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Abstract: Sterol regulatory element-binding protein 1 (SREBP1) is an important transcription factor
that controls lipid metabolism and adipogenesis. Two isoforms, SREBP1a and SREBP1c, are generated
by alternative splicing of the first exon of the SREBF1 gene. The porcine SREBF1 gene has mainly been
studied for its role in lipid metabolism in adipose tissues, but little is known about its involvement,
and the role of its two isoforms, in adipogenesis. The aim of the present study was to introduce
a deletion in the 5′-regulatory region of the SREBF1c gene, considered crucial for adipogenesis,
using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein
9 (CRISPR/Cas9) method. This approach allows for the evaluation of how inhibiting SREBF1c
transcription affects the expression of other genes essential for adipocyte differentiation, particularly
PPARG, CEBPA, CEBPB, CEBPD, GATA2, and FABP4. It was observed that disrupting the SREBF1c
isoform had no effect on the GATA2 gene but did result in a decrease in the expression of the CEBPA
and CEBPD genes, an increase in the expression of CEBPB, and an inhibition in the expression of the
PPARG and FABP4 genes. These changes in gene expression blocked adipogenesis, as could be seen
by the failure of lipid droplets to accumulate. Our results provide evidence highlighting the pivotal
role of the SREBP1c isoform in the regulation of porcine adipogenesis.
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1. Introduction

Sterol regulatory element binding proteins (SREBPs) are a family of basic helix–loop–
helix leucine zipper transcription factors. They regulate lipid homeostasis by binding to
sterol regulatory elements (SREs) in target genes. Two proteins, SREBP1 and SREBP2,
are encoded by the two genes SREBF1 and SREBF2, respectively. The SREBP1 protein is
involved in the synthesis of fatty acid, phospholipid, and triacylglycerol, while SREBP2
is responsible for the regulation of cholesterol metabolism [1,2]. Two isoforms of SREBP1,
called SREBP1a and SREBP1c, have been recognized. They arise from alternative transcrip-
tion start sites and differ in their first exon [3]. The SREBP1c isoform is the predominant
form expressed in in liver, adipose tissue, and skeletal muscle, whereas expression of
SREBP1a has been found in the spleen, small intestine, heart, thymus, and proliferating cell
lines [4,5]. SREBP2 is ubiquitously expressed in different tissues, especially in embryonic
tissues, liver, and adipose tissue [6,7].

The SREBPs have been extensively studied in rodents, in which lipogenesis is regulated
in both the liver and adipose tissue, while, in nonrodent mammals such as the domestic
pig, only one lipogenic organ is active—the adipose tissue [8]. SREBP1 has been recognized
as a key regulator of lipogenesis in pigs [9]. The SREBF1 gene plays a role in fat metabolism
and intramuscular fat content in pigs. It has been shown that the expression of the SREBF1
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gene correlates with the fat deposition rate in growing pigs [10]. It is also important for
the regulation of fat deposition in muscle during the postnatal growth of pigs [11]. Higher
expression levels of the SREBF1 gene have been observed in the muscle tissues of fatty pig
breeds compared to those in the leaner pig [12]. Polymorphisms in the SREBF1 gene have
been associated with fatness traits in pigs [13–15].

