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Abstract— In mobile robotics, particularly in autonomous
driving, localization is one of the key challenges for navigation
and planning. For safe operation in the open world where
vulnerable participants are present, precise and guaranteed
safe localization is required. While current classical fusion
approaches are safe due to provably bounded closed-form
formulation, their situation-adaptivity is limited. In contrast,
data-driven approaches are situation-adaptive based on the
underlying training data but unbounded and unsafe. In our
work, we propose a novel data-driven but provably bounded
sensor fusion and apply it to mobile robotic localization. In
extensive experiments using an autonomous driving test vehicle,
we show that our fusion method outperforms other safe fusion
approaches.

I. INTRODUCTION

In the field of mobile robotics, specifically in autonomous
driving, ensuring the robot’s safe operation and executed
actions is crucial. Localization in mobile robotics describes
the task of estimating the longitudinal and lateral positions as
well as a heading angle. Especially in autonomous driving,
this task is crucial for navigation and planning. Traditional
localization approaches are usually based on linear models
for which stability can be proven. In contrast to these
classical models, there are data-driven approaches using
machine learning, where stability cannot be directly shown.
As stability is essential for safety assessments of applications
in which robots can harm humans, this can be problematic.
While perception tasks can estimate safety or reliability
through statistical data assessment, this is more challenging
for localization tasks.

Unlike other sensing tasks in mobile robotics, for localiza-
tion only a few sensors, such as Global Positioning System
(GPS), can directly estimate localization. Most sensors, like
Inertial Measurement Units (IMU) or wheel encoders, can
only measure the incremental difference between two posi-
tions. Additionally, there are map-based predictions, where
an intrinsic sensor measures key points on a map and creates
a position belief by comparing observed visual landmarks
with the map reference.

Given the limited sensor dimensionality, closed-from so-
lution models can be used to fuse the individual sensor or
model beliefs. Although classical techniques such as Kalman
filters (KF) provide accurate predictions with verifiable
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Fig. 1. Schematic model of our situation-aware sensor fusion with safety
guarantees. Shown are the steps of Preprocessing (I), Neural Network
prediction (II), Weight Estimation (III), and Fusion (IV).

stability, their weights are based on Gaussian distribution
assumptions and are hardly situation-adaptive. They are
not able to capture very complex interactions, especially if
they are not observable in the model state. Especially for
visual odometry or simultaneous localization and mapping
(SLAM), machine learning models based on convolutional
neural networks (CNN) are commonly used to predict the
position of the robot directly. Besides delivering great per-
formance, these models can adapt to different scenarios if
the training data covers them. However, proving their safety
can be challenging since it is only possible through statistical
analysis.

In our work, we aim to combine the situation awareness
of data-driven approaches with the guaranteed safety of
closed-form models, even in out-of-distribution domains. We
introduce a novel concept for late sensor fusion with deep
neural networks that leverage situation awareness. Unlike
previous machine learning-based sensor fusion approaches,
our proposed Safe Adaptive Sensor Fusion (SADF) method
provides predictions with guaranteed quality on out-of-
distribution input data through defined output bounds. By
directly predicting fusion weights rather than high-level
beliefs, our fusion approach can be universally applied on
top of existing reliable estimators, making it suitable for
safety-critical applications and a wide range of use cases. Our
method incorporates complex sensor behavior in different
situations by using situation-descriptive data as network input
to enhance awareness and improve predictions. The overall



fusion process involves learning an optimal mapping from
input features reflecting the current situation to combination
weights that best interpolate competing sensor beliefs at a
given timestamp.

Our contributions can be summarized as follows:
• We propose a novel Safe Adaptive Sensor Fusion

(SADF) using metadata describing the operation sce-
nario to generate fusion weights.

• We further define bounds for the weights and com-
bine the flexibility of data-driven approaches with the
guaranteed safety of a closed-form model, ensuring a
guaranteed safety of our fusion output.

• In extensive experiments, we validate our fusion for
mobile robotic localization with the example of an
autonomous car.

II. RELATED WORK

The field of mobile robotic localization is vast, particularly
when incorporating sensor fusion. It involves challenges such
as position tracking using odometry or visual odometry, as
well as SLAM and different fusion approaches. In most
cases, position tracking using odometry contains a fusion
approach.

