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Abstract 

This dissertation adopts a configurational perspective to explore how innovation team 

composition influences innovation outcomes. As technological complexity continues to grow, 

innovations increasingly emerge from collaborative efforts by teams of multiple inventors. 

While prior research has examined various individual factors of team composition, the intricate 

interplay of multiple factors remains underexplored. To address this gap, this dissertation first 

synthesizes existing research on innovation team composition. Given the theoretical ambiguity 

surrounding the relative importance of the diverse factors studied in the literature, I propose a 

novel data-driven approach to identify the most central factors for a subsequent set-theoretic 

analysis. Using Qualitative Comparative Analysis (QCA), I reveal team configurations linked 

to particularly impactful innovations that shape the technological trajectory in their domain, 

focusing on a comprehensive dataset of patented inventions in the clean energy sector as a 

topical study context. The findings highlight the significance of continuity in collaboration and 

the role of deep domain expertise. These insights offer guidance to policymakers for designing 

effective strategies to foster innovations that address grand societal challenges, such as climate 

change, while also directing scholars toward promising avenues for future research. 

 

  



VIII 

Zusammenfassung 

Diese Dissertation verfolgt eine konfigurative Perspektive, um den Einfluss der 

Teamzusammensetzung auf Innovationsergebnisse zu untersuchen. Mit der zunehmenden 

Komplexität technologischer Entwicklungen werden Innovationen immer häufiger das 

Ergebnis kollaborativer Anstrengungen von Teams aus mehreren Entwickler:innen. Während 

sich die bestehende Literatur bereits umfassend mit einzelnen Faktoren der 

Teamzusammensetzung beschäftigt hat, wurde dem kausal komplexen Zusammenspiel 

mehrerer Faktoren bislang nur wenig Aufmerksamkeit geschenkt. Um diese Forschungslücke 

zu schließen, wird zunächst eine Bestandsaufnahme des aktuellen Forschungsstands 

vorgenommen. Da frühere Studien nur begrenzt Aufschluss über die relative Bedeutung 

verschiedener Faktoren geben, entwickle ich in dieser Arbeit einen datengetriebenen Ansatz, 

der es ermöglicht, die zentralen Faktoren der Teamzusammensetzung zu identifizieren. 

Anschließend führe ich basierend auf einem umfangreichen Datensatz von Patenten aus dem 

Bereich emissionsfreier Energietechnologien eine set-theoretische Analyse durch, die aufzeigt, 

welche Teamkonfigurationen mit Innovationen verbunden sind, die einen besonders großen 

Einfluss auf die weitere technologische Entwicklung haben. Die Ergebnisse zeigen, dass 

insbesondere die Kontinuität in der Zusammenarbeit mit denselben Teammitgliedern sowie ein 

hohes Maß an domänenspezifischem Wissen entscheidend für solche bahnbrechenden 

Innovationen sind. Diese Erkenntnisse bieten Entscheidungsträger:innen und Akteur:innen in 

Forschung und Entwicklung wertvolle Ansätze, um den technologischen Herausforderungen 

unserer Zeit wirksam zu begegnen.
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1. Introduction 

“My basic optimism about climate change comes from my belief in innovation. The conditions 

have never been more clear for backing energy breakthroughs. It’s our power to invent that 

makes me hopeful.” 

– Bill Gates (2022) - breakthroughenergy.org 

 

1.1 The Global Climate Emergency and the Role of Innovation 

Anthropogenic climate change is an undisputable threat to us and our planet (Hodson, 2017; 

IPCC, 2022). Projected consequences include, but are not limited to, the disruption of entire 

ecosystems, water scarcity and threats to food security, loss of lives and destruction of 

infrastructure due to more severe and more frequent weather extremes as well as the 

displacement of humans from exceptionally vulnerable regions (IPCC, 2022). 

As summarized in the latest synthesis report by the Intergovernmental Panel on Climate 

Change (IPCC, 2023), it is a scientific consensus that the ongoing rise in global surface 

temperatures is attributed to the expansive emission of greenhouse gases from human activities 

since the 19th century. A global industrial system reliant on fossil fuel combustion for energy 

production is the root cause of extensive carbon dioxide emissions into the atmosphere (IPCC, 

2023). While these unsustainable practices have already caused the energy sector to be the 

largest contributor to cumulative greenhouse gas emissions, and thus climate change, it remains 

one of the economic sectors with the largest growth in emissions to this day. 

In 2021, the International Energy Agency (IEA) published a roadmap document with 

key recommendations directed towards policymakers “for what needs to happen […] to 

transform the global economy from one dominated by fossil fuels into one powered 

predominantly by renewable energy” (IEA, 2021, p. 3). The report lays out a path to net zero 

emissions in the energy sector by 2050 while “addressing energy security and affordability 

concerns” (IEA, 2022, p. 119). Although the outlined net zero scenario acknowledges that a 
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variety of clean energy solutions, such as hydropower, bio-, geothermal, and photovoltaic (PV) 

energy, have already reached a mature state and need to be deployed on a larger scale, the 

limited remaining time frame to reach net zero emissions requires us to develop other key 

building blocks such as advanced energy storage, hydrogen technologies, and biofuels at an 

unprecedented pace. “Bringing early-stage clean energy technologies to market by 20301 

requires going from first prototype to market around 20% faster on average than the quickest 

energy technology developments in the past, and around 40% faster than was the case for solar 

PV” (IEA, 2022, p. 230). Since especially such early-stage technologies often fail to attract the 

required funds from the private sector due to large investment volumes at relatively high risks, 

effective public investments in such innovation projects reflect a cornerstone for a successful 

shift of energy production, distribution, and storage to more sustainable practices. Hence, 

despite the seemingly ample timeframe to 2050, the IEA calls for immediate action for the 

outlined net zero scenario to be achievable. Yet, after another two years of record high emissions 

in 2021 and 2022 primarily attributed to “extraordinarily rapid post‐pandemic economic 

growth” (IEA, 2022, p. 121), investments into new fossil fuel projects after Russia’s invasion 

of Ukraine (IEA, 2023), and slow progress in the sustainable transformation of energy systems, 

the IEA quickly released a fully updated roadmap document in 2023. While admonishing that 

–  considering the “mostly discouraging developments” (IEA, 2022, p. 121) – the “pathway 

detailed in the […][scenario] remains narrow” (IEA, 2022, p. 121), the update also points to 

recent successes: The deployment of photovoltaic systems is ahead of the projection provided 

in the original net zero scenario and the advancements as well as cost reduction for batteries 

have been a driver for the urgently needed electrification in some domains. Nevertheless, 

innovation progress remains too slow for some crucial areas such as hydrogen technology, 

floating offshore wind power, low-emission jet fuels, or carbon capture technologies. Overall, 

 
1 2030 is a key milestone in the IEA’s net zero by 2050 scenario. 
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approximately 35% of the technologies essential for achieving net zero emissions in the energy 

sector by 2050 still require significant advancements (IEA, 2023). 

For the outlined reasons, I use the clean energy sector as a topical context for this 

dissertation. With my research, I seek to enhance our understanding of where the impactful 

innovations we urgently require come from and thus equip policymakers with insights that can 

inform their decision-making to design policy strategies and direct resources more effectively 

to where technological progress is most likely to be created. In the following sections, I discuss 

how the most impactful innovations – those that serve as foundational building blocks for 

subsequent advancements – are increasingly the result of collaborative research performed by 

teams. More specifically, I highlight the need for a configurational perspective – one that 

examines the complex interplay of multiple conjunctural team composition factors – on team-

based innovation and detail the key research objectives for this dissertation. 

1.2 The Trend Towards Team-Based Innovation 

While rapid advancements rather than incremental improvements in the development of clean 

energy technologies are fundamentally necessary to reach the sector’s emission goals, 

significant technological progress has become increasingly difficult to achieve (Jones, 2009; 

M. Park et al., 2023). The share of major innovations that substantially changed the trajectories 

within and across fields, and thus led to a shift in technological boundaries (Dosi, 1982), has 

been on the decline (M. Park et al., 2023). While some scholars (e.g., Cowen, 2011; M. Park et 

al., 2023) argue that this trend points to an exhaustion in the exploitation of “low-hanging-

fruits” (M. Park et al., 2023, p. 138) – developments that are relatively easy to accomplish – 

other scholars suggest that it is the increasing complexity of technologies that results in a 

“burden of knowledge”, making it more challenging for scientists to reach the frontier of their 

field (Jones, 2009).  
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With a growing knowledge stock, and as more knowledge is accumulated within 

individual technological developments over time, scholars have argued that innovations 

increasingly rely on collaborative efforts among inventors with diverse knowledge backgrounds 

from narrower fields of expertise (Jones, 2009; Wuchty et al., 2007). Studies have shown that 

collaborative research is consistently outperforming the work of solo authors across all 

scientific fields. Not only did the share of research produced by teams constantly increase over 

the last decades, but so did the average size of the teams that conducted the research (Jones, 

2009; Wuchty et al., 2007). The advantage of collaborative teams has also been demonstrated 

in the specific context of technological innovation. For example, Singh and Fleming (2010, 

p. 41) show that collaboration “reduces the probability of very poor outcomes […] while 

simultaneously increasing the probability of extremely successful outcomes”. In line with the 

broader trend, the clean energy sector has likewise experienced a significant shift towards 

collaborative innovation (Figure 1.1) – a reasonable approach for clean technologies as their 

“systemic, credence and complex character […] suggest[s] that, to develop them, cooperation 

may be even more important than when it comes to [the introduction of] other types of 

innovations” (De Marchi, 2012, p. 615). Furthermore, in recent years, policymakers have 

aligned with this pattern and formed multilateral initiatives, such as the global Mission 

Innovation initiative or the European Union’s Horizon Europe program, to accelerate the 

development of clean energy technologies. These initiatives foster the pooling of resources and 

expertise and encourage a collaborative approach to clean energy innovation. 

1.3 Understanding Successful Innovation Teams 

As the most influential innovations increasingly result from collaborative efforts within teams 

of scientists, researchers have sought to better understand the team-level antecedents of 

successful innovation and, more specifically, to identify the contributing factors that foster 

outstanding innovation outcomes. For instance, early research by MacCormack et al. (2001) 
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investigates the impact of team members’ prior experience in the focal domain on the quality 

of newly developed technical products; Gay et al. (2008) find that having an inventor with 

exceptional past performance or a foreign inventor on the team positively impacts the value of 

an invention; Bercovitz and Feldman (2011) explore various predictors of successful team-

based innovation, including prior collaborations among team members, their organizational 

affiliations, job function diversity, institutional backgrounds, and geographical factors. More 

recently, scholars have also focused on the factors specifically contributing to “green” 

innovations. Studies indicate that drawing on different perspectives from team members with 

diverse ethnic backgrounds (Marino & Quatraro, 2022) or varied knowledge bases (Orsatti et 

al., 2020) can facilitate the development of “environmentally sound technologies” (WIPO, 

2024). 

 

Figure 1.1: Number of clean energy patents filed per year and fraction of team-based patents.2 

While the examples provided represent only a fraction of the growing body of literature on the 

topic, current empirical research on team-level drivers of innovation is limited in two key ways: 

First, researchers have predominantly examined the effects of individual factors on the 

innovation outcome, often using methodological approaches that focus on the marginal impacts 

(e.g., regression models) of these single factors. Consequently, we have limited understanding 

 
2 The underlying data was obtained from the PatentsView database. 
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of how different factors interact and combine to influence innovation. Second, the effects of 

team-level factors on innovation outcomes have shown considerable ambiguity across various 

studies. Scholars attempting to explain these inconsistencies have highlighted the crucial role 

of the innovation context in shaping the impact of specific team configurations (Joshi & Roh, 

2009; Vakili & Kaplan, 2021). Vakili and Kaplan (2021, p. 1161) emphasize that the ambiguity 

in findings “may be a feature and not a bug“, as “insights […] drawn from one domain could 

potentially lead to undesirable outcomes if applied in another domain with different underlying 

characteristics”. Working in a team of generalists, for example, has been shown to be useful in 

settings where technological advancements are rather slow, while teams composed of highly 

specialized members thrive in rapidly changing environments where “their deeper expertise 

allow[s] them to use new knowledge created at the knowledge frontier” (Teodoridis et al., 2019, 

p. 894). As a result, despite the progress made, the causally complex interactions within team 

configurations and their influence on innovation outcomes remain largely unexplored in the 

existing literature. Moreover, given the context-contingency, it becomes essential to specifically 

examine the clean energy sector with its domain-specific idiosyncrasies to uncover the 

configurations that lead to success in this unique environment. 

1.4 Collaborative Innovation as a Configurational Problem 

The question of which team configurations are most effective in driving significant 

technological advancements is just one example of many phenomena of causally complex 

nature prevalent in (innovation) management research. Other such inquiries address the 

interplay of organizational structure, strategy, and the organizational environment in explaining 

high firm performance (Fiss, 2011); the interaction of formal and informal institutions in 

determining CEO and employee compensation (Greckhamer, 2016); or how technology traits 

and research team characteristics impact proof-of-concept (PoC) commercialization outcomes 

(Battaglia et al., 2021), to name just a few examples. These research problems are generally 
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defined by three main characteristics: conjunctural causation, equifinality, and causal 

asymmetry (Misangyi et al., 2017). Conjunctural causation occurs when an outcome is 

influenced by the interdependence of multiple factors rather than a single factor, while 

equifinality describes the scenario where multiple causal pathways can equally lead to the same 

outcome. Additionally, causal asymmetry highlights that the presence and absence of factors 

can have different effects on the outcome, indicating that the factors leading to, for example, 

success are not simply the reverse of those leading to failure. 

Understanding these facets of causal complexity is crucial for grasping why the 

composition of innovation teams constitutes a causally complex problem: When a team is 

formed, team-level attributes do not appear in isolation. Instead, any configuration of a team 

represents a “multidimensional constellation of conceptually distinct characteristics that […] 

occur together” (Meyer et al., 1993, p. 1175). Teams may be large or small and at the same time 

to a certain degree demographically diverse, composed of specialists or generalists, with years 

of innovation experience or no experience at all. Accordingly, a configurational perspective 

would presume that boundary-shifting developments as an outcome of collaborative innovation 

would rather relate to certain combinations of these individual attributes (conjunctural 

causation), instead of any of such factors by itself (Fiss, 2007). Yet, prior research has focused 

on the relative contributions of individual attributes by predominantly applying bivariate 

methods that are based on correlations and treat factors as competitors for effects on an 

outcome. In problems such as the complex interplay of several team-level attributes, however, 

causal relations are likely not linear. Instead, when the presence of an attribute is commonly 

associated with better innovation outcomes, it does not necessarily mean that its absence is 

concurrently associated with particularly bad results (causal asymmetry). Moreover, multiple 

configurations of team-level conditions may be equifinal, such that they are equally apt to 

produce high-quality innovation outcomes (Gresov & Drazin, 1997), with some attributes being 
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substitutable (Misangyi & Acharya, 2014) or even irrelevant (Meyer et al., 1993) in some 

configurations. 

While conventional methods, focusing solely on the marginal effects of one or multiple 

factors on an outcome, may struggle to adequately capture causal complexity, configurational 

methods explicitly embrace these aspects and provide a toolbox for analyzing the intricate 

interplay of factors. In the following section, I lay out my specific research objectives for this 

dissertation, which together seek to outline a path for examining the composition of successful 

innovation teams through a configurational lens. 

1.5 Research Objectives and Dissertation Structure 

In light of the identified challenges in understanding team-level drivers of collaborative 

innovation and the limitations of the current literature, this dissertation presents three main 

chapters (Chapters 2-4) to chart a path towards a configurational perspective on team-based 

innovation: Chapter 2 offers a systematic review of the current literature in the field, focusing 

on the compilation of a comprehensive list of team composition factors and existing insights on 

their effects on the innovation outcome as a basis for exploring more complex joint effects. I 

reveal a fragmented research landscape marked by terminological inconsistencies in 

conceptually similar measures of team composition factors and diverse innovation outcomes. 

By deriving thematic categories of team composition factors and innovation outcomes, and 

through reconciling these inconsistencies, I aim to clarify ambiguities in existing empirical 

findings, thereby synthesizing the relationships that have been empirically examined to date. 

The wide array of potentially relevant team composition factors identified in the literature 

review presents a challenge for applying common (set-theoretic) methods to study innovation 

team composition through a configurational lens. These methods require a carefully curated 

selection of a limited number of pertinent factors to maintain interpretability of results. 

Accordingly, Chapter 3 introduces a novel methodological approach for identifying relevant 
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factors in contexts characterized by a multitude of influencing variables, varied empirical 

support, and limited consensus on key conditions. Finally, in Chapter 4, I present a 

configurational analysis of teams creating particularly impactful innovations, using data from 

more than 50,000 granted team-based clean energy patents filed with the United States Patent 

and Trademark Office (USPTO) between 1985 and 2015. This analysis yields insights into 

specific combinations of team-level conditions associated with innovations that drive 

technological advancement within the clean energy domain and provides a critical foundation 

for understanding the complex interplay of factors contributing to successful team-based 

innovation in that context. Table 1.1 summarizes the research objectives, methodological 

approaches, data, key findings, and contributions for each of the three main chapters along with 

an overview of the contributing co-authors and presentations of prior versions of this work to 

the scientific community.
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Table 1.1: Dissertation structure and overview of the three main chapters. 

  Chapter 2  Chapter 3  Chapter 4 

Title  Team Composition and the Effects on 

Innovation Outcomes: A Systematic 

Review 

 Patterns that Matter: Clustering-Based 

Model Specification for Large-N QCA in 

Complex Theoretical Landscapes 

 A Set-Theoretic Analysis of Innovation 

Team Configurations 

Research objective(s)  Synthesize and harmonize the landscape of 

team composition factors and their 

relationship with innovation outcomes 

studied in the existing body of research on 

innovation team composition  

 Develop and test a data-driven approach to 

condition selection applicable to large-N set-

theoretic analyses in theoretical landscapes 

characterized by various potential factors 

and little insight into their relative 

importance 

 Identification of team configurations 

associated with impactful clean energy 

innovations 

Research approach  Systematic literature review, following a 

multi-stage process similar to Aguinis et al. 

(2018) 

 Experimental study using cluster-based 

model comparison 

 Large-N set-theoretic analysis (QCA) 

Data  808 peer-reviewed journal articles, 54 

included in analysis based on article selection 

criteria 

 Clean energy patent data  Clean energy patent data 

Key findings  - Thematic categories of team 

composition factors and different types 

of team-level innovation outcomes 

- Inconsistent use of terminology for 

conceptually similar measures 

- Sparse landscape of substantive 

empirical insights on the effects of team 

composition factors on different 

innovation outcomes 

- Interaction effects remain 

underexplored 

- Overrepresentation of regression-based 

methods 

 

 - A novel clustering-based method for 

condition selection in large-N QCA 

reveals a robust set of conditions that 

demonstrate causal relevance 

- Most relevant set of team composition 

factors to explain impactful clean 

energy innovations includes: 

- Institutional diversity 

- Ethnic Diversity 

- Gender Diversity 

- Knowledge Dissimilarity 

- Recombination Novelty 

- Network (Degree) Centrality 

- Inventor Mobility 

-  - Multiple, relatively rare and narrow 

pathways to impactful clean energy 

innovations exist 

- No single condition (or combinations 

thereof) is a “must-have” 

- There are no configurations 

consistently linked to non-impactful 

innovations 

- Configurations associated with 

impactful innovations show: 

- The absence of knowledge 

dissimilarity emerges as an 

important condition in most causal 

pathways 
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- Domain experience and 

familiarity with combining the 

focal knowledge components (i.e., 

exploitation rather than 

exploration) is a key building 

block 

- Strong team-internal ties through 

prior collaborations rather than 

numerous external ties foster 

impactful innovations 

- Teams that have domain 

experience and experience 

working together manage to 

integrate even dissimilar 

knowledge effectively 

Key contribution(s)  - Catalogues team composition factors 

and innovation outcomes to summarize 

antecedents of successful team-based 

innovation 

- Harmonizes inconsistent terminology 

into thematic categories to improve 

comparability and integration of 

empirical findings and facilitate 

consistent use of terminology in future 

research 

- Synthesizes empirical evidence on 

relationships between team composition 

factors and innovation outcomes, 

highlighting knowledge gaps 

 - Introduces a systematic, replicable 

method for condition selection in large-

N QCA, addressing challenges arising 

from theoretical ambiguity and limited 

case familiarity 

- Enhances robustness and reliability of 

QCA analyses in general through a 

complementary data-driven approach to 

selecting conditions with genuine causal 

significance, thereby addressing 

common criticism about unclear 

condition selection in QCA studies 

 - Introduces a configurational 

perspective on innovation team 

composition, addressing conjunctural 

effects, causal asymmetry, and equifinal 

pathways to impactful innovation 

Contributing 

co-authors 

 Siddharth Vedula, Claudia Doblinger, 

Susanne Kurowski 

 Siddharth Vedula  Siddharth Vedula, Claudia Doblinger 

Presentations of 

previous versions 

 40th European Group for Organizational 

Studies (EGOS) Colloquium 2024 

 40th EGOS Colloquium 2024  DRUID 2022, International QCA Paper 

Development Workshop (PDW) 2022 & 

2023, 40th EGOS Colloquium 2024 
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2. Team Composition and the Effects on Innovation Outcomes: 

A Systematic Review 

In this chapter, based on a total sample of 808 systematically selected publications, I review 54 

articles that empirically investigate the impact of team composition on innovation outcomes. 

To ensure a structured, transparent, and comprehensive identification of relevant articles 

(Hiebl, 2021), I built on a multi-stage process suggested by Aguinis et al. (2018). I provide an 

overview of the various team composition factors and different innovation outcomes studied in 

the expanding corpus of scholarly work and resolve inconsistencies in terminology used across 

studies to present a synthesis of existing empirical insights on the topic, thus laying the 

foundation for a configurational perspective on team-based innovation. 

2.1 Aim 

Researchers have long been interested in the antecedents of ground-breaking innovations as 

origins of new technological trajectories (Dosi, 1982). A few decades ago, it was fairly common 

for the creation and diffusion of significant technological advancements to be attributed to 

individual star inventors (Narin & Breitzman, 1995; Zucker et al., 2002). However, with a 

growing stock of knowledge and rising technological complexity, such innovations have 

increasingly become the product of collaborative efforts by innovation teams – multiple 

inventors who each bring their own set of skills and perspectives to the table (Jones, 2009; 

Wuchty et al., 2007). With team-based innovation becoming more prevalent, the research 

community has paid increasing attention to this trend, resulting in a considerable and growing 

body of research (Figure 2.1) focused on the composition of innovation teams and its 

implications for the innovation outcome. 

The body of literature that has emerged is composed of a significant number of studies 

that together examine an extensive list of team composition factors, such as team size (e.g., 

Battaglia et al., 2021; Lee et al., 2015; Wang et al., 2017), the team members’ knowledge bases 

(e.g., Cassi & Plunket, 2014; Huo et al., 2019; Vakili & Kaplan, 2021), experience (e.g., 

Beaudry & Schiffauerova, 2011; Jain, 2013; Schillebeeckx et al., 2019), or demographic 
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characteristics (e.g., Ferrucci & Lissoni, 2019; Kaltenberg et al., 2023; Marino & Quatraro, 

2022) and their relationships with various different innovation outcomes. However, developing 

a deeper understanding of team-based innovation – by applying a configurational perspective 

to overcome limitations in current research on the antecedents of successful team-based 

innovation (see section 1.4) – requires a synthesis of empirical findings and insights from this 

diverse landscape of scholarly work. This review, therefore, seeks to inventory the wide array 

of team composition factors and innovation outcomes, as well as the relationships between 

them, that have been investigated over the past decades. 

 

Figure 2.1: Articles on team composition factors and their effects on team-level innovation 

outcomes by publication period. 

Furthermore, in the process of this review, it has become evident that a wide variety of distinct 

measures as well as the inconsistent use of terminology contribute to a rather unclear picture of 

the actual factors and relationships examined in the existing literature. For example, while many 

studies use forward citations of a focal patent to assess the quality of the innovation outcome, 

the terms used to describe this outcome vary widely. Cassi and Plunket (2014) use the term 

"inventive performance", Vestal and Mesmer-Magnus (2020) refer to it as "team innovation", 

and Huo et al. (2019) as well as Onal Vural et al. (2013) use "invention impact" for a 

conceptually similar, if not identical, outcome. Despite the fundamentally deviating 

terminology, all these studies examine how that outcome is affected by the similarity of 

knowledge among team members as a compositional factor, thus investigating essentially the 

same relationship. Against this background, this review lays a focus on the harmonization of 
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the measures and labels used for similar team composition factors and innovation outcomes to 

facilitate the integration of knowledge produced across studies and plant the seed for more 

consistent use of terminology in future research in the field. 

2.2 Scope 

For this review, I focus on articles from the innovation management literature complemented 

by articles from a closely related stream of literature on scientific teams. Both literature streams 

are concerned with technological advancements as the result of research and development 

efforts by inventors or scientists and are bibliometrically strongly intertwined. To ascertain a 

proper level of quality for the research included in this review, I only consider peer-reviewed 

articles, written in English language, from leading journals in the field. I provide detailed 

insights into the journal selection procedure (section 2.3) and the article selection procedure 

(section 2.4) in the following sections. By incorporating articles published in the period from 

1997 to 2023, this review covers more than 25 years of research on innovation team 

composition. 

To identify those articles relevant to the aim of this review, I apply a list of diligently 

defined inclusion and exclusion criteria. Articles were only included if they: 

i. explicitly examine the relationship between one or more team composition factors and 

one or more innovation outcomes. 

ii. analyze the relationship defined in (i.) on a team level, that is, two or more individuals 

forming a group to collaboratively innovate (see Katz & Martin, 1997). 

iii. explicitly study the team that is directly performing the innovation3. 

iv. the study is conducted in the context of technological innovation4. 

  

 
3 as opposed to e.g., founding teams or TMTs (e.g., Y. Dai et al., 2019) 
4 as opposed to e.g., service innovation or arts (e.g., Pollok et al., 2021; Taylor & Greve, 2006) 
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I explicitly excluded articles if they: 

a. study innovation not on a team level but on a more macro level (e.g., department level, 

firm level, regional level, etc.).5 

b. observe outcomes that are not quality-related but process-related (e.g., team 

coordination, team effort)6. 

c. do not examine compositional but behavioral or psychometric aspects as explanatory 

factors (e.g., psychological characteristics or personality attributes of the team 

members)7. 

The application of these inclusion and exclusion criteria was not always obvious. Singh (2008, 

p. 83), for instance, specifically names the “quality of a firm’s innovation” as the observed 

outcome in their study, suggesting that the outcome is measured on a non-team-level. However, 

the empirical analysis is actually performed on a patent level, hence investigating team-based 

innovation activities and their respective direct team-level outcome (i.e., the patented 

invention), clearly falling within the scope of this review. On the contrary, other authors use 

terms like “R&D teams” (e.g., Caputo et al., 2021; Østergaard et al., 2011; Xie et al., 2020) to 

describe the subject of their study although the analysis is performed on the department level 

of innovating firms. To give a more specific example, Østergaard et al. (2011) and Xie et al. 

(2020) investigate the effect of gender diversity within “R&D teams” on innovation 

performance. In these studies, gender diversity is, however, calculated across the entire R&D 

department of a firm. Yet, drawing on Katz and Martin (1997), I argue that it is crucial to 

distinguish between team-level analysis and broader scopes like the department or firm level, 

as “teams are not just scale models of organizations” (Yildiz et al., 2024, p. 1). At these levels 

of analysis, it is unclear whether innovation outcomes result from the collective efforts of all 

 
5 e.g., Østergaard et al. (2011) 
6 e.g., Hoegl & Proserpio (2004) 
7 e.g., De Visser et al. (2014) 
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individuals involved. Typically, R&D departments consist of multiple teams working on 

different projects. Thus, metrics like gender diversity calculated at the department level may 

not accurately reflect the diversity among those directly contributing to a particular innovation 

outcome. Consequently, such “macro-level investigations can offer limited insights” (Yildiz et 

al., 2024, p. 2) into the team-level antecedents of successful collaborative innovation. 

Moreover, various studies, such as the one presented in an article by Xie et al. (2020), examine 

the focal innovation outcome (in that case “innovation efficiency”) at the firm level, which 

makes it even more difficult to trace the impact of the composition of an innovation team to the 

outcome of a specific innovation project and, thus, of little relevance to the scope of this review. 

2.3 Journal Selection Procedure 

As a foundation for the article selection procedure described in the following section, I first 

defined an initial pool of sources to consider. This approach aligns with recommended practices 

outlined by Parmigiani and King (2019), as well as prior reviews by management scholars (e.g., 

Maula et al., 2023), focusing primarily on the leading peer-reviewed journals within the field 

of interest. Therefore, in a first step, I selected the top 10% of journals, measured by their 

CiteScore8, from the 2021 Scopus source list in the categories “Management of Technology and 

Innovation” as well as “Strategy and Management”. I then screened the resulting list of 107 

journals to identify those that appear to be central outlets for research that falls within the scope 

of this review. After thorough appraisal of the scope of each journal, I decided to consider 53 

of the initial 107 journals, excluding journals that clearly fall out of the research areas of 

Innovation and Technology Management (e.g. Electronic Commerce Research and 

Applications, Journal of Family Business Strategy, Journal of Service Management) as well as 

method-oriented journals (e.g., Organizational Research Methods). However, I tended to be 

 
8 CiteScore™ is a metric developed by Elsevier to assess the impact of academic journals based on citation data 

from the Scopus database (Elsevier, 2024). 
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rather inclusive when in doubt whether a journal was a relevant source for the scope of this 

review. In a next step, I followed the same procedure for the Google Scholar lists of top 

publications in the areas “Entrepreneurship and Innovation” and “Strategic Management” as 

well as for the Financial Times FT50 list. Each of the two additional Google Scholar lists 

comprises the top 20 journals in the respective research domain, based on their h5-indices9. 

Using complementary journal rankings that apply different measures of source quality and 

impact allowed me to include 19 additional sources, resulting in a final set of 72 journals in 

total (Appendix 2.1). 

2.4 Article Selection Procedure and Sample Description 

To assemble a comprehensive collection of articles pertinent to the scope of this review, I 

followed a two-stage search strategy, comprising (1) a term-based search within the compiled 

list of 72 journals selected based on the approach described in the previous section, leading to 

a core collection of articles included in this review, and (2) a snowball sampling based on 

references made by the articles in that core collection. In the first stage, the term-based search10 

was conducted by examining the titles, abstracts, and keywords of publications in the Scopus 

and Web of Science (WoS) databases. For the Web of Science database, I further used the 

KeyWords Plus feature, which expands the original search term based on “phrases that 

frequently appear in the titles of an article's references, but do not appear in the title of the 

article itself” (Clarivate, 2024). This first stage yielded an initial selection of 533 articles. As 

the primary coder, I then manually evaluated each of these articles based on their title and 

abstract to classify them as either included or excluded, applying the previously defined criteria 

(see section 2.2). At this stage, in case of uncertainty, I opted for inclusivity, resulting in a list 

 
9 The h5-index is the h-index for articles published in the last 5 complete years. 
10 TITLE-ABS-KEY( (invent* OR innovat* OR scient* OR research* OR "R&D" OR creative) AND team* AND 

(config* OR compos* OR characteri*) OR ((invent* AND team*) OR "innovat* team*" OR "scient* team*" OR 

"research* team*" OR "R&D team*" OR "creative team*")) AND KEY(invent* OR innovat*) 
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of 112 articles left for more detailed evaluation. It is worth mentioning that, due to the generic 

nature of the applied search terms (e.g., team, invention, etc.), I expected to first capture a larger 

share of non-relevant search results, leading to higher exclusion rates compared to reviews 

using very specific and subject-related keywords that clearly relate to a narrower stream of 

literature. In parallel, a subsample of 53 articles (10%) was randomly selected from the initial 

list of 533 articles and independently evaluated by a secondary coder11 for validation purposes. 

