].

Among various chaotic mappings, the Tent map is widely used in many fields due to
its excellent uniform ergodic properties [29,30]. As a chaotic mathematical model, the Tent
map helps achieve a uniform distribution of the population, thus greatly enhancing the
quality of the initial solutions. Its mathematical expression is as follows:

Tentj+1 =

{ Tentj
0.59 0 < Tentj < 0.59
1−Tentj
1−0.59 0.59 < Tentj < 1

(18)

Biomimetics 2024, 9, 678 7 of 23

where Tentj+1 represents a value in the interval (0, 1). This study introduces the Tent
chaotic map in the initial phase of the STO algorithm. The optimized initialization formula
is as follows:

xi,j = lb + Tenti,j · (ub− lb) (19)

3.2.2. Lévy Flight

In the hunting attack phase of the STO algorithm, a position update is achieved by
generating a random step length using a simple uniform random number between the cur-
rent member and a randomly selected member (representing the bear’s position). Although
this method provides direct and uniform exploration within the search space, it may limit
the algorithm’s ability to explore extensively, making it difficult for the algorithm to avoid
local optima and prone to premature convergence. To enhance global search capabilities
and improve exploration efficiency, this study introduces the Lévy flight strategy [31]. The
Lévy flight strategy uses the Lévy distribution rather than the conventional uniform or
Gaussian distribution to generate step lengths [32]. The Lévy distribution is characterized
by a heavy-tailed probability distribution, which allows for occasional long jumps, enabling
the algorithm to perform a more extensive search around the current solution [33]. The
modified formula after incorporating Lévy flight into Formula (10) is as follows:

xP1S1
i,j = xi,j + Li,j · (TPi,j − Ii,j · xi,j),

(i = 1, 2, . . . , N; j = 1, 2, . . . , m)
(20)

where Li,j is generated based on the Lévy distribution using the Mantegna method:
First, generate two independent Gaussian random variables u ∼ N(0, σ2) and v ∼ N(0, 1),

where σ is given by Formula (21).

σ =

Γ(1 + β) sin
(

πβ
2

)
Γ
(

1+β
2

)
β2

β−1
2


1
β

(21)

where β ∈ (1, 2], typically β = 1.5; in this paper, β is also set to 1.5. Next, the Lévy step
length Li,j is calculated using the following formula:

Li,j =
u
|v|1/β

(22)

3.2.3. Cauchy Mutation

In the STO algorithm, traditional local exploration strategies often encounter the
dilemma of local optima when dealing with complex optimization problems. To further
enhance the algorithm’s exploration capabilities and effectively escape local optima, this
paper introduces a probability factor p and Cauchy mutation into the local exploration
parts of the two main phases of the STO algorithm (the hunting phase and the fighting with
brown bears phase). The improved formulas for Formulas (12) and (16) are as follows:

xS2
i,j =

{
Xbest,j + Cauchy(0, 1) · Xbest,j r < p

xi,j +
ri,j ·(ub−lb)

t r ≥ p

(i = 1, 2, . . . , N; j = 1, 2, . . . , m; t = 1, 2, . . . , T)

(23)

Biomimetics 2024, 9, 678 8 of 23

where xS2
i,j indicates the updated position of the individual member, p is the introduced

probability factor, set to 0.2 in this paper. Additionally, Cauchy(0, 1) represents the standard
Cauchy distribution function. Cauchy mutation generates random step lengths using the
standard Cauchy distribution, making it particularly suitable for scenarios that require
wide-range searches. The standard Cauchy distribution is known for its prominent heavy-
tailed characteristic, which can generate large random numbers far from the center. This
feature is particularly advantageous for exploring under-explored areas of the search space.
The formula for the standard Cauchy distribution is as follows:

f (x) =
1

π(1 + x2)
, (−∞ < x < +∞) (24)

3.2.4. Learning Strategy
Within the framework of the original STO algorithm, this paper introduces a novel

learning strategy. This strategy aims to promote mutual learning among the Siberian tiger
algorithm members after hunting and fighting with brown bears. Specifically, the individ-
ual members in the algorithm are divided into four different roles: followers, discoverers,
thinkers, and fluctuators [34]. Followers tend to move closer to better-performing individu-
als; discoverers not only move closer to the best individual but also away from the worst
individual; thinkers focus on the differences between the best and worst individuals and
strive to narrow this gap; fluctuators exhibit a certain level of volatility, which gradually
decreases as the number of iterations increases.Through mutual learning among these
different roles, the aim is to enhance the diversity and convergence performance of the STO
algorithm, thereby improving its ability to solve high-dimensional optimization problems.
The detailed formulas are provided below:

xP3
i,j =



xi,j + ri,j · (Xbest,j − xi,j) q ≥ 3
4

xi,j + ri,j · (Xbest,j − xi,j)

−ri,j · (Xworst,j − xi,j)
1
2 ≤ q < 3

4
xi,j + ri,j · (Xbest,j − Xworst,j)

1
4 ≤ q < 1

2

xi,j ·
(
1 +

(
1− t

T
)
· sin(2πr)

)
q < 1

4

(25)

where xP3
i,j represents the updated position of the individual member, Xworst,j is the current

worst solution, and T indicates the total number of iterations. Subsequently, the new
population is obtained according to the following formulas:

Xi =

{
XP3

i FP3
i < Fi

Xi else
(26)

The pseudocode for the above model is shown in Algorithm 1.