SREBP1 is also involved in the regulation of adipogenesis. Initially, it was named
“adipocyte determination and differentiation-dependent factor 1” (ADD1), which was later
identified as the SREBP1c isoform [16,17]. The process of fat cells formation is controlled
by a complex transcriptional network of many factors, of which proliferator-activated
receptor γ (PPARγ) and members of the CCAAT-enhancer-binding protein (CEBP), such
as C/EBPα and C/EBPβ, play a central role [18] (Figure 1). SREBP1 was identified as a
proadipogenic transcription factor that induces PPARγ expression through the production
of endogenous ligands [16]. The role of SREBP1 in adipogenesis has mainly been studied
in mouse and human cells. There have been a number of studies suggesting that the
Srebf1c isoform is the main transcription factor of adipogenesis [18–20]. The expression of
this isoform increases during differentiation of the cultured mouse 3T3-L1 preadipocytes.
On the other hand, studies in transgenic mice overexpressing SREBP1c have shown that
adipocyte differentiation is inhibited, leading to lipodystrophy [21]. It has also been shown
that the amount of white adipose tissue was not significantly decreased in mice with the
disrupted Srebp1c gene [22]. Subsequent experiments on 3T3-F442A preadipocytes have
revealed that the Srebf1a isoform is also a key regulator of transcriptional cascade during
adipogenesis [23]. The loss of function of Srebf1a inhibits adipocyte differentiation. Research
on SREBF1 isoforms has also been extended to human cells: using the Simpson–Golabi–
Behmel syndrome (SGBS) preadipocyte cell line as a valuable model for studying human
adipocyte function [24]. RNA interference experiments in SGBS cells showed that while
both SREBP1 variants were targeted, only SREBP1a expression significantly decreased [25].
The SREBP1a isoform was predominant in these cells, and SREBP1c was expressed at a low
level. These studies show differences in the functioning of the SREBP1 transcription factor
depending on whether cells or model organisms are used.
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Data on the role of the SREBF1 gene during adipogenesis in the pig are scarce, despite
the importance of understanding the mechanisms controlling fat tissue formation in this
key livestock species [26]. Adipose tissue grows by two processes: the generation of new
adipocyte cells and the increase in the size of adipocytes [27]. Adipose tissue impacts neona-
tal survival, reproductive ability, postnatal growth, and meat production efficiency [28]. The
pig has also been recognized as a better animal model for human obesity than rodents due
to anatomical, physiological, and metabolic similarities with humans [29,30]. Regarding
the role of the SREBF1 gene during porcine adipogenesis, studies have only demonstrated
that its expression levels increase progressively with the duration of differentiation [31,32].
Information on the role of the two SREBF1 isoforms is also lacking.

Given the limited data on the role of the SREBF1 gene and the significance of its
two transcriptional forms in porcine adipogenesis, our study aimed to explore the pivotal
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role of this transcription factor in pigs. The revolutionary gene-editing tool CRIPSR/Cas9
has enabled the generation of gene-specific knockouts which can be used to study gene
function [33]. To clarify the role of the SREBF1 gene during adipogenesis in the pig, we
generated a mesenchymal stem cells derived from adipose tissue (AD-MSC) with a targeted
deletion in the SREBF1 gene using the CRIPSR/Cas9 method. This deletion disrupts the 5′-
regulatory region specific to the SREBF1c isoform while preserving the SREBF1a isoform, as
the deletion was localized in an intron. Analysis of the transcriptional activity of the SREBF1
gene in relation to other key genes that are important in adipocyte differentiation (PPARG,
CEBPA, CEBPB, CEBPD, GATA2, and FABP4) allowed us to describe their expression
patterns during differentiation. Understanding SREBF1 activity provides valuable insights
into the timing and sequential activation of key genes involved in adipocyte differentiation.

2. Results
2.1. Characterization of the 5′-Regulatory Region in Porcine SREBF1 and the Introduction of a
CRISPR/Cas9-Mediated Deletion in This Region

Since the promoter region of the porcine SREBF1 gene has not been well character-
ized, we performed, as the first step, an in silico analysis of the 5′-regulatory sequence by
identifying binding sites for known transcription factors for adipogenesis using DNA Star
Lasergene (https://www.dnastar.com/software/ accessed on 10 January 2022). Several
regulatory elements—such as TATA-box, SP1 elements, SRE/SRE-2, NF-Y, and LXRE1
motifs—were identified in the proximal 5′-regulatory region of the gene that encodes the
SREBF1c isoform. To delete the proximal regulatory region harboring the majority of regu-
latory elements, four single guide RNAs (sgRNAs) were tested in different combinations,
but, ultimately, two were selected for introducing cleavage sites in porcine mesenchymal
stem cells derived from adipose tissue (AD-MSC) (Figure 2, Table S1).
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sgRNA1 and sgRNA3 were cloned into the pX330 plasmid, and AD-MSCs were
transfected via nucleofection. The transfection efficiency of AD-MSCs, measured with a
control plasmid (pmaxGFP Vector, Lonza, Basel, Switzerland), was approximately 40%
(Figure S1). Single AD-MSC colonies post-transfection were genotyped by PCR, targeting
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regions overlapping the sgRNA binding sites, resulting in the identification of two colonies
with deletions in the target gene (Figure S2). Subsequent Sanger sequencing of PCR
products from these cells revealed a 567 bp deletion in the 5′-regulatory region of SREBF1c
(Figure 3). In silico analysis of the porcine SREBF1 gene sequence confirmed that this
deleted fragment was located within intron 1 of the SREBF1a isoform (Figure 4). This
approach enabled us to obtain modified AD-MSCs with a non-functional SREBF1c isoform
while preserving an intact transcript of the SREBF1a isoform.
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E1–E4: exons 1–4. Genomic position of the 567 bp deletion: 12: 60740868-60741434.