For 49 out of these 53 articles (92%), both coders agreed on the inclusion and exclusion, 

respectively. In all cases of disagreement, the evaluation made by me as the primary coder was 

more inclusive than the one made by the secondary coder. Accordingly, I proceeded with the 

112 pieces selected for an in-depth assessment. After a subsequent review of these articles’ full-

texts, I identified 41 articles to be of relevance to the defined scope and thus forming the core 

collection of articles included in this review. 

In the second stage, I scanned the articles in the core collection for references made to 

further potentially relevant work. After discarding books, book chapters, and non-peer-

reviewed publications, this snowball sampling approach resulted in a list of 251 additional 

articles that, again, were evaluated based on their title and abstract. Of these 251 articles, 68 

appeared to be potentially relevant to this review. Once again, a parallel assessment of a random 

subsample through the secondary coder was used to validate the article selection decisions 

made. A disagreement on two articles was resolved through a nuanced discussion between the 

two coders. Upon conducting full-text reviews of the remaining 68 potentially relevant articles, 

I ultimately incorporated 13 additional articles, resulting in a comprehensive collection of 54 

articles for this review (Appendix 2.2). While four of the articles identified in the second stage 

were published in journals that were part of the list of journals compiled and employed for the 

term-based search in the first stage of the article selection procedure, nine of these articles stem 

 
11 Susanne Kurowski (German Energy Agency - dena) 
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from eight additional sources (e.g., Nature, Science, Industrial and Corporate Change). The full 

article selection procedure is illustrated in Figure 2.2. It is worth highlighting that, despite the 

time period considered in the sampling process – starting in 1997 – there are no articles 

published before the year 2000 in the final sample, suggesting that the selected timeframe was 

sufficient to capture the evolution of this literature stream at its inception. 

The 54 research papers analyzed in this review are distributed across 24 unique 

publication outlets, yet certain sources emerge as particularly influential. By far the largest share 

of articles was published in Research Policy (16 publications – 30%), followed by the Strategic 

Management Journal (5 publications), and Organization Science (5 publications). Moreover, 

almost all articles in the sample apply traditional regression-based methods, such as linear 

regression, negative binomial regression, or logistic regression. Only five papers use different 

techniques, like more complex multivariate methods (i.e., structural equation modelling), which 

are applied in three articles, hazard models (1 article), or qualitative comparative analysis (1 

article). Furthermore, most studies in the sample draw on patent data, followed by data from 

scientific publications, and surveys. Table 2.1 offers an overview of the leading research outlets 

that have been central to the academic discussion on innovation team composition, as well as 

the most popular methods and data sources utilized. 

When scrutinizing the authorship patterns behind the articles, it becomes clear that the 

literature on innovation team composition is not concentrated around a few leading scholars. 

Among the 122 unique contributing authors, as few as 13 authors are represented with multiple 

(co-)authorships. Only one author12 stands out from that list with four total co-authorships of 

which three were contributions as the first author. This broad author base highlights the interest 

in and universal relevance of research on innovation team composition across various 

institutional settings. 

 
12 Alex Vestal (UNC Wilmington), OCID: 0000-0002-4514-0002 
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Figure 2.2: Sankey chart illustrating the multi-stage article sampling procedure. 
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Table 2.1: Breakdown of articles according to journal, methodological approach, and data source. 

Source Title  Number of Publications in Sample 

Research Policy  16 

Organization Science  5 

Strategic Management Journal  5 

Journal of Business Research  3 

Other Journals  25 

Method   

Traditional Regression Models  50 

Structural Equation Modelling  3 

Other Methods  2 

Data Source   

Patent Data  35 

Scientific Publication Data  8 

Survey Data  6 

Other Data Sources  12 

 

2.5 Approach to the Analysis 

For the analysis of the reviewed articles, I employed a software-aided approach using MaxQDA, 

a tool widely applied by scholars for organizing and analyzing textual research data. During the 

coding procedure, each article in the collection was thoroughly scanned for (i) team 

composition factors (independent variables), (ii) innovation outcomes (dependent variables), 

(iii) moderators, mediators, and contextual factors, (iv) types of data and data sources used, as 

well as (v) the type of analysis performed (e.g., regression analysis). For the team composition 

factors, innovation outcomes, mediators, and moderators, I synthesized how each measure was 

defined and operationalized. Moreover, I collected the empirical findings for the relationships 

investigated and the theoretical reasoning provided by the authors. Following this coding 

procedure, I organized the collected factors and outcomes based on the conceptual definition of 

the measures applied, disregarding the original labels and terminology used by the authors in 

the focal studies, to address and resolve the issue of nonmonology evident in the literature. 

Through this grouping procedure, I iteratively derived thematic categories of different types of 

team composition factors and innovation outcomes previously investigated in the collection of 

existing studies. The organized picture resulting from this harmonization of the factor and 
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outcome landscapes allows for an easier integration of empirical findings from studies that use 

different terminology although examining the same or similar relationships. 

2.6 Findings 

I derived 10 thematic categories of team-level innovation outcomes (Table 2.2) and 17 

categories of team composition factors (Table 2.3) that have been explored in the sample of 

existing work. The analysis of mediating, moderating, and contextual factors yielded few 

recurring measures, thus not allowing for the development of an informative categorization for 

these elements. Team composition factors and outcomes each show some categories that have 

received significantly more attention than others, leading to relatively strong evidence for some 

relationships and pronounced gaps for others (Table 2.4). 

2.6.1 Harmonization of Innovation Outcomes 

Studies examining the effects of team composition factors on innovation outcomes encounter 

two main challenges: the use of generic and inconsistent labels for conceptually similar or even 

the same measures and the confusion of concepts that are inherently different in their nature. 

These issues complicate the comparison and integration of empirical findings. Against this 

background, I first conducted a harmonization – based on the conceptual similarity among the 

measures employed – for the innovation outcomes studied in the extant body of research, 

resulting in the identification of 10 thematic categories that encapsulate different types of 

innovation outcomes. Table 2.2 presents the common measures and original labels associated 

with each outcome category, along with a concise description of what each category aims to 

capture. For instance, measures grouped under commercial utilization focus on the economic 

value of an innovation outcome, assessed through metrics such as granted licenses, earned 

royalties, or the creation of commercial spin-offs. 

While certain outcomes have garnered substantial attention from researchers, others 

appear in only a limited number of studies (Figure 2.3). Additionally, some outcomes, such as 
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innovation impact, have been consistently examined over the past two decades, whereas others, 

like green innovations, have only recently emerged as outcomes of interest (Figure 2.4). Early 

studies have primarily focused on assessing an invention’s superiority in terms of its 

innovativeness and overall performance relative to competitors and industry standards, relying 

on subjective evaluations from experts, consumers, or participants in the innovation process 

themselves (MacCormack et al., 2001; Sethi, 2000). Over time, patent-based metrics, utilizing, 

for example, citations or technology classes, have become much more popular across various 

types of outcomes. 

 

Figure 2.3: Number of articles in sample examining innovation outcomes by thematic categories. 

Innovation impact emerges as the most extensively studied outcome, appearing in more than 

half of the articles analyzed (Figure 2.3). However, it also provides the clearest example of the 

inconsistency in terminology used across the multitude of studies examining it. For innovation 

impact, the most dominant measure applied is the count of forward citations received by a patent 

or research paper that results as a tangible outcome from the innovation project – a common 

proxy for innovation used in innovation management research (Acs & Audretsch, 1989). The 

rationale for employing forward citations to assess the impact of an innovation is rooted in the 

notion that “the very existence of those later patents [or research articles] attests to the fact that 

the cited patents [or research articles] opened the way to a […] successful line of innovation” 

(Trajtenberg, 1990, p. 174). Different studies take various approaches to quantify this impact: 

some use a continuous variable (e.g., Huo et al., 2019; Vestal & Mesmer-Magnus, 2020), while 
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others employ a dummy variable that expresses if the forward citation count of a patent is in a 

specific quantile compared to other patents filed in the same year and technology class to 

classify it as a particularly impactful innovation outcome (e.g., Singh & Fleming, 2010; Vakili 

& Kaplan, 2021). In another indirect citation-based approach, scholars use the impact factor of 

the publication outlet to evaluate the significance of the innovation (e.g., Franzoni et al., 2018; 

Yang et al., 2021). Beyond these citation metrics, some authors determine subsequent research 

as an indicator of lasting impact in a different manner: Battaglia et al. (2021), for example, track 

whether an initial proof of concept for an innovation led to further research on the technology, 

and in the context of innovation in the field of molecular life sciences, Zaggl and Pottbäcker 

(2021) utilize the future number of orders for a newly developed plasmid13 as the subject of 

innovation from a gene repository to determine its sustained impact on the research domain. 

 

Figure 2.4: Timeline of articles studying innovation outcomes by thematic categories. Note: Each 

marker represents a single publication. The assignment of publications to thematic categories is not 

mutually exclusive. 

Despite the similarities in underlying ideas and concepts, the diversity in terminology across 

studies is particularly pronounced in the innovation impact theme of outcomes. Although many 

articles incorporate impact-related terms, an even larger number use labels, such as “economic 

value” (Chang, 2022), “team performance” (e.g., Ferrucci & Lissoni, 2019), or “breakthrough 

 
13 A plasmid is a small, circular DNA molecule found in bacteria that exists independently of the chromosomal 

DNA. Scientists use plasmids in research settings for various applications, especially to introduce new genes into 

bacteria to add new functionalities. (Pfeifer & Rocha, 2023) 
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inventions” (Vestal & Danneels, 2022), that mask the fact that the investigated outcomes are 

fundamentally comparable. Further examples of thematic categories that exhibit notable 

inconsistencies include innovation application scope, innovation output/productivity, 

innovation superiority, and innovation efficiency. Yet, in these cases, the variety of terms used 

is somewhat justified by the lower conceptual similarity among the measures employed 

compared to the innovation impact category. In contrast, for commercial utilization and green 

innovation, terms applied for the labeling of measures are relatively consistent (Table 2.2). 

A second major challenge lies in the confusion surrounding the underlying concepts 

themselves rather than merely inconsistent terminology. For instance, the line between 

innovation novelty and originality is often blurred. These terms are frequently used 

interchangeably (Kaltenberg et al., 2023; Lee et al., 2015; Vakili & Kaplan, 2021), yet I argue 

that, conceptually, they are fundamentally different (see also Kelly et al., 2021). Novelty refers 

to the quality of being new or unusual, which can manifest in two ways: by recombining 

existing pieces of knowledge in a way that has never been done before, or by introducing 

entirely new methods or ideas that have no precedent. Novelty can remain merely novel without 

others building upon it. Originality, on the other hand, should be interpreted in the fundamental 

sense of the word's root – "origin." It refers to an innovation outcome that serves as the starting 

point for a new line of innovation or a new technological trajectory (Dosi, 1982). The key 

distinction lies in the impact of these concepts: while novelty may represent a unique or 

unprecedented development, originality implies that subsequent work builds upon this 

originating innovation, driving further advancement.14 Resolving these ambiguities and clearly 

defining the specific outcomes examined is essential for making accurate comparisons and 

integrating insights across studies.  

 
14 At this point, it is worth mentioning, that innovation impact depicts the “counterpart” to innovation novelty, with 

impactful innovations being defined as such that drive further innovation that build on them, without the necessity 

of being the first of its kind. Hence, innovations of high originality can be seen as such that combine both impact 

and novelty (see also Kelly et al., 2021). 
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Table 2.2: Thematic categories of innovation outcomes by conceptually similar measures. 

Thematic Category  Measures  Original Labels  Articles 

Innovation Impact 

How an innovation fuels future 

research and innovation 

 Patent / paper forward citations  invention impact, innovation impact, patent impact, 

paper impact, technological impact, research impact 

 Chang, 2022; Czarnitzki et al., 2011; Freeman & 

Huang, 2014; Huo et al., 2019; Jiao et al., 2022; 

Jones et al., 2008; Kerr & Kerr, 2018; Lee et al., 

2015; Li et al., 2018; Onal Vural et al., 2013; 

Schillebeeckx et al., 2019; Seo et al., 2020; Singh & 

Fleming, 2010; Vestal & Danneels, 2023; Wang et 

al., 2017; Wuchty et al., 2007 

  team performance, innovation performance, 

inventive performance, team innovation 

 Cassi & Plunket, 2014; Ferrucci & Lissoni, 2019; 

Franzoni et al., 2018; Le Gallo & Plunket, 2020; 

Vestal & Mesmer-Magnus, 2020; Zaggl & 

Pottbäcker, 2021 

  value of invention, value of innovation, economic 

value, economic breakthrough 

 Chang, 2022; Li et al., 2018; Singh & Fleming, 

2010; Vakili & Kaplan, 2021; Vestal & Danneels, 

2022 

  breakthrough innovation, breakthrough invention, 

economic breakthrough 

 Chang, 2022; Gay et al., 2008; Singh, 2008; Vakili 

& Kaplan, 2021 

  invention quality, patent quality  Czarnitzki et al., 2011; Le Gallo & Plunket, 2020; 

Wang et al., 2017 

  invention importance, patent importance  Czarnitzki et al., 2011; Kaltenberg et al., 2023 

 Journal impact factor  team performance, innovation performance, paper 

impact 

 Franzoni et al., 2018; Freeman & Huang, 2014; 

Yang et al., 2021 

 Subsequent research projects  new research, team innovation performance  Battaglia et al., 2021; Zaggl & Pottbäcker, 2021 

Commercial Utilization 

How an innovation is turned into 

economic value 

 Licenses, royalty dollars  commercialization (success), licensing  Ali & Gittelman, 2016; Battaglia et al., 2021; 

Bercovitz & Feldman, 2011; Walsh et al., 2016 

 Research resulted in (triadic) patents  commercialization (success), economic relevance  Bercovitz & Feldman, 2011; Gittelman, 2007; 

Melero & Palomeras, 2015 

 Spin-off creation  commercialization, spin-off creation  Battaglia et al., 2021; Walsh et al., 2016 

 Internal (commercial) use of research  commercialization, proprietary technologies, 

private value 

 

 Gittelman, 2007; Walsh et al., 2016 
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Innovation Novelty 

How an innovation combines 

knowledge in a new way or introduces 

a new idea without any precedent 

 Novel combination of patent subclasses  novelty, knowledge recombination, outlier patents  Choudhury & Kim, 2018; Kneeland et al., 2020; 

Seo et al., 2020; Tzabbar & Vestal, 2015 

 Novel combinations of references  novelty  Lee et al., 2015; Seo et al., 2020 

 Spread of backward citations across technology 

classes; number of backward citations 

 originality, depth of connection to previous 

technology 

 Kaltenberg et al., 2023 

Innovation Application Scope 

The breadth of an innovations’ 

potential applications 

 Number of patent claims  patent (application) scope, invention scope, patent 

quality 

 Beaudry & Schiffauerova, 2011; Choudhury & 

Haas, 2018; Kaltenberg et al., 2023 

 Variety of technology classes in forward citations  (technology) generality  Ardito et al., 2021; Kaltenberg et al., 2023 

 Spread of patents across technology classes  tech diversity  Chang, 2022 

Innovation Output / Productivity 

The count of successful innovation 

results (in a certain period of time) 

 Number of patents / papers produced; likelihood to 

produce a patent 

 innovation performance, R&D performance, 

productivity, rate of patenting 

 Chang, 2022; Kaltenberg et al., 2023; Yoo et al., 

2023 

 Time needed to produce a patent  innovative productivity  Jain, 2013 

 Completion of a clinical trial  innovation outcome  Brunetta et al., 2019 

General Innovativeness 

Innovativeness measured based on 

multi-dimensional constructs 

 Multi-item constructs  team innovativeness, team innovation, innovation 

performance, knowledge outcome 

 Cheung et al., 2016; Cummings & Kiesler, 2007; 

Hubner et al., 2022; Zhang et al., 2020 

Innovation Superiority 

How an innovation performs better 

compared to other solutions 

 Expert rating  invention quality, (new) product quality, product 

performance 

 MacCormack et al., 2001; Sethi, 2000; Walsh et al., 

2016 

 Deviation from industry average  R&D team performance  Hoisl et al., 2016 

Innovation Originality 

How an innovation represents the root 

/ origin of a new technological 

trajectory 

 Ratio of forward to backward citations  catalyzing effect  Dornbusch & Neuhäusler, 2015 

 References similarity between focal patent and 

forward citing patents 

 disruptiveness  Kaltenberg et al., 2023 

 Topic modelling – textual content novelty  cognitive novelty, novel breakthrough, topic 

origination 

 Vakili & Kaplan, 2021 

Green Innovation 

An innovation that reduces 

environmental degradation 

 Patent is classified in WIPO IPC Green Inventory or 

OECD ENV-TECH 

 green technology  Marino & Quatraro, 2022; Orsatti et al., 2020 

Innovation Efficiency 

The output of innovation relative to the 

resources required 

 Number of patent forward citations received per 

scientist man-days spent  

 patent quality, patent impact, citations per unit labor 

requirement 

 Jain, 2013 

 Data Envelope Analysis – multi-item construct  R&D performance  Hung, 2017 
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2.6.2 Harmonization of Team Composition Factors 

Scholars have not only investigated a multitude of different innovation outcomes but have also 

considered an extensive collection of team composition factors in seeking to explain these 

outcomes. Employing the same harmonization approach applied to innovation outcomes 

(section 2.6.1), I derived 17 distinct categorical themes that encompass the range of team 

composition factors studied in the existing literature (Table 2.3). Many of these categories refer 

to some sort of diversity, such as knowledge, demographic, or functional diversity, reflecting a 

shared theoretical assumption that varied perspectives and expertise contribute to innovation. 

Other categories focus on factors that foster the integration of these perspectives, such as prior 

collaboration and experience, supporting the idea of innovation as a process that combines and 

aligns inputs from diverse sources (Dahlin et al., 2005; Dougherty, 1992; Harvey, 2014; Huo et 

al., 2019; Schmickl & Kieser, 2008).  

 

Figure 2.5: Number of articles in sample examining team composition factors by thematic 

categories. 

Knowledge diversity is the most salient team composition factor studied (Figure 2.5). Interest 

in knowledge diversity emerged relatively recently (Onal Vural et al., 2013) but continued to 

receive steady attention since (Figure 2.6). With this considerable focus on knowledge diversity 

has come a high variety in the measures used to assess it. The most common approach relies on 
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historical patent or research publication data to determine each team member’s knowledge base, 

inferred from technology classes (for patents; e.g., Huo et al., 2019; Vestal & Mesmer-Magnus, 

2020) or subjects and keywords (for publications; e.g., Onal Vural et al., 2013; Zaggl & 

Pottbäcker, 2021). Knowledge diversity within teams is typically quantified using vector-based 

distance measures or categorical diversity indices. Among studies employing these approaches, 

terminology tends to be consistent and well descriptive, with terms like “technological 

dissimilarity”, “knowledge distance”, and “multiplicity in expertise” frequently used. However, 

some studies adopt alternative labels, such as “collective breadth” (Kneeland et al., 2020). 

Additional measures for knowledge diversity consider team members' prior experience across 

various industries (Hoisl et al., 2016), subjects of academic education (Yoo et al., 2023; Zhang 

et al., 2020), or self-reported expertise (Lee et al., 2015), providing a broader view of the 

sources of diverse knowledge within teams. 

Other diversity factors, such as demographic diversity and geographic dispersion, have 

also received significant scholarly attention. Research into demographic aspects – including 

nationality, ethnicity, age, and gender – only began gaining traction around 2014, reflecting a 

newer focus on these attributes. Geographic factors, on the other hand, were addressed earlier 

but have seen a decline in recent years. This trend is even more pronounced for organizational 

diversity (Figure 2.6). Demographic diversity provides a good example of a category of factors 

with a fair degree of consensus in how measures are applied. For instance, nationality is usually 

operationalized based on citizenship declared at patent filing (e.g., Ferrucci & Lissoni, 2019), 

while ethnicity is commonly estimated by probabilistic methods via surnames (e.g., Marino & 

Quatraro, 2022). Similar probabilistic methods are used for gender and, more recently, age 

attribution (e.g., Kaltenberg et al., 2023), though gender diversity has received surprisingly little 

attention at the team level15. For geographic dispersion, direct location data is often used to 

 
15 A larger collection of studies examines gender diversity at a firm level or department level (e.g., Díaz-García et 

al., 2013; Garcia Martinez et al., 2016; Østergaard et al., 2011; Xie et al., 2020). 
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calculate distances between team members or the number of unique locations represented on a 

team, with a focus either on the benefits of proximity for facilitating knowledge flows (e.g., Seo 

et al., 2020; Tzabbar & Vestal, 2015) or on the advantages of diverse, spatially bound 

knowledge in dispersed teams. Studies examining nationality often use similar arguments 

regarding diverse regional knowledge sources (e.g., Gay et al., 2008). In contrast, a few studies 

use less direct measures for geographic factors, such as the approach by Beaudry and 

Schiffauerova (2011) of using foreign patent ownership as a proxy for global dispersion. Here, 

terminology is clearer when applying distance-based measures (e.g., “geographic proximity”) 

and location-based diversity (e.g., “geographic dispersion”) than when using indirect measures 

(e.g., “global collaborative patent”). 

 

Figure 2.6: Timeline of articles studying team composition factors by thematic categories. Note: 

Each marker represents a single publication. The assignment of publications to thematic categories is 

not mutually exclusive. The Demographics category is shown disaggregated into its sub-categories: 

Nationality, Ethnic Diversity, Gender Diversity, and Age. 
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Table 2.3: Thematic categories of team composition factors by conceptually similar measures. 

Thematic Category  Measures  Original Labels  Articles 

Knowledge Diversity 

Diversity (variety / dissimilarity) of 

knowledge / expertise among the members 

of a team 

 Diversity / distance measure based on technology 

classification / subject / keywords of previous 

publications 

 technological dissimilarity, technological variety, 

technological proximity, technological distance, 

scientific proximity 

 Cassi & Plunket, 2014; Huo et al., 2019; Onal 

Vural et al., 2013; Orsatti et al., 2020; Vestal & 

Danneels, 2022 

  knowledge overlap, knowledge distance, 

knowledge coherence, cognitive distance 

 Orsatti et al., 2020; Vakili & Kaplan, 2021; Vestal 

& Danneels, 2023 

  multiplicity in expertise, unsharedness of expertise  Vestal & Mesmer-Magnus, 2020; Zaggl & 

Pottbäcker, 2021 

  collective breadth  Kneeland et al., 2020 

  recombinant capabilities  Orsatti et al., 2020 

 Self-reported diversity / diversity measure; 

based on academic education (by subject) 

 major diversity, knowledge background, explicit 

knowledge heterogeneity 

 Yoo et al., 2023; Zhang et al., 2020 

 Diversity measure based on experience in different 

industries 

 team experience diversity  Hoisl et al., 2016 

 Self-reported field expertise  field variety  Lee et al., 2015 

 Distance measure based on affiliation with 

technical communities 

 informal team diversity  Choudhury & Haas, 2018 

Demographics 

(Diversity of) demographic attributes 

among team members 

                                     Nationality 

           

 Cultural differences linked to countries; separation 

based on beliefs associated with nationalities 

 cultural differences, team separation  Ferrucci & Lissoni, 2019; Hubner et al., 2022 

 Diversity measure based on nationalities; presence 

of foreign inventor on team 

 team diversity, presence of foreign inventor  Ferrucci & Lissoni, 2019; Gay et al., 2008 

                                     Ethnic Diversity 
 Diversity measure based on ethnicities assigned 

through surnames 

 ethnic diversity, ethnic homogeneity, inventor 

ethnicity 

 Choudhury & Kim, 2018; Freeman & Huang, 

2014; Marino & Quatraro, 2022 

                                     Age (Diversity) 
 Team members mean age; standard deviation of 

age; percentage of members below specific age 

 team (average) age, age heterogeneity  Battaglia et al., 2021; Kaltenberg et al., 2023 

                                     Gender Diversity  Diversity measure based on binary gender  gender diversity  Yoo et al., 2023 
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Geographic Dispersion 

The geographic proximity / dispersion of 

the members of a team 

 Average pairwise distance between team members 

locations, average distance of external team 

members to PI 

 geographic proximity, geographical distance, team 

distance 

 Bercovitz & Feldman, 2011; Cassi & Plunket, 

2014; Dornbusch & Neuhäusler, 2015; Gittelman, 

2007 

 Diversity measure based on number of different 

team member locations 

 geographic dispersion, geographic diversity  Seo et al., 2020; Tzabbar & Vestal, 2015 

 Team includes member abroad / foreign member  global collaborative patent, involvement of 

foreign inventors 

 Beaudry & Schiffauerova, 2011; Kerr & Kerr, 

2018 

 Patent is assigned to foreign company  foreign patent ownership, foreign collaboration  Beaudry & Schiffauerova, 2011 

Institutional Diversity 

The variety of institutional backgrounds 

represented on a team (e.g., public / private 

sector; firm / university) 

 Categorical variable / dummy measuring diversity 

of institution types represented on team (e.g., 

public / private; SME / MNE; firm / university; 

customer / supplier / competitor); number of 

different institution types represented on team 

 team institutional diversity, organizational 

background, university-industry collaboration, 

partnership type, collaboration heterogeneity, 

external network ties 

 Bercovitz & Feldman, 2011; Brunetta et al., 2019; 

Dornbusch & Neuhäusler, 2015; Walsh et al., 2016 

 Presence of team member with academic 

background on team 

 academic patents, presence of scientist  Ardito et al., 2021; Czarnitzki et al., 2011 

 Experience in similar institution type  organizational proximity  Cassi & Plunket, 2014 

Functional Diversity 

The variety of job functions represented on 

a team 

 Diversity measure based on job function of team 

members 

 functional diversity, formal team diversity  Cheung et al., 2016; Choudhury & Haas, 2018; 

Sethi, 2000 

 Diversity measure based on departmental 

affiliations of team members 

 team heterogeneity, number of departments, 

coordination and communication costs 

 Battaglia et al., 2021; Bercovitz & Feldman, 2011; 

Onal Vural et al., 2013 

Domain Experience 

Prior experience working / innovating in 

the focal innovation domain 

 Similarity of team members’ previous patents 

technology classes with focal patents classes; 

number of previous patents in same classes as 

focal patent; share of team members with previous 

patents in same classes 

 team domain experience, team specific invention 

experience, individual experience, exploration 

 Jain, 2013; Li et al., 2018; Schillebeeckx et al., 

2019; Wang et al., 2017 

 Number of previous generations of product 

worked on 

 generational experience  MacCormack et al., 2001 

Team Network Position 

Social Proximity 

The connectedness of (the members 

of) a team to non-members 

  

Closeness / degree centrality of team or individual 

members; based on collaboration and citations of 

prior work 

  

social proximity, closure, closeness centrality, 

degree centrality, social network density, 

technology ties density 

  

Beaudry & Schiffauerova, 2011; Cassi & Plunket, 

2014; Hung, 2017; Yang et al., 2021 



33 

 

Gatekeeper Position 

The degree to which (members of) a 

team bridge(s) knowledge flows 

between non-members 

 Betweenness centrality / structural hole position of 

team or individual members; based on 

collaboration and citations of prior work 

 gatekeepers, gatekeeper functionality, 

betweenness centrality, structural holes 

 Beaudry & Schiffauerova, 2011; Hung, 2017; Le 

Gallo & Plunket, 2020; Yang et al., 2021 

Organizational Diversity 

The diversity of organizational affiliations 

represented on a team 

 Number of universities involved  multi-university collaboration  Cummings & Kiesler, 2007; Jones et al., 2008 

 Involvement of external organizations; patent 

assignment to organization 

 collaborative patent, assigned patent, coordination 

and communication costs 

 Bercovitz & Feldman, 2011; Singh & Fleming, 

2010 

 Prior co-patenting of team members for the same 

organization 

 organizational proximity  Cassi & Plunket, 2014 

Prior Collaboration 

The degree to which team members have 

worked together in the past 

 Prior pairwise collaborations among team 

members; prior collaboration of full team; prior 

collaboration among at least two team members; 

number of prior collaborations among at least two 

team members 

 prior joint work experience, prior ties, preexisting 

social ties, repeated collaboration, team 

experience, generalized experience 

 Beaudry & Schiffauerova, 2011; Bercovitz & 

Feldman, 2011; Jain, 2013; Jiao et al., 2022; Onal 

Vural et al., 2013 

Team Size 

The number of team members 

 Number of members on the team  team size  Battaglia et al., 2021; Lee et al., 2015; Wang et al., 

2017 

 Dummy if research is performed by more than one 

person 

 team  Singh & Fleming, 2010; Wuchty et al., 2007 

Knowledge Breadth / Depth 

The degree of specialization / 

generalization w.r.t. to the expertise of the 

team members 

 Number of team members’ previous patents in 

multiple unique / one single technology class(es); 

diversity measure based on technology classes of 

previous patents 

 knowledge breadth / depth, breadth, presence of 

generalists 

 Kneeland et al., 2020; Melero & Palomeras, 2015; 

Vakili & Kaplan, 2021 

 Presence of a team member with multiple distinct 

degrees 

 cross-domain inventions  Ali & Gittelman, 2016 

Member Prestige 

The presence of one or more team 

members with outstanding past 

performance 

 Number of a single team member’s past patents  star inventors, prolific inventors  Beaudry & Schiffauerova, 2011; Gay et al., 2008 

 Member affiliation with highly cited institution  prolific inventors, partner prestige  Gittelman, 2007 

 Degree to which cumulative past patents center 

around one team member 

 productivity gap  Jiao et al., 2022 

Member Mobility 

How team members have changed 

locations, organizational affiliations, and 

partners in the past 

 Team member(s) changed location in the past  mobile scientist team, cross-regional move  Franzoni et al., 2018; Singh, 2008 

 Team member(s) collaborated with someone from 

another location in the past 

 cross-regional tie  Singh, 2008 
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General Experience 

The overall (domain-independent) 

innovation experience among the 

members of a team 

 Average number of previous patents filed across 

team members 

 team general invention experience, average 

patents per inventor 

 Beaudry & Schiffauerova, 2011; Wang et al., 2017 

Recombinant Novelty 

How new the combination of knowledge 

backgrounds introduced by the members 

of a team is 

 Novel co-occurrences of technology subclasses; 

based on team members’ previous patents’ 

technology classes 

 technological recombinant capabilities  Marino & Quatraro, 2022 

 Novel combinations of collaborating departments; 

based on team members departmental affiliations 

 knowledge combination novelty, cognitive 

diversity 

 Bercovitz & Feldman, 2011 

Education (Level) Diversity 

The diversity in education levels among 

the members of a team 

 Diversity measure based on education (degree) 

levels among team members 

 education diversity, education level  Yoo et al., 2023 

Research Paradigm 

The approach to innovation shaped by the 

prevailing school of thought among team 

members (e.g., practitioners vs. theorists) 

 Type(s) of doctoral degrees among team members  research paradigm, lead inventor degree, single- / 

cross-domain inventions 

 Ali & Gittelman, 2016 
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While some categories, such as the demographic aspects, were straightforward to define in the 

harmonization process, others required more nuanced considerations. For instance, delineating 

between organizational and institutional diversity was challenging due to overlapping labels 

and theoretical underpinnings. To illustrate, organizational diversity primarily captures the 

variety of affiliations represented within a team, often measured by the presence of different 

organizations in a project or by team members' affiliations (e.g., Cassi & Plunket, 2014; 

Cummings & Kiesler, 2007). In contrast, institutional diversity emphasizes the types of 

organizations – such as public versus private or academic versus industry (e.g., Brunetta et al., 

2019; Cassi & Plunket, 2014) – and the unique operational characteristics that each type brings 

to the innovation process. Nevertheless, such delineations are still crucial to capture the unique 

contributions that different factors bring to innovation outcomes. With the resulting harmonized 

categories of team composition factors in place, combined with the thematic categories of 

innovation outcomes, a foundation is established to summarize the current state of empirical 

insights on the specific relationships studied between team composition factors and innovation 

outcomes. 

2.6.3 Relationship Synthesis 

Inconsistencies in terminology and variations in definitions of measures created significant 

barriers to the comparison and synthesis of empirical insights across studies, resulting in a 

fragmented understanding of how team composition impacts innovation outcomes. After 

disentangling the landscape of team composition factors and different types of outcomes 

examined in the existing literature, and as a result of systematically cataloging the empirical 

evidence from this diverse body of research, Table 2.4 presents a cohesive overview of the 

findings from past studies on team-based innovation. 