3.3. Continuous to Discrete Encoding Scheme

The MSSTO algorithm is primarily designed for continuous optimization problems;
however, task scheduling in remote sensing data batch processing workflows is a discrete
problem. To efficiently implement the MSSTO algorithm in the task scheduling for remote
sensing data batch processing workflows, this study employs the random key encoding
scheme (RK) [35] to achieve an efficient mapping of task sequences from continuous space
to discrete space. The mapping of machine sequences is achieved using the uniform
distribution encoding scheme (UD).

Biomimetics 2024, 9, 678 9 of 23

Algorithm 1 The Multiple-strategy Siberian Tiger Optimization Algorithm

1: Input: The population size pop, maximum number of iterations T, problem dimension
dim, and objective function.

2: Output: The optimal solution achieved by MSSTO.
3: Generate the initialization matrix using Formula (19).
4: Calculate the fitness value for each member of the population.
5: for t = 1 to T do
6: for i = 1 to pop do
7: Obtain the set of prey for the i-th member using Formula (9).
8: Obtain the Lévy step length Li,j using Formula (22).
9: Calculate the new position of the ith member in the 1st stage using Formula (20).

xP1S1
i,j ← xi,j + Li,j · (TPi,j − Ii,j · xi,j)

10: Update the position of the ith member using Formula (11).
11: Calculate the new position of the ith member in the 2nd stage using Formula (23).

xP1S2
i,j ←

{
Xbest,j + Cauchy(0, 1) · Xbest,j r < p

xi,j +
ri,j ·(ub−lb)

t r ≥ p

12: Update the position of the ith member using Formula (13).
13: Randomly select a member Xk as the position of the bear.
14: Calculate the new position of the ith member in the 1st stage using Formula (14).

xP2S1
i,j ←

{
xi,j + ri,j · (xk,j − Ii,j · xi,j) Fk < Fi

xi,j + ri,j · (xi,j − Ik,j · xi,j) else

15: Update the position of the ith member using Formula (15).
16: Calculate the new position of the ith member in the 2nd stage using Formula (23).

xP2S2
i,j ←

{
Xbest,j + Cauchy(0, 1) · Xbest,j r < p

xi,j +
ri,j ·(ub−lb)

t r ≥ p

17: Update the position of the ith member using Formula (17).
18: end for
19: Calculate the new position of the ith member in the 3rd stage using Formula (25).

xP3
i,j ←



xi,j + ri,j · (Xbest,j − xi,j) q ≥ 3
4

xi,j + ri,j · (Xbest,j − xi,j)

−ri,j · (Xworst,j − xi,j)
1
2 ≤ q < 3

4
xi,j + ri,j · (Xbest,j − Xworst,j)

1
4 ≤ q < 1

2
xi,j ·

(
1 +

(
1− t

T
)
· sin(2πr)

)
q < 1

4

20: Update the position of the ith member using Formula (26).
21: Save the current best solution Xbest.
22: end for

In a task scheduling scenario involving n tasks, each containing p processes, the
dimension length of the MSSTO algorithm is set to 2(n× p). The first (n× p) real numbers
are used to represent the task sequence, while the latter (n× p) real numbers are used to
represent the machine sequence. The conversion of the task real number sequence to the
scheduling operation sequence involves three steps [36]: First, the first (n× p) real numbers
obtained by the algorithm are sorted in ascending order. Second, the ranks of these real
numbers are displayed as an integer sequence in ascending order. Finally, according to the

Biomimetics 2024, 9, 678 10 of 23

RK encoding scheme, these ranks are converted into a discrete task sequence. The formula
for the RK encoding scheme is as follows:

O⃗ = (xk mod n) + 1, (k = 1, 2, . . . , n× p) (27)

where O⃗ represents the discrete values of the task sequence, xk represents the kth value in
the integer sequence, n represents the total number of tasks, and p indicates the number of
processes for each task. For example, suppose there are 3 tasks, each containing 3 processes,
i.e., n = 3, p = 3. For n × p real numbers [0.2, 0.15, 0.26, 0.73, 0.46, 0.12, 0.96, 0.59, 0.31],
as shown in Figure 1a, first sort these real numbers in ascending order. For example,
0.12 is the smallest value and its rank is first, and so on, generating an integer sequence
[3, 2, 4, 8, 6, 1, 9, 7, 5]. Then, the integer sequence is processed according to the RK encoding
scheme. Using the first value 3 in the sequence as an example, according to Formula (27),
we calculate (3 mod 3) + 1 = 1. Similarly, the calculation is performed for all integer values
to eventually obtain the execution sequence for each process of every task.

Figure 1. (a) RK encoding example diagram; (b) machine coding example diagram; (c) execute Gantt
diagram.