Regression Models for Sensor Fusion: Probabilistic
estimators like Kalman and Particle Filter are popular fu-
sion techniques in mobile robot localization tasks [1]. Both
assume a noise model for the sensor measurement as well
as the system dynamics and fuse the sensors with a system
state estimate. Kalman Filters (KF) are widely used for
the fusion of different sensor information and a linearized
state model for mobile robotic localization [2]–[5]. KFs are
derived from Gaussian error models but are not limited
to them. Additionally, KF are accompanied by methods
for showing convergence and stability, like the bounds of
Lyapunov stability. While they can only deal with linearized
models, their extensions - the Extended Kalman Filter (EKF)
and the Unscented Kalman Filter - have enhanced the classic
KF in their ability to model non-linear behavior. EKF has
been used in the EKF SLAM [6] to jointly track the pose of
the vehicle and the state of the map. Besides EKF are Particle
Filters - in localization also called Monte-Carlo localization
- often used in localization [7], [8], as they do not require a
Gaussian prior assumption.

Fig. 2. Autonomous driving development fleet vehicle.

Another class of fusion approaches is knowledge-based
fusion methods, like Ensemble learning [9], [10], which
involves training multiple individual estimators and then
combining them into one optimal joint decision. Faceli et al.
[11] applied knowledge-based machine learning techniques
to fuse distance measurements from seven ultra-sonic sonars.
On the other hand, weighting function techniques aim to
assign a weight to each prediction, which is then used in a
weighted sum. Merz [12] distinguished between two types
of weighting functions: constant weighting functions, where
the linear weights are static and determined once in a global
optimization scheme, and non-constant weighting functions,
which are dynamically dependent on the current data point
at hand and, therefore, more flexible. Regarding the fusion
of different estimators, Perrone and Cooper [13] proposed to
use only the single best estimator of a population of esti-
mators. They further introduced the Basic Ensemble Method
(BEM), where the fused prediction is obtained by averaging
the individual predictions, and the Generalized Ensemble
Method (GEM). The GEM does not pose any assumptions
about individual errors. Inverse Variance Weighting (IVW)
can be considered as a special case of the GEM assuming
uncorrelated and zero mean errors. Hastie and Tibshirani
[14] proposed a Varying-Coefficient Model as an extension
of standard linear regression models. LeBlanc and Tibshirani
[15] combined in their later work estimates in regression and
classification, which resulted in a challenging task, especially
in cases of high-dimensional inputs.

Deep Learning in Localization: Data-driven methods,
such as neural networks, are increasingly used to fuse data
and predict a highly accurate position. Traditional approaches
for Global Navigation Satellite Systems (GNSS)/Inertial
Navigation System (INS)-based localization use the EKF to
overcome short GNSS outages and reduce the drift of dead
reckoning methods of the INS [16], [17]. However, the EKF
requires an accurate sensor model to work properly, which
introduces a linearization error and is only effective for short-
term GNSS signal outages as the drift of the INS accumulates
over time. Dai et al. [18] proposed to use a recurrent neural
network to estimate the position and velocity errors of the
INS over time to correct the time series signal and improve
the localization state prediction. Yuran et al. [19] used a Long
short-term memory (LSTM) model to estimate the side-slip
angle of a vehicle. Li et al. [20] used a neural network (NN)
to model non-linear state dynamics before a KF.

Deep learning approaches for localization are often de-
signed for the SLAM task and directly process camera
images for state estimation. Hou et al. [21] used a CNN for
loop closure detection. In contrast, Chen et al. [22] used a
deep neural network (DNN) architecture to directly estimate
overlaps between two point clouds from Light Detection and
Ranging (LiDAR) sensors. As a data-driven alternative to
traditional hand-crafted pipelines for map-based localization
with the help of LiDAR point clouds, Lu et al. [23] proposed
an end-to-end trainable deep learning approach. KalmanNN
[24] used a recurrent neural network to regress Kalman gains
directly, where the regression is unbounded.
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Fig. 3. Visualization of the fusion result with rectangular safety boundaries
spanned by the individual sensor beliefs.

The use of data-driven techniques has proven to surpass
the effectiveness of prior techniques in managing high-
dimensional multimodal, multitemporal, and even situation-
adaptive sensor data. However, the use of black-box meth-
ods poses certain challenges, especially when developing
advanced driver assistance systems (ADAS). It is crucial to
ensure that these systems are reliable and robust and that
they can be trusted for safe use. Yet, none of the current
data-driven approaches can guarantee this level of security.