Following an approach similar to Perkmann et al. (2021), I assigned directional 

indicators to capture the overall effect of each team composition factor on different innovation 
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outcomes across studies. A (+) marker indicates that studies consistently find a positive 

relationship between a team composition factor and innovation, even if some studies report 

non-significant results. A (-) marker signifies that studies consistently report a negative 

relationship, again, allowing for non-significant findings alongside. The () marker is used 

when studies identify a curvilinear (e.g., inverted U-shaped) relationship, allowing for both 

linear (positive or negative) and non-significant results in certain cases. Finally, I assigned an 

(O) marker where studies show either no significant effect, mixed or contradictory effects, or 

effects that vary depending on moderators or contextual factors, reflecting ambiguity in the 

relationship. For each cell in the table, the strength of the fill color indicates the number of 

studies investigating the specific relationship, providing a visual cue on the volume of evidence 

available. Additionally, the number of studies is shown in brackets following the relationship 

marker, making it easy to interpret both the direction and the quantity of research on each 

relationship (i.e., robustness of the evidence base). 

As evident from Table 2.4, the most salient relationship studied is between knowledge 

diversity – and dissimilarity16 among team members’ knowledge bases in particular – and the 

impact of an innovation. This is not surprising as both stand out as the most studied categories 

among team composition factors and innovation outcomes. Studies consistently report a net 

positive effect that indicates that as knowledge dissimilarity increases, it generally benefits the 

impact of an innovation as it enables the novel combination of distinct, often complementary 

knowledge bases, leading to solutions that stand out in the field and thus serve as building 

blocks that other inventors find particularly valuable for subsequent innovations (Cassi & 

Plunket, 2014; Huo et al., 2019; Onal Vural et al., 2013; Vestal & Danneels, 2022, 2023; Vestal 

& Mesmer-Magnus, 2020). However, as knowledge dissimilarity continues to rise, the benefits 

 
16 Diversity can be disaggregated into different types: separation, variety, and disparity (Harrison & Klein, 2007). 

(Knowledge) dissimilarity refers to the separation aspect of diversity and is conceptually different from knowledge 

variety. 



37 

 

begin to taper off, and a negative quadratic effect (i.e., inverted U-shape) dominates (Cassi & 

Plunket, 2014; Huo et al., 2019; Onal Vural et al., 2013; Vestal & Danneels, 2022; Vestal & 

Mesmer-Magnus, 2020). At such a high level of dissimilarity, it becomes increasingly 

challenging for inventors to integrate knowledge and perspectives effectively. Coordination 

costs become higher as team members face significant communication barriers and require 

additional time and efforts to bridge conceptual gaps. This makes it harder to synthesize the 

distant knowledge pieces into a cohesive innovation, reducing the overall impact (see also 

Dougherty, 1992; Harvey, 2014). Interestingly, Huo et al. (2019) find that the overall positive 

effect of knowledge dissimilarity becomes insignificant when accounting for the variety of 

knowledge held among the inventors, suggesting that – while dissimilarity in knowledge does 

not necessarily have to come with large knowledge variety (e.g., when highly specialized 

inventors from different narrow fields collaborate) – the main benefit comes from drawing on 

a broad knowledge base formed by the collaborating inventors collectively (Vestal & Danneels, 

2023; Zaggl & Pottbäcker, 2021). 

A similar pattern emerges for other diversity-related aspects of team composition. For 

instance, Kerr and Kerr (2018) demonstrate that patents filed by inventors across multiple 

countries tend to yield more impactful innovations, as locally distinct perspectives and 

specialized knowledge expand the pool of resources available to the team. However, as Seo et 

al. (2020) show, when geographic diversity becomes too high, the benefits are outweighed by 

coordination and integration challenges, including limited face-to-face interaction and cultural 

differences, which complicate collaboration. 

Yet, other team composition factors specifically foster the integration of diverse 

perspectives. Profound domain experience, for example, helps teams to more effectively select 

and recombine relevant distinct knowledge pieces through their deep understanding of the field 

(Li et al., 2018; Schillebeeckx et al., 2019; Wang et al., 2017). At the same time, extensive 

domain experience can cause cognitive rigidity, making teams depend heavily on familiar 
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approaches and find it challenging to incorporate highly novel components (Wang et al., 2017). 

In addition to specific experience in the focal domain, Wang et al. (2017) find a similar effect 

for general, domain-independent experience that inventors gain from previous innovation 

projects. This general experience allows inventors to develop routines that enhance 

communication and facilitate knowledge integration. However, as with domain-specific 

experience, extensive general innovation experience can lead to over-reliance on familiar 

approaches, limiting exploration and reducing the potential for highly impactful innovations. 

While the empirical findings for the relationships discussed above are relatively 

consistent, there remains ambiguity in others. For instance, Lee et al. (2015) find that as team 

size increases, innovations tend to become more impactful, primarily because larger teams 

access broader networks, enhancing their visibility in the scientific community and increasing 

the likelihood that other inventors will build on their work. Conversely, Wang et al. (2017) 

observe diminishing returns with very large teams, where coordination challenges start to offset 

the benefits of additional members. Battaglia et al. (2021) add nuance by finding that team size 

is not always a decisive factor. However, when it is relevant, smaller teams are often more 

effective in producing impactful innovations that stimulate further research. 

For certain innovation outcomes, such as innovation impact, a stronger empirical 

foundation exists regarding their antecedents, partly due to the substantial attention these 

outcomes have received compared to others. In contrast, for green innovation, although 

attracting growing interest in the scholarly community in recent years (Takalo et al., 2021), only 

a fraction of potentially relevant team-level drivers has been studied. The same is true for 

original (i.e., topic-originating) innovations that constitute the starting point for completely new 

technological trajectories. Additionally, the informative value of empirical findings varies 

notably across outcome categories, with some showing more conclusive evidence than others. 

While prior research shows relatively consistent and significant effects for outcomes like 
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innovation novelty, application scope, and efficiency, the antecedents of innovations with high 

commercial utilization remain relatively ambiguous and less well understood. 

A similar imbalance in empirical evidence exists among the team composition factors 

examined in prior research. While knowledge-related antecedents of successful team-based 

innovation have been explored across a wide range of outcomes, others factors, such as 

differences in education levels, the inventors' roles as practitioners or theorists (i.e., research 

paradigm), or demographic aspects like gender diversity – which has been studied much more 

commonly on a firm or department level (e.g., Díaz-García et al., 2013; Garcia Martinez et al., 

2016; Østergaard et al., 2011; Xie et al., 2020) – remain less examined for many key innovation 

outcomes. Interestingly, team size – a factor extensively studied in relation to innovation impact 

– has been largely overlooked for other frequently examined outcomes, such as team 

productivity or the application scope of an innovation. 

Furthermore, some team composition factors demonstrate relatively consistent effects 

across different innovation outcomes. For instance, ethnic diversity tends to have positive 

effects, although these may diminish at very high diversity levels. Similarly, teams with prior 

experience in the focal domain often show enhanced performance across outcomes. In contrast, 

teams with a higher average age tend to produce more novel innovations, yet these often have 

a narrower application scope and a lower likelihood of initiating a new technological trajectory 

that others will build upon (i.e., limited innovation originality). Additionally, collaborations 

between inventors from different types of institutions generally result in more impactful, 

original, and competitively superior innovations. However, institutional diversity can reduce a 

team’s productivity, as such teams tend to produce fewer innovations over time. Notably, the 

number of organizations involved in an innovation project (i.e., organizational diversity) 

appears to negatively affect multiple outcomes, with innovations from these teams often being 

less economically valuable and generally less innovative. 
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Table 2.4: Relationship synthesis. 

  Innovation 
Impact 

Commercial 
Utilization 

Innovation 
Novelty 

Innovation 
Application 

Scope 

Innovation 
Output / 

Productivity 

General 
Innovativeness 

Innovation 
Superiority 

Innovation 
Originality 

Green 
Innovation 

Innovation 
Efficiency 

Knowledge Diversity 
Dissimilarity  (6)   + (1) O (1)   O (1) O (1)  

Variety + (3)  + (2)   (2) O (1)  (1)  O (1)  

Demographics 

Nationality (Diversity) O (2)     O (1)     

Ethnic Diversity + (1)  + (1)       (1)  

Gender Diversity  O (1)    (1)      

(Average) Age  O (1) + (1) - (1)    - (1)   

Age Diversity   O (1) + (1)    - (1)   

Geographic Dispersion   (4) O (2)  (2) + (1)    O (1)   

Institutional Diversity  O (2) O (2)  O (1) - (1)  + (1) + (1)   

Functional Diversity  O (2) O (2)  + (1)  - (1) O (1)    

Domain Experience   (3)    + (1)  + (1)   + (1) 

Network Position 
Social Proximity (Degr. Centrality)   + (3)   + (1)      + (1) 

Gatekeeper (Betw. Centrality) + (2)   + (1)      + (1) 

Organizational Diversity  O (3) - (1)    - (1)     

Prior Collaboration  O (2) + (1)  - (1) + (1)     + (1) 

Team Size  O (5) O (1)  (1)        

Knowledge Breadth / Depth 
Breadth (Generalists) O (1) O (2) + (1)     O (1)   

Depth (Specialists) O (1)       O (1)   

Member Prestige  + (2) - (1)  + (1)       

Member Mobility  + (1)   + (1) O (1)      

General Experience   (1)   O (1)       

Recombination Novelty   + (1)       + (1)  

Education (Level) Diversity   O (1)   + (1)      

Research Paradigm (Practitioners vs. Theorists)  + (1)         
 

Notes: The table reports the synthesized qualitative effects of team composition factors on innovation outcomes. (+) positive effect, (-) negative effect, () curvilinear relationship, 

(O) ambiguous or only non-significant findings. 
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In summary, while a substantial body of research has investigated relationships between 

various team composition factors and innovation outcomes, notable gaps and ambiguities 

remain. Table 2.4 provides an overview of these relationships, highlighting the robustness and 

directionality of empirical findings across studies. However, the synthesis also reveals that 

many potential relationships have either limited or inconclusive evidence, creating a fragmented 

understanding of how different aspects of team composition influence specific innovation 

outcomes. 

2.6.4 Mediators, Moderators and Contextual Factors 

Despite the extensive research on team composition and its effects on innovation outcomes, 

limited attention has been given to interaction effects – particularly the roles of mediators, 

moderators, and contextual factors that shape these relationships. This focus on direct 

relationships overlooks the complex dynamics behind these associations. 

Mediating factors, for example, serve as explanatory links that help better understand 

the underlying mechanisms that determine how and why observed relationships take shape, thus 

offering insights that direct relationships alone cannot fully capture. Vakili and Kaplan (2021, 

p. 1174) highlight this by showing that an innovation's impact is largely determined by its 

originality, noting that “very little else in team configuration matters for creating […] 

breakthroughs beyond the indirect effects mediated through producing topic-originating 

patents”. Similarly, Singh and Fleming (2010) find that the advantage teams have in producing 

more impactful and fewer low-quality innovations stems from the broader networks and more 

diverse knowledge bases contributed by multiple inventors. Lee et al. (2015) support this by 

suggesting that the effect of team size on innovation novelty may arise primarily from the 

greater functional and knowledge diversity that larger teams can harness. However, as Cheung 

et al. (2016) point out, functional diversity can also inhibit knowledge sharing across team 

members which can be detrimental to the innovation success of a team – an effect that is also 



42 

 

observed when innovation projects span several organizational boundaries and a great division 

of central responsibilities among team members results in poor project coordination 

(Cummings & Kiesler, 2007). Finally, Hubner et al. (2022) find that it is the inclination of 

inventors stemming from certain cultural settings to engage more in exploration over 

exploitation activities that primarily determines innovativeness rather than other cultural 

idiosyncrasies. When aiming for high impact, however, Wang et al. (2017) demonstrate that 

teams with some, but not extensive innovation experience are those that create innovations that 

drive further research most by balancing exploration with exploitation of existing knowledge. 

Moderators, on the other hand, specify conditions that influence the strength or direction 

of relationships. The line between moderators and contextual factors is often blurred, as certain 

conditions can simultaneously influence specific interactions and define the overarching setting 

under which (interaction-)effects take place. For instance, Orsatti et al. (2020) find that the 

likelihood of teams with diverse knowledge bases producing green innovations is higher for 

less experienced teams, whereas for highly experienced teams, this relationship between 

knowledge diversity and green innovation even turns negative – demonstrating that team-level 

innovation experience operates as a clear moderator. Yet, the contrary effects for experienced 

and unexperienced team becomes even stronger when the country in which an innovation is 

developed has low environmental policy stringency. Here, policy stringency could be seen as a 

deeper-level moderator, as it systematically affects the strength of the team experience effect 

on innovation. Alternatively, it may serve as a contextual factor, creating an overarching 

environmental setting that amplifies or attenuates interactions between team experience and 

innovation outcomes. Adding to this complexity, specificities of the sector as the innovation 

context further shape the conditions under which green innovations are most likely to emerge, 

underscoring the challenges in clearly distinguishing moderators from contextual factors. 

Despite these considerations, however, the set of contextual factors that can be synthesized 

remains relatively sparse. 
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While moderating factors appear to be more commonly studied than mediators in the 

existing literature, each moderator is typically investigated in only a few studies – or even a 

single study – within the context of a specific primary relationship. Such factors include the 

geographic (Ardito et al., 2021; Cassi & Plunket, 2014; Le Gallo & Plunket, 2020) and social 

(Cassi & Plunket, 2014) proximity of team members, prior experience and differences in 

experience innovating among team members (Orsatti et al., 2020; Seo et al., 2020; Vestal & 

Mesmer-Magnus, 2020), a team’s network position (Schillebeeckx et al., 2019; Yang et al., 

2021), and the diversity of institutional settings in which team members have previously 

innovated (Cassi & Plunket, 2014; Dornbusch & Neuhäusler, 2015; Le Gallo & Plunket, 2020), 

to name a few. One exception stands out: prior collaboration, which has been explored as an 

influential factor across multiple primary relationships. For example, Onal Vural et al. (2013) 

examine the effects of prior collaboration among team members on the relationship between 

functional diversity and innovation impact, demonstrating that prior collaborations can 

transform the otherwise negative effect of high functional diversity within a team into a positive 

one. Prior collaboration has also been shown to enhance the positive effect of experience in a 

focal domain on team productivity (Jain, 2013), amplify the impact of exploration-driven 

innovation (Li et al., 2018), and support the recombination of distant knowledge (Vestal & 

Danneels, 2023). However, prior collaboration can constrain the innovation scope. For 

example, Ardito et al. (2021) find that prior collaboration within teams comprising both 

academic and non-academic inventors may lead to a narrower problem focus, making 

university-industry teams more likely to concentrate on a more specific issue with repeated 

collaboration. 

Existing research has expanded our understanding of how team composition impacts 

innovation outcomes. Yet, the exploration of mediators, moderators, and contextual factors 

remains limited and fragmented. Mediators provide essential insights into the mechanisms 

underlying direct relationships, while moderators and contextual factors reveal the conditions 
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under which these relationships may change. However, the scarcity of studies investigating 

these effects leaves significant gaps in the literature. Addressing these gaps is crucial to develop 

a more nuanced understanding of the complex dynamics associated with team-based 

innovation. 

2.7 Discussion 

Over the past 25 years, scholars have shown significant interest in team composition factors 

that drive successful collaborative innovation. A wide array of factors and innovation outcomes 

have been examined, making it challenging to maintain a comprehensive overview of the team-

level drivers identified in the ever-growing body of scholarly work. This review takes stock and 

maps out the landscape of team composition factors and innovation outcomes, as well es the 

relationships between them, addressed in past studies. 

During the process of conducting this review, considerable inconsistencies in the 

terminology used to describe conceptually similar or identical measures became evident, 

complicating the understanding of which factors and relationships are being studied. To address 

this issue, I derived thematic categories beyond the authors’ original labels and descriptive 

terms – 10 categories for innovation outcomes and 17 categories for team composition factors 

– based on the conceptual similarity of the measures employed. These clearly labeled themes 

reflect what the measures are “actually” assessing, promoting more consistent terminology in 

future research. 

Furthermore, this review shows how certain thematic categories have received 

significantly more attention than others, with some enjoying continuous scholarly interest over 

many years, whereas others (e.g., green innovation) have only recently gained popularity. While 

some relationships between team composition factors and innovation outcomes are well-

researched (e.g., knowledge diversity → innovation impact), the majority of potential 

relationships remain understudied or unexplored. Moreover, although studies show that the 
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innovation context can have a substantial impact on the antecedents of successful team-based 

innovation (Vakili & Kaplan, 2021), contextual factors and moderators, that can influence the 

direct effects between team composition factors and innovation outcomes, are featured in only 

a small fraction of previous studies. 

2.7.1 Contributions 

With this review, I contribute to research on innovation team composition in three key ways. 

First, I offer a catalogue of team composition factors and different innovation outcomes 

discussed in the growing body of literature on the topic, thus providing a comprehensive 

summary of the factors that have been considered as antecedents of successful team-based 

innovation. Second, by addressing the inconsistencies in terminology used to describe various 

measures and organizing them into thematic categories with less ambiguous labels, this review 

helps to facilitate the comparability of empirical findings and to integrate insights across studies 

while encouraging more consistent use of terminology in future research. Without consistent 

terminology, researchers risk various issues, such as conflating different types of outcomes, 

which can lead to ambiguous results and hinder the development of a coherent body of 

knowledge. Hence the harmonized categories of team composition factors and different types 

of outcomes can serve as a framework for future research in the field. Third, by synthesizing 

the empirical evidence for relationships between team composition factors and innovation 

outcomes, I provide an overview of the current knowledge on the contribution of team 

composition factors for fostering specific outcomes and identify a notable range of gaps in the 

literature as many relationships remain understudied. With that, I provide a roadmap for future 

research that is crucial for advancing our understanding of how various factors influence 

innovation outcomes, thereby guiding scholars towards unexplored areas that hold potential for 

significant contributions. 
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2.7.2 Limitations 

Despite the contributions of this review, there are limitations that need to be acknowledged. 

First, the scope of this review is limited by design with inclusion criteria being strictly focused 

on studies that specifically investigate innovation on a team level and in a technological context. 

For this review, I excluded a notable number of studies that indeed name “R&D teams” as their 

subject of analysis, but in fact do not comply with the clearly delineated definition of a team 

(i.e., two or more individuals forming a group to collaboratively innovate) I apply. Instead, 

these studies often look at entire R&D departments or even the firm level in their analysis. The 

exclusion of these articles is based on the premise that team composition factors and outcomes 

observed at these more macro levels do not reliably reflect the collaborative efforts of individual 

teams, which is crucial to understand the team-level dynamics in collaborative innovation. 

Nevertheless, despite not meeting the sampling criteria for this review, they could potentially 

offer insights transferable to the team level as well. Moreover, while this review concentrates 

on technological innovation, it is important to acknowledge that studies in the context of other 

types of innovations, such as service innovations or artistic creative work (e.g., Pollok et al., 

2021; Taylor & Greve, 2006), despite very different underlying characteristics (e.g., degree of 

complexity), could still offer additional insights. Furthermore, by focusing exclusively on 

English articles published predominantly in journals from the field of (innovation) 

management, this review may have overlooked valuable contributions available in other 

languages or from other adjacent disciplines. Finally, this review provides a qualitative 

overview of team composition factors, innovation outcomes, and the relationships between 

them. Future research could benefit from conducting a meta-analysis to quantitatively integrate 

findings on effect sizes to further enhance our understanding of these dynamics. 
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2.7.3 Future Research 

Despite the extensive array of team composition factors studied, certain elements remain 

underrepresented in the literature. To develop a deeper understanding of the antecedents of 

successful team-based innovation, the scholarly community should aim to close these evident 

gaps rather than continually focusing on factors for which a solid theoretical and empirical 

foundation already exists. In particular, innovation outcomes that are crucial for addressing the 

grand technological challenges of our time – such as green innovation – call for increased 

attention in future research. Furthermore, it is essential to delve deeper into the underlying 

mechanisms of the relationships between team composition factors and the innovation outcome. 

This requires moving beyond a sole focus on direct effects to also consider mediating factors 

that can elucidate how and why certain team compositions lead to specific innovation outcomes. 

Additionally, investigating the conditions under which these relationships hold true is critical. 

This involves considering interaction effects, such as moderators and contextual factors, which 

can significantly influence the strength and direction of the observed relationships. 

Methodologically, there is a need to diversify beyond the prevalent use of traditional 

regression-based methods. Employing alternative approaches, such as configurational methods, 

could provide richer insights into the complex interplay of multiple team composition factors 

and their cumulative impact on innovation outcomes. Such methodological diversity can help 

capture nuances that are often overlooked in regression-based analysis alone. 

Finally, I encourage the publication of studies with null or negative findings to provide 

a more balanced and comprehensive view of the field. The tendency to report only significant 

positive results can lead to a publication bias, which skews our understanding of the true nature 

of the relationships between team composition and innovation outcomes. This way, the 

academic community can foster a more accurate understanding of what drives successful team-

based innovation.  
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3. Patterns that Matter: Clustering-Based Model Specification 

for Large-N QCA in Complex Theoretical Landscapes 

This chapter introduces a novel data-driven approach to the selection of relevant conditions for 

a set-theoretic analysis. This approach aims to facilitate a meaningful selection of conditions 

when traditional theory-driven selection is challenging due to a lack of a substantive theoretical 

foundation. Using a clustering-based approach, and by leveraging data from a comprehensive 

dataset of clean energy patents, this chapter identifies a set of team composition factors that 

demonstrate genuine causal significance based on robust co-occurrence in set-analytic models 

that best explain impactful innovations and thus lays the foundation for a subsequent in-depth 

configurational analysis. 

3.1 Qualitative Comparative Analysis (QCA) and the Trend to Large-N Studies 

Qualitative Comparative Analysis (QCA) (Ragin, 2000, 2008) is a set-theoretic method that has 

been applied widely in management research to address causally complex problems from a 

configurational perspective (Misangyi et al., 2017). QCA uses cases that each exhibit certain 

attributes (conditions) that are theoretically relevant to explain an observed outcome. The notion 

behind QCA is that the degree to which any of these attributes are present in each case can be 

expressed as a set membership (Fiss, 2007). As a result, a truth table is generated, linking each 

case to a specific configuration – a unique logical combination – of set memberships for all 

conditions and the outcome. Multiple cases may correspond to the same configuration, 

indicating they share very similar characteristics and exhibit comparable degrees of set 

membership. In a subsequent step, the truth table is minimized using the Quine-McCluskey 

algorithm based on Boolean algebra to identify configurations that are consistently associated 

with the observed outcome.17 

QCA was originally developed for small numbers of cases (approx. 10-50 cases) for 

which the researchers hold in-depth case knowledge. However, in recent years, there has been 

 
17 A more detailed introduction to set-theoretic methods and QCA is provided in Chapter 4. 
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a trend in the scholarly community around the application of QCA towards more large-N 

(approx. 50-100 cases) or even very large-N (hundreds or thousands of cases) studies. While 

there is an ongoing discussion on whether such studies still sufficiently acknowledge the 

qualitative nature of QCA in its original form, the set-theoretic approach behind QCA has 

proven valuable for a more quantitative analysis of larger samples as well (e.g., Greckhamer et 

al., 2008; Leppänen et al., 2023; Miric & Fiss, under review). Yet, the growing number of large-

N studies has also been accompanied by new challenges that arise from the loss of connection 

to the cases. For example, in defining the thresholds that determine the set membership of cases 

(calibration) for the conditions and the outcome of interest, anchors that separate members from 

non-members of a set need to be chosen. Finding these anchors is of high relevance as it has a 

direct impact on the results of the analysis. However, that calibration process is not always 

trivial. Traditionally, QCA scholars turn to the cases in their small-N samples to find meaningful 

thresholds that, for instance, separate a small from a large team. This becomes more challenging 

for larger numbers of cases as the distance between the researchers and the cases studied 

becomes relatively larger as well (Greckhamer et al., 2013; Rutten, 2022). Similar challenges 

arise for model specification in large-N QCA. In the following section, I elaborate on how 

relevant input conditions are usually selected and address circumstances under which the lack 

of case knowledge can lead to additional challenges in the process of specifying a model for 

large-N studies. 

3.2 Selecting Conditions in QCA 

As in any non-configurational, net-effects-based regression model, model specification plays 

an important role in QCA and can significantly affect the results of an analysis. Hence, every 

QCA model needs to include those causal conditions that are relevant and central to – in 

conjunction – explain the outcome of interest. Although the mechanics behind QCA technically 

allow for large numbers of input conditions, there are two central limiting factors: First, as the 
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number of possible configurations grows exponentially with the number of input conditions, 

the likelihood of configurations with no empirical instances increases for a fixed number of 

cases. This effect of “limited diversity” can – when severe – lead to an undesirable scenario of 

“individualizing explanations of each particular case; this means that [QCA] will have missed 

its purpose of reaching some degree of parsimony” (Rihoux & De Meur, 2009, p. 48). While 

this problem is naturally more pronounced in small-N settings (Marx, 2010), the second 

limitation applies independently from the number of cases studied: As the model becomes more 

complex (i.e., a larger number of conditions), the findings become significantly more difficult 

to interpret (Greckhamer et al., 2018; Greckhamer et al., 2013). Previous studies have pointed 

to a limit of approximately six to seven conditions (Greckhamer et al., 2018; Greckhamer et al., 

2013; Marx, 2010) that can reasonably be included in a model to maintain interpretability of 

the results. 

In many applications of QCA, the number of potentially relevant conditions exceeds 

what can be feasibly included in the analysis. To build a meaningful model, QCA scholars 

traditionally draw on two main sources of knowledge. First, as the “selection of the 

characteristics deemed important should be based on theoretical and substantive knowledge 

about their relationship with the outcome” (Fiss, 2007, p. 1184), researchers turn to the 

literature to make theory-informed decisions. Second, researchers have the option to turn to the 

cases and use their in-depth case knowledge. As discussed in the previous section, the latter 

approach becomes much more difficult to accomplish for large-N settings in which the 

connection to the cases will naturally fade. Moreover, QCA scholars are commonly facing a 

theoretical landscape that has mainly been following a net-effects based rational and “for many 

outcomes configurational theories may not be readily available” (Greckhamer et al., 2018, 

p. 487). While knowledge on isolated effects can still provide some guidance for the selection 

of relevant conditions, this approach will only yield a meaningful model if the research field 

has established a clear theoretical foundation. This, however, is often not the case. Hence, I 
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argue that configurational analyses that (1) are conducted in a large-N setting with a naturally 

larger distance from the cases and (2) face a complex and ambiguous theoretical landscape 

characterized by numerous influencing factors, varying empirical support, and limited 

consensus on key conditions, call for an alternative approach to the selection of relevant 

conditions. 

3.3 A Data-Driven Approach to Selecting Conditions 

To effectively navigate the outlined challenges, I propose a data-driven approach to selecting 

the most relevant conditions that seeks to find robust patterns in combinations of conditions 

that best explain the outcome of interest. By comparing all potential models (i.e., combinations 

of potentially relevant conditions) based on each model’s solution consistency (i.e., “the degree 

to which the cases [explained by the model][…] agree in displaying the outcome in question”; 

Ragin, 2008, p. 44) and coverage (i.e., “the degree to which [the model] accounts for instances 

of an outcome”; Ragin, 2008, p. 44), I identify the best-performing models for various numbers 

of conditions considered. I then use a clustering algorithm to find those combinations of 

conditions that commonly co-occur among these best-performing models.   

It is a well-established practice for QCA scholars to turn to the data itself when theory 

is lacking. For example, scholars have used natural breakpoints in the data or percentiles of 

data distributions to make a choice for calibration thresholds when external standards are not 

available (e.g., Greckhamer, 2016; Gupta et al., 2020; Leppänen et al., 2023). Moreover, in 

recent years, several proposed methodological enhancements have complemented QCA with 

other methods to leverage and combine their individual strengths (e.g., Haynes, 2014; Meuer 

& Rupietta, 2017; Rupietta & Meuer, 2024). For example, Haynes (2014) runs a cluster analysis 

preceding the QCA for initial data exploration before the QCA is then used to gain an in-depth 

theoretical understanding of the emerging clusters; Meuer and Rupietta (2017) integrate QCA 

with hierarchical linear modeling and thus introduce a mixed-method approach that facilitates 
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“multilevel research on organizational configurations” (Meuer & Rupietta, 2017, p. 338); and 

Rupietta and Meuer (2024) combine QCA with sequential process analysis to capture temporal 

aspects in configurational phenomena. QCA has also been combined with statistical methods 

specifically in the context of condition selection. For instance, Meuer et al. (2015) use a 

principal factor analysis to ensure that the conditions selected for a QCA are statistically 

relevant and accurately reflect the underlying dimensions of the explained outcome. With the 

approach I describe in the following sections, I present a tool that can guide the selection of 

conditions when the number of potentially relevant factors is high, in-depth case knowledge is 

limited, and the theoretical framework is still evolving, with existing studies offering diverse 

and sometimes inconclusive insights. 

3.4 Methodology 

3.4.1 Research Context and Sample 

With the urgency behind the need to accelerate innovations for various clean energy 

technologies to mitigate the impact of the global climate emergency through a rapid reduction 

in global greenhouse gas emissions, explaining the antecedents of successful innovation has 

become a topical research area of great interest. Nowadays, innovation projects are increasingly 

performed by teams of multiple inventors (see section 1.2). Scholars have hence invested 

significant efforts into finding those aspects in the composition of innovation teams that are 

associated with high-quality innovation outcomes. However, extant research has focused on the 

marginal effects of individual factors while paying little attention to the causally complex 

interplay of these factors. Moreover, the range of potential explanatory factors with respect to 

team composition is broad and – at least in parts – ambiguous (see Chapter 2). While a set-

theoretic configurational analysis could add significant value to our understanding of successful 

team-based innovation, this theoretical landscape makes it inherently difficult to decide which 

factors to consider. Yet, it provides a topical research context to explore how these issues can 
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be overcome. For that, I follow a substantial number of studies on innovation team composition 

that use patents as a proxy for innovation. While the validity of this practice has been discussed 

extensively in the scientific community (e.g., Acs & Audretsch, 1989; Griliches, 1990; Griliches 

et al., 1986; Kleinknecht & Reinders, 2012), patents have proven to be a well-quantifiable 

indicator for the development of knowledge across fields (e.g., Wuchty et al., 2007). Although 

a granted patent already indicates sufficient novelty and relevance to be labeled somewhat 

successful, there are significant differences in actual value for future developments among 

patents. Thus, for a configurational analysis of team-based innovation, each patent provides a 

case of innovation of certain quality, that is, at the same time, associated with specific 

characteristics of its inventor team. Based on these characteristics, for each patent, membership 

scores can be assigned for set membership in various sets of team composition related 

conditions, as well as for the observed innovation outcome, rendering publicly accessible patent 

data a well-suited foundation for my analysis. 