After obtaining the execution sequence of the tasks, it is necessary to assign each
process of each task to the specified machines for execution. To perform this step, the latter
(n× p) real values of the machine sequence need to be mapped to discrete sequence values.
This study employs a uniform distribution scheme based on the size of the real values to
achieve the mapping from continuous to discrete. The specific steps are as follows: first,
the latter (n× p) real values obtained by the algorithm are divided into n groups, each
containing p values. Each group of values corresponds to the processes of a task from the
first to the nth task. Second, the machine number corresponding to each real value should
be calculated using the following formula:

M⃗ =

⌊
(yk + n) · (m− 1)

2n
+ 1

⌉
,

(k = n× p, n× p + 1, . . . , 2(n× p))
(28)

where M⃗ represents the discrete values of the machine sequence, yk represents the kth value
in the real number sequence, −n ≤ yk ≤ n, m denotes the total number of machines, n
indicates the total number of tasks, and p refers to the number of processes for each task.
Suppose there are currently four machines, M1 to M4, and the execution order of the
tasks has been determined according to the RK encoding scheme. Now, using the uniform
distribution scheme, map the real values to these four machines. As shown in Figure 1b,
there is a set of real numbers [1.6, 0.26,−2.3, 2.93,−1.5,−0.56, 2.42, 1.72,−2.67]. First, divide
them into three groups based on the number of tasks, with each group containing three

Biomimetics 2024, 9, 678 11 of 23

processes. For example, the first group is associated with Task 1, the second group with
Task 2, and the third group with Task 3. Next, determine on which machine each process
should be executed according to Formula (28). For example, for the real number 1.6, using
Formula (28), we calculate:

⌊
(1.6+3)·(4−1)

2×3 + 1
⌉
= 3. This means that the first process of

Task 1 should be executed on machine M3. Using this method, the final machine allocation
sequence obtained is [3, 3, 1, 4, 2, 2, 4, 3, 1]. Finally, by combining the task execution sequence
and the machine allocation sequence, a Gantt chart can be generated to show the execution
of tasks on machines, as illustrated in Figure 1c.

4. Algorithm Performance Evaluation

This section compares the MSSTO algorithm with the STO algorithm and 10 advanced
algorithms on the CEC-2017 and CEC-2022 test suites. These 10 advanced algorithms are
mainly divided into two categories: (1) highly cited algorithms—particle swarm optimiza-
tion (PSO) [16], grey wolf optimizer (GWO) [18], whale optimization algorithm (WOA) [37],
and African vultures optimization algorithm (AVOA) [38]; (2) advanced algorithms—dung
beetle optimizer (DBO) [39], subtraction-average-based optimizer (SABO) [40], golden
jackal optimization (GJO) [41], crayfish optimization algorithm (COA) [42], adaptive spiral
flying sparrow search algorithm (ASFSSA) [43], and snake optimizer (SO) [44]. The config-
uration of parameters for the compared algorithms is provided in Table 1. All algorithms
have a maximum of 500 iterations, with a population size set to 30. Each algorithm was
executed independently 30 times to ensure result stability and reliability. Testing was
conducted on a computer equipped with an Intel(R) Core(TM) i7-10700F CPU and 8 GB of
RAM, using MATLAB R2018b.

Table 1. Compare the parameter settings of the algorithms.

Algorithms Name of the Parameter Value of the Parameter

PSO w, c1, c2 0.8, 1.5, 1.5
GWO a (0, 2)
WOA p 0.4
AVOA L1, L2, w, p1, p2, p3 0.8, 0.2, 2.5, 0.6, 0.4, 0.6
COA temp (20, 35)
DBO P_percent 0.2
GJO E0, E1 [0, 1], [0, 1.5]
SO T1, T2, C1, C2, C3 0.25, 0.6, 0.5, 0.05, 2

ASFSSA P_percent, w 0.2, [0, 1]

4.1. CEC-2017 Evaluation

To thoroughly assess the performance of the MSSTO algorithm, this section employs
the CEC-2017 test suite for comparative analysis. The CEC-2017 test suite consists of
29 objective functions. Specifically, C17-F1 to C17-F3 are unimodal functions, C17-F4 to
C17-F10 are multimodal functions, C17-F11 to C17-F20 are hybrid functions, and C17-F21
to C17-F30 are composite functions. Note that C17-F2 has been excluded from the test suite
due to its instability [45]. When evaluating the algorithms using the CEC-2017 test suite,
this study conducted tests at 30, 50, and 100 dimensions.

Figures 2–4 present the results of the 12 algorithms on the CEC-2017 test suite at
three dimensions in the form of box plots. From these figures, it can be observed that the
MSSTO algorithm achieves lower median fitness values on most test functions, indicating
its effectiveness in finding better solutions. Additionally, the MSSTO algorithm exhibits
smaller variance and fewer outliers, indicating its high consistency and stability across
multiple runs. This demonstrates the algorithm’s robustness and adaptability.

Biomimetics 2024, 9, 678 12 of 23

Figure 2. Boxplot of MSSTO and competitor algorithms on the CEC-2017 test suite (dimension = 30).

Figure 3. Boxplot of MSSTO and competitor algorithms on the CEC-2017 test suite (dimension = 50).

The convergence curves for certain functions from the CEC-2017 test suite are illus-
trated in Figures 5–7. On multiple functions, the MSSTO algorithm converges significantly
faster than the other algorithms. For example, on functions F3, F15, and F17, the MSSTO al-
gorithm significantly reduces the fitness value in the initial iteration stages, demonstrating
its efficient search capability. Compared to other algorithms, the MSSTO achieves lower

Biomimetics 2024, 9, 678 13 of 23

final fitness values on most functions, highlighting its advantage in global search capability.
Additionally, compared to the STO algorithm, the MSSTO performs better in terms of
optimal solution and iteration speed, validating the effectiveness of the various strategies
introduced in this study.