III. DEEP SENSOR FUSION WITH SAFETY GUARANTEES

Closed-form solutions, as employed by methods like GEM
and BEM, can ensure safety in the form of bounds. Mean-
while, the model-based KF can guarantee convergence and
bounds through Lyapunov stability. Despite these guaran-
tees, the aforementioned approaches struggle with situation
adaptation. Influence factors on the output can be modeled
as noise or reflected in Covariances between the sensors.
Complex behavior and sensor influences unobservable at the
system states can hardly be modeled.

Conversely, data-driven approaches adapt to situations
based on the underlying training data without requiring ex-
plicit modeling. However, the regressed output is unbounded,
and safe prediction cannot be guaranteed.

We aim to address the gap in safe sensor fusion approaches
using DNNs. To achieve this, we focus on combining the
flexibility and situation awareness of large data-driving ma-
chine learning models empowered by vast data sets with the
safety of guaranteed bounds offered by conventional models
that employ closed-form solutions.

To combine both properties, we propose a bounded sensor
fusion, which fuses a number of S different beliefs bs

generated by individual sensors or motion models. Further,
we assume that each sensor itself fulfills safety guarantees.
The safety guarantee of the sensor is assumed to be aligned
with specific norms like the ISO 26262 or the Automotive
Safety Integrity Level (ASIL). These classify failures by
their probability and the expected losses, which we will
not discuss further in our work. We neglect the topic of
sensor failure and instead focus on the algorithmic aspect
of the guaranteed bounds for safety in our work. Each
sensor belief comprises a measurement or estimate derived
from internal postprocessing, such as KFs or integration of
internal states, of the vehicle’s 2D position p = [x, y, γ]
or position delta p = [∆x,∆y,∆γ]. For simplification, we
derive SADF for disentangled position scalar component p

and extend it afterward. Like decision-level fusion methods,
we assume that the true state can be estimated as p̂ by a
linear combination of individual beliefs b̃ of the position p̃:

p̂t = f(vt, b̃t) =

S∑
s=1

ωt,sb̃t,s = ωT
t b̃t = ωT

t p̃t (1a)

subject to
S∑

s=1

ωts = 1, ωts ≥ 0 (1b)

To include situation-awareness, the fusion weights ωt are
dynamic, indicated by the timestamp indices t, which enables
them to adapt to changing driving situations vt at the given
time-step t. Usually, the driving situation is not detectable by
localization sensors. Thus, we leverage an additional input
vt for our fusion function reflecting the vehicle’s metadata.
This input vt ∈ RI is defined as a subset vehicle state of
all available car states derived from the available boardnet
signals of a car. These boardnet signals can contain various
states such as temperature, rain, and driving mode sensors.
We assume that the reliability of a measurement of a sensor
and its corresponding belief is dependent on the vehicle
state v. The aforementioned assumption does not include
a specific pattern and can be verified by considering the
influence of changing friction coefficients on the reliability
of wheel encoder measurements. As weather conditions can
cause such changes, rain sensors can provide additional
information on estimating the weight of the wheel encoder
measurement for a sensor fusion.

Based on this consideration, we aim to find an optimal
mapping m : V → ω from the set of vehicle state features V
onto the fusion weights ω to implement situation awareness.

We utilize an NN to learn the mapping between metadata
of the vehicle state and predicted trust scores for each belief
given by a sensor in a system dynamic model. As the vehicle
state is tabular data, we employ a set of fully connected
layers with dropouts in between. The trust scores, denoted
as tt ∈ RS , represent the raw estimated performance of all
sensors s for the present driving situation vt:

NNθ(vt) = tt ∈ RS (2)

As these trust scores are regressed, no bounds are guaran-
teed, and the method has to be considered unsafe. To ensure
safety, we limit the fusion weights to 1 as shown in (1b) and
impose a non-negativity constraint of the individual weights.
To ensure this constraint, we add a competition layer that
converts the raw trust scores tt to normalized coefficients ωt,
which are used as fusion weights by applying the softmax
operation σ. Formally, the competition layer is written as:

ωt = σ(tt) =
ett,s∑S
s=1 e

tt,s
; ||ωt||1 = 1 (3)

The softmax operation guarantees that the fusion output pf
is bounded by the range p̂t ∈ (min(b̃),max(b̃)). This bound
is also guaranteed in out-of-distribution situations where
the behavior of neural networks is unpredictable. Given



this mathematical bound, we consider our deep learning-
based fusion as safe. To enable the balancing of constant
offsets, an additional bias parameter ρ is introduced in (1a),
p̂t = ωT

t b̃t + ρ. Fig. 3 depicts the bound and the ρ enriched
bound p̂t ∈ (min(b̃) − ρ,max(b̃) + ρ). The parameter ρ
needs to be restricted to the safety bound according to the
safety requirements of the operation.