To compile a dataset of team-based clean energy patents, I first collected 145,426 patents 

from ten core clean energy domains, based on their CPC codes18. My dataset includes patents 

that were granted by the United States Patent and Trademark Office (USPTO) from the 

beginning of 1980 and filed before the end of 2020. This includes 76,539 focal patents from the 

1985-2015 period – and thus 30 years of innovation activity in the clean energy domain – as 

the main body of my analysis, as well as patents from the five-year periods prior to and after 

this time frame. 54,134 of the 76,539 focal patents were filed by teams, whereas 22,405 were 

 
18 The Cooperative Patent Classification (CPC) system is a joint effort of the USPTO and the EPO to harmonize 

patent classification. The CPC encompasses a detailed scheme with numerous (sub)classes and (sub)groups to 

assign codes to patents representing technological domains. CPC codes are not mutually exclusive – a patent is 

usually assigned multiple codes. The patents in the sample were identified based on the following subgroup-level 

codes: Y02E10/10 (Geothermal Energy – 170 Patents); Y02E10/20 (Hydro Energy – 540 patents); Y02E10/30 

(Sea/Ocean Energy – 502 Patents); Y02E10/4X (Solar Thermal Energy – 1,747 Patents); Y02E10/5X 

(Photovoltaic Energy – 11,676 Patents);  Y02E10/7X (Wind Energy – 2,812 patents); Y02E30/10 (Nuclear 

Fusion Technology – 294 Patents); Y02E50/X (Synthetic and Biofuels – 3,554 Patents); Y02E60/1X (Energy 

Storage – 21,671 Patents); Y02E60/3X and Y02E60/50 (Hydrogen Technology – 14,611 Patents). Note: there are 

some domain overlaps in the sample. 
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filed by lone inventors and are thus not considered for this analysis. I was able to obtain 

exhaustive data for >99% of the team-based patents, with 131 patents that I had to exclude from 

my analysis due to non-rectifiable data gaps. In addition, I leverage data from more than 1.65 

million patents that were filed by the focal patents’ inventors across all technological domains 

(not limited to clean energy) to calculate all measures described in the following section. I 

acquired the patent data via the PatentsView data analysis platform provided by the USPTO’s 

Office of the Chief Economist and complemented the initial dataset with advanced data from 

the public Google Patents database as well as further secondary data sources to fill gaps in the 

data. PatentsView offers comprehensive data by using “a series of algorithms and post-

processing techniques” to disambiguate inventors, assignees, and locations (Monath et al., 

2021) that allows for the construction of measures for the majority of potentially relevant 

conditions synthesized through the systematic literature review presented in Chapter 2. I outline 

the applied measures for the outcome and conditions in the next section. 

3.4.2 Outcome, Conditions, and Calibration 

Existing studies on inventor team composition have linked a large collection of explanatory 

factors to various quality-related innovation outcomes. As the central aim of this dissertation is 

to shed light on the antecedents of those innovations that shape and drive the trajectories of 

key clean energy technologies, I focus on the impact of an innovation on future developments 

as the focal outcome. Innovation impact is by far the most commonly studied outcome in this 

context and is predominantly measured based on patent forward citations (see also Carpenter et 

al., 1981; Trajtenberg, 1990) in a particular period after a patent’s publication (e.g., Huo et al., 

2019; Vestal & Mesmer-Magnus, 2020). “Forward citations provide a good assessment of how 

the invention influences future research in a domain” (Boh et al., 2014, p. 350). Following this 

widely applied approach, I use the 5-year forward citations of a patent as a measure of 
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innovation impact. More specifically, I first employ a negative binomial regression model to 

account for domain and year-specific idiosyncrasies: 

𝑌𝑖 ∼ NegativeBinomial(𝜇𝑖, 𝜃) 

log(𝜇𝑖) = 𝛽0 + ∑ 𝛽𝑑

𝐷−1

𝑑=1

⋅ Domain𝑑 + ∑ 𝛽𝑦

𝑌−1

𝑦=1

⋅ Year𝑦 

In this model, 𝑌𝑖 represents the number of five-year forward citations for patent 𝑖, following a 

negative binomial distribution. The natural logarithm of predicted citations, log(μ𝑖), is modeled 

as a linear combination of domain and year dummy variables, where β0 is the intercept, β𝑑 are 

the coefficients for domain dummy variables, and 𝛽𝑦 are the coefficients for year dummy 

variables19. I then use the residuals as an adjusted measure for patent impact for subsequent 

steps. 

Additionally, the systematic review of the literature on innovation team composition 

presented in Chapter 2 yielded a comprehensive list of team-level conditions that have shown 

to influence the impact of an innovation outcome. Many of these conditions can effectively be 

operationalized using patent data (Table 3.1). I created a bivariate correlation table (Table 3.2) 

to check for multicollinearity between these factors to avoid redundancy among causal 

conditions. While the pairwise correlations between the causal conditions and innovation 

impact are generally weak, some intercorrelations among the causal conditions are 

exceptionally strong. In particular, a large prestige gap frequently co-occurs with the presence 

of a star inventor on a team, as only a few teams consist solely of star inventors. Consequently, 

I excluded the prestige gap condition from the analysis. Additionally, the measures for 

organizational diversity and inventor mobility that can be derived from patent data are 

conceptually similar, both building on (past) patent assignees, resulting in redundancy between  

 

 
19 See Appendix 3.1 for the regression results. 
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Table 3.1: Measures and calibration details. 

Outcome  Measure  Calibration Threshold(s)  Calibration Logic   

Innovation Impact 

(IMPACT_INNO) 

 5-year forward citations 

adjusted for domain and year 

idiosyncrasies 

 Fuzzy calibration20: 

e: 75th percentile 

c: 90th percentile 

i: 95th percentile (e.g., Chang, 2022) 

 Theory / Data 

distribution 

  

Condition  Measure  Calibration Threshold(s)  Calibration Logic  Theoretical Effect on Outcome 

Knowledge Dissimilarity 

(KNOW_DIS) 

 Mean (cosine) distance between 

each team members knowledge 

vector calculated as centroid 

vectors of the document 

embedding vectors of each 

patent an inventor has filed 

 Inverse-U-shaped fuzzy calibration: 

e1: 10th percentile 

c1: 25th percentile 

i1: 33rd percentile 

i2: 66th percentile 

c2: 75th percentile 

e2: 90th percentile 

 Data distribution  Positive / inverted-U shaped relationship: some 

knowledge dissimilarity is required as impactful 

innovations have shown to be the result of novel 

combinations of distinct knowledge; if knowledge is 

too dissimilar, effective knowledge integration 

becomes more challenging (Cassi & Plunket, 2014; 

Huo et al., 2019; Onal Vural et al., 2013; Vestal & 

Danneels, 2022; Vestal & Mesmer-Magnus, 2020) 

Knowledge Variety 

(KNOW_VAR) 

 Total number of all unique CPC 

subgroups assigned to the team 

members’ prior patents, 

normalized by the number of 

team members 

 Fuzzy calibration: 

e: 25th percentile 

c: 50th percentile 

i: 75th percentile 

 Data distribution  Positive effect: Variety of technological knowledge 

broadens the pool of cognitive resources for novel 

cross-domain combinations (Huo et al., 2019; Zaggl 

& Pottbäcker, 2021) 

Ethnic Diversity 

(ETHN) 

 Adjusted Blau’s diversity index 

(Harrison & Klein, 2007) based 

on 4 ethnic groups inferred 

using the team members’ last 

names21 

 Fuzzy calibration: 

e: 0 (no ethnic diversity) 

c: 0.25 (moderate diversity) 

i: 0.75 (significant diversity) 

 Data distribution / 

Reasoning 

 Positive effect: diverse ethnic backgrounds provide 

a greater variety of perspectives and access to a 

broader network (Freeman & Huang, 2014) 

Gender Diversity 

(GEND) 

 Blau’s diversity index (Blau, 

1977) based on team members’ 

inferred binary gender 

 Fuzzy calibration: 

e: 0 (male / female only team) 

c: 0.25 (moderate diversity) 

i: 0.4 (significant diversity) 

 Data distribution / 

Reasoning 

 Lack of empirical insights 

 
20 Although technically applying a fuzzy calibration here, I only use full members and full non-members to create more contrast in the outcome. Therefore, this can also be viewed as 

a crisp calibration with two thresholds. 
21 I use the ethnicolr Python module (https://github.com/appeler/ethnicolr) to infer ethnic groups based on US census data. 
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Geographic Dispersion 

(GEO) 

 Mean geodesic distance 

between team members’ 

locations in km 

 Fuzzy calibration: 

e: 100 (single-region team) 

c: 500 (inter-regional team) 

i: 1000 (inter-national team) 

 Theory / Reasoning  Positive / inverse U-shaped effect: teams distributed 

over multiple countries create more impactful 

innovations (Kerr & Kerr, 2018); as geographic 

dispersion becomes too high, integration challenges 

outweigh the benefits from diverse location-bounds 

resources (Seo et al., 2020) 

Institutional Diversity 

(INST) 

 Adjusted Blau’s diversity index 

(Harrison & Klein, 2007) based 

on patent assignee types 

(individual, company, public 

institution) of team members’ 

patents filed, including the 

focal patent 

 Crisp calibration: 

c: > 0 (at least one inventor brings 

experience from filing a patent with 

another institution type, or the focal 

patent is assigned to multiple 

institution types) 

 Data distribution / 

Reasoning 

 Ambiguous effect: innovating within the same type 

of institutional setting facilitates collaboration due 

to shared norms, incentives, and routines (Cassi & 

Plunket, 2014); academic inventors on a (corporate) 

team increase innovation impact (Czarnitzki et al., 

2011) 

Domain Experience 

(DOM) 

 Number of patents successfully 

filed by any team member that 

were assigned to one of the 

CPC subgroups assigned to 

the focal patent 

 Crisp calibration22: 

c: > 0 (at least one team member has 

filed a patent in the same domain in 

the past) 

 Data distribution / 

Reasoning 

 Positive / inverted-U shaped relationship: domain 

experience helps to effectively select relevant 

distinct knowledge pieces (Li et al., 2018; 

Schillebeeckx et al., 2019; Wang et al., 2017); high 

domain experience can cause cognitive rigidity 

hindering novel combinations (Wang et al., 2017) 

Degree Centrality 

(DEG) 

 Mean number of team 

members’ outside 

collaborations based on prior 

co-patenting, normalized by 

the total network size 

 Fuzzy calibration: 

e: 0 (no outside collaborations) 

c: 50th percentile 

i: 75th percentile 

 Data distribution / 

Reasoning 

 Positive Relationship: more ties to other inventors 

outside the team increase the inbound flows of ideas 

and expertise (Yang et al., 2021) 

Gatekeeper 

(GATE) 

 Maximum betweenness 

centrality among team 

members, normalized by 

the total network size 

 Fuzzy calibration: 

e: 50th percentile (below average 

betweenness centrality, clearly no 

gatekeeper) 

c: 66th percentile (somewhat a 

gatekeeper on the team) 

i: 90th percentile (clearly a gatekeeper 

on the team) 

 Data distribution / 

Reasoning 

 Positive Relationship: earlier, exclusive, and non-

redundant information and knowledge help 

gatekeepers decide which technological trajectory 

to follow (Le Gallo & Plunket, 2020; Yang et al., 

2021) 

 
22 The data distribution is highly skewed with most cases exhibiting no domain experience. I therefore use a crisp calibration although theory would also justify a fuzzy bell-shaped 

calibration curve to represent a curvilinear relationship with the outcome. 
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Organizational Diversity 

(ORG) 
(Removed from the analysis due 

to high conceptual similarity 

with inventor mobility) 

 Number of unique assignees 

of successful patent filings, 

including the focal patent, 

across all team members, 

normalized by the number of 

team members 

 -  -  Ambiguous effect: teams with diverse 

organizational backgrounds draw on a larger pool 

of resources and complementarity of roles (Singh 

& Fleming, 2010); multi-university collaborations 

tend to produce more impactful research (Jones et 

al., 2008); innovation for the same organization 

reduces transaction costs (Cassi & Plunket, 2014) 

Prior Collaboration 

(PRICOL) 

 Number of prior pairwise 

collaborations between team 

members, normalized by the 

number of team members 

 Fuzzy calibration: 

e: 0 (no prior collaboration) 

c: 1 (members have worked with each 

other once on average) 

i: 2 (members have worked with each 

other twice on average) 

 Data distribution / 

Reasoning 

 Ambiguous effect: prior collaboration fosters 

impactful innovation through enhanced 

coordination capabilities and established routines 

but only if integrated knowledge is similar (Jiao et 

al., 2022); prior collaboration outside the focal 

domain diminishes innovation impact by 

developing context-specific practices (Onal Vural 

et al., 2013) 

Team Size 

(SIZE) 

 Number of inventors on the 

focal patent 

 Fuzzy calibration: 

e: 3.5 (small team ≤ 3 members) 

c: 5.5 (medium sized team) 

i: 7.5 (large team ≥ 8 members) 

 Data distribution / 

Reasoning 

 Ambiguous effect: larger teams access broader 

networks and have greater visibility in the 

scientific community (Lee et al., 2015); large 

teams face greater coordination challenges (Wang 

et al., 2017); under some circumstances, smaller 

teams are associated with producing innovations 

that stimulate further research (Battaglia et al., 

2021) 

Generalist 

(GNRL) 

 Maximum number of unique 

CPC groups assigned to prior 

patents filed by a member of 

the team (i.e., maximum 

knowledge breadth of a single 

team member) 

 Fuzzy calibration: 

e: 50th percentile (below average 

knowledge breadth, clearly no 

generalist) 

c: 66th percentile (somewhat a 

generalist on the team) 

i: 90th percentile (clearly a generalist 

on the team) 

 Data distribution / 

Reasoning 

 Ambiguous effect: inventors with a broader 

knowledge base have higher capabilities to 

recombine previously disconnected ideas but the 

effect depends on the characteristics of the 

technological domain (Vakili & Kaplan, 2021) 

Star Inventor 

(STAR) 

 Maximum number of 

successful past patent filings 

by any member of the team 

 Fuzzy calibration: 

e: 9.5 (clearly no star ≤ 10 prior 

patents, see Gay et al., 2008) 

c: 19.5 (rather a star with ≥20 patents, 

see Beaudry & Schiffauerova, 2011) 

i: 90th percentile 

 Theory / Reasoning  Positive effect: teams with star inventors benefit 

from their extensive expertise, integrative capacity, 

large network, and reputation (Gay et al., 2008) 
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Prestige Gap 

(PGAP) 
(Removed from the analysis due 

to multicollinearity with the star 

inventor condition) 

 Standard deviation of 

successful past patent filings 

across members of the team 

 -  -  Positive effect: teams with high productivity gaps 

benefit from efficient coordination, reduced 

conflicts, and mentorship, resulting from clearer 

hierarchical structures (Jiao et al., 2022) 

Inventor Mobility 

(MOB) 

 Mean number of unique 

assignees of a team member’s 

successful patent filings 

 Fuzzy calibration: 

e: 25th percentile 

c: 50th percentile 

i: 75th percentile 

 Data distribution  Positive effect: mobility fosters knowledge transfer 

and exploratory learning (Chang, 2022) 

Recombination Novelty 

(RECOMB) 

 Mean number of novel co-

occurrences of CPC subgroups 

in the focal patent based on 

subgroups assigned to each 

team member’s past patents, 

normalized by all possible 

pairwise subgroup 

combinations 

 Fuzzy calibration: 

e: 0.25 (mainly familiar combinations, 

exploitation) 

c: 0.5 (half the combinations are novel 

to the team) 

i: 0.75 (mainly unfamiliar 

combinations, exploration) 

 Data distribution / 

Reasoning 

 Lack of empirical insights 

General Experience 

(GEXP) 

 Median number of past 

successful patent filings among 

the team members 

 Inverse-U-shaped fuzzy calibration: 

e1: 1 

c1: 5 

i1: 10 

i2: 15 

c2: 20 

e2: 90th percentile 

 Data distribution / 

Reasoning 

 Positive / inverse U-shaped effect: teams with 

moderate general invention experience are better at 

balancing exploration and exploitation, enhancing 

invention impact (Wang et al., 2017) 
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Table 3.2: Descriptive statistics. 

 
 mean  std  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) 

(1) 5-year Fwd. Citations (adj.)  -0.06  12.97  -                 

(2) Knowledge Dissimilarity  0.57  0.42  0.02* -                

(3) Knowledge Variety  7.48  3.35  -0.00 -0.33* -               

(4) Gender Diversity  0.11  0.19  -0.01* 0.11* -0.15* -              

(5) Ethnic Diversity  0.24  0.31  0.00 0.09* -0.01* 0.02* -             

(6) Geographic Dispersion  525  1733  0.02* -0.01* -0.02* 0.01 0.04* -            

(7) Institutional Diversity  0.07  0.14  0.02* -0.00 0.08* -0.00 -0.05* 0.05* -           

(8) Prior Collaboration  2.37  9.51  0.02* -0.09* 0.12* -0.01* 0.01* 0.00 -0.03* -          

(9) Team Size  3.57  1.77  0.04* 0.80* -0.61* 0.19* 0.08* 0.00 -0.04* -0.01 -         

(10) Degree Centrality  1.00E-04  1.44E-04  -0.02* 0.06* 0.10* -0.02* 0.07* -0.04* -0.07* 0.18* 0.13* -        

(11) Gatekeeper  2.52E-04  8.88E-04  -0.02* 0.10* -0.00 0.03* 0.03* 0.02* -0.01* 0.08* 0.13* 0.46* -       

(12) Generalist  17.79  18.76  -0.01 0.37* 0.20* 0.00 0.08* -0.03* -0.06* 0.21* 0.23* 0.29* 0.26* -      

(13) Domain Experience  0.15  1.12  0.02* -0.04* 0.06* -0.04* -0.00 0.03* -0.00 0.04* -0.02* -0.00 0.00 0.02* -     

(14) Star Inventor  40.42  157.16  0.01* 0.07* 0.09* -0.01* 0.02* -0.02* -0.04* 0.47* 0.06* 0.18* 0.14* 0.47* -0.01 -    

(15) Prestige Gap  15.34  67.94  0.01* 0.05* 0.10* -0.01* 0.02* -0.02* -0.04* 0.43* 0.03* 0.17* 0.13* 0.45* -0.01* 0.99* -   

(16) Inventor Mobility  3.39  3.64  -0.02* 0.22* 0.27* -0.04* 0.04* -0.03* -0.04* 0.12* 0.06* 0.21* 0.22* 0.81* -0.02* 0.33* 0.32* -  

(17) Recombination Novelty  0.26  0.35  0.02* -0.08* 0.15* -0.01 0.03* 0.01 -0.03* 0.23* 0.05* 0.34* 0.14* 0.17* 0.07* 0.11* 0.09* 0.10* - 

(18) General Experience  13.16  55.48  0.00 -0.04* 0.20* -0.03* 0.01 -0.01* -0.03* 0.61* -0.05* 0.18* 0.09* 0.31* 0.01 0.73* 0.75* 0.27* 0.13* 

Note: Statistically significant pairwise correlations (p < 0.05) are marked with an asterisk (*). Strong pairwise correlations (> 0.6) are highlighted in bold font. 
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these two conditions. Therefore, organizational diversity was likewise removed from the 

analysis. 

Furthermore, to assign set membership to a case for the outcome and each of the causal 

conditions, QCA scholars use a calibration process for which they must define calibration 

thresholds. When using crisp (i.e., dichotomous) calibrations, a sharp line is drawn at the 

threshold where set membership begins or ends. In contrast, fuzzy calibration allows cases to 

be fully in or fully out of a set, or to belong to a set to only a certain degree. For some of the 

conditions described above, I use crisp calibrations, while for others, I employ fuzzy sets23. 

Moreover, for certain conditions, a theoretical basis is available to inform the definition of 

calibration thresholds. However, for most conditions (and for the outcome), there is a lack of 

external standards to guide the calibration process, requiring to turn to the distribution of the 

data itself. Table 3.1 provides the complete list of conditions considered, including short 

descriptions for the measures used, the calibration logics and thresholds applied, and the 

underlying theoretical reasoning regarding their effects on the innovation impact. Additionally, 

in Table 3.1, I introduce abbreviations for the outcome and the conditions that I will continue 

to use throughout this and the following chapter. 

3.4.3 Model Comparison 

To find the combination of conditions (i.e., the model specification) that, in conjunction, are 

best suited for explaining how inventor teams that produce particularly impactful innovations 

are composed, I compare the solutions of truth table minimizations for all possible 

combinations of conditions. Although certain sources suggest a maximum of seven conditions 

to maintain the interpretability of results (e.g., Marx, 2010), I utilize a more flexible range of 

four to eight conditions when composing the models for comparison. With 

 
23 I use the QCA R Package (Duşa, 2019) for all calibrations, truth table constructions, and minimizations. 
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(
𝑁

𝑘
)   =  

𝑁!

𝑘!   ⋅  (𝑁  −  𝑘)!
 

unique combinations and thus possible model specifications for 𝑘 chosen conditions from a 

total of 𝑁 potential conditions without replacement, this leads to 1820 different models with 

four conditions, 4368 models with five, 8008 models with six, 11440 models with seven, and 

12870 models with eight conditions. For each of these 38,506 models, I assess the model 

performance based on the consistency and coverage of the complex solution24 as the result of 

the truth table minimization. For each minimization, I use a consistency cutoff of 0.8, a PRI 

cutoff of 0.7, and a 1% frequency cutoff25. Instead of running the QCA on the full sample of 

54,003 cases only once, I randomly create 20 balanced samples26 (n = 200) by selecting 100 

cases that fully belong to the set of impactful innovations (calibrated outcome = 1) and 100 

cases that are fully out of the set of impactful innovations (calibrated outcome = 0). This 

approach has several advantages: First, impactful innovations are by definition (here: top 5% 

in forward citations) a rare outcome (Capponi et al., 2022), imposing a strong barrier to 

consistent findings. This is because QCA relies on the comparison of combinations of 

conditions across positive and negative outcome cases to establish a clear contrast between 

configurations that are associated with impactful innovations and those that are not. This issue 

is accounted for by using a balanced sample of an equal number of cases that clearly do and 

those that do not exhibit the outcome of interest (Miric & Fiss, under review). Secondly, 

comparing the performances of models for a single version of the full sample might lead to the 

identification of a model that is strongly overfitted to the exact characteristics of the sample 

with little robustness to deviations from this particular “truth”. I address this issue by using the 

lower bounds of the 95% confidence intervals for solution consistency and coverage across all 

20 runs to evaluate the model performances. More specifically, I only consider models that find 

 
24 Different solution types in QCA are explained in more detail in section 4.5.2. 
25 An in-depth explanation of these cutoffs is provided in section 4.4.2. 
26 I chose the number of samples as 20 to maintain an acceptable quality of the model performance estimates at 

reasonable computational costs. A larger number of samples may further increase the accuracy of the confidence 

intervals but at diminishing returns. 
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a consistent solution in at least 95% of the 20 runs27 and that have a lower bound value of the 

95% confidence interval for their solution consistency of at least 0.8. I then use the lower bound 

value of the 95% confidence interval for each model’s solution coverage as the primary measure 

for model performance – as “coverage gauges empirical relevance or importance” (Ragin, 2008, 

p. 44) – to rank the models based on the fraction of highly impactful innovation cases they 

explain. Finally, I select the 20 best-performing (i.e., highest solution coverage) models for each 

number of conditions for a subsequent clustering based on similarity of conditions used in the 

models to identify combinations of conditions that are commonly shared among the best-

performing models. The notion behind this approach is that conditions that consistently appear 

among the best-performing models are more likely to reflect the true underlying causal 

relationships that explain impactful innovations. In contrast, focusing on the single best-

performing model entails the risk that conditions appear important because of sample 

peculiarities, noise, or merely by chance, potentially leading to a “house-of-cards-model” that 

explains the phenomenon well only as long as no condition is added, removed, or substituted. 

Figure 3.1 summarizes the full model selection procedure. 

3.5 Findings 

3.5.1 Model Performance 

The results show that the mean solution consistency, coverage, and success rate across all 

models increases with the number of conditions included (Figure 3.2). While the mean solution 

consistency is exceptionally low for four conditions, the situation is precisely the opposite when 

considering only the models that lie above the defined thresholds (solution consistency ≥0.8; 

success rate ≥95%). The reason for that lies in the small number of models that pass the 

 

 
27 Depending on the cases selected in the random balanced sampling procedure, there may not be a consistent 

solution for a model. By selecting a 95% threshold for models to be considered as well-performing, I allow for 1 

out of 20 runs that could have created a sample that yielded no consistent solution by chance. 
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Figure 3.1: Model selection procedure. 
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success rate threshold: With only four conditions, all 200 cases are assigned to just 16 possible 

configurations (i.e., truth table rows). In that situation, there is little opportunity to catch 

differences between cases that exhibit the outcome and those that do not. Hence, most runs fail 

without finding any consistent solutions that explain these differences. With only four 

conditions, passing the 95% success rate threshold remains a rare exception (<1% of the 

 

 

Figure 3.2: Model performance overview. 

models) that only occurs in conjunction with exceptionally high solution consistency. With 

more conditions added, the mean solution consistency and the fraction of models that reliably 

find consistent solutions show an increasing but converging pattern. Hence, more and more 

models have sufficient success rates, and it is not just the exceptionally consistent outliers 
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anymore that determine the mean solution consistency among the models that make it past the 

thresholds, leading to a drop in solution consistency among them. 

The solution coverage illustrates a clear trend, with a gradual but diminishing increase 

as more conditions are incorporated. With each condition, complexity is added to the model at 

the cost of parsimony, allowing for a more nuanced distinction between configurations and, 

thus, cases. A case of impactful innovation that would not have been explained by a smaller 

number of conditions now may be clearly distinguishable from a non-impactful innovation case 

that is similar in most other conditions, leading to a higher fraction of outcomes consistently 

explained by the model. At some point, however, adding more conditions will barely reveal any 

additional rare configurations, resulting in a convergence of the solution coverage. This holds 

true for the best-performing models (i.e., model with the highest solution coverage), as there is 

very little improvement with eight compared to seven conditions. 

3.5.2 Model Clustering 

Following the identification of the best-performing models based on their solution coverage, I 

perform a clustering across the 20 best-performing models for each number of conditions, using 

the intersection of conditions in relation to the overall number of unique conditions among two 

models as a similarity measure28, 29. I then use the largest pairwise distance between two models 

as the determining method to derive clusters30. This represents a rather conservative approach 

as models are assigned to the same cluster only if they have a large overlap in their conditions. 

Figure 3.3 shows the emerging model clusters ordered by the number of conditions in 

the models. Interestingly, institutional diversity appears to be a key building block for the vast 

 
28 For four conditions, only 13 models exceed the thresholds, leading to a total of 93 instead of 100 models 

considered in the clustering. 
29 Using Jaccard distance: “Given two vectors, u and v, the Jaccard distance is the proportion of those elements 

u[i] and v[i] that disagree.” (https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html 

#scipy.spatial.distance.pdist) 
30 Using the complete linkage method, calculating the maximum pairwise distance between all points in two 

clusters. (https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html#scipy.cluster. 

hierarchy.linkage) 
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majority of the best-performing models and is present in every single one of the top 20 models 

with six or more conditions. Ethnic diversity and gender diversity play a similarly important 

role, especially in more complex models as well. In contrast, team size appears in only one of 

the best-performing models. All but one of the models with only four conditions share domain 

experience as a common factor. However, as soon as another condition is added, domain 

experience seems to not be a driver for high model performance any longer, highlighting how 

a well-performing but unstable model (or a small set of models) gives little robust causal 

explanation of the phenomenon. It is therefore advisable to turn to the most pronounced cluster 

(dashed line) that extends over a broad range of models with varying complexities. With 

institutional diversity, ethnic diversity, and gender diversity at its core, the cascading structure 

of the cluster suggests knowledge dissimilarity, recombination novelty, and degree centrality as 

additional conditions that are prevalent among similar well-performing models, with the latter 

three conditions in descending order with respect to co-occurrence. This cascading structure 

suggests a hierarchy in the importance of conditions for explaining impactful innovations. 

In Figure 3.4, I demonstrate that starting with the four conditions that most often occur 

together in the best-performing models – namely institutional diversity, ethnic diversity, gender 

diversity, and knowledge dissimilarity – and moving up the cascading structure of the cluster, 

by adding additional conditions (recombination novelty and degree centrality), improves the 

quality of the model both in terms of absolute consistency and coverage, as well as relative to 

other model specifications with the same number of conditions. While the four most central 

conditions alone seem to be insufficient to explain the differences between teams associated 

with impactful innovations – this is in line with the aforementioned finding that models with 

four conditions rely on domain experience as a differentiating factor – adding the fifth and next-

closest condition from the cluster (recombination novelty) already leads to above-average 

model performance. For seven (adding inventor mobility) and eight conditions (adding 
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Figure 3.3: Model clustering.
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knowledge variety) from the focal cluster31, the model outperforms almost any other model with 

the same number of conditions. For seven conditions, there are only three models, and for eight 

 

 

Figure 3.4: Model performance comparison. 

 
31 Inventor mobility and knowledge variety have equal distances to the core of the cluster when using the 

conservative “complete” linkage method. However, when using “average” linkage (see Appendix 3.1), inventor 

mobility has the smaller distance, making it the seventh and knowledge variety the eighth condition following the 

cascading structure of the cluster. 
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conditions only four models that yield higher model performance with respect to coverage. 

Overall, only six out of the total 38,506 possible model specifications (0.016%) explain more 

of the differences between team configurations that are associated with impactful innovations 

and those that are not than the model that combines the eight conditions from the highlighted 

cluster (see Appendix 3.3). Most notably, all of these six even better-performing models share 

the four most commonly co-occurring conditions and deviate from the cluster by at most a 

single condition (in the better-performing models with seven conditions) or two conditions (in 

the better-performing models with eight conditions). In summary, the combination of conditions 

identified through clustering the best-performing models based on co-occurrence of conditions 

reveals a set of conditions that, in combination, are likely causally relevant in explaining the 

difference between team configurations that yield particularly impactful innovations and those 

that do not. 

3.6 Robustness Tests 

To ensure the reliability of the findings, it is crucial to assess whether they hold under various 

conditions. For that reason, I apply multiple sensitivity tests (see Appendix 3.4) to assess the 

consistency of the findings when key parameters are altered. First, I test different consistency 

thresholds. Instead of using 0.8 as a threshold for including a model, I use 0.85 and 0.9 as an 

even stricter criterion. At a consistency threshold of 0.85, there are no notable changes to the 

emerging cluster of central conditions. For 0.9, geographic dispersion and, to a less pronounced 

degree, general experience and prior collaboration gain relevance. These are the same 

conditions that predominantly appear as a substitution for one or two conditions in the few 

models that outperform the combination of conditions from the original cluster. At the same 

time, the original set of key conditions remains prominent, indicating that the central cluster is 

fairly robust even under stricter criteria. For a less stringent consistency threshold of 0.7, no 

changes appear compared to the original clustering output. Next, I alter the success rate 
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threshold. When only considering models that provide consistent results for all 20 random 

subsamples (success rate = 1), there is no model composed of four conditions that passes the 

criteria. However, the emerging central cluster remains stable32. Using a less restrictive success 

rate threshold of 0.8 has no impact on the emerging cluster. 

To further assess robustness, I examine the effects of changing the number of models 

considered in the clustering from the 20 best-performing models per number of conditions to 

only the top ten models with respect to coverage. This adjustment results in no significant 

changes, except for a slight increase in the relative distance of inventor mobility from the rest 

of the central cluster. Similarly, I re-run the clustering for the 30 best-performing models33 for 

each number of conditions. As a result, geographic dispersion, general experience, and prior 

collaboration, again, co-occur more frequently with the other conditions from the original 

cluster. 

Finally, I repeat the entire approach with different sizes for the balanced random 

samples34. Instead of a total of 200 cases, I randomly select 100 cases and 500 cases 

respectively. Interestingly, using fewer cases (in relation to the number of conditions and thus 

possible configurations) leads to a notable increase in average model consistency, coverage, 

and fewer unsuccessful truth table minimizations (i.e., higher success rates). Conversely, for 

the larger samples of 500 cases, truth table minimizations using the previously employed 

consistency cutoff of 0.8 and PRI cutoff of 0.7 barely yield any solutions due to a drop in 

consistency. Only after decreasing the cutoff values to 0.7 for consistency and 0.6 for PRI do 

the minimizations provide solutions for a reasonable number of model specifications to perform 

a subsequent clustering. While institutional diversity, ethnic diversity, gender diversity, 

 
32 This is the case when “average” is used as the less conservative cluster linkage method. Using “complete” shows 

some differences, such as general experience becoming more relevant again. For more information on cluster 

linkage methods see footnote 30 in section 3.5.2. 
33 Again, for four conditions, only 13 models exceed the thresholds, leading to a total of 143 instead of 150 models 

considered in the clustering. 
34 While maintaining a frequency cutoff of 1% for the truth table minimizations. 
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knowledge dissimilarity, and inventor mobility remain parts of the central cluster, geographic 

dispersion, prior collaboration, and having a gatekeeper on the team co-occur more often with 

these conditions and appear to be similarly relevant to degree centrality, knowledge variety, or 

recombination novelty. 