Figure 4. Boxplot of MSSTO and competitor algorithms on the CEC-2017 test suite (dimension = 100).

Figure 5. Convergence analysis of the MSSTO and competitor algorithms in CEC-2017 test suite
(dimension = 30).

Biomimetics 2024, 9, 678 14 of 23

Figure 6. Convergence analysis of the MSSTO and competitor algorithms in CEC-2017 test suite
(dimension = 50).

Figure 7. Convergence analysis of the MSSTO and competitor algorithms in CEC-2017 test suite
(dimension = 100).

Biomimetics 2024, 9, 678 15 of 23

4.2. CEC-2022 Evaluation

This section further evaluates the MSSTO algorithm using the latest CEC-2022 test
suite to highlight its superiority and scalability. The CEC-2022 test suite also consists of
unimodal functions (F1), multimodal functions (F2–F5), hybrid functions (F6–F8), and
composite functions (F9–F12) [46].

This study tested the MSSTO algorithm in 10-dimensional and 20-dimensional sce-
narios. Figures 8 and 9 present the box plots for the 10-dimensional and 20-dimensional
scenarios, respectively. The figures indicate that the solution quality achieved by the MSSTO
algorithm surpasses that of the other competing algorithms on most of the test functions,
and the distribution of the solutions demonstrates higher stability. The convergence curves
in Figures 10 and 11 reveal that the MSSTO algorithm converges significantly faster than
the other compared algorithms on most test functions. This performance suggests that
the MSSTO algorithm can swiftly identify superior solutions during the initial phases of
the search.

Figure 8. Boxplot of MSSTO and competitor algorithms on the CEC-2022 test suite (dimension = 10).

Biomimetics 2024, 9, 678 16 of 23

Figure 9. Boxplot of MSSTO and competitor algorithms on the CEC-2022 test suite (dimension = 20).

Figure 10. Convergence analysis of the MSSTO and competitor algorithms in CEC-2022 test suite
(dimension = 10).

Biomimetics 2024, 9, 678 17 of 23

Figure 11. Convergence analysis of the MSSTO and competitor algorithms in CEC-2022 test suite
(dimension = 20).

4.3. Non-Parametric Test

This section utilizes the Friedman test to perform an in-depth analysis of the ex-
perimental outcomes, statistically analyzing the differences between MSSTO and other
compared algorithms. The Friedman test can be used to perform statistical ranking on the
performance of the MSSTO algorithm and its comparative algorithms on the CEC-2017
and CEC-2022 test suites. The comprehensive results are detailed in Table 2. In the CEC-
2017 benchmarks across three dimensions with 29 test functions, the MSSTO algorithm
achieved average rankings of 1.97, 1.90, and 1.93, respectively, securing the top overall
rank. In the CEC-2022 benchmarks over two dimensions with 12 test functions, the average
rankings were 1.58 and 1.92, also leading the overall rankings. These data fully demon-
strate the excellent performance and superior capabilities of the MSSTO algorithm in these
two test suites.

Table 2. Friedman test results of MSSTO and competitor algorithms on different dimensions of
CEC-2017 and CEC-2022.

Suites CEC-2017 CEC-2022

Dim 30 50 100 10 20

Rank Mean Total Mean Total Mean Total Mean Total Mean Total

MSSTO 1.97 1 1.90 1 1.93 1 1.58 1 1.92 1
STO 9.10 9 10.00 11 10.00 11 5.92 7 6.83 8
ASFSSA 4.45 4 4.07 3 4.45 4 4.17 3 5.42 5
GWO 5.48 5 5.00 5 4.86 5 5.83 6 5.00 4
DBO 9.17 11 8.76 10 9.10 10 7.50 9 8.17 10
COA 7.14 8 7.10 8 7.69 8 12.00 12 11.92 12
GJO 9.14 10 8.69 9 8.72 9 8.83 10 7.92 9
SABO 10.69 12 11.10 12 10.55 12 10.75 11 10.75 11
WOA 5.90 6 7.00 7 6.86 7 5.00 5 6.17 7

Biomimetics 2024, 9, 678 18 of 23

Table 2. Cont.

Suites CEC-2017 CEC-2022

Dim 30 50 100 10 20

Rank Mean Total Mean Total Mean Total Mean Total Mean Total

AVOA 6.86 7 5.83 6 4.41 3 7.42 8 6.00 6
SO 3.28 2 3.45 2 3.69 2 3.67 2 3.00 2
PSO 3.90 3 4.28 4 4.86 5 4.67 4 4.08 3

5. Task Scheduling for Remote Sensing Data Batch Processing Workflows
5.1. Case Dataset

To confirm the efficacy of the proposed method in remote sensing data batch processing
workflow task scheduling, this study selects aerosol optical depth (AOD) retrieval as the
experimental case. The experimental data are sourced from MODIS satellite imagery,
including MOD02, MYD02, MOD03, MYD03, MOD04_L2, and MYD04_L2. These data
are all acquired by sensors on the Aqua and Terra satellites. The geographical coordinates
for the output data span from 90° E to 120° E longitude and from 30° N to 50° N latitude,
featuring a spatial resolution of 1 km and a temporal resolution of one day.