2.2. Characteristics of the Expression Profile of the SREBF1a and of SREBF1c Isoforms in
Wide-Type Cells (AD-MSCWT) and in AD-MSC with Disrupted SREBF1c Gene (AD-MSCDEL)
and Adipose Tissues

The relative transcript level of the SREBF1a isoform was similar in undifferentiated
cells (day 0) for both AD-MSCWT or AD-MSCDEL (Figure 5a). After induction of adipogene-
sis, increased expression of this isoform was detected on day 2 in AD-MSCWT, with its level
being significantly higher than in AD-MSCDEL (p < 0.001). In days 6 and 8 of differentiation,
a higher level of SREBF1a was observed in AD-MSCDEL (p < 0.05 for day 6 and p < 0.001 for
day 8). The analysis of the transcript level of SREBF1c in AD-MSCWT indicated that there
was an increase in expression from day 8 of differentiation (Figure 5b). As expected, no
expression of this isoform was detected in AD-MSCDEL.
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p < 0.05.

Additionally, the expression of both isoforms of the SREBF1 gene was analyzed in
porcine adipose tissue to determine which isoform plays an essential role in the function of
this tissue in pigs. Two adipose tissue were analyzed—subcutaneous and visceral. In both
tissues, the expression of SREBF1c was significantly higher than in SREBF1a (Figure S3). Both
transcriptional forms showed higher expression in visceral fat tissues (p < 0.001) (Figure 6).
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2.3. Monitoring of Lipid Droplet Accumulation in AD-MSCWT and in AD-MSCDEL

The accumulation of lipids was monitored using BODIPY staining for ten days of
adipogenesis (Figure 7). On day 0 of differentiation (MSC), no lipid droplets were observed.
On day 2 (d2), differentiation of single cells was visible in both AD-MSCWT and AD-
MSCDEL, but the amount of lipid droplets was higher in AD-MSCWT (p < 0.05). With
day 4 of adipogenesis, a significant increase (p < 0.001) in lipid droplet accumulation was
observed in AD-MSCWT, while cells with a disrupted SREBF1c isoform (AD-MSCDEL) did
not accumulate lipid droplets and did not differentiate into adipocytes.
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successive days of adipocyte differentiation (a). Error bars represent 95% confidence intervals. D:
day; **: significantly higher in AD-MSCWT than in AD-MSCDEL, p < 0.001; *: significantly higher in
AD-MSCWT than in AD-MSCDEL, p < 0.05. Representative images showing adipocyte differentiation
(b). Lipid droplets were stained with BODIPY 493/503 (green); the nuclei were counterstained with
DAPI (blue). Scale bar: 50 µm.