3.7 Discussion 

While QCA is technically capable of handling a large number of causal conditions in a model, 

there is a practical limit as findings become much more difficult to interpret as the number of 

conditions increases (Greckhamer et al., 2018; Greckhamer et al., 2013). When performing 

QCA in a large-N setting, researchers cannot maintain close familiarity with each individual 

case, which naturally increases the “distance” to the cases (Greckhamer et al., 2013; Rutten, 

2022). This reduced case familiarity makes it significantly more difficult to leverage in-depth 

case knowledge when identifying the most relevant conditions to explain the outcome of 

interest. Moreover, scholars commonly turn to the literature to derive a theory-based 

specification of the QCA model. However, some theoretical landscapes are composed of many 

more factors that could potentially be considered along with sparse or inconsistent insights into 

which of these factors matter most to explain the outcome. Against this background, in this 

chapter, I introduced a novel data-driven approach that systematically evaluates all possible 

combinations of conditions and identifies those that most frequently co-occur in the best-

performing models. By focusing on conditions that consistently appear across multiple high-

performing models, this method helps to uncover factors that, when combined, are likely to 

have genuine causal significance. 

By clustering the conditions appearing in the best-performing models, I identify a robust 

set of factors that appear to play a fundamental role in the configurational antecedents of 

innovation teams producing highly impactful clean energy innovations. Specifically, 

institutional diversity, ethnic diversity, gender diversity, and knowledge dissimilarity emerged 
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at the core of the central cluster. The prominence of institutional diversity suggests that teams 

composed of inventors who work or have worked in different types of organizations may 

contribute to higher innovation impact, possibly due to the integration of varied organizational 

practices and resources (Czarnitzki et al., 2011), even when conjunctural effects are considered. 

Similarly, the prominence of ethnic and gender diversity suggests that demographic aspects 

play a central role. Literature shows that demographic heterogeneity increases cognitive 

diversity (Choudhury & Kim, 2018; Marino & Quatraro, 2022) and allows a team to draw on a 

greater variety of perspectives (Freeman & Huang, 2014). Knowledge dissimilarity within 

teams potentially fosters impactful innovations by enabling the utilization of diverse and non-

obvious combinations of existing knowledge, thereby expanding the search space for novel 

solutions and increasing the likelihood of groundbreaking advancements (Fleming, 2001; Uzzi 

et al., 2013). Yet, it is important to note that, without an in-depth configurational analysis, at 

this point, there is no indication whether and how the presence or absence of any of these 

conditions links to impactful innovations. The robustness checks performed confirmed that 

these central conditions remain consistently prominent across various sensitivity analyses, 

indicating the stability and reliability of the findings. The findings also illustrate that, by 

following the cascading structure of the identified cluster of relevant conditions, adding 

conditions such as recombination novelty and degree centrality significantly improved model 

performance in terms of solution consistency and coverage. Considering the practical limit to 

the number of conditions that can reasonably be included in a QCA study and recognizing the 

diminishing returns in model improvement when adding the eighth most co-occurring 

condition, the presented approach suggests a model that balances parsimony and explanatory 

power, composed of the following seven conditions: institutional diversity, ethnic diversity, 

gender diversity, knowledge dissimilarity, recombination novelty, degree centrality, and 

inventor mobility. Interestingly, while some of these conditions, such as knowledge 

dissimilarity, have been studied extensively in the context of innovation impact individually, 
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others, like recombination novelty, have received little attention in the extant literature. 

Conversely, team size, despite being a commonly studied factor, did not emerge as a central 

condition for teams to create impactful innovations. 

3.7.1 Contributions 

With the novel methodological approach introduced in this chapter, I provide QCA scholars 

with a systematic and replicable method to identify the most relevant conditions for explaining 

the outcome of interest, particularly in large-N studies where theoretical guidance may be 

limited and case familiarity is low.  While this approach was specifically developed to address 

the challenges of complex theoretical settings – characterized by numerous potential factors 

and limited insight into their relative importance – it can also help address common criticism 

regarding the lack of clear justification for the selection of certain conditions over others in 

QCA studies more broadly. This aligns with the trend of complementing the traditional QCA 

process with other methodological approaches to combine their respective strengths (e.g., 

Haynes, 2014; Meuer & Rupietta, 2017; Rupietta & Meuer, 2024). The proposed method 

enhances the robustness and reliability of the analysis, focuses on conditions that likely 

demonstrate genuine causal significance, and, thus, increases confidence in the findings. As 

QCA is more broadly applied across various research domains and the trend towards large-N 

settings intensifies, this approach represents a significant and timely contribution to the 

development of QCA. 

3.7.2 Limitations and Future Research 

Despite the value added by the proposed method, it is not without limitations. First, evaluating 

all possible combinations of conditions is computationally intensive. The computational 

resources required increase with the number of potential conditions, the number of random 

samples used to calculate confidence intervals for solution consistency and coverage, and the 

number of cases used in each sample. However, these limitations become minor obstacles when 
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high-performance computing resources are available. Moreover, although robustness checks 

help reduce the risk of overfitting the resulting model to the specific dataset, generalizing 

findings beyond the dataset must be approached with caution. Complementing the findings 

from this data-driven approach with rigorous theoretical insights can enhance confidence and 

improve the generalizability of the results. Additionally, this method was developed and tested 

within a single research context (i.e., innovation teams in clean energy technologies). Future 

research should validate the proposed approach in different domains. Additionally, further 

development of this method could focus on algorithmic optimization to minimize the reliance 

on expensive computational resources.
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4. A Set-Theoretic Analysis of Innovation Team Configurations 

This chapter introduces a configurational perspective to abductively explore how various team 

composition factors interact to influence the impact of the innovation outcome. Drawing on 

configurational theory, I complement traditional bivariate methods that predominantly examine 

individual factors in isolation and, instead, take aspects of causal complexity, such as conjunctural 

causation, equifinality, and causal asymmetry into account. Using set-theoretic methods, specifically 

Qualitative Comparative Analysis (QCA), I conduct a (very) large-N analysis based on thousands of 

clean energy patents to identify team configurations (i.e., causal pathways) associated with impactful 

innovations in the clean energy sector. 

4.1 A Configurational Perspective 

Innovation management scholars have examined a wide range of team composition factors and how 

they influence the impact a team’s innovation outcome has on subsequent technological 

developments. For instance, various studies have shown that teams produce particularly impactful 

innovations when the differences in knowledge held by the inventors on a team is moderate, while 

similar and exceptionally distinct knowledge bases tend to yield less impactful outcomes (e.g., Cassi 

& Plunket, 2014; Huo et al., 2019; Onal Vural et al., 2013; Vestal & Danneels, 2022). Other studies 

show that it is particularly beneficial if some members of the team bring prior experience innovating 

in the focal field to the table (e.g., Li et al., 2018; Schillebeeckx et al., 2019). While these works 

provide valuable insights into the antecedents of successful team-based innovation, most research to 

date – with only very few exceptions (e.g., Battaglia et al., 2021) – predominantly follows the classical 

approach of “causally isolating […] factors” (Miric & Fiss, under review, p. 1) through the application 

of bivariate methods that focus on marginal impact. However, considering that, in reality, team 

attributes do not exist in isolation but are embedded in a “multidimensional constellation of 

conceptually distinct characteristics that […] occur together” (Meyer et al., 1993, p. 1175), applying 

a theoretical perspective that acknowledges the configurational nature of innovation team 

composition appears both important and valuable. 
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Configurational theory captures the complex causal interactions between multiple individual 

factors: A team may consist of generalists or specialists, or a mix of both, while its members vary in 

their levels of innovation experience, from extensive to none, and, at the same time, exhibit distinct 

demographic characteristics. While correlational approaches help determining, for example, the 

relative contribution of any single such team attributes to the likelihood of producing highly impactful 

innovations, understanding how factors synergistically combine to jointly determine the innovation 

outcome (conjunctural causation) calls for a different view (Fiss, 2007). Moreover, when, instead, 

applying a configurational lens, the assumption of all cases of impactful innovations following the 

same causal pathway – which is implied in the use of common regression-based methods – is 

challenged as configurational theory allows for multiple causal recipes to be equally viable 

(equifinality) in achieving the desired outcome (Y. Park et al., 2020; Ragin, 2000, 2008). This seems 

quite plausible for configuring innovation teams as well: There is little reason to believe that there is 

only one particular way to set up a team for success. Extending the underlying notion of equifinality, 

Fiss (2011) introduced the concept of the causal core and periphery of configurations. This idea 

suggests that “within any given configuration, more than one constellation of different peripheral 

causes may surround the core causal condition, and the permutations do not affect the overall 

performance of the configuration” (Fiss, 2011, p. 398). Accordingly, in the context of innovation, 

some team attributes may be key building blocks for creating impactful innovations, while others 

may be substitutable (Misangyi & Acharya, 2014) or even irrelevant in some combinations, leading 

to a multitude of eligible team configurations. Furthermore, configurational theory acknowledges 

asymmetry in causal mechanisms: While correlations suggest that the variation of an explanatory 

variable causes the outcome to shift in one direction, it simultaneously implies that a variation in the 

opposite direction leads to a corresponding change in the outcome. From a configurational point of 

view, however, if one team attribute is commonly associated with highly impactful innovations, its 

absence does not necessarily have to be linked to less impactful outcomes or can even be associated 

with impactful innovations as well. One causal pathway that is linked to impactful innovations may 
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include pronounced demographic diversity within a team, providing the team with a greater pool of 

beliefs and perspectives to draw on (Nielsen et al., 2018). Yet, the tendency of more demographically 

diverse teams to experience elevated levels of conflict (Jehn et al., 1999; Nishii, 2013) may impair a 

team’s innovation capabilities when combined with, for example, large differences in expertise that 

require a certain integrative capacity that allows for the reconciliation of diverse knowledge and 

perspectives (Dougherty, 1992) and for overcoming the coordination costs as a concomitant of input 

diversity (Bercovitz & Feldman, 2011). Thus, embracing configurational theory allows us to move 

beyond isolated factor analysis and embrace the complex causal mechanisms inherent in innovative 

teams. 

4.2 Set-Theoretic Methods and QCA 

While conventional bivariate methods often struggle to capture the intricate interplay of factors in 

causally complex phenomena, set-theoretic methods offer an analytical toolbox tailored to address 

these research challenges (Fiss, 2007; Ragin, 2000, 2008) by applying a configurational view on 

causality (Mithas et al., 2022). “As such, set-theoretic methods differ from conventional, variable-

based approaches in that they do not disaggregate cases into independent, analytically separate 

aspects but, instead, treat configurations as different types of cases” (Fiss, 2007, p. 1181). Applying 

this logic, each case can be described by its set memberships for each attribute (and the outcome of 

interest) that – in their sum – make that case representative of a particular configuration (i.e., 

combination of attributes). In the context of innovation team composition, consider a team-based 

innovation project as one single case that yields a technological development with a certain impact 

on future innovations. The respective innovation team is characterized by various compositional 

attributes, such as, for instance, team size or demographic diversity. Assuming a team is composed of 

seven members of which all but one are female, that team could then be classified as, for example, a 

large team (i.e., has membership in the set of large teams) and simultaneously not gender-diverse (i.e., 

has no membership in the set of gender-diverse teams). The same idea can be applied to the observed 
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outcome, determining whether a case belongs to the set of impactful innovations. In set-analytics, the 

cases are then used to derive subset relationships. For instance, one could observe that cases with 

gender-diverse teams are also commonly cases that yield an impactful innovation outcome. In set-

theoretic terms, gender-diverse teams can then be expressed as a subset of the teams that create 

impactful innovations. This way, such logical statements about the relationship with the outcome can 

be made for any single attribute or any combination (i.e., configuration) thereof. Furthermore, on that 

basis, an attribute (or combination of attributes) could be found to be either necessary – meaning that 

there is no configuration associated with the outcome that does not contain that particular attribute 

(or combination of attributes), or sufficient – meaning that any configuration containing that attribute 

(or combination of attributes) is associated with the outcome (Mackie, 1974). 

With Qualitative Comparative Analysis (QCA), introduced by Ragin (2000, 2008) and further 

developed by a growing community of scholars since, set analytics have become well-adopted across 

various scientific fields. In management research specifically, QCA has been used to, for example, 

explain how configurations of regional entrepreneurial ecosystems are linked to high-performing 

startups (Vedula & Fitza, 2019), or how country-level institutional factors influence executive 

compensation (Greckhamer, 2016). 

In QCA, a truth table is constructed, containing all possible combinations of conditions35 (i.e., 

configurations) that specify the different types of cases. For each case, set memberships for all 

conditions and the outcome are determined following a calibration procedure based on calibration 

thresholds defined by the researcher. As a result, each case represents a specific configuration (i.e., 

row in the truth table). There may be multiple cases that correspond to the same configuration. Such 

cases have very similar characteristics and, thus, show the same (or similar degrees of) set 

membership. In a subsequent step, the truth table is minimized using an algorithm (Quine-McCluskey) 

 
35 While the broader term “attribute” was used earlier in this section to describe general factors in the context of set-

theoretic methods, it will now be replaced by the more precise QCA terminology. 
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based on Boolean algebra. To illustrate how this logical reduction is achieved36, assume two 

configurations with an arbitrary number of cases and both configurations vary in only one condition 

while consistently featuring the observed outcome. This would mean that the condition in which these 

two configurations are distinct would be irrelevant for explaining the outcome as both the cases that 

exhibit this condition as well as those that do not lead to the same result. For innovation team 

composition, this could mean that, for example, teams that are geographically dispersed and those 

that are in the same location (i.e., members and non-members of the set of geographically dispersed 

teams) both are equally associated with producing highly impactful innovation outcomes. Thus, the 

condition of geographic dispersion provides little insight into the antecedents of successful team-

based innovation. In the following sections, I apply QCA for a set-theoretic analysis of innovation 

team composition to identify those configurations that are associated with producing exceptionally 

impactful innovations and thus drive technological trajectories. 

4.3 Team-Level Antecedents of Impactful Innovation 

To identify the causal configurations among innovation team compositions associated with impactful 

innovations, it is essential to select a relevant set of conditions. While Chapter 2 reveals an extensive 

list of team composition factors influencing innovation outcomes, there is a practical limit to the 

number of conditions that can be included in QCA, due to increasing interpretative difficulties as 

more conditions are added. To address this challenge, Chapter 3 introduces a novel approach for 

selecting causally relevant conditions that is tailored to the characteristics of the theoretical landscape 

of research on innovation team composition. Hence, by clustering the best-performing QCA models, 

I synthesized a set of seven conditions that, in conjunction, appear to reliably explain a significant 

proportion of cases yielding impactful innovations: institutional diversity, ethnic diversity, gender 

diversity, knowledge dissimilarity, recombination novelty, degree centrality, and inventor mobility. 

 
36 This is just one example for how this reduction works. There are other aspects to it that are – in parts – introduced later 

in this chapter. 
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Institutional diversity within a team has emerged as the most central condition from the 

analysis in the previous chapter. However, the literature presents differing views on the effect of 

institutional diversity among team members on the impact of the innovation outcome. Cassi and 

Plunket (2014) conclude that it is beneficial for team members to have previously patented under the 

same type of institutional setting – either corporate or public institutions. They argue that successful 

collaboration relies on shared norms, incentives, and routines, which are deeply rooted in the 

operational logics of different institutional types. In contrast, Czarnitzki et al. (2011) demonstrate that 

the participation of an academic inventor leads to higher-impact innovations, despite the inherent 

differences between university settings and private companies. For example, in academia, the 

prospect of publication often serves as a greater incentive than monetary profit. These contrasting 

findings suggest that the role of institutional diversity in innovation teams is complex and may depend 

on combined effects with other conditions. 

Ethnic diversity and gender diversity as demographic aspects of team composition appear next 

in line among the most relevant conditions. Although demographic diversity is one of the most 

frequently studied factors in innovation team research, there is a notable scarcity of literature 

specifically addressing the effect of team-level gender diversity on innovation impact. While some 

evidence supports the notion that “[research] teams with members from diverse ethnic backgrounds 

may benefit from a greater variety of perspectives” and access to a broader network (Freeman & 

Huang, 2014, p. 305), leading to more impactful publications, one can only infer – based on studies 

from adjacent research contexts (e.g., Díaz-García et al., 2013; Garcia Martinez et al., 2016; 

Østergaard et al., 2011) – that this mechanism applies to gender diversity in a similar way. 

Conversely, for knowledge dissimilarity, a solid empirical foundation exists. Various studies 

have shown an inverted U-shaped relationship between the (dis)similarity of knowledge and expertise 

held by the inventors and the likelihood of creating impactful technological advancements (Cassi & 

Plunket, 2014; Huo et al., 2019; Onal Vural et al., 2013; Vestal & Danneels, 2022; Vestal & Mesmer-

Magnus, 2020). Some difference in knowledge bases among the inventors is required to create fruitful 
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outcomes. This idea follows the common line of argumentation in the literature that innovations are 

the result of novel combinations of acquainted but distinct knowledge (Carnabuci & Operti, 2013; 

Fleming & Sorenson, 2004; Hargadon & Sutton, 1997; Henderson & Clark, 1990; Usher, 1954; Uzzi 

et al., 2013). This also provides support for recombination novelty – the degree to which an innovation 

builds on different areas of expertise that are novel in their combination, and thus exploratory, to the 

inventors of a team – as another relevant condition to be considered. However, when the knowledge 

among team members becomes too dissimilar, a team is more likely to lack the necessary levels of 

integrative capacity so that “the transaction and coordination costs may become detrimental to 

innovative performance” (Cassi & Plunket, 2014, p. 400). While a certain diversity and wealth of 

inputs seems essential, Harvey (2014, p. 325, 337) argues that it is the process of “creative synthesis” 

that determines the chances of developing impactful innovations by creating a “shared understanding 

of the problem”, “combin[ing] […] cognitive, social, and environmental resources”, and “evaluating 

the constituent ideas to identify relationships between them”. Nevertheless, access to various inbound 

flows of ideas and expertise can be highly beneficial. Teams with high degree centrality and, thus, a 

central position in the greater network of collaborating inventors (i.e., teams with numerous ties from 

past collaborations to other inventors outside the team) can draw on such knowledge resources as a 

basis for more impactful innovations (Yang et al., 2021). A similar logic applies to the inventors’ 

mobility between organizations. If inventors move to another organizational setting for innovation, 

“the new knowledge available […], if used with existing knowledge and processes, can create new 

combinations of outputs” (Chang, 2022, p. 1221). Despite the coordination costs resulting from 

difficulties transferring the organization-specific human capital (i.e., routines, procedures, and 

interpersonal relationships) to a new environment, the access to a “new, complementary stock of 

technological knowledge” (Chang, 2022, p. 1221) can significantly foster the creation of high-impact 

innovations. 
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4.4 Methodology 

4.4.1 Data, Measures, and Calibration 

I utilize the dataset of 54,003 granted team-based clean energy patents filed with the USPTO between 

1985 and 2015 introduced in section 3.4.1, with each patent representing a single and unique 

innovation case. To assess the degree to which a case represents an impactful innovation, I, once 

again, use the 5-year forward citations of each focal patent, adjusted for year and technological 

domain fixed effects. To define each patent’s membership in the set of impactful innovations, I use a 

fuzzy calibration based on common definitions of high-impact innovations in the existing literature 

and the data distribution itself. A patent is considered a full member of the set if it falls within the top 

5% (95th percentile) of adjusted forward citations (inclusion threshold), as defined and applied by, for 

example, Chang (2022). Patents between the 90th percentile (crossover point) and the 95th percentile 

are considered highly impactful to some degree and are assigned partial membership in the set. Patents 

between the 75th percentile (exclusion threshold) and the 90th percentile are viewed as highly 

impactful to some degree but rather out of the set, also receiving partial membership. Patents below 

the 75th percentile are deemed not particularly impactful and are thus non-members of the set. 

I further leverage the publicly accessible patent data to operationalize the causal conditions 

(see also Table 3.1). First, for the institutional diversity within a team, I use the types of assignees 

(individual/unassigned, company, or public) associated with all inventors' prior patents to calculate a 

variation of Blau's diversity index (Blau, 1977) for each case, as suggested by Harrison and Klein 

(2007). This adjusted diversity index corrects for a bias that can occur when the number of 

observations (here: past patents) is potentially smaller than the number of categories (here: assignee 

types). I then apply a crisp calibration: cases where inventors have patented for only one type of 

assignee (institutional diversity index = 0) are considered not to exhibit institutional diversity, while 

cases showing any level of past assignee type diversity (institutional diversity index > 0) are 

considered institutionally diverse. 
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To measure gender diversity, I draw on predictions for the binary gender (male, female) of 

each inventor, provided by the PatentsView platform. These predictions are based on a multi-stage 

gender attribution algorithm using country-specific lists of names (Toole et al., 2020). Subsequently, 

I calculate each team's gender diversity using Blau's diversity index (Blau, 1977). Similarly, I 

calculate a team's ethnic diversity. However, since data on ethnic affiliation is not readily available 

for filed patents, I follow state-of-the-art practices (Kozlowski et al., 2022) and use a pre-trained 

machine learning model37 that infers the ethnic affiliation (White, Black, Asian-Pacific, Hispanic) of 

each team member based on their last name, drawing on U.S. census data. Again, I use the adjusted 

Blau's diversity index (Harrison & Klein, 2007), as the number of team members may be smaller than 

the number of ethnic categories: 

𝑒𝑡ℎ𝑛_𝑑𝑖𝑣 = 1 − ∑ (
𝑛𝑖(𝑛𝑖 − 1)

𝑁(𝑁 − 1)
)

𝑖

 

In this, 𝑛𝑖 represents the number of team members belonging to one of the 𝒊 ethnic categories and 𝑁 

the total number of team members. In the calibration process, for both gender diversity as well as 

ethnic diversity, I use a fuzzy calibration with a full-exclusion threshold of just above zero (no 

diversity at all). Furthermore, based on the data distribution, for gender diversity, I set the crossover 

point to 0.25 and the full inclusion threshold to 0.4. For ethnic diversity, the crossover is set to 0.25 

and the inclusion threshold to 0.75. 

To measure the dissimilarity of knowledge held by the inventors on a team, it is common 

practice to use the distinct technology (sub)classes of past patents filed by each team member (e.g., 

Melero & Palomeras, 2015; Singh & Fleming, 2010). Building on this approach – but instead of 

relying on patent subclass data – I leverage the specific vector representations of each patent an 

inventor has filed prior to, and including, the focal patent. I compute a centroid vector from the 

patents' embedding vectors38 as a unique knowledge vector for each inventor and calculate the 

 
37 I use the ethnicolr Python module (https://github.com/appeler/ethnicolr). 
38 Embedding vectors are obtained from the Google Patents Research Database. 
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individual distances between the knowledge vectors of all inventors on the focal patent. By adapting 

Blau's diversity index, I define a measure for knowledge dissimilarity that increases with the number 

of inventors holding distinct knowledge and reaches a maximum when the knowledge vectors of all 

inventors are as dissimilar as possible (see also Ferrucci & Lissoni, 2019): 

𝑘𝑛𝑜𝑤_𝑑𝑖𝑠 = ∑ (
𝑑𝑖

𝑛
)

1
2

𝑛

𝑖

 

Here, 𝑑𝑖 refers to the normalized cosine distance (0 for identical vectors, 1 for maximally dissimilar 

vectors) between the centroid knowledge vectors of two team members, and 𝑛 describes the total 

number of distance pairs. Since there are no existing standards to build on for the calibration of this 

novel knowledge dissimilarity measure, I, again, turn to the data distribution itself. As existing 

empirical studies suggest a curvilinear relationship with the outcome (Cassi & Plunket, 2014; Huo et 

al., 2019; Onal Vural et al., 2013; Vestal & Danneels, 2022; Vestal & Mesmer-Magnus, 2020), I use 

a fuzzy bell-shaped calibration curve. Cases exhibiting moderate knowledge dissimilarity between 

the 33rd and 66th percentile are fully included in the set, while cases with little knowledge dissimilarity 

below the 10th percentile and high knowledge dissimilarity above the 90th percentile are fully 

excluded. The two crossover points are set at the 25th and 75th percentiles. 

The measure for recombination novelty within a case follows the approach by Marino and 

Quatraro (2022) and builds on the CPC subgroup-level codes assigned to the focal patent and the 

team members' past patents. For each inventor, I determine all pairwise combinations of previously 

assigned codes and compare them with all code pairs for the focal case. I then calculate the average 

proportion of novel combinations represented in the focal case across all inventors, ranging from 0 

(only familiar combinations) to 1 (only novel combinations). For the fuzzy calibration, I use an 

inclusion threshold of 0.75 (mainly novel combinations – exploration), a crossover point at 0.5, and 

an exclusion threshold of 0.25 (mainly familiar combinations – exploitation). 
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To measure degree centrality, I first construct collaborator networks39 for each year within the 

sample period, based on all inventors listed on the granted clean energy patents filed up to and 

including the previous year. I then calculate each inventor's degree centrality based on collaborative 

ties with other inventors from past patent co-filings, using the respective year-specific network. For 

each case, I take the average degree centrality among the team members, normalized by the total 

network size, as an aggregate team-level measure. In the calibration process, I use fuzzy sets: cases 

where inventors have no existing collaborative ties (average degree centrality = 0) are excluded, cases 

above the 75th percentile are included, and the crossover point is set at the 50th percentile. 

Finally, to calculate inventor mobility, I compile a full list of organizations with which each 

inventor has innovated (i.e., patent assignees), including past successful patent filings and the focal 

patent. I then determine the average number of unique assignees across all team members as a 

measure of the inventors' organizational mobility. Again, I use a fuzzy calibration based on the data 

distribution, with an exclusion threshold at the 25th percentile, a crossover point at the 50th percentile, 

and an inclusion threshold at the 75th percentile. Table 4.1 presents a statistical description of the 

calibrated sample. 

4.4.2 Set-Theoretic Analysis (QCA) 

I apply a set-theoretic analysis – more specifically QCA (Fiss, 2011; Ragin, 2000, 2008) – to explore 

which configurations of team composition factors (i.e., causal conditions) are associated with 

impactful innovations in the clean energy sector. I seek to uncover any conditions and combinations 

thereof that are necessary as well as those that are sufficient for achieving impactful outcomes. For 

both the necessity and the sufficiency analysis, I use the QCA R Package (Duşa, 2019). To address 

potential causal asymmetry, I additionally perform the same analysis for non-impactful innovations 

as the inverted outcome. Furthermore, impactful innovations are per definition (here: top 5% in 

forward citations) a rare outcome. As QCA relies on comparing combinations of conditions across 

 
39 I use the networkx Python module (https://networkx.org/). 
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cases with positive and negative outcomes to clearly distinguish configurations associated with 

impactful innovations from those that are not, I apply two additional steps to the construction of the 

sample used for the analysis. First, to effectively capture the differences between cases that are clearly 

impactful and those that are not, I increase contrast by only considering full members and full non-

members in the outcome set, leaving out the somewhat impactful cases between the exclusion and 

inclusion thresholds. Secondly, I build on an approach recently proposed by Miric and Fiss (under 

review) who construct a balanced sample (i.e., equal numbers of positive and negative outcome cases) 

by oversampling on the positive outcome. Hence, in addition to the 3,025 cases of impactful 

innovations, I select another 3,025 cases, preferentially from the same domain and year, that do not 

represent a case of impactful innovation. 

Table 4.1: Descriptive statistics for the calibrated outcome and conditions. 

  mean std  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

(1) IMPACT_INNO  0.50 0.50           

(2) INST  0.46 0.50  0.09*         

(3) ETHN  0.37 0.45  0.00 0.01        

(4) GEND  0.25 0.42  -0.03* 0.01 0.10*       

(5) KNOW_DIS  0.48 0.40  -0.01 0.20* 0.20* 0.14*      

(6) RECOMB  0.78 0.40  -0.08* -0.13* -0.03* 0.03* 0.11*     

(7) DEG  0.47 0.45  -0.01 0.14* 0.11* 0.03* 0.09* -0.31*    

(8) MOB  0.47 0.44  -0.02 0.31* 0.11* -0.02 0.27* -0.16* 0.24*   

(9) DOM✝  0.06 0.24  0.06* -0.01 -0.02 -0.05* -0.01 -0.07* -0.02 -0.03*  

(10) PRICOL✝  0.42 0.45  0.07* 0.19* 0.06* -0.02 -0.12* -0.55* 0.40* 0.24* 0.06* 

Note: This table uses the abbreviations for the outcome and conditions introduced in Table 3.1. Abbreviations are used accordingly in 

the following sections: IMPACT_INNO (impactful innovations), INST (institutional diversity), ETHN (ethnic diversity), GEND 

(gender diversity), KNOW_DIS (knowledge dissimilarity), RECOMB (recombination novelty), DEG (degree centrality / central 

network position), MOB (inventor mobility), DOM (domain experience), PRICOL (prior collaboration). The conditions marked with 

a (✝) are introduced in section 4.5.4. Statistical significance for pairwise correlations (p < 0.05) is marked with an asterisk (*). 

 

For the sufficiency analysis based on the resulting balanced sample of 6,050 cases, I create a truth 

table with each case assigned to a specific row that represents one of the 27 = 128 possible 

combinations of causal conditions. As both cases with and without membership in the outcome set of 
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impactful innovations can exhibit the same combination of conditions and would thus be assigned to 

the same row of the truth table, a consistency score is calculated for each row as a measure of “the 

degree to which the cases sharing a given combination of conditions […] agree in displaying the 

outcome in question” (Ragin, 2008, p. 44). Besides this raw consistency, the so-called proportional 

reduction in inconsistency (PRI) is used as additional probabilistic criterion that measures the 

consistency after eliminating cases that appear among combinations of conditions that are associated 

with both the presence as well as the absence of the observed outcome (Leppänen et al., 2023). This 

resolves simultaneous subset relations in which a condition or a combination of conditions appears 

to be sufficient for, in this study context, the creation of impactful and non-impactful innovations – a 

logical contradiction. I apply a raw consistency cutoff of 0.75 (Ragin, 2008) and a PRI cutoff of 0.7 

(Greckhamer et al., 2018)40. Only truth table rows above these thresholds will be considered sufficient 

for yielding (non-)impactful innovations. Furthermore, to avoid including configurations in the 

solution that originate from only a few cases in the sample, and thus have little representative value, 

I use a minimum number of 30 cases (i.e., a 0.5% frequency cutoff) for a row to be considered in the 

algorithmic reduction of the truth table. Additionally, to add robustness to this approach, I calculate 

mean values and confidence intervals for raw consistency and PRI based on repeated sampling (here: 

50 samples; the baseline sample plus 49 additional balanced samples using the same sampling 

strategy) for each row in the truth table (see also Miric & Fiss, under review). The lower bounds of 

the resulting 90% confidence intervals serve as conservative cutoff values. 

For the necessity analysis, I choose a minimum consistency of 0.9 (Ragin, 2008). In the 

context of necessity analyses, consistency refers to the degree to which the set of cases where the 

outcome occurs is included in the set of cases with a presence or absence of any of the (combinations 

of) causal conditions (Duşa, 2019). However, when a condition is necessary for an outcome to be 

 
40 Given the crisp nature of the outcome and the structure of the calibrated data, no configurations exhibit inconsistencies 

by aligning simultaneously with both the presence and absence of the outcome in any of the analyses presented in the 

following sections. As a result, PRI scores are identical to consistency scores, and the PRI cutoff remains effectively 

unused. Nonetheless, for the sake of completeness, I report both PRI and consistency scores. 
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observed, it does not necessarily mean that condition is also relevant (i.e., a trivial necessary 

condition). If a certain compositional factor is found to be necessary for impactful innovations to be 

created but at the same time can also be observed for teams that do not create particularly impactful 

innovations, that condition would lack relevance. To account for this, I use a Relevance of Necessity 

(RoN) threshold of 0.7 as a second criterion for a condition to be considered both necessary and 

relevant. 

4.5 Findings 

4.5.1 Necessity Analysis 

The necessity analysis reveals that no single condition or combination of conditions meets the 

thresholds to be considered necessary for producing impactful innovations. Hence, the necessity 

analysis also provides no implications for addressing specific counterfactuals, namely those 

containing the negation of any necessary condition (Duşa, 2019), in the subsequent sufficiency 

analysis. This result is not unexpected, as “necessary conditions are rare in social phenomena” 

(Muñoz et al., 2022, p. 309). As highlighted by Gupta et al. (2020, p. 1883), that lack of evidence for 

necessary conditions “reinforces the expectation of complex causality” and, thus, confirms the 

selection of a configurational research approach. 