In this study, the dataset for each day is treated as an independent task unit for pro-
cessing. To ensure consistency in the experiment, data from the same day are selected
to test the time consumption. The AOD retrieval method used in this study is the syner-
getic retrieval of aerosol properties (SRAP) algorithm [47]. The SRAP algorithm mainly
covers key steps such as atmospheric correction, radiometric calibration, cloud masking,
geometric correction, image mosaicking, and iterative calculation. The coverage area of the
experimental data is shown in Figure 12.

Figure 12. Coverage area of original data and result data.

5.2. Results and Discussion

According to the SRAP algorithm’s workflow, this study subdivides AOD retrieval
into eight processes (p1–p8). The computer hardware configuration used in the experiment

Biomimetics 2024, 9, 678 19 of 23

is shown in Table 3. The execution time matrix for each workflow on different types
of computers is presented in Table 4. To assess the application benefits of the MSSTO
algorithm in task scheduling for remote sensing data batch processing workflows, this
study contrasts it with the original STO algorithm and nine other swarm intelligence
optimization algorithms. These nine algorithms are mainly divided into two categories:
(1) highly cited algorithms—PSO [16], GWO [18], WOA [37], and AVOA [38]; (2) advanced
algorithms—DBO [39], SABO [40], COA [42], ASFSSA [43], and SO [44]. For all algorithms,
the maximum number of iterations is established at 100, with a population size set at 30.

Table 3. Cluster configuration.

Cluster Nodes Central Processing Unit Memory Storage

c1 Intel Core i7-12700 (2.10 GHz, 20 CPUs) 32 GB HDD, SSD
c2 Intel Core i5-12400 (2.50 GHz, 12 CPUs) 8 GB SSD
c3 Intel Core i5-11400 (2.60 GHz, 12 CPUs) 16 GB HDD, SSD
c4 Intel Core i5-12400 (2.50 GHz, 12 CPUs) 16 GB HDD, SSD
c5 Intel Core i7-9700 (3.00 GHz, 8 CPUs) 16 GB HDD, SSD
c6 Intel Celeron G5905 (3.50 GHz, 2 CPUs) 8 GB HDD
c7 Intel Core i3-10105 (3.70 GHz, 8 CPUs) 8 GB SSD
c8 Intel Core i3-12100 (3.30 GHz, 8 CPUs) 8 GB HDD, SSD

Table 4. Time overheads of the eight processes of the SRAP algorithm on eight different machines.

c
p Runtime (s)

P1 P2 P3 P4 P5 P6 P7 P8
c1 78 526 13 370 28 337 10 2745
c2 91 393 10 204 46 185 37 1581
c3 156 579 19 688 72 289 70 3110
c4 90 424 17 630 74 183 32 1616
c5 105 565 26 971 192 259 27 2316
c6 151 629 55 484 195 335 164 2895
c7 105 501 9 163 38 294 31 2540
c8 83 376 28 695 178 183 152 1679

Figure 13 presents the statistical results of the completion times for different algorithms
when the number of tasks is 100, 200, 300, 500, 700, and 1000, respectively. Clearly, the
MSSTO algorithm outperforms all other algorithms in the comparison, exhibiting the
shortest completion time. Additionally, Table 5 provides the comparison data of completion
times between the MSSTO algorithm and the other compared algorithms. The calculation
formula is as follows:

Value =
Makespanothers −MakespanMSSTO

MakespanMSSTO
(29)

where Value represents the percentage improvement in completion time of the MSSTO
algorithm relative to other algorithms, Makespanothers indicates the completion time of
the compared algorithms, and MakespanMSSTO represents the completion time of the
MSSTO algorithm.

Biomimetics 2024, 9, 678 20 of 23

Table 5. Makespan optimization percentage of MSSTO compared to competitor algorithms with
different numbers of tasks.

MSSTO VS
Number of Tasks

100 200 300 500 700 1000

STO 15.8% 25.7% 21.9% 20.9% 21.1% 20.3%
ASFSSA 19.4% 21.1% 15.1% 21.3% 17.4% 17.7%

GWO 19.2% 24.6% 21.7% 26.2% 24.1% 21.8%
DBO 10.9% 14.3% 14.1% 8.8% 10.2% 6.9%
COA 25.6% 26.4% 24.4% 21.3% 24.6% 20.9%
SABO 16.9% 16.8% 10.8% 10.4% 12.0% 9.1%
WOA 20.7% 11.0% 8.1% 15.6% 14.3% 17.0%
AVOA 4.0% 10.1% 4.6% 9.1% 3.8% 9.0%

SO 7.7% 4.2% 7.0% 4.2% 4.6% 6.0%
PSO 8.5% 13.9% 25.1% 23.7% 24.1% 20.8%

Figure 13. Comparison of makespan with different number of tasks.

From Table 5, when the number of tasks is 100, 200, 300, 500, 700, and 1000, the comple-
tion time of the MSSTO algorithm is reduced by 15% to 22% compared to the STO algorithm.
Compared to other swarm intelligence algorithms, such as PSO and GWO, the maximum
reduction in completion time can reach up to 26%. Even for the better-performing WOA
and AVOA algorithms, the completion time shows an improvement of 4% to 10%. These
results fully demonstrate that the MSSTO algorithm has significant advantages in reducing
task completion time compared to various other algorithms. Figure 14 shows the Gantt
chart of the time proportion for processing 100 tasks on eight computers using the MSSTO
algorithm combined with the RK task mapping strategy and the UD machine allocation
strategy. Through this Gantt chart, it is possible to clearly observe the distribution and time
occupancy of different processes of each task on different computers, thereby confirming
the significant advantages of the adopted strategies in optimizing task processing time.