2.4. Expression of Key Adipogenic Genes in AD-MSCWT and AD-MSCDEL

The expression patterns of six genes important for adipogenesis were evaluated in AD-
MSCWT and AD-MSCDEL. These genes were selected as key transcription factors involved
in adipogenesis (PPARG, CEBPA, CEBPB, CEBPD, and GATA2) and as a marker gene for
adipocytes (FABP4).The GATA2 gene was selected as an anti-adipogenic transcription factor,
CEBPD and CEBPB as early genes induced during adipogenesis, CEBPA and PPARG as
critical transcription factors in adipogenesis, and FABP4 as a gene important for terminal
adipocyte differentiation. GATA2 was downregulated during adipocyte differentiation in
both AD-MSCWT and AD-MSCDEL, and its transcript level was not significantly different
between these cell types apart from on day 6 (p < 0.05) (Figure 8a). The expression profile of
CEBPD was very similar in AD-MSCWT and AD-MSCDEL, with visibly higher expression
in AD-MSCWT on day 0 (p < 0.001), day 4 (p < 0.01), and day 8 (p < 0.01) (Figure 8b). CEBPB
showed a characteristic peak of transcriptional activity on day 4 (p < 0.001) of adipogenesis
in AD-MSCWT. CEBPB was the only gene to show a higher transcript level in AD-MSCDEL
(p < 0.05) than in AD-MSCWT (Figure 8c). CEBPA was upregulated during differentiation
in AD-MSCWT, and its transcript level was significantly higher in AD-MSCWT than in
AD-MSCDEL on day 2 (p < 0.01), day 6, day 8, and day 10 (p < 0.001) (Figure 8d). Increasing
transcript levels of PPARG and FABP4 genes were observed during differentiation in
AD-MSCWT (Figure 8e,f). An increase in PPARG gene expression was observed over the
subsequent days of examination, whereas FABP4 gene expression was detected starting
from day 6 of differentiation. No expression of either gene was found in AD-MSCDEL
(p < 0.001).
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being expressed. The expression levels of CEBPA and CEBPD genes were reduced. The 
modification did not cause major changes in GATA2 gene expression—instead, an increase 
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activation relies on lipid-derived ligands produced through SREBF1c activity, the absence 

Figure 8. Relative transcript levels of GATA2 (a), CEBPD (b), CEBPB (c), CEBPA (d), PPARG (e),
and FABP4 (f) during subsequent days of adipogenesis in AD-MSCWT and AD-MSCDEL. Error bars
represent 95% confidence intervals. **: significantly higher in AD-MSCWT than in AD-MSCDEL,
p < 0.001; *: significantly higher in AD-MSCWT than in AD-MSCDEL, p < 0.01; ˆˆ: significantly lower in
AD-MSCWT than in AD-MSCDEL, p < 0.001; ˆ: significantly lower in AD-MSCWT than in AD-MSCDEL,
p < 0.05.

Summarizing this experiment (Table 1), we showed that the lack of activity of SREBF1c
resulted in adipogenesis being blocked and in the PPARG and FABP4 genes not being
expressed. The expression levels of CEBPA and CEBPD genes were reduced. The modi-
fication did not cause major changes in GATA2 gene expression—instead, an increase in
the expression of the CEBPB gene was observed in the modified AD-MSC. Since PPARγ
activation relies on lipid-derived ligands produced through SREBF1c activity, the absence
of the SREBF1c transcript led to disrupted expression of PPARG and, consequently, its
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downstream target, FABP4. The disruption of the SREBF1c isoform affected the expression
of genes acting upstream in the adipogenesis cascade, resulting in an altered expression
pattern in AD-MSCDEL.

Table 1. Summary of the results of lipid accumulation (BODIPY) and gene expression analysis in
AD-MSCDEL when compare to AD-MSCWT. An arrow pointing down (↓) indicates lower expression,
an arrow pointing up (↑) indicates higher expression, and an equal sign (=) indicates no difference
between the two cell types; - means there was no detection on that day.