4.5.2 Sufficiency Analysis 

Table 4.5 presents an excerpt (see Appendix 4.1.1 for the full truth table) from the populated truth 

table, applying a conservative 0.5% frequency cutoff. This cutoff includes only configurations 

associated with 30 or more cases for the analysis. Truth table rows with fewer cases are treated as 

logical remainders – or unobserved configurations – that lack the required level of empirical evidence. 

While all 128 rows of the truth table contain at least one case, only 70 configurations meet or exceed 

the frequency cutoff. Each table row displays the respective unique configuration of conditions, the 

number of associated cases, and shows the consistency and PRI values, including the raw values from 
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the baseline truth table and the mean and bounds of the 90% confidence intervals calculated from 

repeated sampling. Configurations at or above the frequency, consistency, and PRI cutoff are marked 

with an asterisk. 

As shown in Table 4.5, only two truth table rows pass all the thresholds: 

(1) INST • ETHN • GEND • KNOW_DIS • RECOMB • DEG • MOB   IMPACT_INNO41 

(2) INST • ETHN • GEND • KNOW_DIS • RECOMB • DEG • MOB   IMPACT_INNO 

These two rows only differ in a single condition – inventor mobility. Since both the presence and the 

absence of mobile inventors are associated with impactful innovations while all other conditions 

remain identical, this expression can also be represented as 

INST • ETHN • GEND • KNOW_DIS • RECOMB • DEG • (MOB + MOB)   IMPACT_INNO 

and, thus, be reduced to 

INST • ETHN • GEND • KNOW_DIS • RECOMB • DEG  IMPACT_INNO 

using Boolean algebra. Therefore, inventor mobility becomes a “don't care” condition that may or 

may not be present in that configuration for impactful innovations to be the observed outcome. This 

kind of logical reduction is typically performed during truth table minimization until no further 

simplification is possible. However, additional simplification can be achieved by considering logical 

remainders that have few or no empirical instances. Depending on the types of remainders included, 

different solutions emerge. For example, when using easy counterfactuals for further simplification, 

theoretical knowledge is leveraged to specify directional expectations about a condition. Even if a 

configuration lacks empirical instances, if the presence or absence of an outcome is theoretically 

expected to cause the outcome, this information can be used to add “a redundant causal condition 

[…] to a set of causal conditions that by themselves already lead to the outcome in question” (Fiss, 

2011, p. 403), resulting in a more parsimonious intermediate solution. In accordance with insights 

from past empirical studies, I specify that the presence of institutional diversity, a central network 

 
41 Meaning of symbols in logical expressions: (•) – logical AND conjunction; (+) – logical OR conjunction; () – negation 
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position (i.e., high degree centrality), and moderate knowledge dissimilarity are associated with 

impactful innovations. I do not specify directional expectations for the other conditions due to the 

relatively weak empirical basis and the abductive nature of this study. In a subsequent step, I allow 

all remainders42 to be used for further logical minimization, including the use of difficult 

counterfactuals that are not supported by substantive knowledge. This involves making stronger 

assumptions about the expected outcome for configurations lacking empirical evidence and, thus, 

whether these configurations can be used for logical simplification. 

Table 4.2 shows the configuration chart resulting from the Boolean minimization. Full circles 

indicate the presence of a condition in a configuration, while crossed circles denote their absence. 

Empty fields indicate that a condition is irrelevant for a particular configuration – both its presence 

and absence, in conjunction with the other conditions, are associated with the observed outcome. The 

larger circles represent the causal core (Fiss, 2011) that appears not only in the solution with 

simplifying assumptions based on directional expectations but also in the most parsimonious solution 

where all remainders are used for potential simplification. The smaller circles illustrate the causal 

periphery, which is not part of the most parsimonious solution. 

The truth table minimization yields only a single, fairly complex team configuration (1a), 

suggesting a very narrow path that consistently leads to an impactful innovation outcome. I therefore 

extend the analysis beyond the more common configuration(s) to also include rarer configurations 

that are associated with impactful innovation, even though they are less frequently observed (i.e., 

lowering the frequency cutoff). Thus, in Table 4.2, I further show the configurations resulting from 

the truth table minimization (see Table 4.6 for an excerpt and Appendix 4.1.1 for the full truth table) 

when including all configurations with at least two empirical instances. Since this more liberal 

 
42 After verifying the absence of contradictory simplifying assumptions and ensuring that no untenable remainders result 

from potential necessary conditions. 
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frequency cutoff leaves very few remainders for further simplification, I do not distinguish between 

core and peripheral conditions for these rare configurations (1b and 2). 

Table 4.2: Configuration chart for impactful innovations with initial model specification. 

 

The more common configuration (1a) suggests that impactful innovation outcomes are linked to 

teams composed of inventors that have innovated in diverse institutional settings in the past, use 

combinations of knowledge components they are already familiar with from previous innovation 

projects, and with few ties from past collaborations to inventors outside the team. Additionally, though 

less pronounced, such teams also tend to be demographically homogeneous. Interestingly, the 

configuration also includes the absence of moderate knowledge dissimilarity as a core condition. 

While prior empirical studies suggest an inverted U-shaped relationship between knowledge 

dissimilarity among team members and the impact of an innovation – which was considered in the 

bell-shaped calibration curve for this condition – the results indicate that either particularly low or 

 Common 
Configurations 

Including Rare 
Configurations 

 (1a) (1b) (2) 
 

Institutional Diversity    

Ethnic Diversity    

Gender Diversity    

Moderate Knowledge Dissimilarity ()    

Novel Recombination    

Central Network Position    

Mobile Inventors    

 

Consistency 0.80 0.80 0.87 

Raw Coverage 0.024 0.024 0.004 

Unique Coverage 0.024 0.024 0.004 

Overall Model Consistency 0.80 0.81 

Overall Model Coverage 0.024 0.029 

Note: Knowledge dissimilarity has a bell-shaped calibration curve. Thus, the presence of this condition indicates moderate levels of 

knowledge dissimilarity, and absence can be linked to either low or high knowledge dissimilarity. 
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particularly high levels of knowledge dissimilarity are key components in this recipe for impactful 

innovations. Configuration (1a) remains essentially unchanged after lowering the frequency cutoff 

(1b). However, including rarer configurations reveals another distinct, complex, and narrow pathway 

to impactful innovations: configuration (2) is characterized by inventors who continuously innovate 

for the same type of institution, but frequently moved between organizations. These teams also exhibit 

higher demographic diversity and a high familiarity with the combination of knowledge components 

used for the focal innovation. Interestingly, although team members have innovated for a larger 

number of organizations in the past, these teams display few external ties based on past collaborations. 

Although the analysis reveals consistent team configurations associated with impactful 

innovations, the models explain only a relatively small fraction of the cases that yielded such 

outcomes. Moreover, there is no explanatory overlap between the configurations, with unique 

coverage matching the raw coverage values. This suggests that configurations (1a+b) and (2) capture 

mutually independent causal pathways. 

4.5.3 Revisiting Knowledge Diversity: Insights from Recalibration 

Insights from past empirical studies on the (isolated) role of knowledge dissimilarity in creating 

particularly impactful innovations suggest that moderate levels of dissimilarity among team members 

are most beneficial. While some dissimilarity has shown to enhance innovation impact by enabling 

novel, complementary knowledge combinations, excessive dissimilarity hinders this effect due to 

integration challenges, increased coordination costs, and communication barriers, leading to an 

inverted U-shaped relationship (Cassi & Plunket, 2014; Huo et al., 2019; Onal Vural et al., 2013; 

Vestal & Danneels, 2022; Vestal & Mesmer-Magnus, 2020). However, the pathways to impactful 

innovations that emerged from the sufficiency analysis in the previous section largely included the 

absence of moderate knowledge dissimilarity as a core condition, which can be linked to both high 

and low levels of knowledge dissimilarity. To better understand the role of knowledge dissimilarity, 

I conduct an additional analysis after recalibrating the knowledge dissimilarity condition (Table 4.3). 
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More specifically, instead of a bell-shaped calibration curve, I use the same calibration approach as 

for the other conditions, with a fuzzy logistic calibration that assigns set membership to high values 

of knowledge dissimilarity (above the 75th percentile) and non-membership to low values (below the 

25th percentile), and with the crossover point at the 50th percentile. 

Table 4.3: Configuration chart for impactful innovations with recalibrated knowledge dissimilarity 

condition. 

 Common 
Configurations 

Including Rare 
Configurations 

 (1a) (1b) (2) 
 

Institutional Diversity    

Ethnic Diversity    

Gender Diversity    

Knowledge Dissimilarity (  )    

Novel Recombination    

Central Network Position    

Mobile Inventors    

 

Consistency 0.76 0.76 0.80 

Raw Coverage 0.032 0.032 0.002 

Unique Coverage 0.032 0.032 0.002 

Overall Model Consistency 0.76 0.76 

Overall Model Coverage 0.032 0.034 

Note: Knowledge dissimilarity now has a logistic calibration curve. Thus, the presence of this condition indicates high levels, and 

absence indicates low levels of knowledge dissimilarity. 
 

Once again, I find no necessary conditions that pass the respective thresholds. For the sufficiency 

analysis, I use the same baseline sample along with the 49 additional samples to calculate the 

confidence intervals for consistency and PRI. I apply the same frequency cutoffs as before: 0.5% for 

a conservative analysis and at least two cases for a more liberal analysis that includes rarer 

configurations. I present excerpts from the truth tables in Table 4.7 and Table 4.8, with the full truth 

tables provided in Appendix 4.1.2. As indicated in the truth tables, I accepted a slightly lower 
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consistency threshold of 0.74. All other parameters and the directional expectations for institutional 

diversity and the central network position remain unchanged. However, this time, I do not specify 

any assumptions for knowledge dissimilarity to arrive at an intermediate solution. For the analysis 

based on the conservative frequency cutoff, I, again, use the remainders to calculate a parsimonious 

solution to distinguish core from peripheral conditions. 

The emerging configurations remain largely the same. However, it becomes apparent that low 

levels of knowledge dissimilarity, rather than high dissimilarity, are associated with the revealed 

pathways to impactful innovations, although – after recalibration – the absence of knowledge 

dissimilarity no longer emerges as a core condition. 

4.5.4 Supplemental Analysis with Contrasting Conditions 

The configurational analyses in the previous sections revealed two narrow pathways to impactful 

innovations, describing – among other characteristics – teams that are already familiar with 

combining the knowledge components used (i.e., absence of novel recombination) and have limited 

ties to outside inventors through prior collaborations (i.e., absence of a central network position). In 

causally complex phenomena viewed through a configurational lens, causal asymmetry implies that 

the absence of certain conditions being associated with an outcome does not necessarily mean that 

their presence leads to the absence of the outcome. However, if the absence of some conditions is 

associated with impactful innovations, it is worthwhile to explore whether the presence of contrasting 

conditions might likewise contribute to impactful innovations. More specifically, the observation that 

teams that do not explore novel knowledge combinations and have few external ties tend to produce 

impactful innovations suggests that teams with experience in the innovation area and a cohesive 

internal network might represent a pathway to impactful innovations. Past studies have shown that 

domain experience enables teams to effectively select and recombine distinct knowledge through a 

deep understanding of the field (Li et al., 2018; Schillebeeckx et al., 2019; Wang et al., 2017). 

Moreover, prior collaboration with the same collaborators has been found to foster impactful 
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innovation by enhancing coordination capabilities and communication skills, enabling teams to 

develop effective routines that help integrate knowledge, especially when the inventors’ knowledge 

bases are dissimilar (Jiao et al., 2022). 

Therefore, I perform an additional analysis in which I substitute recombination novelty with 

domain experience and replace the central network position with prior collaboration among team 

members43. Through this supplemental analysis, I aim to deepen the understanding of the mechanisms 

by which familiarity with the innovation area and the dynamics of internal versus external ties 

contribute to impactful innovations. Moreover, by examining these contrasting conditions, I seek to 

verify if their presence supports and reinforces the findings of the original configurations uncovered 

earlier. 

I measure prior collaboration as the number of prior pairwise collaborations among any two 

inventors normalized by the number of possible inventor pairs. Cases are fully excluded from the set 

of teams with prior collaboration if none of the inventors has co-invented with any of the other 

inventors in the past. Cases are fully included if inventors have collaborated already twice on average. 

A single prior collaboration on average sets the crossover point for the calibration. To measure domain 

experience, I use the number of patents successfully filed by any team member that was assigned to 

one of the CPC subgroups assigned to the focal patent. Due to the vast majority of cases exhibiting 

no previous domain experience at all, I use a crisp calibration and assign set membership to cases in 

which some domain experience exists.  

After substituting the two conditions, I still do not find any necessary conditions or 

combinations thereof. Since there is no solid theoretical foundation to confidently define directional 

expectations for the newly added conditions, I retain only the directional expectation specified for 

institutional diversity. For the rarer configurations, due to the significantly larger number of 

 
43 In the cluster analysis presented in Chapter 3, prior collaboration emerges close to the central cluster of conditions, 

while domain experience plays a key role in the best-performing models specified with only 4 causal conditions (see also 

Appendix 3.2). 
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combinations passing the consistency and PRI thresholds, I increase the frequency cutoff from at least 

two to five cases. All other parameters remain the same. Based on the truth table including rare 

configurations, I identify and exclude two contradictory simplifying assumptions that – if not 

excluded from the remainders used for minimization – would paradoxically contribute to more 

parsimonious explanations for both the outcome and its negation (Duşa, 2019). Excerpts from the 

respective truth tables are presented in Table 4.9 and Table 4.10, and the full truth tables in Appendix 

4.1.3. Table 4.4 shows the resulting configuration chart. 

Table 4.4: Configuration chart for impactful innovations with substituted conditions. 

 Common 
Configurations 

Including Rare 
Configurations 

 (1a) (1b) (2) (3) (4) 
   

Institutional Diversity      

Ethnic Diversity      

Gender Diversity      

Knowledge Dissimilarity (  )      

Domain Experience      

Prior Collaboration      

Mobile Inventors      

 
  

Consistency 0.79 0.79 0.81 0.91 0.83 

Raw Coverage 0.008 0.008 0.003 0.007 0.009 

Unique Coverage 0.008 0.008 0.003 0.007 0.009 

Overall Model Consistency 0.79 0.84 

Overall Model Coverage 0.008 0.027 

Note: Knowledge dissimilarity, once again, has a logistic calibration curve. Thus, the presence of this condition indicates high levels, 

and absence indicates low levels of knowledge dissimilarity. 

 

The configurations with the substituted conditions confirm that domain experience and prior 

collaboration among inventors are critical building blocks for teams that produce impactful 

innovation outcomes. Configuration (1a) highlights a more common pathway, with domain 
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experience standing out as a single core condition. Across all identified pathways, including the rarer 

configurations, domain experience is present in all but one configuration (4). The presence of prior 

collaboration appears even more consistently, being part of every configuration. Interestingly, some 

configurations include the presence of relatively dissimilar knowledge among team members when 

domain experience and prior collaboration are present. In summary, this additional analysis reinforces 

the results from the previous analyses and supports the idea that, rather than relying on novel 

recombination of knowledge and drawing on external inputs and resources from outside ties, teams 

achieve particularly impactful innovations by leveraging their existing domain expertise and forming 

strong ties with their team members over multiple innovation projects. 

4.5.5 Analysis for Non-Impactful Innovations 

I follow common practices (Fiss, 2011; Greckhamer, 2016; Gupta et al., 2020) and perform an 

additional analysis on the absence of the outcome (i.e., non-impactful innovations) to investigate 

potential team configurations that explicitly hinder the creation of particularly impactful innovations 

and to shed light on potential causally asymmetric effects. I conduct the analysis for non-impactful 

innovations with the initial bell-shaped calibration of the knowledge dissimilarity condition (see 

section 4.5.2) as well as for the alternate calibration (see section 4.5.3) and the two substituted 

conditions (see section 4.5.4). The analysis does not unveil any necessary conditions for any of the 

model specifications. The sufficiency analysis results in only one consistent truth table row with the 

two substituted conditions and only for the lower frequency cutoff including configurations with five 

or more cases (Appendix 4.4). Teams exhibiting this configuration are characterized by the absence 

of institutional diversity, demographic diversity (i.e., ethnicity and gender), knowledge dissimilarity, 

prior collaboration, and inventor mobility, as well as by the presence of domain experience. This 

underscores the significance of past project experience as a team but, at the same time, shows that 

domain experience – while representing a core building block for the creation of impactful 

innovations – does not guarantee for avoiding non-impactful outcomes. 
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Table 4.5: Truth table (excerpt) for configurations associated with impactful innovations; initial model specification for moderate knowledge dissimilarity (bell-

shaped calibration); including more common configurations with frequency cutoff: 0.5 % (30 cases). 

  Conditions   Consistency  PRI  

  INST ETHN GEND KNOW_DIS RECOMB DEG MOB  N raw mean 90% CI  raw mean 90% CI  

(1)  1 0 0 0 0 0 0  41 0.80 0.79 [0.78,0.80]  0.80 0.79 [0.78,0.80] * 

(2)  1 0 0 0 0 0 1  48 0.79 0.79 [0.78,0.80]  0.79 0.79 [0.78,0.80] * 

(3)  1 1 1 0 1 0 0  34 0.70 0.69 [0.68,0.70]  0.70 0.69 [0.68,0.70]  

(4)  1 0 0 0 0 1 0  60 0.68 0.70 [0.69,0.71]  0.68 0.70 [0.69,0.71]  

(5)  1 1 0 0 1 0 0  41 0.68 0.62 [0.62,0.63]  0.68 0.62 [0.62,0.63]  

(6)  1 0 0 0 1 1 0  55 0.66 0.66 [0.66,0.67]  0.66 0.66 [0.66,0.67]  

(7)  1 1 1 0 1 0 1  44 0.65 0.60 [0.60,0.61]  0.65 0.60 [0.60,0.61]  

(8)  1 0 0 1 0 1 1  103 0.64 0.62 [0.62,0.63]  0.64 0.62 [0.62,0.63]  

(9)  0 1 0 1 0 1 1  72 0.63 0.63 [0.62,0.63]  0.63 0.63 [0.62,0.63]  

(10)  1 0 0 1 0 1 0  35 0.62 0.63 [0.63,0.64]  0.62 0.63 [0.63,0.64]  

(11)  1 1 0 0 1 1 0  32 0.61 0.62 [0.61,0.63]  0.61 0.62 [0.61,0.63]  

(12)  1 0 0 1 0 0 1  35 0.61 0.65 [0.64,0.66]  0.61 0.65 [0.64,0.66]  

(13)  1 0 0 0 1 0 1  128 0.60 0.59 [0.59,0.60]  0.60 0.59 [0.59,0.60]  

(14)  1 0 0 0 1 0 0  105 0.60 0.62 [0.62,0.63]  0.60 0.62 [0.62,0.63]  

(15)  1 1 0 0 0 1 1  77 0.59 0.56 [0.55,0.57]  0.59 0.56 [0.55,0.57]  

(16)  1 1 1 1 1 0 0  34 0.58 0.63 [0.62,0.64]  0.58 0.63 [0.62,0.64]  

(17)  1 0 0 1 1 1 0  76 0.57 0.61 [0.60,0.62]  0.57 0.61 [0.60,0.62]  

(18)  1 1 1 1 1 1 1  40 0.57 0.61 [0.60,0.62]  0.57 0.61 [0.60,0.62]  

(19)  1 1 0 1 1 0 0  51 0.56 0.54 [0.53,0.55]  0.56 0.54 [0.53,0.55]  

(20)  1 0 1 1 1 1 1  36 0.55 0.55 [0.54,0.56]  0.55 0.55 [0.54,0.56]  

(21)  1 0 0 0 0 1 1  74 0.55 0.54 [0.54,0.55]  0.55 0.54 [0.54,0.55]  

(22)  1 1 0 0 1 0 1  95 0.54 0.53 [0.52,0.53]  0.54 0.53 [0.52,0.53]  

(23)  1 0 0 1 1 0 0  135 0.54 0.53 [0.53,0.54]  0.54 0.53 [0.53,0.54]  

(24)  0 0 0 0 0 0 0  52 0.54 0.54 [0.54,0.55]  0.54 0.54 [0.54,0.55]  

(25)  0 1 0 0 1 0 0  156 0.54 0.51 [0.50,0.51]  0.54 0.51 [0.50,0.51]  

...                   

Note: This table excerpt is sorted by raw consistency and does not show rows below the frequency cutoff (counterfactuals). See Appendix 4.1.1 for the full table. 
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Table 4.6: Truth table (excerpt) for configurations associated with impactful innovations; initial model specification for moderate knowledge dissimilarity (bell-

shaped calibration); including rare configurations with frequency cutoff: 2 cases. 

  Conditions   Consistency  PRI  

  INST ETHN GEND KNOW_DIS RECOMB DEG MOB  N raw mean 90% CI  raw mean 90% CI  

(1)  0 1 1 1 0 0 1  6 0.89 0.84 [0.82,0.85]  0.89 0.84 [0.82,0.85] * 

(2)  0 1 1 0 0 0 1  2 0.83 0.84 [0.82,0.85]  0.83 0.84 [0.82,0.85] * 

(3)  1 0 1 0 0 0 0  2 0.82 0.55 [0.53,0.58]  0.82 0.55 [0.53,0.58]  

(4)  1 0 0 0 0 0 0  41 0.80 0.79 [0.78,0.80]  0.80 0.79 [0.78,0.80] * 

(5)  1 0 1 0 0 1 0  17 0.79 0.73 [0.71,0.74]  0.79 0.73 [0.71,0.74]  

(6)  1 0 0 0 0 0 1  48 0.79 0.79 [0.78,0.80]  0.79 0.79 [0.78,0.80] * 

(7)  0 1 0 1 0 0 1  5 0.78 0.66 [0.65,0.67]  0.78 0.66 [0.65,0.67]  

(8)  0 1 0 0 0 0 1  18 0.76 0.74 [0.73,0.76]  0.76 0.74 [0.73,0.76]  

(9)  1 1 1 0 0 0 0  3 0.74 0.73 [0.71,0.75]  0.74 0.73 [0.71,0.75]  

(10)  1 1 0 0 0 1 0  20 0.74 0.65 [0.64,0.67]  0.74 0.65 [0.64,0.67]  

(11)  1 1 1 1 0 1 0  10 0.72 0.65 [0.64,0.67]  0.72 0.65 [0.64,0.67]  

(12)  0 0 1 1 0 1 1  14 0.71 0.64 [0.62,0.65]  0.71 0.64 [0.62,0.65]  

(13)  1 1 1 0 1 0 0  34 0.70 0.69 [0.68,0.70]  0.70 0.69 [0.68,0.70]  

(14)  1 0 0 0 0 1 0  60 0.68 0.70 [0.69,0.71]  0.68 0.70 [0.69,0.71]  

(15)  1 1 0 0 1 0 0  41 0.68 0.62 [0.62,0.63]  0.68 0.62 [0.62,0.63]  

(16)  0 0 0 1 0 0 1  19 0.67 0.66 [0.65,0.67]  0.67 0.66 [0.65,0.67]  

(17)  1 1 1 0 0 1 0  14 0.66 0.64 [0.63,0.66]  0.66 0.64 [0.63,0.66]  

(18)  0 1 0 0 0 0 0  13 0.66 0.61 [0.59,0.62]  0.66 0.61 [0.59,0.62]  

(19)  1 0 0 0 1 1 0  55 0.66 0.66 [0.66,0.67]  0.66 0.66 [0.66,0.67]  

(20)  1 1 1 0 1 0 1  44 0.65 0.60 [0.60,0.61]  0.65 0.60 [0.60,0.61]  

(21)  0 0 1 1 0 0 1  4 0.65 0.62 [0.60,0.64]  0.65 0.62 [0.60,0.64]  

(22)  1 0 0 1 0 1 1  103 0.64 0.62 [0.62,0.63]  0.64 0.62 [0.62,0.63]  

(23)  1 1 0 0 0 0 0  2 0.64 0.55 [0.53,0.58]  0.64 0.55 [0.53,0.58]  

(24)  1 0 1 0 1 1 0  21 0.63 0.58 [0.57,0.59]  0.63 0.58 [0.57,0.59]  

(25)  1 0 0 1 0 0 0  11 0.63 0.61 [0.60,0.62]  0.63 0.61 [0.60,0.62]  

...                   

Note: This table excerpt is sorted by raw consistency and does not show rows below the frequency cutoff (counterfactuals). See Appendix 4.1.1 for the full table. 
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Table 4.7: Truth table (excerpt) for configurations associated with impactful innovations; model specification with recalibrated knowledge dissimilarity 

condition; including more common configurations with frequency cutoff: 0.5 % (30 cases). 

  Conditions   Consistency  PRI  

  INST ETHN GEND KNOW_DIS RECOMB DEG MOB  N raw mean 90% CI  raw mean 90% CI  

(1)  1 0 0 0 0 0 0  49 0.76 0.75 [0.75,0.76]  0.76 0.75 [0.75,0.76] * 

(2)  1 0 0 0 0 0 1  67 0.73 0.75 [0.74,0.75]  0.73 0.75 [0.74,0.75] * 

(3)  1 0 0 0 0 1 0  55 0.69 0.67 [0.66,0.67]  0.69 0.67 [0.66,0.67]  

(4)  1 1 0 1 1 0 0  63 0.64 0.60 [0.59,0.61]  0.64 0.60 [0.59,0.61]  

(5)  1 1 1 1 1 0 1  63 0.63 0.60 [0.59,0.61]  0.63 0.60 [0.59,0.61]  

(6)  1 1 1 1 1 0 0  49 0.62 0.64 [0.63,0.65]  0.62 0.64 [0.63,0.65]  

(7)  1 0 0 0 0 1 1  96 0.61 0.59 [0.59,0.60]  0.61 0.59 [0.59,0.60]  

(8)  1 0 0 1 0 1 0  40 0.61 0.68 [0.67,0.69]  0.61 0.68 [0.67,0.69]  

(9)  0 1 0 0 0 1 1  57 0.60 0.63 [0.62,0.64]  0.60 0.63 [0.62,0.64]  

(10)  1 0 0 0 1 1 0  64 0.60 0.63 [0.62,0.63]  0.60 0.63 [0.62,0.63]  

(11)  1 0 0 1 0 1 1  81 0.60 0.60 [0.60,0.61]  0.60 0.60 [0.60,0.61]  

(12)  1 0 0 1 1 1 0  67 0.59 0.63 [0.63,0.64]  0.59 0.63 [0.63,0.64]  

(13)  1 1 0 1 1 1 0  35 0.58 0.58 [0.57,0.59]  0.58 0.58 [0.57,0.59]  

(14)  1 0 0 1 1 0 0  121 0.57 0.58 [0.57,0.58]  0.57 0.58 [0.57,0.58]  

(15)  1 1 0 0 0 1 1  68 0.57 0.59 [0.58,0.59]  0.57 0.59 [0.58,0.59]  

(16)  1 0 0 0 1 1 1  124 0.56 0.56 [0.55,0.56]  0.56 0.56 [0.55,0.56]  

(17)  1 0 0 1 1 0 1  169 0.55 0.55 [0.55,0.55]  0.55 0.55 [0.55,0.55]  

(18)  1 0 0 0 1 0 0  119 0.54 0.55 [0.55,0.56]  0.54 0.55 [0.55,0.56]  

(19)  0 0 0 0 0 0 0  58 0.53 0.53 [0.52,0.53]  0.53 0.53 [0.52,0.53]  

(20)  1 1 0 1 1 0 1  126 0.53 0.52 [0.51,0.52]  0.53 0.52 [0.51,0.52]  

(21)  0 0 0 0 1 1 0  148 0.53 0.50 [0.50,0.50]  0.53 0.50 [0.50,0.50]  

(22)  0 1 1 1 1 0 1  44 0.53 0.58 [0.57,0.59]  0.53 0.58 [0.57,0.59]  

(23)  1 0 0 0 1 0 1  130 0.53 0.55 [0.55,0.56]  0.53 0.55 [0.55,0.56]  

(24)  0 1 0 0 1 0 0  185 0.52 0.50 [0.50,0.50]  0.52 0.50 [0.50,0.50]  

(25)  0 1 0 1 1 0 0  128 0.52 0.53 [0.53,0.53]  0.52 0.53 [0.53,0.53]  

...                   

Note: This table excerpt is sorted by raw consistency and does not show rows below the frequency cutoff (counterfactuals). See Appendix 4.1.2 for the full table. 
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Table 4.8: Truth table (excerpt) for configurations associated with impactful innovations; model specification with recalibrated knowledge dissimilarity 

condition; including rare configurations with frequency cutoff: 2 cases. 

  Conditions   Consistency  PRI  

  INST ETHN GEND KNOW_DIS RECOMB DEG MOB  N raw mean 90% CI  raw mean 90% CI  

(1)  1 1 1 0 0 0 0  2 0.83 0.74 [0.71,0.76]  0.83 0.74 [0.71,0.76]  

(2)  1 1 1 0 0 1 0  13 0.82 0.72 [0.71,0.74]  0.82 0.72 [0.71,0.74]  

(3)  0 1 0 1 0 0 1  15 0.80 0.72 [0.71,0.74]  0.80 0.72 [0.71,0.74]  

(4)  0 1 1 0 0 0 1  8 0.80 0.79 [0.77,0.80]  0.80 0.79 [0.77,0.80] * 

(5)  1 0 0 0 0 0 0  49 0.76 0.75 [0.75,0.76]  0.76 0.75 [0.75,0.76] * 

(6)  1 0 1 0 0 1 0  19 0.75 0.71 [0.70,0.72]  0.75 0.71 [0.70,0.72]  

(7)  1 0 0 0 0 0 1  67 0.73 0.75 [0.74,0.75]  0.73 0.75 [0.74,0.75] * 

(8)  1 0 0 0 0 1 0  55 0.69 0.67 [0.66,0.67]  0.69 0.67 [0.66,0.67]  

(9)  0 1 0 1 0 0 0  3 0.69 0.62 [0.60,0.63]  0.69 0.62 [0.60,0.63]  

(10)  0 0 1 1 0 0 1  4 0.69 0.65 [0.63,0.67]  0.69 0.65 [0.63,0.67]  

(11)  1 1 0 0 0 1 0  21 0.69 0.66 [0.65,0.67]  0.69 0.66 [0.65,0.67]  

(12)  0 1 0 0 0 0 1  8 0.68 0.59 [0.57,0.61]  0.68 0.59 [0.57,0.61]  

(13)  0 0 0 0 0 0 1  27 0.68 0.62 [0.61,0.63]  0.68 0.62 [0.61,0.63]  

(14)  0 1 0 0 0 0 0  16 0.68 0.61 [0.60,0.62]  0.68 0.61 [0.60,0.62]  

(15)  0 0 1 1 0 1 1  9 0.67 0.59 [0.57,0.60]  0.67 0.59 [0.57,0.60]  

(16)  1 1 1 0 1 0 0  19 0.65 0.68 [0.67,0.69]  0.65 0.68 [0.67,0.69]  

(17)  0 0 0 1 0 0 0  8 0.65 0.62 [0.61,0.63]  0.65 0.62 [0.61,0.63]  

(18)  1 1 1 1 0 1 0  11 0.64 0.64 [0.63,0.65]  0.64 0.64 [0.63,0.65]  

(19)  1 1 0 1 1 0 0  63 0.64 0.60 [0.59,0.61]  0.64 0.60 [0.59,0.61]  

(20)  1 1 1 1 1 0 1  63 0.63 0.60 [0.59,0.61]  0.63 0.60 [0.59,0.61]  

(21)  1 1 1 1 1 0 0  49 0.62 0.64 [0.63,0.65]  0.62 0.64 [0.63,0.65]  

(22)  1 0 1 1 0 0 0  2 0.62 0.49 [0.47,0.51]  0.62 0.49 [0.47,0.51]  

(23)  1 0 0 0 0 1 1  96 0.61 0.59 [0.59,0.60]  0.61 0.59 [0.59,0.60]  

(24)  1 0 1 0 1 1 0  21 0.61 0.62 [0.61,0.63]  0.61 0.62 [0.61,0.63]  

(25)  1 1 0 0 0 0 1  14 0.61 0.63 [0.62,0.65]  0.61 0.63 [0.62,0.65]  

...                   