In a final fusion head, the individual beliefs b̃t are fused
with predicted coefficients ωt reflecting the driving situation
vt, which forms our SADF in (4). As shown in (4b), SADF
can be easily applied to entangled and multiple states p̂t.

p̂t = ωT
t b̃t + ρ = σ(NNθ(vt))

T b̃t + ρ (4a)

p̂t = σ(NNθ(vt))
T B̃t + ρ (4b)

In Fig. 1 the derived steps comprising the neural network
processing (II) of the situation metadata, the belief weight
generation (III), and the output fusion (IV), including the bias
ρ of SADF are shown. The preprocessing (I) is highlighed
in Sec. IV. The model weights θ are trained to minimize the
mean squared error of the true and fused prediction state. As
the optimization objective requires only the current beliefs,
open-loop data can be used to train the model.

θ∗ = argmin
θ

E[(p̂t − pt)
2] (5)

= argmin
θ

1

T

T∑
t=1

(σ(NNθ(vt))
T b̃t + ρ− pt))

2 (6)

Extension to State-Space Model: Currently, our approach
considers the position estimation on multiple sensor measure-
ments. We can extend SADF in a model-based fashion by
formulating the state-space model as follows, assuming the
standard notion of a state-space model (transition matrix A,
control matrix B, observer matrix C) with the position p as
the state vector x and the sensor beliefs as y:

xk = Axk−1 +Buk (7) yk = Cxk (8)

If the state can be directly measured and a precise measure
can be assumed, (8) can be formulated as xk = C−1yk,
which aligns with (4), with ω := C−1 and yk := bt.

As aforementioned, a KF is often used to estimate the sys-
tem states in a model-based fusion, assuming a measurement
noise R and a process noise Q, and can be formulated as:

x̂−
t = Ax̂k−1 +But (9) P−

t = APk−1A
T +Q (10)

Kt = P−
t H

T (HP−
t H

T +R)−1 (11)

x̂t = x̂−
k +Kt(yt −Cx̂−

t ) (12)

The KF estimate boils down to (8), when no measurement
noise R is assumed, as shown:

x̂t = x̂−
t +P−

t C
T (HP−

t C
T )−1(yt −Cx̂−

t ) (13)

x̂t = x̂−
t +C−1(yt −Cx̂−

t ) = C−1yk (14)

The KF can adapt Pk over time using the system noise
covariances Q and the sensor measurement covariances R.
However, these covariances are hard to estimate and are
usually approximates. In the case of multiple sensors, C
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maintains the balance between these sensors such that Eq. (8)
is fulfilled. The KF utilizes R and Q to balance between
sensor measurements and state estimates.

By using ωt as C−1, SADF can be applied in a model-
based fusion, besides providing a KF output as input of
SADF. As vt cannot be observed in the position state,
situation adaptivity can be included in a KF in this way. It is
important to note that this derivation is meant to showcase
potential expansions of SADF. However, C−1 cannot always
be inverted. If the pseudo-inverse is not precise enough, one
can define ω := C or ω := R, which are less feasible as
they require closed-loop training.

IV. SETUP AND DATA PREPARATION

The task of localization poses a significant challenge for
machine learning, as it cannot be easily annotated manually.
While humans can annotate images or point clouds for
object detection or classification, precise measurement of
ground truth data is necessary for localization. This can be
accomplished for smaller robots in laboratory settings, but it
becomes impractical for larger robotics such as autonomous
vehicles that navigate the open world. To address this issue,
we installed a high-precision RT3000 DGPS sensor in our
test vehicle from Fig. 2. This enabled us to accurately
measure the vehicle’s position as ground truth to validate
our approach.

We recorded three drives and split them into three to
four sub-sessions, respectively, such that we had ten sessions
in total. The data was recorded over 11 km of different
highways in Germany.

As the high-precision DGPS sensor used for ground truth
is not attached to the boardnet, we use an interpolation
schema to match the timestamps. Additionally, we correct
a linear drift between the clocks. The coordinates for the
ground truth DGPS and car GPS sensors are transformed
into the Universal Transverse Mercator (UTM) system. The
system setup is depicted in Fig. 4.