Day 0 Day 2 Day 4 Day 6 Day 8 Day 10

BODIPY - ↓ ↓ ↓ ↓ ↓
SREBF1a = ↓ = ↑ ↑ =

SREBF1c ↓ ↓ ↓ ↓ ↓ ↓
GATA2 = = = ↑ = =

CEBPD ↓ ↑ ↓ ↓ = =

CEBPB ↓ ↑ ↓ ↑ ↑ =

CEBPA ↑ ↓ = ↓ ↓ ↓
PPRAG ↓ ↓ ↓ ↓ ↓ ↓
FABP4 ↑ = = ↓ = ↓

3. Discussion

Adipocyte differentiation is governed by the complex action of many transcription
factors. It has been well established that PPARγ is the master regulator of adipogenesis
and that the members of the C/EBP family play critical roles in the normal course of this
process. Studies of the importance of SREBP and their isoforms during adipogenesis have
provided different results, and there are no data about the role of these isoforms in the
formation of fat cells in the pig. In the present study, we used the CRIPSR/Cas9 genome
editing technique to reveal the crucial role of the SREBF1c gene in adipogenesis in the
pig. The study was performed on a well-established system of in vitro differentiation
of mesenchymal stem cells into adipocytes [34,35]. Temporal changes in the transcript
level of seven genes (SREBF1, PPARG, CEBPA, CEBPB, CEBPD, GATA2, and FABP4) were
detected in both wild-type and modified AD-MSCs. The transcriptional profiles of the
genes in AD-MSCWT were similar to those observed during adipocyte differentiation of
3T3-L1 cells and to experiments performed previously on the porcine in vitro adipogenesis
system [31]. As a negative regulator of adipogenesis, GATA2 was downregulated during
porcine adipogenesis. The murine Gata2 mRNA level was also found to decrease very soon
after the induction of adipocyte differentiation [36]. Cebpb and Cebpd are early transcription
factors and so usually have the same profile during adipogenesis in mouse cell lines,
with peaks in the early hours or days of differentiation, but then declining [37]. In our
differentiation system, this type of profile was observed only for CEBPB. The expression of
PPARG and CEBPA gradually increased over the subsequent days of differentiation, while
the FABP4 gene was upregulated in the final day of differentiation, which is in accordance
with observations in other murine or porcine in vitro adipogenesis systems [35,38].

The analysis of the expression profiles of SREBF1a and SREBF1c in AD-MSCWT showed
that an increase in the expression of SREBF1a takes place in the early stages of differentiation,
which is why SREBF1c is upregulated in the late stages of adipogenesis. The same trend
was observed in 3T3-F442A cells where the expression of Srebf1a was found in the very
early stage of induction, before Srebf1c [23]. However, it should be pointed out that the
3T3-F442A cell line shows very rapid adipocyte differentiation in vitro, taking only hours
with the use of staurosporine or dexamethasone induction [39]. The entire differentiation
process lasted six days. Our study was conducted on MSC derived from adipose tissue,
which reflects a more physiological process, as this type of MSC has a higher adipogenic
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differentiation capacity [40]. Additionally, we also showed in this study for the first time
the differences in the expression level of two isoforms of the SREBF1 gene in subcutaneous
and visceral adipose tissue in pigs: SREBF1c was the predominant isoform expressed in
these porcine adipose tissues. This is in accordance with data on humans showing that this
isoform has greater expression in different adipose tissue depots than does SREBF1a [41].

The use of the CRISPR/Cas9 editing method to generate a deletion in the SREBF1 gene,
so as to disrupt the SREBF1c isoform but not the SREBF1a isoform, allowed comprehensive
analysis of the expression pattern of genes that encode the crucial transcriptional factors
and marker proteins for adipogenesis in the absence of SREBF1c. This modification had
no effect on GATA2 gene expression in AD-MSCDEL. This may be due to the fact that
this factor is expressed only in the very early stages of adipogenesis (before expression
of the SREBF1c isoform) and its downregulation is necessary to induce differentiation
into adipocytes [31,36]. The CEBPD gene expression pattern was also similar in both
AD-MSCDEL and AD-MSCWT, which may indicate that there is no direct link between
CEBPD and SREBF1c transcriptional factors. An interesting observation was made for the
CEBPB gene, which was the only one to show a higher expression in AD-MSCDEL than in
AD-MSCWT. It is known that C/EBP transcription factors may regulate the SREBP1c gene
expression during adipogenesis. For example, C/EBPβ can directly regulate SREBP1c by
binding to its promoter region, and mice lacking C/EBPβ have reduced SREBP1c levels
in adipose tissue [42]. It has also been shown that SREBP-1c can directly transactivate
the C/EBPβ promoter [43]. Another study has shown that C/EBPβ phosphorylation
promotes the expression of Srebf1a, which induces the expression of other adipogenic genes
like Pparg, Cebpa, and Srebf1c [23]. So far, there have been no data on the impact of the
lack of SREBP1c expression on CEBPB expression. It can be assumed that if the SREBP1c
transcript is missing, a compensatory mechanism could lead to increased expression of the
CEBPB gene. Our observation that CEBPB expression is increased in AD-MSCs lacking
SREBF1c expression may suggests that CEBPB may respond to the loss of SREBF1c to
maintain the adipogenic process, possibly helping to stabilize adipocyte development
in the absence of this key isoform. Decreased expression was observed for the CEBPA
gene, and complete inhibition of the expression of the PPARG and FABP4 genes in AD-
MSCDEL was noted. Since SREBF1 expression is essential for providing lipid ligands to
PPARγ [16], the disruption of SREBF1c transcription can block the expression of PPARG
itself and its downstream target, FABP4 [44]. Given the regulatory relationship between
PPARγ and C/EBPα [19], the absence of SREBF1c may consequently lead to reduced
CEBPA expression. The study conducted by the authors of [23] showed that the order of
expression of adipogenic genes during adipogenesis using 3T3-F442A cells is as follows:
Cebpb, Srebf1a, Pparg2, Cebpa, Srebp1c, and Fabp4. The expression pattern observed in our
in vitro model of adipogenesis indicates that CEBPA is activated before PRRAG and FABP4.
Since transcriptional regulation of adipogenesis is governed by the expression of the two
main players PPARG and CEBPA [45], its absence blocks adipocyte differentiation; this was
observed in our system as failure of lipid droplets to accumulate.