Note: This table excerpt is sorted by raw consistency and does not show rows below the frequency cutoff (counterfactuals). See Appendix 4.1.2 for the full table. 



103 

 

Table 4.9: Truth table (excerpt) for configurations associated with impactful innovations; model specification with recalibrated knowledge dissimilarity and 

substituted conditions; including more common configurations with frequency cutoff: 0.5 % (30 cases). 

  Conditions   Consistency  PRI  

  INST ETHN GEND KNOW_DIS DOM PRICOL MOB  N raw mean 90% CI  raw mean 90% CI  

(1)  1 0 0 0 1 1 1  36 0.79 0.82 [0.80,0.83]  0.79 0.82 [0.80,0.83] * 

(2)  1 0 1 0 0 1 0  44 0.72 0.69 [0.68,0.70]  0.72 0.69 [0.68,0.70]  

(3)  1 0 0 0 0 1 0  160 0.66 0.68 [0.67,0.68]  0.66 0.68 [0.67,0.68]  

(4)  1 0 0 0 0 1 1  265 0.62 0.61 [0.60,0.61]  0.62 0.61 [0.60,0.61]  

(5)  1 1 0 1 0 0 0  76 0.60 0.59 [0.58,0.59]  0.60 0.59 [0.58,0.59]  

(6)  1 1 0 1 0 1 0  32 0.60 0.55 [0.54,0.55]  0.60 0.55 [0.54,0.55]  

(7)  1 0 0 1 0 1 0  67 0.58 0.62 [0.61,0.62]  0.58 0.62 [0.61,0.62]  

(8)  1 1 1 1 0 0 0  63 0.58 0.61 [0.60,0.61]  0.58 0.61 [0.60,0.61]  

(9)  1 0 0 1 0 1 1  182 0.57 0.58 [0.57,0.58]  0.57 0.58 [0.57,0.58]  

(10)  1 1 1 1 0 0 1  80 0.57 0.55 [0.54,0.55]  0.57 0.55 [0.54,0.55]  

(11)  1 0 0 1 0 0 0  145 0.57 0.59 [0.58,0.59]  0.57 0.59 [0.58,0.59]  

(12)  1 1 0 0 0 1 1  131 0.56 0.58 [0.58,0.59]  0.56 0.58 [0.58,0.59]  

(13)  1 0 0 0 0 0 0  105 0.55 0.56 [0.56,0.57]  0.55 0.56 [0.56,0.57]  

(14)  1 1 0 0 0 1 0  48 0.55 0.58 [0.57,0.58]  0.55 0.58 [0.57,0.58]  

(15)  1 1 0 0 0 0 0  35 0.53 0.53 [0.52,0.53]  0.53 0.53 [0.52,0.53]  

(16)  0 1 1 1 0 0 0  70 0.52 0.50 [0.50,0.51]  0.52 0.50 [0.50,0.51]  

(17)  0 1 0 0 0 1 1  106 0.52 0.53 [0.52,0.53]  0.52 0.53 [0.52,0.53]  

(18)  0 1 0 1 0 1 0  52 0.52 0.49 [0.48,0.49]  0.52 0.49 [0.48,0.49]  

(19)  0 0 0 1 0 1 0  60 0.51 0.53 [0.53,0.54]  0.51 0.53 [0.53,0.54]  

(20)  1 1 1 1 0 1 1  91 0.51 0.54 [0.54,0.55]  0.51 0.54 [0.54,0.55]  

(21)  1 0 0 0 0 0 1  112 0.51 0.53 [0.53,0.54]  0.51 0.53 [0.53,0.54]  

(22)  0 1 0 1 0 0 0  158 0.50 0.51 [0.51,0.51]  0.50 0.51 [0.51,0.51]  

(23)  0 0 1 0 0 1 1  35 0.50 0.47 [0.46,0.47]  0.50 0.47 [0.46,0.47]  

(24)  0 0 0 1 0 0 0  188 0.50 0.49 [0.48,0.49]  0.50 0.49 [0.48,0.49]  

(25)  1 0 1 0 0 1 1  40 0.50 0.54 [0.53,0.55]  0.50 0.54 [0.53,0.55]  

...                   

Note: This table excerpt is sorted by raw consistency and does not show rows below the frequency cutoff (counterfactuals). See Appendix 4.1.3 for the full table. 
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Table 4.10: Truth table (excerpt) for configurations associated with impactful innovations; model specification with recalibrated knowledge dissimilarity and 

substituted conditions; including rare configurations with frequency cutoff: 5 cases. 

  Conditions   Consistency  PRI  

  INST ETHN GEND KNOW_DIS DOM PRICOL MOB  N raw mean 90% CI  raw mean 90% CI  

(1)  0 1 0 1 1 1 1  21 0.92 0.87 [0.85,0.88]  0.92 0.87 [0.85,0.88] * 

(2)  0 1 1 1 1 1 1  5 0.89 0.93 [0.91,0.94]  0.89 0.93 [0.91,0.94] * 

(3)  0 1 0 0 1 1 0  11 0.84 0.76 [0.74,0.78]  0.84 0.76 [0.74,0.78]  

(4)  1 1 1 0 0 1 0  27 0.83 0.77 [0.76,0.78]  0.83 0.77 [0.76,0.78] * 

(5)  1 0 0 1 1 1 0  9 0.81 0.80 [0.79,0.82]  0.81 0.80 [0.79,0.82] * 

(6)  1 0 0 0 1 1 1  36 0.79 0.82 [0.80,0.83]  0.79 0.82 [0.80,0.83] * 

(7)  1 1 0 1 1 0 1  12 0.75 0.76 [0.74,0.78]  0.75 0.76 [0.74,0.78]  

(8)  0 0 0 1 1 1 0  6 0.74 0.75 [0.73,0.76]  0.74 0.75 [0.73,0.76]  

(9)  1 0 1 0 0 1 0  44 0.72 0.69 [0.68,0.70]  0.72 0.69 [0.68,0.70]  

(10)  0 0 0 0 1 1 1  15 0.70 0.75 [0.74,0.77]  0.70 0.75 [0.74,0.77]  

(11)  1 0 0 0 1 1 0  16 0.69 0.71 [0.70,0.72]  0.69 0.71 [0.70,0.72]  

(12)  1 0 0 1 1 1 1  17 0.69 0.71 [0.69,0.73]  0.69 0.71 [0.69,0.73]  

(13)  1 0 0 0 0 1 0  160 0.66 0.68 [0.67,0.68]  0.66 0.68 [0.67,0.68]  

(14)  0 0 0 0 1 1 0  26 0.66 0.58 [0.57,0.59]  0.66 0.58 [0.57,0.59]  

(15)  1 0 0 1 1 0 1  6 0.65 0.63 [0.62,0.65]  0.65 0.63 [0.62,0.65]  

(16)  1 1 1 1 0 1 0  24 0.63 0.63 [0.62,0.64]  0.63 0.63 [0.62,0.64]  

(17)  1 0 0 0 0 1 1  265 0.62 0.61 [0.60,0.61]  0.62 0.61 [0.60,0.61]  

(18)  0 1 0 1 1 1 0  13 0.60 0.72 [0.70,0.74]  0.60 0.72 [0.70,0.74]  

(19)  1 1 0 1 0 0 0  76 0.60 0.59 [0.58,0.59]  0.60 0.59 [0.58,0.59]  

(20)  1 1 0 1 0 1 0  32 0.60 0.55 [0.54,0.55]  0.60 0.55 [0.54,0.55]  

(21)  1 0 0 0 1 0 0  7 0.60 0.61 [0.59,0.63]  0.60 0.61 [0.59,0.63]  

(22)  1 0 0 1 1 0 0  10 0.59 0.60 [0.58,0.61]  0.59 0.60 [0.58,0.61]  

(23)  1 0 0 1 0 1 0  67 0.58 0.62 [0.61,0.62]  0.58 0.62 [0.61,0.62]  

(24)  1 1 1 1 0 0 0  63 0.58 0.61 [0.60,0.61]  0.58 0.61 [0.60,0.61]  

(25)  0 1 0 1 1 0 1  5 0.58 0.69 [0.65,0.73]  0.58 0.69 [0.65,0.73]  

...                   

Note: This table excerpt is sorted by raw consistency and does not show rows below the frequency cutoff (counterfactuals). See Appendix 4.1.3 for the full table. 
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4.5.6 Robustness Tests 

Building on common practices for assessing robustness of findings from large-N QCA 

(Greckhamer et al., 2018; Leppänen et al., 2023; Rutten, 2022), I first re-run the analysis with 

altered calibration thresholds for the causal conditions while leaving the calibration for the 

outcome unchanged. Specifically, I define the thresholds to be stricter about the inclusion and 

exclusion in the sets (Gupta et al., 2020). For example, instead of using the 25th percentile as 

the exclusion threshold and the 75th percentile for inclusion, I use the 10th and 90th percentiles, 

respectively. Furthermore, I apply a fuzzy calibration for institutional diversity, which was 

originally calibrated as crisp44. I provide an overview of the calibrations for this sensitivity 

analysis in Appendix 4.2. 

For the models with the initial set of conditions, including both the bell-shaped as well 

as the logistic calibration for knowledge dissimilarity, consistency values drop slightly for some 

of the truth table rows considered in the Boolean minimization. However, the results remain 

qualitatively the same for the conservative 0.5% frequency cutoff. With the lower frequency 

cutoff, for the bell-shaped calibration of knowledge dissimilarity, one truth table row drops well 

below the consistency threshold, leading to the second configuration to become a subset of 

configuration (2) from Table 4.2. Similarly, when using a logistic calibration curve for 

knowledge dissimilarity, configuration (2) from Table 4.3 disappears entirely due to a 

significant drop in consistency for the respective truth table rows. 

For the model with the two substituted conditions (i.e., domain experience for 

recombination novelty and prior collaboration for a central network position), consistency for 

the identified configurations remains high. However, with the 0.5% frequency cutoff, the 

previously included truth table row drops slightly below the threshold at 30 cases. Minimizing 

the truth table with this row included, despite it only having 27 cases assigned, reproduced 

 
44 I maintain the crisp calibration for domain experience due to the highly skewed distribution in which most cases 

exhibit no domain experience at all. 
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configuration (1a) from Table 4.4 but with both domain experience and prior collaboration 

emerging as core conditions. With the lower frequency cutoff, two of the originally considered 

truth table rows drop below the thresholds, while five other rows rise above the thresholds. 

These rows make the originally identified configurations (1b) and (3) more parsimonious (see 

Appendix 4.3). Consequently, they become supersets of the original configurations. 

Configuration (4) disappears from the configuration chart and is replaced by a newly emerging 

configuration. As a result, all configurations now show the presence of both domain experience 

and prior collaboration as part of the recipe for impactful innovations. 

As a second robustness test, I recalibrate the outcome. Instead of comparing impactful 

innovations with non-impactful innovations (i.e., the vast majority of cases), I compare 

impactful innovations with particularly poor innovations (i.e., the least impactful cases). For 

that, I change the calibration threshold for the outcome to fully exclude all cases up to the 5th 

percentile and fully include cases at and above the 95th percentile, thereby creating balanced 

samples with cases from both tails of the distribution. I re-run the analysis for the configurations 

from Table 4.3 and Table 4.4 that emerged with the 0.5% frequency cutoff to verify whether the 

more common configurations held up. I use the original calibrations45 for the causal conditions 

as well as the original sampling strategy and parameters for the analysis. For both the original 

set of conditions as well as the substitutions introduced in section 4.5.5, the exact same common 

configurations reemerge, including the delineation between core and peripheral conditions. 

Furthermore, the analysis on the negated outcome shows no consistent pathways to particularly 

poor innovation outcomes. I provide the truth tables for all robustness tests in Appendix 4.4. 

The robustness tests demonstrate that the findings remain largely stable despite 

variations in calibration thresholds and adjustments to the outcome definition. While some 

configurations become subsets or supersets of the originals and certain rare configurations 

 
45 I conduct this additional analysis only with the logistic calibration for knowledge diversity, as it provides deeper 

insights into the role of knowledge diversity compared to the bell-shaped calibration. 
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disappear or are replaced after recalibrating the causal conditions, the overall results exhibit 

qualitative robustness, confirming the reliability of the analyses. 

4.6 Discussion 

In this chapter, I present a series of set-theoretic analyses (i.e., QCA) employing various 

parameters and model specifications to abductively examine the conjunctural effects of multiple 

interacting team-level conditions on the impact of innovation outcomes. The analysis is based 

on a dataset of several thousand clean energy patents, with each patent representing a unique 

innovation case and the distinct composition of its inventor team. Through a necessity analysis, 

I demonstrate that no single team composition attribute qualifies as a "must-have" for 

innovation teams to achieve impactful results. In a subsequent sufficiency analysis, by applying 

both a conservative as well as a lower frequency cutoff, I identify more common pathways 

along with rarer configurations that lead to impactful innovations. Yet, only a single, narrow 

common pathway emerges for each of the different models, highlighting that only very specific 

advantageous combinations of team composition factors are consistently linked to the creation 

of impactful innovation outcomes.  

Building on empirical insights from prior studies suggesting an inverse U-shaped 

relationship between knowledge dissimilarity among team inventors and the impact of 

innovation outcomes (Cassi & Plunket, 2014; Huo et al., 2019; Onal Vural et al., 2013; Vestal 

& Danneels, 2022; Vestal & Mesmer-Magnus, 2020), I initially employed a bell-shaped 

calibration for knowledge dissimilarity, assigning set membership exclusively to cases with 

moderate levels of dissimilarity. However, the emerging configurations indicate the absence of 

moderate knowledge dissimilarity to be associated with impactful innovations. I therefore 

recalibrated the knowledge dissimilarity condition, assigning set membership to cases with high 

dissimilarity and non-membership to cases with low dissimilarity. Interestingly, and in contrast 

to findings from previous studies (Cassi & Plunket, 2014; Huo et al., 2019; Onal Vural et al., 
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2013; Vestal & Danneels, 2022, 2023; Vestal & Mesmer-Magnus, 2020), the recalibrated 

analysis reveals that low knowledge dissimilarity is more consistently linked to impactful 

innovation outcomes – when viewed in combination with other team-level conditions rather 

than in isolation. This may further indicate that, for clean energy technologies with their 

“complex character” (De Marchi, 2012, p. 615), a shared, in-depth understanding of the specific 

technological context is particularly important. 

In addition to sharing similar knowledge bases, teams associated with impactful 

innovations also tend to recombine knowledge components in ways familiar to them, rather 

than engaging in exploratory activities, and exhibit only a few ties with inventors outside the 

team from past collaborations. To further investigate the roles of preexisting knowledge and 

collaborative ties, I conducted an additional analysis, substituting recombination novelty with 

domain experience and a central network position with prior collaborations among team 

members as alternate causal conditions. This analysis aimed to explore whether leveraging 

existing domain knowledge, which supports exploitation over exploration, and fostering strong 

internal rather than extensive external ties, enhances the likelihood of impactful innovation 

outcomes. The findings consistently highlight domain experience and prior collaborations as 

key building blocks for success. Furthermore, while teams with similar knowledge bases are 

generally more successful, some rare pathways to impactful innovations emerge where distant 

knowledge is effectively integrated – provided that domain experience and prior collaboration 

are present, reinforcing findings from recent studies (Vestal & Danneels, 2023). These results 

align with prior research demonstrating the importance of domain expertise and strong internal 

ties in enhancing integrative capacity (Jiao et al., 2022; Li et al., 2018; Schillebeeckx et al., 

2019; Wang et al., 2017). 

One of the rarest and most narrowly defined pathways to impactful innovations involves 

teams whose members frequently move between organizations of the same type but do not 

establish extensive collaborative ties with other inventors. This pattern suggests that these teams 
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often transition organizational affiliations together, reinforcing the importance of shared 

collaboration experience. To delve deeper into this configuration, it is worth examining the 

cases represented by configuration (2) from Table 4.3. For each patent’s first inventor, I compare 

their past patent assignees and co-inventorships with those of their collaborators. One 

illustrative example is patent US5455458A, co-filed by two inventors. Both inventors had 

previously worked for an aerospace company specializing in defense and communications 

electronics before it was acquired by a General Motors subsidiary focusing on automotive 

electronics. Following subsequent mergers, the company was restructured into a new 

independent entity. Throughout these transitions, the two inventors continued to co-develop 

technologies that later became foundational for subsequent innovations, including applications 

in clean energy. This exemplary case illustrates how maintaining continuity in collaborative 

relationships can contribute to the creation of impactful innovations. 

4.6.1 Contributions 

While various studies have investigated the effects of team composition factors on innovation 

outcomes, these studies have predominantly applied bivariate methods, focusing on the isolated 

impact of individual factors. However, innovation teams simultaneously combine multiple 

factors that interact in a causally complex way and likely allow for more than one specific team 

configuration to lead to particularly impactful innovation outcomes. Deeper insights into 

conjunctural effects and equally viable pathways to impactful innovations require a 

configurational perspective on innovation team composition that I introduce in this chapter. 

My findings show multiple distinct, yet narrow pathways consistently associated with 

impactful innovation outcomes. While certain team composition factors emerge as generally 

beneficial, other factors appear to be advantageous only in certain configurations while being 

disadvantageous or irrelevant in others, highlighting the configurational and equifinal nature of 

innovation team composition. For example, factors such as knowledge dissimilarity (Cassi & 
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Plunket, 2014; Huo et al., 2019; Onal Vural et al., 2013; Vestal & Danneels, 2022, 2023; Vestal 

& Mesmer-Magnus, 2020) or a central position in the greater network of inventors (Yang et al., 

2021), for which studies have collected solid empirical evidence showing a positive direct 

relationship with the impact of an innovation, reveal a more nuanced reality when considered 

through the lens of conjunctural causation. Furthermore, the analysis demonstrates that, while 

consistent recipes for impactful innovations exist, no team configuration consistently leads to 

non-impactful or particularly poor outcomes. Notably, even the inverse of configurations 

associated with success does not reliably produce poor results, reinforcing the principle of 

causal asymmetry. In summary, my analysis highlights the significant value of adopting a 

configurational perspective in understanding innovation team composition, offering new 

insights into the complex interplay of factors that drive impactful innovations, and advancing 

the field by moving beyond traditional approaches that focus on isolated marginal effects. 

By demonstrating that teams producing impactful innovations often leverage their 

domain knowledge to effectively combine knowledge components in a familiar way – thereby 

engaging in exploitation – my findings challenge the emphasis on exploration as an antecedent 

of successful innovation in general (Bercovitz & Feldman, 2011), as well as for green 

innovation specifically (Marino & Quatraro, 2022), for the development of innovations with a 

significant impact on future technological advancements. On the other hand, my findings 

support the importance of continuity in co-inventorship, which facilitates the development of 

mutual understanding, the establishment of shared routines, and, thus, the effective integration 

of even distant knowledge (Jiao et al., 2022; Vestal & Danneels, 2023). 

4.6.2 Practical Implications 

The results of my analysis have important implications for the composition of innovation teams 

aiming to contribute foundational advancements in clean energy technologies. The 

identification of domain experience and prior collaboration as key ingredients of various causal 
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recipes for impactful innovations emphasizes the value of involving inventors with experience 

innovating in the focal domain and fostering repeated co-inventorship within stable team 

constellations. Policymakers and managers should, therefore, actively support the development 

of well-established teams and minimize turnover that disrupts the cultivation of strong, 

enduring internal team bonds. This approach not only enhances the effectiveness of 

collaboration but also strengthens the integrative capacity required for achieving highly 

impactful innovation outcomes. 

4.6.3 Limitations and Future Research 

Despite its contributions, this study comes with limitations that should be acknowledged. First, 

to overcome the challenges arising from investigating impactful innovations which, by 

definition, represent a rare outcome, I artificially create balanced samples by oversampling on 

positive outcome cases (i.e., cases of impactful innovation). Furthermore, I increase contrast by 

only considering cases that are either fully in or fully out of the set of impactful innovations. 

Consequently, the balanced samples do not reflect the true prevalence of impactful innovations 

in the population and introduce a bias that limits the generalizability of the findings. Second, 

while it is common in the scholarly community to use patents as a proxy for innovation (see 

also Chapter 2), this practice often neglects that granted patents have already passed through a 

selective filtering process and, therefore, represent innovations that already meet specific 

criteria – such as novelty, utility, and non-obviousness. Moreover, some innovations – despite 

their value – are never patented due to, for example, strategic reasons (Scherer, 1983). However, 

patents remain well-suited for capturing impactful innovations as they require public disclosure 

of detailed technical knowledge, enabling others to build upon them and driving cumulative 

progress. Lastly, the selection of causal conditions in this study was guided by a novel, data-

driven methodological approach. Although the chosen conditions consistently emerged as 

central across a wide range of models and subsamples derived from the broader population, it 
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is possible that under different circumstances, an alternative set of causal conditions might 

better explain team configurations associated with impactful innovations. 

As the theoretical landscape evolves and a stronger empirical foundation emerges to 

support a theory-informed selection of causal conditions, future research should revisit the 

configurational perspective on innovation team composition explored in this study. 

Additionally, this study focuses solely on one type of innovation outcome, leaving other 

significant outcomes, such as innovation originality or green innovation, underexplored. 

Investigating these alternative outcomes could provide equally valuable insights to guide policy 

development addressing the pressing technological challenges of our time. Conclusively, the 

insights this study provides on the value of letting teams grow into established, well-rehearsed 

units could be substantiated in future research through longitudinal studies that monitor team 

configurations and their corresponding innovation outcomes over time. 
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5. Conclusions and Future Research 

In this dissertation, I adopt a configurational perspective to examine innovation team 

composition and its implications for the innovation outcome. With innovations increasingly 

emerging from the collective efforts of multiple inventors forming a team (Jones, 2009; Wuchty 

et al., 2007), scholarly interest in the antecedents of successful team-based innovation has 

grown over the past decades. This research focuses specifically on understanding the team 

composition factors contributing to particularly impactful innovations in the topical context of 

clean energy technologies. As the global climate crisis intensifies, greenhouse gas emissions 

urgently need to be reduced (IPCC, 2023). The energy sector remains the largest contributor to 

harmful emissions to date, calling for rapid advancements in clean energy technologies to 

mitigate the environmental impact of energy production on our climate (IEA, 2021). Therefore, 

it is in the vital interest of policymakers to foster those innovations that serve as foundational 

cornerstones for advancing technological trajectories in this domain. 

Over the course of three main chapters (Chapters 2-4), I contribute to a deeper 

understanding of the causally complex interplay among team composition factors and their 

influence on different innovation outcomes, and on the impact of innovations specifically. In 

Chapter 2, I conduct a systematic review to summarize the current state of research on 

innovation team composition. This includes synthesizing empirical insights and resolving 

ambiguities arising from inconsistent measures and labels applied to team composition factors 

and the respective innovation outcomes investigated. The resulting comprehensive list of 

previously studied factors provides a foundation for analyzing the synergistic effects that arise 

when multiple factors interact within a team. However, the extensive range of team composition 

factors and the limited theoretical understanding of their relative importance require a 

systematic and rigorous selection process to identify a meaningful subset for further analysis. 

Common configurational methods typically rely on theoretical knowledge to select central 
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causal conditions (Fiss, 2007). However, given the limited theoretical foundation in this 

context, I introduce a novel, data-driven approach in Chapter 3. This method systematically 

evaluates the performance of various specifications of set-analytic models, leveraging data from 

over 50,000 team-based clean energy patents. Through clustering, I identify factors that 

frequently co-occur in the best-performing models. These clusters highlight the factors that 

consistently emerge as central across a diverse range of models and randomly constructed 

samples, providing a robust basis for further analysis. Ultimately, in Chapter 4, I use the 

emerging set of factors to conduct a set-theoretic analysis using QCA. This analysis identifies 

team configurations (i.e., combinations of team composition factors) that are consistently linked 

to impactful innovation outcomes representing foundational building blocks for further 

technological advancements in the clean energy sector. 

5.1 Key Findings and Contributions 

This dissertation presents several important findings and makes significant contributions to the 

field of innovation management. By systematically mapping the current state of the literature, 

it identifies and addresses inconsistencies, ambiguities, and research gaps, providing 

researchers with critical leverage points for future studies. This work further lays the foundation 

for moving beyond an isolated understanding of individual factors’ influences on different 

innovation outcomes towards a perspective that takes conjunctural effects into account. 

Furthermore, this dissertation introduces a novel methodological approach to overcome 

challenges in selecting central team composition factors arising from the lack of a substantive 

theoretical basis. Finally, it takes an important first step towards identifying specific team 

configurations – combinations of team composition factors – that are consistently linked to 

innovations with the greatest impact on future technological developments in the clean energy 

sector as a topical and relevant research context. 
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5.1.1 The Current State of the Literature 

A systematic review of 54 articles published in leading journals in the field (Chapter 2) 

uncovered a diverse range of team composition factors and team-level innovation outcomes 

investigated in the extant literature on innovation team composition. However, prior studies 

have shown significant variability in the measures applied and notable inconsistencies in the 

terminology used to describe conceptually similar factors and outcomes. To address this issue, 

I conducted a harmonization process to establish thematic categories for both team composition 

factors and innovation outcomes, focusing on the measures employed rather than the original 

labels used by the authors. Through this effort, I derive 10 distinct categories of innovation 

outcomes and 17 categories of team composition factors, providing a clearer framework for 

organizing and integrating insights across studies. 

Both team composition factors and innovation outcomes show significant variation in 

scholarly attention between thematic categories. Among the innovation outcomes, innovation 

impact emerges as the most frequently studied, serving as the primary outcome of interest in 

more than half of the articles in the sample (e.g., Cassi & Plunket, 2014; Chang, 2022; Jiao et 

al., 2022; Vestal & Danneels, 2023). Scholars have shown particular interest in the types of 

innovations that are most influential for subsequent inventors and researchers to build on. To 

measure impact, these studies predominantly use forward citations of patents or research papers. 

However, although applying very similar measures, there is considerable inconsistency in the 

terminology used to describe impactful innovations, ranging from directly relevant labels such 

as “invention impact” (e.g., Huo et al., 2019) to less precise expressions like “economic value” 

(Chang, 2022), and even to generic terms such as “team performance” (e.g., Ferrucci & Lissoni, 

2019). Other outcome categories where inconsistent use of terminology is particularly 

pronounced include innovation application scope, innovation output/productivity, innovation 

superiority, and innovation efficiency. In contrast, terms are used more consistently in 
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categories such as commercial utilization and green innovation, where the applied terminology 

tends to be clearer and more standardized. 

Turning to team composition factors, prior studies have placed particular emphasis on 

understanding the role of knowledge diversity as an antecedent of successful team-based 

innovation. Scholars have extensively examined how the variety (e.g., Huo et al., 2019; Lee et 

al., 2015; Zaggl & Pottbäcker, 2021) and dissimilarity of knowledge (e.g., Cassi & Plunket, 

2014; Huo et al., 2019; Onal Vural et al., 2013; Vestal & Mesmer-Magnus, 2020) within a team 

contribute to key outcomes, such as the impact, novelty, and originality of innovations. Scholars 

often use vector-based representations of individuals’ knowledge bases by building on, for 

example, technological classes assigned to prior patents or keywords of past research articles 

published. Similarly, demographic aspects received much attention (e.g., Ferrucci & Lissoni, 

2019; Kaltenberg et al., 2023; Marino & Quatraro, 2022), although research remains 

surprisingly sparser compared to literature that fucuses on investigating innovation outcomes 

on a department or firm level (e.g., Østergaard et al., 2011; Xie et al., 2020). While descriptive 

terminology is relatively consistent for some factors, such as knowledge diversity – largely due 

to their conceptual clarity – other factors exhibit overlaps in both concept and terminology that 

are more challenging to delineate (e.g., organizational diversity and institutional diversity). 

Furthermore, it is worth noting that a significant portion of team composition factors focus on 

diversity (e.g., knowledge, demographic, functional, and organizational diversity), highlighting 

the notion that varied perspectives and expertise are crucial drivers of innovation. At the same 

time, factors like domain experience and prior collaboration emphasize a team’s capacity to 

effectively integrate these diverse perspectives. 

Harmonizing both innovation outcomes and team composition factors from previous 

studies adds substantial value to the field. The inconsistent and unclear labeling of identical or 

conceptually similar measures makes it challenging to maintain a clear overview of the 

outcomes and factors studied, much less to integrate insights across studies. By deriving 



117 

 

categorical themes, I address these ambiguities in the existing body of research, facilitating 

meaningful comparison and integration of empirical findings. Building on this foundation, I 

provide a qualitative synthesis of insights into the direct relationships between team 

composition factors and innovation outcomes. Notably, only a few relationships demonstrate a 

robust empirical basis, such as the curvilinear relationship between knowledge dissimilarity 

among team members and the impact of the innovation outcome (e.g., Cassi & Plunket, 2014; 

Huo et al., 2019; Onal Vural et al., 2013; Vestal & Danneels, 2022). In contrast, other 

relationships, like the one between team size and impact, have been investigated in multiple 

studies but yield ambiguous results, while many relationships have been examined in only a 

handful of studies or remain largely unexplored. 

Additionally, the review of the current state of the literature highlights a notable lack of 

attention to interaction effects. While some studies explore moderating factors, offering insights 

into the conditions under which certain effects are amplified or diminished, the majority remain 

focused on direct relationships. Similarly, mediating factors that could shed light on the 

underlying mechanisms have received little consideration. Moreover, the emphasis on direct 

relationships between individual factors is also reflected in the methods employed in existing 

studies. The vast majority of articles rely on bivariate (i.e., regression-based) methods, which 

analyze the effects of individual factors in isolation. This highlights critical limitations in the 

current research on innovation team composition and underscores significant gaps that must be 

addressed to develop a more holistic understanding of how team composition influences various 

team-level innovation outcomes. It also emphasizes the need for methodological diversity, 

particularly the use of approaches capable of uncovering conjunctural effects of multiple 

interacting factors rather than isolated effects alone. 
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5.1.2 Methodological Advancements 

Traditional bivariate methods often fall short in capturing the nuanced interdependencies 

characteristic of causally complex phenomena. In contrast, set-theoretic approaches provide an 

analytical toolkit specifically designed to account for these complexities (Fiss, 2007; Ragin, 

2000, 2008) by adopting a configurational perspective on causality (Mithas et al., 2022). 

However, commonly used set-theoretic methods, such as QCA, rely on the careful selection of 

causal conditions to produce interpretable causal pathways that explain an outcome of interest 

(Fiss, 2007). Typically, scholars rely on theory to identify a set of relevant conditions or, 

alternatively, draw insights directly from the cases (i.e., observed instances of the phenomenon 

under investigation). However, in certain research contexts – such as innovation team 

composition (see Chapter 2) – the theoretical landscape is characterized by a wide array of 

potential conditions coupled with limited or ambiguous insights into the relative significance 

or effects of these factors, making theory-driven selection particularly challenging. 

Furthermore, in large-N studies where a substantial number of empirical observations are 

analyzed, case-knowledge naturally becomes less accessible, reducing the utility of cases 

themselves in informing the selection of conditions (Greckhamer et al., 2013; Rutten, 2022). 

To address these challenges, this dissertation introduces a novel data-driven approach to 

condition selection specifically designed for such contexts (Chapter 3). This method employs 

the Quine-McCluskey algorithm, widely used in QCA for standard truth table minimization, and 

systematically evaluates all potential model specifications (i.e., combinations of conditions) 

based on the quality of their solutions (i.e., consistency and coverage; see Chapter 3 for details). 

To ensure robustness, model performance is assessed across multiple random subsamples, 

simulating “different realities”, and across varying levels of model complexity (i.e., the number 

of conditions included). In a subsequent step, the best-performing models are clustered based 

on the overlap in causal conditions, identifying clusters of central conditions that frequently co-
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occur in the most effective models. Applying this new methodology to a dataset of over 50,000 

team-based clean energy patents, along with a number of robustness tests, yields a set of seven 

causal conditions likely to hold genuine conjunctural causal significance. As a replicable 

method to identify the most relevant conditions for explaining outcomes, particularly in large-

N studies with limited theoretical guidance and low case familiarity, this approach makes a 

valuable contribution to the scholarly community around QCA, and adjacent set-theoretic 

approaches more broadly. Beyond addressing the challenges arising from complex theoretical 

landscapes, this approach can also help resolve common critiques of unclear condition selection 

in QCA studies and enhance robustness and reliability of analyses more generally. 