Biomimetics 2024, 9, 678 21 of 23

Figure 14. Gantt chart for 100 tasks on eight machines.

6. Conclusions

To address the computational pressure brought by the rapid growth of remote sens-
ing big data, optimal scheduling for remote sensing data batch processing workflows
is accomplished in a distributed cluster computing environment. This study proposes
an improved Multi-Strategy Siberian Tiger Optimization algorithm, which significantly
enhances the accuracy and performance of the original STO algorithm by incorporating
Tent chaotic mapping, Lévy flight, Cauchy mutation, and learning strategies. Preliminary
tests show that the MSSTO algorithm demonstrates higher solution accuracy and a stronger
ability to avoid local optima compared to rival algorithms on the CEC-2017 and CEC-2022
benchmark suites.

In the application of task scheduling for remote sensing data batch processing work-
flows, this study employs the random key encoding scheme and the uniform distribution
encoding scheme, combined with the MSSTO algorithm, to achieve the optimal task ex-
ecution sequence and machine allocation strategy. In this study, we comprehensively
considered completion time and I/O performance for task scheduling. Future work should
further explore multi-objective integrated scheduling strategies that balance completion
time and I/O efficiency. As the task scale increases, the computation time of the MSSTO
algorithm also increases. In future work, we will conduct research to reduce the time
complexity of the MSSTO algorithm.

Furthermore, the proposed MSSTO algorithm demonstrates significant application
potential across various fields, including machine learning, path planning, and image pro-
cessing. It effectively addresses complex optimization problems, enhancing the execution
efficiency and accuracy of various tasks.

Author Contributions: Conceptualization, Z.L. and Y.X.; methodology, Z.L. and Y.X.; software,
Z.L and S.Z.; validation, Z.L. and W.Y.; formal analysis, Y.X. and P.L.; data curation, Z.L. and P.L.;
writing—original draft preparation, Z.L.; writing—review and editing, Z.L., Y.X., J.Z., W.Y., S.Z. and
B.H.; supervision, Z.L., Y.X. and W.Y.; project administration, Z.L.; funding acquisition, Y.X. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China (NSFC)
under Grant 42275147.

Institutional Review Board Statement: Not applicable.

Biomimetics 2024, 9, 678 22 of 23

Data Availability Statement: The study did not report any data.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

References
1. Montillet, J.P.; Kermarrec, G.; Forootan, E.; Haberreiter, M.; He, X.; Finsterle, W.; Fernandes, R.; Shum, C. How big data can help

to monitor the environment and to mitigate risks due to climate change: A review. IEEE Geosci. Remote Sens. Mag. 2024, 12, 67–89.
[CrossRef]

2. Yin, W.; Niu, C.; Bai, Y.; Zhang, L.; Ma, D.; Zhang, S.; Zhou, X.; Xue, Y. An Adaptive Identification Method for Potential Landslide
Hazards Based on Multisource Data. Remote Sens. 2023, 15, 1865. [CrossRef]

3. Zhang, Y. Application of big data in smart agriculture. Adv. Resour. Res. 2024, 4, 221–230.
4. Ma, Y.; Wu, H.; Wang, L.; Huang, B.; Ranjan, R.; Zomaya, A.; Jie, W. Remote sensing big data computing: Challenges and

opportunities. Future Gener. Comput. Syst. 2015, 51, 47–60.
5. Zhang, S.; Xue, Y.; Zhou, X.; Zhang, X.; Liu, W.; Li, K.; Liu, R. State of the art: High-performance and high-throughput computing

for remote sensing big data. IEEE Geosci. Remote Sens. Mag. 2022, 10, 125–149. [CrossRef]
6. Xue, Y.; Ai, J.; Wan, W.; Guo, H.; Li, Y.; Wang, Y.; Guang, J.; Mei, L.; Xu, H. Grid-enabled high-performance quantitative aerosol

retrieval from remotely sensed data. Comput. Geosci. 2011, 37, 202–206. [CrossRef]
7. Xue, Y.; Chen, Z.; Xu, H.; Ai, J.; Jiang, S.; Li, Y.; Wang, Y.; Guang, J.; Mei, L.; Jiao, X.; et al. A high throughput geocomputing

system for remote sensing quantitative retrieval and a case study. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 902–911. [CrossRef]
8. Yu, S.; Ming, Z.; Lu, Y.; Zhipeng, W. Research on associated orgabization and analysis of target-oriented multi-source heteroge-

neous data. Bull. Surv. Mapp. 2015, 102.
9. Zhang, S.; Xue, Y.; Zhang, H.; Zhou, X.; Li, K.; Liu, R. Improved Hungarian algorithm–based task scheduling optimization

strategy for remote sensing big data processing. Geo-Spat. Inf. Sci. 2023, 27, 1141–1154. [CrossRef]
10. Garey, M.R.; Johnson, D.S. Computers and Intractability; Freeman: San Francisco, CA, USA, 1979; Volume 174.
11. Lin, L.; Gen, M. Hybrid evolutionary optimisation with learning for production scheduling: State-of-the-art survey on algorithms

and applications. Int. J. Prod. Res. 2018, 56, 193–223. [CrossRef]
12. Li, X.; Guo, X.; Tang, H.; Wu, R.; Wang, L.; Pang, S.; Liu, Z.; Xu, W.; Li, X. Survey of integrated flexible job shop scheduling

problems. Comput. Ind. Eng. 2022, 174, 108786. [CrossRef]
13. Xu, Y.; Li, K.; Hu, J.; Li, K. A genetic algorithm for task scheduling on heterogeneous computing systems using multiple priority

queues. Inf. Sci. 2014, 270, 255–287. [CrossRef]
14. Gen, M.; Gao, J.; Lin, L. Multistage-based genetic algorithm for flexible job-shop scheduling problem. Intell. Evol. Syst. 2009, 11,

183–196.
15. Wang, Y.M.; Yin, H.L.; Qin, K.D. A novel genetic algorithm for flexible job shop scheduling problems with machine disruptions.