It is possible that the modification introduced in the SREBF1c gene locus may also
affect the expression of other genes. A limitation of our study is its focus on a selection of
genes specifically associated with adipogenesis and mature adipocytes. To address this,
future research should employ RNA-Seq analysis, which would provide a comprehensive
dataset and deeper insights into gene expression changes across the transcriptome.

Our studies have demonstrated the effectiveness of the CRISPR/Cas9 method as
a gene-editing tool for examining gene functions. By generating MSCs with a deletion
in the regulatory region of the SREBF1 gene, we were able to identify the critical role
of the SREBF1c isoform in adipogenesis. To the best of our knowledge, this is the first
experiment of this type in the pig. To date, such experiments have been conducted only in
other organisms. Srebp-1c knockout mice have been used to investigate the upstream and
downstream regulatory mechanisms of SREBP-1c in vitro [46]. Knockout of the SREBF1
gene by the introduction of a mutation (a 1bp deletion to produce a termination codon)
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using CRISPR/Cas9 has previously been conducted for zebrafish [47], where it gave insight
into the biology of SREBF1 in the fatty metabolism and musculoskeletal functioning of the
zebrafish. In our study, we introduced a mutation to this gene, in the form of a large deletion
of the 5′ regulatory region. A similar approach has been used to introduce large deletions
in the porcine SRY gene for study causes of sex reversal in gene-edited pigs [48] and a
93-bp deletion in the 3′-untranslated region (UTR) of the TNFα gene to generate a porcine
Crohn’s disease model [49]. This shows how advances in CRISPR/Cas9 technology have
strongly impacted swine research, enabling precise genetic changes that could improve pig
breeding, increase disease resistance, and develop biomedical models [50–52].

Modifying porcine MSCs with CRISPR/Cas9 technology shows promise in creating an-
imal research models for human diseases, including obesity. This technology has been used
to silence genes crucial for adipocyte differentiation, such as PPARG and FKBP5 [53], as
well as to target three genes (SOCS3, DUSP1, and SIK1) that are upregulated in the adipose
tissue of patients with nonalcoholic fatty liver disease (NAFLD) [54]. These experiments
were performed on preadipocytes derived from adipose tissue and human adipose-derived
mesenchymal stem cells (hADMSCs), respectively. Researchers have also developed human
brown-like cells (HUMBLE) by activating the UCP1 gene in human white preadipocytes
using CRISPR/Cas9 technology [55]. Additionally, there are examples of using ribonucleo-
proteins (RNPs) consisting of the Cas9 protein and sgRNA to disrupt the NRIP1 gene in
mouse and human progenitor cells ex vivo prior to their differentiation into adipocytes.
This approach enabled the generation of adipocytes with beige characteristics [56].