To prevent location-specific behavior due to absolute val-
ues and problems when passing UTM zones, we transform all
measurements to the local coordinate system of the car. We
convert the delta of two measurement steps into lateral and
longitudinal predictions, in reference to the car coordinate
frame at the previous step, to form a tabular dataset.
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For training, data-driven approaches like our SADF, fur-
ther preprocessing is required. Given the small amount of
training data, outliers can heavily influence the generalization
performance of the trained model and are therefore filtered
upfront. Additionally, we drop missing data points if they
have not been matched during synchronization.

After defining the preprocessing, we introduce the differ-
ent sensors used in our experiments. As modern autonomous
cars use high-definition maps for localization, we include
three different derived beliefs based on them as input for
our fusion model. Besides, we use an odometry measure,
which uses a fusion of wheel encoders, an IMU sensor, and
the car’s GPS sensor. An overview is provided by Table I.

TABLE I
OVERVIEW OF THE INDIVIDUAL BELIEFS, MEASUREMENTS, AND THEIR

UNDERLYING SENSORS.

Belief Name Used Sensor Measurement

Lane Barrier HD-Map & Radar [x, y, γ]
Lane Boundary HD-Map & Front Camera [x, y, γ]
Semantic Lane HD-Map & Front Camera [x, y, γ]
Raw GPS Car GPS [x, y, γ]
Odometry IMU & Wheel Encoder [∆x,∆y,∆γ]

To reflect the situation awareness of our method, we use
the metadata detected number of lanes and detected number
of vehicles to describe the traffic situation and the velocity as
well as all accelerations and yaw rate measures to describe
the vehicle dynamic situation in vt.

We could not include weather data in our metadata because
the weather conditions during our recording did not show
much variance. However, we assume weather features to have
a significant impact.

V. EVALUATION OF THE SITUATION-AWARE SENSOR
FUSION WITH GUARANTEED SAFETY BOUNDS

To evaluate our sensor fusion approach, we compare it
with various fusion methods categorized as safe or unsafe.
Safe fusion methods have constraints and guaranteed bounds
for the fusion weights of the sensors. Unsafe fusion methods
regress an unbounded localization value.
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Fig. 6. Visualization of different sensor and fusion errors with mean µ
and standard deviation σ of the learn set.

We compare our fusion approach against a KF-based
approach, which operates on top of the current sensor signals
and uses the uncertainty values given by the sensors as
weights for designing the filter. As the other fusion ap-
proaches are model-free, we use a simple odometry model
using the odometry as a control input and the remaining
sensors measuring the exact location from Table I as sensor
input. The KF framework incorporates multiple KF, which
update the vehicle state after each sensor update with an
individual, instead of using a large KF with one update step
including all sensors to prevent inaccuracies from measure-
ment interpolations and increase the frequency. Additionally,
the noise estimation of the sensor can be used for R and the
odoemtry ones for Q. Doing so makes the noise estimations
more precise, as a one-step KF would require complex
tuning. Since SADF is an extension and not a replacement
for model-based fusion, this simplified KF is appropriate.

To validate the effect of situation awareness, we introduce
SADF with static weights (SADF-Static), by estimating an
optimal constant ω in (4a). Besides, we use a Random
Forest (RF) [25], Linear Regression (LR), and a Multilayer
Perception (MLP), which directly predict the vehicle state
and are therefore unbounded. As these baselines do not
require a time horizon, they are trained with data used as a
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tabular dataset. However, these baselines require a synchro-
nized state set. Additionally, we include different weighting
and guaranteed safe decision-level fusion approaches as
baselines. Specifically, we compare our approach against
GEM [13] , BEM [13] and IVW [13] providing a closed-form
solution. The last added baseline is a theoretical lower bound,
which indicates the best results that can be achieved with the
constraint in (1b). We evaluate the tracking performance of
our fusion method by calculating the mean squared error.
An approach typically used for regression tabular datasets.
Since the recorded drive snippets contain several km of
German highways, we omit x-y-tracking plots as we measure
accuracy in cm range. We use the preprocessed tabular
dataset from Sec. IV. To construct the test set, we split the
dataset into a 10% test set, a 20% validation set, and a 70%
training set. Closed-form models can utilize both the training
and validation sets to fit the model, we call the combined set
learn set. Based on the varying impact of metadata on lateral
and longitudinal directions, we fit and evaluate all approaches
for the directions individually. We repeat all experiments with
three different seeds. Our NN, as well as the MLP, consists
of 4 layers, each 20 neurons, for the noisier longitudinal
direction and of 2 layers, each 24 neurons for the lateral
direction. Both are trained with an Adam optimizer with a
learning rate of 0.0001 for 1200 epochs.