Int. J. Adv. Manuf. Technol. 2013, 68, 1317–1326. [CrossRef]
16. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural

Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.
17. Wang, L.; Cai, J.; Li, M.; Liu, Z. Flexible job shop scheduling problem using an improved ant colony optimization. Sci. Program.

2017, 2017, 9016303. [CrossRef]
18. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
19. Sun, J.; Zhang, Y.; Wu, Z.; Zhu, Y.; Yin, X.; Ding, Z.; Wei, Z.; Plaza, J.; Plaza, A. An efficient and scalable framework for processing

remotely sensed big data in cloud computing environments. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4294–4308. [CrossRef]
20. Du, Y.; Zhang, S.; Cheng, P.; Li, R.Y.M.; Yue, X.G. Remote Sensing Data Processing Process Scheduling Based on Reinforcement

Learning in Cloud Environment. CMES-Comput. Model. Eng. Sci. 2023, 135, 1966–1979. [CrossRef]
21. Trojovskỳ, P.; Dehghani, M.; Hanuš, P. Siberian tiger optimization: A new bio-inspired metaheuristic algorithm for solving

engineering optimization problems. IEEE Access 2022, 10, 132396–132431. [CrossRef]
22. Viji, D.; Dhanka, S.; Binda, M.; Thomas, M. Hybrid STO-IWGAN method based energy optimization in fuel cell electric vehicles.

Energy Convers. Manag. 2024, 305, 118249. [CrossRef]
23. Lakshmiprabha, K.; Kumar, U.A.; Pathak, P.; Elangovan, P. Efficiency and economic assessment of wind turbine-powered

pumped hydro-compressed air storage coupled with alkaline fuel cell using hybrid approach. Clean Technol. Environ. Policy 2024,
1–18. [CrossRef]

24. Kurapati, H.; Ramachandran, S. Enhancement of Convolutional Neural Network Hardware Accelerators Efficiency Using
Sparsity Optimization Framework. IEEE Access 2024, 12, 86034–86042. [CrossRef]

25. Al-Sarray, N.H.S.; Rahebi, J.; Demirhan, A. Detection of DDoS attacks in SDN with Siberian Tiger Optimization algorithm and
deep learning. Res. Sq. 2024. [CrossRef]

26. Gao, K.; Cao, Z.; Zhang, L.; Chen, Z.; Han, Y.; Pan, Q. A review on swarm intelligence and evolutionary algorithms for solving
flexible job shop scheduling problems. IEEE/CAA J. Autom. Sin. 2019, 6, 904–916. [CrossRef]

27. Lyu, L.; Jiang, H.; Yang, F. Improved Dung Beetle Optimizer Algorithm with Multi-Strategy for global optimization and UAV 3D
path planning. IEEE Access 2024, 12, 69240–69257. [CrossRef]

http://doi.org/10.1109/MGRS.2024.3379108
http://dx.doi.org/10.3390/rs15071865
http://dx.doi.org/10.1109/MGRS.2022.3204590
http://dx.doi.org/10.1016/j.cageo.2010.07.004
http://dx.doi.org/10.1016/j.jag.2011.06.006
http://dx.doi.org/10.1080/10095020.2023.2178339
http://dx.doi.org/10.1080/00207543.2018.1437288
http://dx.doi.org/10.1016/j.cie.2022.108786
http://dx.doi.org/10.1016/j.ins.2014.02.122
http://dx.doi.org/10.1007/s00170-013-4923-z
http://dx.doi.org/10.1155/2017/9016303
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1109/TGRS.2018.2890513
http://dx.doi.org/10.32604/cmes.2023.024871
http://dx.doi.org/10.1109/ACCESS.2022.3229964
http://dx.doi.org/10.1016/j.enconman.2024.118249
http://dx.doi.org/10.1007/s10098-024-02869-0
http://dx.doi.org/10.1109/ACCESS.2024.3416062
http://dx.doi.org/10.21203/rs.3.rs-4105679/v1
http://dx.doi.org/10.1109/JAS.2019.1911540
http://dx.doi.org/10.1109/ACCESS.2024.3401129

Biomimetics 2024, 9, 678 23 of 23

28. Kaur, M.; Singh, D.; Sun, K.; Rawat, U. Color image encryption using non-dominated sorting genetic algorithm with local chaotic
search based 5D chaotic map. Future Gener. Comput. Syst. 2020, 107, 333–350. [CrossRef]

29. Tawhid, M.A.; Ibrahim, A.M. Improved salp swarm algorithm combined with chaos. Math. Comput. Simul. 2022, 202, 113–148.
[CrossRef]

30. Motwakel, A.; Hashim, A.H.A.; Alamro, H.; Alqahtani, H.; Alotaibi, F.A.; Sayed, A. Chaotic Mapping Lion Optimization
Algorithm-Based Node Localization Approach for Wireless Sensor Networks. Sensors 2023, 23, 8699. [CrossRef]

31. Shlesinger, M.F.; Klafter, J. Lévy walks versus Lévy flights. In On Growth and Form: Fractal and Non-Fractal Patterns in Physics;
Springer: Berlin/Heidelberg, Germany, 1986; pp. 279–283.