Building on these technologies, it is expected that in the future, pigs could be genet-
ically engineered to exhibit specific fat properties or optimized fat content in their meat,
tailored to meet diverse applications or dietary preferences. A recent example of such a
study is the creation of LGALS12 knockout piglets using the CRISPR/Cas9 method com-
bined with somatic cell nuclear transfer (SCNT) technology [57]. The LGALS12 gene has
been identified as important for porcine fat deposition. The study revealed that the absence
of LGALS12 suppresses preadipocyte proliferation and affects lipogenesis in porcine intra-
muscular and subcutaneous adipocytes. Further studies are needed to improve fat traits in
pigs through genetic modifications of different loci.

4. Materials and Methods
4.1. Cell Culture and Induction of Adipogenesis

Mesenchymal stem cells isolated from adipose tissue (AD-MSC) were cultured in
Advanced DMEM medium (Gibco, Thermo Fisher Scientific, Waltham, MA, USA) supple-
mented with 10% FBS (Sigma-Aldrich, Darmstadt, Germany), 5 ng/mL FGF-2 (PromoKine,
Heidelberg, Germany), 2 mM L-Glutamine (Gibco), 1 mM 2-mercaptoethanol (Sigma-
Aldrich), 1× antibiotic antimycotic solution (Sigma-Aldrich), and 1× MEM NEAA (Gibco)
at 37 ◦C in 5% CO2. After the cells reached confluency, adipogenesis was induced using a
differentiation medium. The differentiation medium was composed of Advanced DMEM
(Gibco), 10% FBS (Sigma-Adrich), 1× antibiotic antimycotic solution (Sigma-Aldrich), 5
ng/mL FGF-2 (PromoKine), 1× Linoleic Acid Albumin (Sigma-Aldrich), 1× ITS Sup-
plement (Sigma-Aldrich), 1 µm Dexamethasone (Sigma-Aldrich), 100 µm Indomethacin
(Sigma-Aldrich), and 50 µm IBMX (Sigma-Aldrich). Differentiation was allowed to occur
over ten days, with the medium being changed every 24 h.

4.2. Monitoring of Lipid Droplet Formation

The accumulation of lipid droplets was monitored every day by visual examination
under phase-contrast microscopy (TS100 Eclipse, Nikon, Melville, NY, USA). BODIPY
staining was performed by fixing cells with 4% paraformaldehyde in PBS (w/v) for 10 min
at room temperature and washed with PBS three times. The cells were then incubated with
BODIPY (Life Technologies, Grand Island, NY, USA) in PBS (2.7 µg/mL) and washed three
times in PBS. The nuclei were counterstained with DAPI in Vectashield medium (Vector
Laboratories, Newark, CA, USA). The BODIPY fluorescence intensity was measured using
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a Nikon E600 Eclipse microscope (Melville, NY, USA) and Lucia software version 1.0
(Laboratory Imaging, Prague, Czech Republic) and quantified using ImageJ software
version 1.54g (NIH, Bethesda, MD, USA).

4.3. gRNA Design and MSC Transfection

gRNAs targeting the 5′-flanking region of the SREBF1c gene were designed using
the CRISPOR tool (http://crispor.tefor.net/ accessed on 15 January 2022). The sequence
of gRNA is shown in Table S1. The gRNA oligos with a BbsI overhang were cloned into
the pX330 vector (Addgene #42230, Cambridge, MA, USA) carrying a U6 promoter, an
sgRNA scaffold sequence, and the puromycin resistance gene. Then, 2 µg DNA from two
plasmids was used for cotransfection into AD-MSCs by nucleofection with a P2 Primary
Cell 4D-Nucleofector X Kit (Lonza, Basel, Switzerland) using a 4D Nucleofector Lonza
system (Lonza). Transfection efficiency was determined using a control plasmid (pmaxGFP
Vector, Lonza). After transfection with plasmids DNA, cells were plated on six-well plates
and, after the next 24 h, they were selected using 2 µg/mL puromycin for 48 h. Cells were
further cultured to obtain single-cell colonies.

4.4. PCR Genotyping of AD-MSC Cells

PCR reactions were performed to screen cell colonies for a deletion in the 5′-regulatory
sequence of SREBF1c. First, genomic DNA was isolated from single MSC colonies using Quick-
Extract DNA Extraction Solution (Biosearch Technologies, Petaluma, CA, USA) and from
wild-type MSCs using MasterPure Complete DNA & RNA Purification kit (Biosearch Tech-
nologies). PCR reactions were performed using SREBF1c gRNA1 F: 5′ctgagactgctggggagtgt
and SREBF1c gRNA3 R: 5′tcaggagcgggctctcac primers. The expected PCR product was 954
bp in unmodified cells and approximately 400 bp in MSC colonies with a deletion in the
5′-regulatory sequence of SREBF1c.