Longitudinal Tracking Error: In Fig. 5 we compare our
method with and without the additional bias term against
the other presented baselines. It can be seen that our SADF
with bias (SADF-B) outperforms all other baseline methods
followed by SADF. However, the variance of the results
indicates that the amount of data and noise assessment of
the metadata could be increased. While the KF is already in
the cm precision range, our approach reached the mm range,
which proved that metadata provides useful information for
sensor fusion. SADF-static aligns with Linear Regression
and GEM behind SADF and SADF-B, underlining the boost
of situation awareness. While the unsafe RF shows a bad
performance on the test set, it seems to overfit on the training
data by showing a high performance on the learn set. We
include the theoretical lower bound created with ground
truth data in the comparison to showcase the potential of

a bounded fusion. Given that our fusion can be improved to
these theoretical possible weights, it indicates the potential
of adding more data.

Lateral Tracking Error: We analyze the lateral tracking
error in Fig. 7. For the lateral error, the results are closer to
each other. This can be explained by the fact that the lateral
offset is, on the one hand, harder to measure, which leads to
a larger error, but on the other hand, less affected by mea-
surement noise caused by high velocities and accelerations
than longitudinal measurement. Our plot indicates that the
unbounded fusion methods MLP, LR, and RF have a good
performance in this task, while the high discrepancy between
the learn and test set shows an overfitting for RF. However,
our SADF-B, with bias, outperforms all other fusions with
safety guarantees. The small gap between SADF-B, SADF,
and the other weighting methods indicates that the selected
metadata has a minor effect on the sensor beliefs in the
lateral direction. It is possible that constraint bounds may
limit performance, as demonstrated by the lower theoretical
bound compared to the longitudinal evaluation.

Fusion Analysis: After we evaluated the tracking error
of our novel SADF approach, we want to assess how the
tracking error changes based on the fusion and the correlation
of the features and the prediction weights. In Fig. 6 we plot
the error magnitude over the frequency. It can be seen that
the error indeed follows a Gauss distribution. Our fusion
effectively reduces the mean error and its standard deviation
of the individual beliefs. Outliers, especially for the GPS
sensor, are filtered effectively, proving that our fusion profits
from the metadata. An analysis of the correlation of the
features can be seen in Fig. 8. The plot indicates that our
assumption is valid and that a correlation of the metadata
from the vehicle state is present and can be learned from our
fusion model. Especially for the section between timestamps
3600 and 3625, a decrease in the predicted trust scores for
the GPS sensor can be seen. This decrease correlates with
high accelerations, underlining the capabilities of SADF.

VI. CONCLUSION

In our work, we introduced a novel sensor fusion con-
cept with safety guarantees, which also persists in out-of-



0

10

t t

t Barrier

t Boundary

t Lane

t GPS

t Odometry

3500 3525 3550 3575 3600 3625 3650 3675
Timestamp

0

5

ẍ
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domain situations. Our SADF uses deep neural networks
(DNN) to learn the underlying distribution of fusion weights,
demonstrating how DNNs can be used safely and reliably
through guaranteed bounds. In contrast to previous work in
machine learning for localization, our DNN does not directly
predict the robot’s state. Instead, SADF applies a late sensor
fusion to transparently combine pre-existing and competing
localization beliefs into a single output. SADF predicts trust
scores, which are mathematically bound using a competition
layer to generate fusion weights for individual beliefs. This
constraint links the prediction to the performance of the
employed beliefs, which generates a safe fusion output, even
in out-of-distribution scenarios. The safety and reliability of
NN are crucial for their use in tasks such as autonomous
driving, where robots can potentially harm humans. Our
extensive benchmark experiments have shown that our novel
fusion concept outperforms existing safe weighting methods
for both longitudinal and lateral predictions while surpass-
ing unconstrained fusion methods such as RF, LR, and
MLP models for longitudinal predictions. Furthermore, the
proposed fusion concept is shown to reduce the standard
deviation of the best individual position belief significantly.

In our future work, we plan to include the effect of
temporal relations in the fusion by using RNN or LSTM
layers. This enables our SADF to leverage time relations in
the information provided by the vehicle state to predict the
fusion weights. Additionally, we will continue working on
integrating SADF into a model-based fusion. Besides this
path, a clear potential way of improvement is the usage of
more metadata of the vehicle to increase the recognition and
clustering of the different scenarios to learn more precise
modeling of the situation-aware weights. Therefore, we plan
to collect more data over different seasons.
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