32. Al-Temeemy, A.A.; Spencer, J.; Ralph, J. Levy flights for improved ladar scanning. In Proceedings of the 2010 IEEE International
Conference on Imaging Systems and Techniques, Thessaloniki, Greece, 1–2 July 2010; pp. 225–228.

33. Chegini, S.N.; Bagheri, A.; Najafi, F. PSOSCALF: A new hybrid PSO based on Sine Cosine Algorithm and Levy flight for solving
optimization problems. Appl. Soft Comput. 2018, 73, 697–726. [CrossRef]

34. Tian, Z.; Gai, M. Football team training algorithm: A novel sport-inspired meta-heuristic optimization algorithm for global
optimization. Expert Syst. Appl. 2024, 245, 123088. [CrossRef]

35. Bean, J.C. Genetic algorithms and random keys for sequencing and optimization. ORSA J. Comput. 1994, 6, 154–160. [CrossRef]
36. Şahman, M.A.; Korkmaz, S. Discrete artificial algae algorithm for solving job-shop scheduling problems. Knowl.-Based Syst. 2022,

256, 109711. [CrossRef]
37. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
38. Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. African vultures optimization algorithm: A new nature-inspired metaheuris-

tic algorithm for global optimization problems. Comput. Ind. Eng. 2021, 158, 107408. [CrossRef]
39. Xue, J.; Shen, B. Dung beetle optimizer: A new meta-heuristic algorithm for global optimization. J. Supercomput. 2023, 79,

7305–7336. [CrossRef]
40. Trojovskỳ, P.; Dehghani, M. Subtraction-average-based optimizer: A new swarm-inspired metaheuristic algorithm for solving

optimization problems. Biomimetics 2023, 8, 149. [CrossRef]
41. Chopra, N.; Ansari, M.M. Golden jackal optimization: A novel nature-inspired optimizer for engineering applications. Expert

Syst. Appl. 2022, 198, 116924. [CrossRef]
42. Jia, H.; Rao, H.; Wen, C.; Mirjalili, S. Crayfish optimization algorithm. Artif. Intell. Rev. 2023, 56, 1919–1979. [CrossRef]
43. Ouyang, C.; Qiu, Y.; Zhu, D. Adaptive spiral flying sparrow search algorithm. Sci. Program. 2021, 2021, 6505253. [CrossRef]
44. Hashim, F.A.; Hussien, A.G. Snake Optimizer: A novel meta-heuristic optimization algorithm. Knowl.-Based Syst. 2022, 242,

108320. [CrossRef]
45. Awad, N.; Ali, M.; Liang, J.; Qu, B.; Suganthan, P.; Definitions, P. Evaluation criteria for the CEC 2017 special session and

competition on single objective real-parameter numerical optimization. Technol. Rep. 2016, 5–8.
46. Luo, W.; Lin, X.; Li, C.; Yang, S.; Shi, Y. Benchmark functions for CEC 2022 competition on seeking multiple optima in dynamic

environments. arXiv 2022, arXiv:2201.00523.
47. Xue, Y.; He, X.; Xu, H.; Guang, J.; Guo, J.; Mei, L. China Collection 2.0: The aerosol optical depth dataset from the synergetic

retrieval of aerosol properties algorithm. Atmos. Environ. 2014, 95, 45–58. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.future.2020.02.029
http://dx.doi.org/10.1016/j.matcom.2022.05.029
http://dx.doi.org/10.3390/s23218699
http://dx.doi.org/10.1016/j.asoc.2018.09.019
http://dx.doi.org/10.1016/j.eswa.2023.123088
http://dx.doi.org/10.1287/ijoc.6.2.154
http://dx.doi.org/10.1016/j.knosys.2022.109711
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1016/j.cie.2021.107408
http://dx.doi.org/10.1007/s11227-022-04959-6
http://dx.doi.org/10.3390/biomimetics8020149
http://dx.doi.org/10.1016/j.eswa.2022.116924
http://dx.doi.org/10.1007/s10462-023-10567-4
http://dx.doi.org/10.1155/2021/6505253
http://dx.doi.org/10.1016/j.knosys.2022.108320
http://dx.doi.org/10.1016/j.atmosenv.2014.06.019

	Introduction
	 Problem Definition
	Methods
	Siberian Tiger Optimization
	Prey Hunting
	Fighting with a Bear

	Multi-Strategy Improved Siberian Tiger Optimization
	Tent Map
	Lévy Flight
	Cauchy Mutation
	Learning Strategy

	Continuous to Discrete Encoding Scheme

	Algorithm Performance Evaluation
	CEC-2017 Evaluation
	CEC-2022 Evaluation
	Non-Parametric Test

	Task Scheduling for Remote Sensing Data Batch Processing Workflows
	Case Dataset
	Results and Discussion

	Conclusions
	References