4.5. Sanger DNA Sequencing

The PCR products were purified using Exonuclease I and FastAP Thermosensitive
Alkaline Phosphatase (Thermo Fisher Scientific, Waltham, MA, USA). After the purification,
a BigDye Terminator v3.1 Cycle Sequencing kit (Thermo Fisher Scientific) was used to
generate fragments that were subsequently filtered using Sephadex G-50 (Sigma-Aldrich).
Capillary electrophoresis was run on 3130 Genetic Analyzer (Applied Biosystems, Thermo
Fisher Scientific, Waltham, MA, USA), and the resulting chromatograms were analyzed
using the SeqMan Pro (DNASTAR) software version 12.2.0 package.

4.6. RNA Isolation, cDNA Synthesis, and Real-Time PCR

Total RNA was extracted from AD-MSC cell cultures as well as from subcutaneous
and visceral adipose tissues using TriPure Isolation Reagent (Roche Diagnostic, Mannheim,
Germany). After quantitative and qualitative analyses with a Nanodrop 2000 (Thermo
Scientific) spectrophotometer, 1 µg of RNA was reverse-transcribed into cDNA using
a Transcriptor First Strand cDNA Synthesis Kit (Roche). Real-time PCR primers were
designed for each transcript to anneal to different exons using the Sscrofa 11.1 reference
sequence (Table S2). PCR reactions were performed in triplicate on a Light Cycler 480 II
(Roche) instrument with a Light Cycler 480 SYBR Green I Master Kit (Roche). The relative
mRNA levels of tested genes were quantified using the second derivative maximum
method (Roche), and the results were normalized using the geometric mean of expression
of RPL27 and PPIA as reference genes [58,59].

4.7. Experimental Control Procedures

All results obtained from CRISPR/Cas9 editing were compared to unedited cells,
which served as the control group. To verify the functionality of the CRISPR/Cas9 system,
a fluorescent reporter system using a vector containing GFP was employed. In silico
prediction tools were utilized to identify potential off-target sites, and only sgRNAs with
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an extremely low probability of off-target modifications were selected. Two different
techniques were used to validate the results: PCR with gel electrophoresis and Sanger
sequencing. The experiments were conducted with multiple replicates (n = 3). Only cells
obtained from single colonies in which the deletion was confirmed by PCR and Sanger
sequencing were selected for the next steps of the study—differentiation into adipocytes.
Appropriate statistical analyses were performed to evaluate the significance of the results.

4.8. Statistical Analysis

The analysis was conducted using IBM SPSS Statistics 28. A significance level of
0.05 was adopted. To compare the results of repeated measurements between the study
groups, a MANOVA with repeated measures was used. Sphericity was assessed using
Mauchly’s test, and, in the case of non-sphericity, the Greenhouse–Geisser correction
was applied to the MANOVA. Due to the small number of measurements, a detailed
analysis of the descriptive statistics was also performed, as presented in the tables and
graphs. When sphericity assumptions could not be met and MANOVA was not feasible,
the t-test was used to compare the data between groups in successive measurements,
while the Friedman test was used to compare the results within the same group across
multiple measurements. The Shapiro–Wilk test was chosen to assess the normality of the
distributions. To compare results between two groups, a non-parametric independent
samples test (the Mann–Whitney U-test) was used due to the lack of normal distribution.

5. Conclusions

The use of the CRISPR/Cas9 method to generate modified porcine MSCs with a
large deletion in the regulatory region of the SREBF1 gene allowed us to determine the
poorly-understood role of the SREBF1c isoform as an important factor in the process of
adipogenesis in the pig. These findings not only contribute to a deeper understanding of
the molecular mechanisms underlying the formation of fat cells in the pig but also open
new possibilities for targeted genetic modifications to influence fat deposition in pigs. This
could improve meat quality in the pig industry and support the development of porcine
models for human obesity research.
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