Additionally, this dissertation introduces a novel measure for knowledge (dissimilarity) 

to the innovation management literature. In the existing literature, particularly in studies 

utilizing patent data, it is common to represent the knowledge base of an individual or team 

using vector-based representations of the technology classes assigned to their past work and 

vector distance measures to determine knowledge dissimilarity between two entities (e.g., 

Melero & Palomeras, 2015; Singh & Fleming, 2010). However, this approach has significant 

limitations in resolution, as patents are often assigned to multiple technology classes 

simultaneously without any indication of their relative importance. As a result, the nuanced 

distribution of knowledge across different areas is lost, potentially obscuring important 

variations in the knowledge profiles of individuals or teams. I address this issue by using the 

actual textual content of prior work as document embedding vector representation to construct 

a centroid vector representation of an inventor’s knowledge profile. Kelly et al. (2021) introduce 

a similar, wordcount-based approach to compare patents based on their textual contents. Yet, 

document embedding vectors use a trained machine-learning model to translate a text body into 

an N-dimensional vector representation of itself, based on its content and meaning, and have 

been shown to perform significantly better in capturing and comparing textual content than 

wordcount-based methods (A. M. Dai et al., 2015). This contribution equips the research 
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community with a more nuanced and precise method for measuring knowledge (dissimilarity) 

– one of the most frequently studied antecedents of (team-based) innovation. 

5.1.3 Insights from a Configurational Perspective 

A growing body of research on innovation team composition has been exploring a wide array 

of factors and their effects on various innovation outcomes. However, most existing empirical 

studies emphasize the marginal impact of isolated factors, overlooking the complex interactions 

among them. To address this gap, this dissertation adopts a configurational perspective on 

innovation team composition, employing set-theoretic analysis, based on multiple thousand 

patents, to uncover several distinct, yet relatively narrow, causal pathways that lead to highly 

impactful innovations in the context of clean energy technologies (Chapter 4). While no causal 

condition or combinations thereof appear to be necessary “must-haves”, a sufficiency analysis 

reveals several consistent but rare recipes for impactful clean energy innovations. These 

pathways provide numerous insights: Interestingly, and in contrast to prior studies suggesting 

an inverted U-shaped relationship where moderate knowledge dissimilarity among inventors 

appears to be optimal (Cassi & Plunket, 2014; Huo et al., 2019; Onal Vural et al., 2013; Vestal 

& Danneels, 2022; Vestal & Mesmer-Magnus, 2020), the set-theoretic analysis reveals that the 

absence of moderate dissimilarity (i.e., either low or high levels) is commonly associated with 

impactful innovations. A subsequent analysis, employing a recalibrated knowledge 

dissimilarity condition, further demonstrates that low knowledge dissimilarity, rather than high, 

is more consistently linked to such outcomes. Additionally, all identified pathways feature the 

absence of both novel knowledge recombinations and a central network position as conditions, 

with these factors even forming part of the causal core in the more common configurations. 

This suggests that teams that are associated with impactful clean energy innovations usually 

combine knowledge components in a way that is already familiar to them, emphasizing the 

importance of exploitation over exploration. Furthermore, the lack of a central network position 
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shows that ties from previous collaborations to other inventors outside the team are not 

beneficial. Both findings diverge from prior research that rather highlights the value of 

exploration (e.g., Hubner et al., 2022; Li et al., 2018) and access to more inflow channels for 

knowledge resources (Yang et al., 2021). To further explore the roles of knowledge familiarity 

and tie formation, I conducted a supplemental analysis, replacing recombination novelty with 

domain experience and the central network position with prior collaboration. These substituted 

conditions represent conceptual counterparts to the original ones. Domain experience, in 

contrast to novel knowledge recombinations, reflects a high level of familiarity with the 

knowledge components utilized in a focal innovation. Similarly, prior collaborations among 

team inventors indicate stronger internal connections rather than external ties. The results of 

this supplemental analysis reinforce the earlier findings, demonstrating that domain experience 

and prior collaborations are fundamental building blocks for impactful innovation outcomes 

across various pathways. Furthermore, when both domain experience and prior collaborations 

are present, rare pathways emerge that incorporate dissimilar knowledge, highlighting how 

familiarity with the domain and a well-established internal team network facilitate the effective 

integration of even distant knowledge components. These findings provide important 

contributions to the understanding of innovation team composition, particularly within the 

context of clean energy technologies. They highlight that individual team composition factors 

cannot be examined in isolation but must be considered in conjunction with other conditions, 

revealing multiple equally viable causal pathways to impactful outcomes. Furthermore, by 

emphasizing the significance of familiarity with specific knowledge combinations, domain 

experience, and strong internal connections over external ties, this study challenges prevailing 

assumptions about the centrality of exploration and a deep embedding within the broader 

inventor network in driving impactful innovations. 
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5.2 Practical Implications 

The findings of this dissertation have various practical implications for policymakers and 

managers that aim to foster particularly impactful innovation outcomes that serve as 

foundational building blocks for further developments in clean energy technologies. 

Throughout the three main chapters, this work enhances the understanding of how various team 

composition factors influence different types of innovation outcomes and, specifically, how 

multiple factors combine in different team configurations that are consistently associated with 

impactful innovations. The results of a configurational analysis highlight the important role of 

domain experience, knowledge exploitation rather than exploration, and repeated collaboration 

among inventors. Teams that accumulate experience innovating in the context of clean energy 

technologies and build strong relationships with co-inventors, thereby establishing a common 

understanding and shared routines, grow their capabilities to integrate knowledge effectively, 

enabling them to produce innovations with significant technological impact. Policymakers 

should, therefore, develop and implement strategies that actively incentivize experienced 

inventors to participate in innovation projects and sustain their engagement within the domain 

over time. Furthermore, they should prioritize minimizing turnover and actively support the 

formation of stable team constellations, enabling the accumulation of knowledge, the 

development of trust, and the establishment of efficient workflows. This can be facilitated 

through, for example, the provision of reliable long-term funding, the fostering of enduring 

partnerships, and the establishment of institutional conditions that support and encourage 

sustained collaboration among team members. Moreover, the results show that it is essential to 

embrace the complexity behind innovation team configurations, motivating policymakers and 

managers to think of team composition as an interplay of multiple conditions, where multiple 

pathways can lead to impactful innovation outcomes, rather than trying to implement one-size-

fits-all strategies. By aligning with these insights, policymakers and managers can effectively 
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foster impactful innovations and influence the pace at which clean energy solutions contribute 

to achieving the global net zero emissions goal. 

5.3 Avenues for Future Research 

This dissertation has made several important contributions while also uncovering promising 

directions for future research. First, the review of the existing literature on innovation team 

composition highlights a significant imbalance in scholarly attention across different team 

composition factors and types of team-level innovation outcomes. While factors like knowledge 

diversity have been extensively studied, other potentially impactful factors remain 

underexplored. Similarly, innovation outcomes, such as innovation impact, have been studied 

continuously over many years, whereas other important outcomes have received comparatively 

little attention. Future research should prioritize outcomes that are particularly relevant to 

addressing the grand challenges of our time, such as green innovation, to better understand the 

specific antecedents of these innovations. Moreover, interaction effects remain an 

underexplored area. Future research should focus on examining mediating, moderating, and 

contextual factors to better understand the underlying mechanisms driving these effects and the 

conditions under which they occur. The synthesis of existing empirical insights presented in 

Chapter 2 of this dissertation provides a framework to guide future exploration into promising 

research areas. 

Furthermore, the systematic literature review highlights the overrepresentation of 

regression-based methods in studies examining the effects of team composition on innovation 

outcomes. While this dissertation introduces a configurational perspective, future research 

should continue to employ configurational methods that acknowledge the causally complex 

interplay of team composition factors and take conjunctural as well as equifinal and causally 

asymmetric effects into account. Yet, the theoretical landscape imposes significant challenges 

to the application of configurational approaches, especially to the selection of a limited set of 
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causal conditions that are most relevant to explain the outcome of interest. This dissertation 

offers a methodological novelty to approach condition selection in a data-driven manner. 

However, future research should confirm the utility of this approach and further enhance it with 

respect to computational intensity and general applicability. Finally, as the theoretical 

foundation surrounding team composition factors continues to evolve, scholars should revisit 

traditional theory-based condition selection – not as a replacement but as a complementary 

approach to data-driven methodologies. In summary, this dissertation not only advances our 

understanding of innovation team composition but also lays the groundwork for future research 

to address existing gaps, embrace methodological diversity, and refine theoretical and empirical 

approaches to uncover the complex interplay of factors driving impactful innovation. 

5.4 Conclusion 

This dissertation adds a configurational perspective to the growing body of research on 

innovation team composition, using clean energy innovations as a topical research context. By 

systematically taking stock of the current state of literature in the field and synthesizing 

empirical findings on the effects of individual team composition factors on various innovation 

outcomes, this work establishes a foundation for exploring the conjunctural effects of multiple 

interacting factors. Moreover, it highlights key areas that remain underexplored, offering 

directions for future research. The broad yet shallow theoretical landscape that exists around 

the drivers of successful team-based innovation imposes significant challenges for the 

meaningful selection of a set of central causal conditions to look at inventor team composition 

form a configurational angle. This dissertation therefore introduces a novel method that 

addresses the condition selection through a data-driven approach. Based on a resulting set of 

conditions that are deemed particularly relevant for explaining team configurations that are 

associated with the most impactful innovation outcomes, and by leveraging an extensive sample 

of clean energy patents, this dissertation reveals multiple narrow pathways that consistently link 
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to such outcomes and, thereby, equips policymakers with valuable insights into which team 

configurations to foster in order to accelerate advancements in clean energy technologies.  
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Appendix 

Appendix Chapter 2 

Appendix 2.1: List of Sources Considered for the Literature Review 

1 Academy of Management Journal  

2 Academy of Management Perspectives  

3 Academy of Management Review  

4 Administrative Science Quarterly  

5 Asia and the Pacific Policy Studies  

6 Asia Pacific Journal of Management  

7 Asian Business and Management  

8 British Journal of Management  

9 BRQ Business Research Quarterly  

10 Business Strategy and the Environment  

11 California Management Review  

12 Creative Industries Journal  

13 Cross Cultural and Strategic Management  

14 Economics of Innovation and New Technology  

15 Entrepreneurial Business and Economics Review  

16 Entrepreneurship & Regional Development  

17 Entrepreneurship Theory and Practice  

18 European Journal of Innovation Management  

19 European Management Journal  

20 European Research on Management and Business Economics  

21 Foresight and STI Governance  

22 Global Strategy Journal  

23 Harvard Business Review  

24 Human Relations  

25 Human Resource Management  

26 Industrial Management and Data Systems  

27 Innovation: The European Journal of Social Science Research  

28 International Entrepreneurship and Management Journal  

29 International Journal of Entrepreneurial Behavior & Research  

30 International Journal of Human Resource Management  

31 International Journal of Management Reviews  

32 International Journal of Operations and Production Management  

33 International Journal of Project Management  

34 International Small Business Journal  

35 Journal of Business Research  

36 Journal of Business Venturing  

37 Journal of Engineering and Technology Management - JET-M  

38 Journal of Industrial Integration and Management  

39 Journal of Innovation & Knowledge  

40 Journal of Intellectual Capital  

41 Journal of International Management  

42 Journal of Knowledge Management  
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43 Journal of Leadership and Organizational Studies  

44 Journal of Management  

45 Journal of Management in Engineering - ASCE  

46 Journal of Management Studies  

47 Journal of Open Innovation: Technology, Market, and Complexity  

48 Journal of Product Innovation Management  

49 Journal of Science and Technology Policy Management  

50 Journal of Small Business and Enterprise Development  

51 Journal of Small Business Management  

52 Long Range Planning  

53 Management Decision  

54 Management Review Quarterly  

55 Management Science  

56 New Technology, Work and Employment  

57 Omega  

58 Organization Science  

59 Organization Studies  

60 Organizational Behavior and Human Decision Processes  

61 R&D Management  

62 Research Policy  

63 Sloan Management Review  

64 Small Business Economics  

65 Socio-Economic Planning Sciences  

66 Strategic Entrepreneurship Journal  

67 Strategic Management Journal  

68 Strategic Organization  

69 Technological Forecasting and Social Change  

70 Technology Analysis & Strategic Management  

71 Technovation  

72 The Journal of Technology Transfer  

73 Industrial and Corporate Change * 

74 Journal of International Business Studies * 

75 Journal of Marketing * 

76 Nature * 

77 Science * 

78 Small Group Research * 

79 The Annals of Regional Science * 

80 The Economic Journal * 

Note: Sources marked with an asterisks (*) are not part of the initial source list but were added based on articles identified 

through the snowball sampling. 
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Appendix 2.2: List of Articles included in the Literature Review 

 Reference Source Sampling Stage 

1 Sethi (2000) Journal of Marketing Stage 2: Snowball 

2 MacCormack et al. (2001) Management Science Stage 1: Scopus 

3 Gittelman (2007) Organization Science Stage 2: Snowball 

4 Cummings and Kiesler (2007) Research Policy Stage 2: Snowball 

5 Wuchty et al. (2007) Science Stage 2: Snowball 

6 Gay et al. (2008) Economics of Innovation and New Technology Stage 1: Scopus 

7 Singh (2008) Research Policy Stage 1: Scopus 

8 Jones et al. (2008) Science Stage 2: Snowball 

9 Singh and Fleming (2010) Management Science Stage 1: Scopus 

10 Beaudry and Schiffauerova (2011) European Management Journal Stage 1: Scopus 

11 Bercovitz and Feldman (2011) Research Policy Stage 1: Scopus 

12 Czarnitzki et al. (2011) Industrial and Corporate Change Stage 2: Snowball 

13 Jain (2013) Organization Science Stage 1: Scopus 

14 Onal Vural et al. (2013) Strategic Entrepreneurship Journal Stage 1: Scopus 

15 Freeman and Huang (2014) Nature Stage 2: Snowball 

16 Cassi and Plunket (2014) The Annals of Regional Science Stage 2: Snowball 

17 Tzabbar and Vestal (2015) Organization Science Stage 1: Scopus 

18 Dornbusch and Neuhäusler (2015) Research Policy Stage 1: Scopus 

19 Melero and Palomeras (2015) Research Policy Stage 1: Scopus 

20 Lee et al. (2015) Research Policy Stage 2: Snowball 

21 Cheung et al. (2016) Human Relations Stage 1: Scopus 

22 Ali and Gittelman (2016) Research Policy Stage 1: Scopus 

23 Walsh et al. (2016) Research Policy Stage 2: Snowball 

24 Wang et al. (2017) Research Policy Stage 1: Scopus 

25 Hoisl et al. (2016) Strategic Management Journal Stage 1: Scopus 

26 Hung (2017) Research Policy Stage 1: WoS 

27 Li et al. (2018) Journal of Knowledge Management Stage 1: Scopus 

28 Choudhury and Haas (2018) Strategic Management Journal Stage 1: Scopus 

29 Choudhury and Kim (2018) Strategic Management Journal Stage 1: Scopus 

30 Kerr and Kerr (2018) The Economic Journal Stage 2: Snowball 

31 Franzoni et al. (2018) Journal of Management Studies Stage 1: WoS 

32 Ferrucci and Lissoni (2019) Research Policy Stage 1: Scopus 

33 Huo et al. (2019) Research Policy Stage 1: Scopus 

34 Schillebeeckx et al. (2019) Journal of Management Studies Stage 1: Scopus 

35 Brunetta et al. (2019) Journal of Business Research Stage 1: Scopus 

36 Zhang et al. (2020) Journal of Knowledge Management Stage 1: Scopus 

37 Kneeland et al. (2020) Organization Science Stage 1: Scopus 

38 Orsatti et al. (2020) Research Policy Stage 1: Scopus 

39 Le Gallo and Plunket (2020) Research Policy Stage 1: Scopus 

40 Seo et al. (2020) Journal of International Business Studies Stage 2: Snowball 

41 Vestal and Mesmer-Magnus (2020) Small Group Research Stage 2: Snowball 

42 Zaggl and Pottbäcker (2021) Research Policy Stage 1: Scopus 

43 Vakili and Kaplan (2021) Strategic Management Journal Stage 1: Scopus 
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44 Yang et al. (2021) Technology Analysis and Strategic Management Stage 1: Scopus 

45 Battaglia et al. (2021) Technovation Stage 1: Scopus 

46 Ardito et al. (2021) Journal of Business Research Stage 1: WoS 

47 Hubner et al. (2022) Journal of Business Research Stage 1: Scopus 

48 Marino and Quatraro (2022) Journal of Technology Transfer Stage 1: Scopus 

49 Chang (2022) Strategic Management Journal Stage 1: Scopus 

50 Jiao et al. (2022) Technovation Stage 1: Scopus 

51 Vestal and Danneels (2022) Administrative Science Quarterly Stage 1: WoS 

52 Kaltenberg et al. (2023) Research Policy Stage 1: Scopus 

53 Vestal and Danneels (2023) Organization Science Stage 1: WoS 

54 Yoo et al. (2023) R&D Management Stage 1: WoS 
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Appendix Chapter 3 

Appendix 3.1: Negative Binomial Regression Summary 

Model Info: 

Observations: 57577 

Dependent Variable: fwd5year 

Type: Generalized linear model 

    Family: Negative Binomial(0.4525)  

    Link function: log  

Model Fit: 

χ²(57537) = 3805.400, p = 0.000 

Pseudo-R² (Cragg-Uhler) = 0.064 

Pseudo-R² (McFadden) = 0.013 

AIC = 285990.169, BIC = 286357.565  

Standard errors:MLE 

Variable exp(Est.) 2.5% 97.5% z val. p VIF 

(Intercept) 2.7219 2.3474 3.1562 13.2580 0.0000 
 

domainfuels 1.2274 1.1609 1.2977 7.2111 0.0000 1.1289 

domainfusion 0.7043 0.5867 0.8456 -3.7589 0.0002 1.1289 

domaingeo 0.7107 0.5586 0.9041 -2.7804 0.0054 1.1289 

domainhydro 0.7678 0.6703 0.8795 -3.8119 0.0001 1.1289 

domainhydrogen 0.6470 0.6256 0.6691 -25.3703 0.0000 1.1289 

domainpv 1.2257 1.1830 1.2700 11.2352 0.0000 1.1289 

domainsea 1.0443 0.9088 1.2001 0.6114 0.5410 1.1289 

domainsolar 1.5106 1.4008 1.6290 10.7133 0.0000 1.1289 

domainwind 1.4378 1.3516 1.5296 11.5033 0.0000 1.1289 

factor(year)1986 1.1327 0.9242 1.3882 1.2005 0.2299 1.1289 

factor(year)1987 1.3285 1.0771 1.6385 2.6541 0.0080 1.1289 

factor(year)1988 1.4334 1.1687 1.7580 3.4567 0.0005 1.1289 

factor(year)1989 1.6063 1.3138 1.9640 4.6209 0.0000 1.1289 

factor(year)1990 1.8756 1.5406 2.2834 6.2650 0.0000 1.1289 

factor(year)1991 1.9856 1.6353 2.4110 6.9257 0.0000 1.1289 

factor(year)1992 2.3983 1.9848 2.8980 9.0596 0.0000 1.1289 

factor(year)1993 2.8422 2.3672 3.4125 11.1948 0.0000 1.1289 

factor(year)1994 2.9693 2.4844 3.5487 11.9648 0.0000 1.1289 

factor(year)1995 3.3703 2.8329 4.0095 13.7116 0.0000 1.1289 

factor(year)1996 3.1725 2.6713 3.7677 13.1604 0.0000 1.1289 

factor(year)1997 3.3318 2.8121 3.9476 13.9098 0.0000 1.1289 

factor(year)1998 3.3557 2.8412 3.9633 14.2571 0.0000 1.1289 

factor(year)1999 3.4692 2.9383 4.0960 14.6786 0.0000 1.1289 

factor(year)2000 2.9877 2.5412 3.5127 13.2533 0.0000 1.1289 

factor(year)2001 2.5603 2.1838 3.0016 11.5865 0.0000 1.1289 

factor(year)2002 2.1991 1.8748 2.5795 9.6814 0.0000 1.1289 

factor(year)2003 2.1423 1.8259 2.5135 9.3443 0.0000 1.1289 

factor(year)2004 1.9768 1.6858 2.3180 8.3872 0.0000 1.1289 

factor(year)2005 1.7695 1.5107 2.0726 7.0739 0.0000 1.1289 
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factor(year)2006 1.6039 1.3709 1.8765 5.8982 0.0000 1.1289 

factor(year)2007 1.3786 1.1791 1.6120 4.0248 0.0001 1.1289 

factor(year)2008 1.2095 1.0353 1.4130 2.3976 0.0165 1.1289 

factor(year)2009 1.1979 1.0263 1.3981 2.2898 0.0220 1.1289 

factor(year)2010 1.2121 1.0397 1.4129 2.4580 0.0140 1.1289 

factor(year)2011 1.2862 1.1029 1.5000 3.2079 0.0013 1.1289 

factor(year)2012 1.1420 0.9774 1.3344 1.6722 0.0945 1.1289 

factor(year)2013 1.0268 0.8731 1.2076 0.3199 0.7490 1.1289 

factor(year)2014 1.0532 0.8728 1.2709 0.5407 0.5887 1.1289 

factor(year)2015 1.0940 0.7403 1.6168 0.4508 0.6521 1.1289 
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Appendix 3.2: Clustering Results with Linkage Method “average” 

The alternate linkage method results in inventor mobility (MOB) showing a smaller distance to the core of the cluster compared to knowledge variety (KNOW_VAR), 

making inventor mobility the 7th and knowledge variety the 8th condition. 
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Appendix 3.3: Model Performance Ranking 

 Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 Condition 6 Condition 7 Condition 8 Consistency Coverage  

1 KNOW_DIS GEND ETHN INST DEG GNRL RECOMB  - 0.8911 0.1495   

2 KNOW_DIS KNOW_VAR GEND ETHN INST PRICOL DEG MOB 0.9045 0.1453   

3 KNOW_DIS GEND ETHN INST PRICOL DEG RECOMB GEXP 0.8947 0.1434   

4 KNOW_DIS KNOW_VAR GEND ETHN INST PRICOL RECOMB GEXP 0.8985 0.1433   

5 KNOW_DIS GEND ETHN INST DEG RECOMB GEXP  - 0.8963 0.1422   

6 KNOW_DIS KNOW_VAR GEND ETHN GEO INST DEG MOB 0.8963 0.1412   

7 KNOW_DIS KNOW_VAR GEND ETHN INST DEG MOB RECOMB 0.9020 0.1407 * 

8 KNOW_DIS GEND ETHN INST PRICOL DEG GATE GEXP 0.8879 0.1402   

9 KNOW_DIS KNOW_VAR GEND ETHN INST PRICOL MOB RECOMB 0.8929 0.1400   

10 KNOW_DIS KNOW_VAR GEND ETHN INST DEG GATE MOB 0.8887 0.1397   

11 KNOW_DIS GEND ETHN INST PRICOL MOB RECOMB  - 0.8962 0.1391   

12 KNOW_DIS KNOW_VAR GEND ETHN INST PRICOL DEG RECOMB 0.9087 0.1390   

13 KNOW_DIS KNOW_VAR GEND ETHN INST DEG DOM MOB 0.8882 0.1389   

14 KNOW_DIS GEND ETHN INST PRICOL DEG MOB RECOMB 0.8982 0.1373   

15 KNOW_VAR GEND ETHN GEO INST PRICOL DEG MOB 0.9060 0.1360   

16 KNOW_DIS GEND ETHN INST DEG GATE RECOMB GEXP 0.8915 0.1358   

17 KNOW_DIS GEND ETHN GEO INST PRICOL RECOMB GEXP 0.9029 0.1355   

18 KNOW_DIS GEND ETHN INST PRICOL DEG GATE RECOMB 0.8959 0.1353   

19 KNOW_DIS GEND ETHN INST DEG MOB RECOMB  - 0.8962 0.1349 * 

20 KNOW_VAR GEND ETHN INST DEG RECOMB GEXP  - 0.8823 0.1348   

…            

Note: Models that are part of the identified central cluster are marked with an asterisks (*). The table shows the 20 best-performing models among the total number of 38,506 models. 

The models are ranked based on the lower bound of the 95% confidence interval for model coverage. 

 

Appendix 3.4: Supplemental Online Appendix 

I provide the model performance summaries and the cluster plots for the robustness tests in an online appendix. For access, contact 

niklas.hagenow(at)tum.de. 
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Appendix Chapter 4 

Appendix 4.1: Full Truth Tables 

Appendix 4.1.1: Full truth table for configurations associated with impactful innovations; initial model specification for moderate knowledge dissimilarity (bell-

shaped calibration); the assigned outcome values for more common configurations with a conservative frequency cutoff of 0.5 % (30 cases) are listed under “cons.”; 

outcome values for rarer configurations with a frequency cutoff of 2 cases are listed under “rare”. 

  Conditions  OUT   Consistency  PRI 

  INST ETHN GEND KNOW_DIS RECOMB DEG MOB  cons. rare  N raw mean 90% CI  raw mean 90% CI 

(1)  0 0 0 0 0 0 0  0 0  52 0.54 0.54 [0.54,0.55]  0.54 0.54 [0.54,0.55] 

(2)  0 0 0 0 0 0 1  ? 0  16 0.59 0.57 [0.56,0.59]  0.59 0.57 [0.56,0.59] 

(3)  0 0 0 0 0 1 0  0 0  42 0.38 0.38 [0.37,0.38]  0.38 0.38 [0.37,0.38] 

(4)  0 0 0 0 0 1 1  0 0  41 0.38 0.41 [0.40,0.42]  0.38 0.41 [0.40,0.42] 

(5)  0 0 0 0 1 0 0  0 0  367 0.41 0.42 [0.42,0.43]  0.41 0.42 [0.42,0.43] 

(6)  0 0 0 0 1 0 1  0 0  72 0.46 0.47 [0.46,0.47]  0.46 0.47 [0.46,0.47] 

(7)  0 0 0 0 1 1 0  0 0  106 0.53 0.50 [0.50,0.51]  0.53 0.50 [0.50,0.51] 

(8)  0 0 0 0 1 1 1  0 0  72 0.39 0.40 [0.39,0.40]  0.39 0.40 [0.39,0.40] 

(9)  0 0 0 1 0 0 0  ? 0  14 0.56 0.52 [0.51,0.53]  0.56 0.52 [0.51,0.53] 

(10)  0 0 0 1 0 0 1  ? 0  19 0.67 0.66 [0.65,0.67]  0.67 0.66 [0.65,0.67] 

(11)  0 0 0 1 0 1 0  0 0  33 0.47 0.48 [0.47,0.49]  0.47 0.48 [0.47,0.49] 

(12)  0 0 0 1 0 1 1  0 0  34 0.49 0.47 [0.46,0.48]  0.49 0.47 [0.46,0.48] 

(13)  0 0 0 1 1 0 0  0 0  281 0.48 0.45 [0.45,0.46]  0.48 0.45 [0.45,0.46] 

(14)  0 0 0 1 1 0 1  0 0  122 0.42 0.42 [0.42,0.43]  0.42 0.42 [0.42,0.43] 

(15)  0 0 0 1 1 1 0  0 0  133 0.51 0.52 [0.51,0.52]  0.51 0.52 [0.51,0.52] 

(16)  0 0 0 1 1 1 1  0 0  108 0.45 0.44 [0.44,0.45]  0.45 0.44 [0.44,0.45] 

(17)  0 0 1 0 0 0 0  ? 0  8 0.60 0.59 [0.57,0.61]  0.60 0.59 [0.57,0.61] 

(18)  0 0 1 0 0 0 1  ? 0  5 0.61 0.61 [0.59,0.63]  0.61 0.61 [0.59,0.63] 

(19)  0 0 1 0 0 1 0  ? 0  13 0.45 0.47 [0.46,0.49]  0.45 0.47 [0.46,0.49] 

(20)  0 0 1 0 0 1 1  ? 0  9 0.33 0.36 [0.35,0.37]  0.33 0.36 [0.35,0.37] 

(21)  0 0 1 0 1 0 0  0 0  104 0.39 0.40 [0.40,0.41]  0.39 0.40 [0.40,0.41] 
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(22)  0 0 1 0 1 0 1  ? 0  21 0.47 0.43 [0.42,0.44]  0.47 0.43 [0.42,0.44] 

(23)  0 0 1 0 1 1 0  0 0  32 0.35 0.44 [0.43,0.45]  0.35 0.44 [0.43,0.45] 

(24)  0 0 1 0 1 1 1  ? 0  24 0.36 0.42 [0.41,0.43]  0.36 0.42 [0.41,0.43] 

(25)  0 0 1 1 0 0 0  ? 0  2 0.45 0.38 [0.37,0.39]  0.45 0.38 [0.37,0.39] 

(26)  0 0 1 1 0 0 1  ? 0  4 0.65 0.62 [0.60,0.64]  0.65 0.62 [0.60,0.64] 

(27)  0 0 1 1 0 1 0  ? 0  12 0.37 0.41 [0.39,0.42]  0.37 0.41 [0.39,0.42] 

(28)  0 0 1 1 0 1 1  ? 0  14 0.71 0.64 [0.62,0.65]  0.71 0.64 [0.62,0.65] 

(29)  0 0 1 1 1 0 0  0 0  94 0.43 0.43 [0.42,0.44]  0.43 0.43 [0.42,0.44] 

(30)  0 0 1 1 1 0 1  0 0  32 0.32 0.34 [0.33,0.35]  0.32 0.34 [0.33,0.35] 

(31)  0 0 1 1 1 1 0  0 0  39 0.33 0.40 [0.39,0.41]  0.33 0.40 [0.39,0.41] 

(32)  0 0 1 1 1 1 1  ? 0  24 0.31 0.36 [0.35,0.37]  0.31 0.36 [0.35,0.37] 

(33)  0 1 0 0 0 0 0  ? 0  13 0.66 0.61 [0.59,0.62]  0.66 0.61 [0.59,0.62] 

(34)  0 1 0 0 0 0 1  ? 0  18 0.76 0.74 [0.73,0.76]  0.76 0.74 [0.73,0.76] 

(35)  0 1 0 0 0 1 0  ? 0  23 0.34 0.31 [0.30,0.32]  0.34 0.31 [0.30,0.32] 

(36)  0 1 0 0 0 1 1  ? 0  24 0.30 0.30 [0.29,0.31]  0.30 0.30 [0.29,0.31] 

(37)  0 1 0 0 1 0 0  0 0  156 0.54 0.51 [0.50,0.51]  0.54 0.51 [0.50,0.51] 

(38)  0 1 0 0 1 0 1  0 0  56 0.47 0.44 [0.43,0.45]  0.47 0.44 [0.43,0.45] 

(39)  0 1 0 0 1 1 0  0 0  70 0.50 0.49 [0.48,0.50]  0.50 0.49 [0.48,0.50] 

(40)  0 1 0 0 1 1 1  0 0  63 0.36 0.35 [0.34,0.35]  0.36 0.35 [0.34,0.35] 

(41)  0 1 0 1 0 0 0  ? 0  6 0.62 0.57 [0.56,0.59]  0.62 0.57 [0.56,0.59] 

(42)  0 1 0 1 0 0 1  ? 0  5 0.78 0.66 [0.65,0.67]  0.78 0.66 [0.65,0.67] 

(43)  0 1 0 1 0 1 0  0 0  33 0.47 0.49 [0.48,0.50]  0.47 0.49 [0.48,0.50] 

(44)  0 1 0 1 0 1 1  0 0  72 0.63 0.63 [0.62,0.63]  0.63 0.63 [0.62,0.63] 

(45)  0 1 0 1 1 0 0  0 0  157 0.52 0.52 [0.52,0.53]  0.52 0.52 [0.52,0.53] 

(46)  0 1 0 1 1 0 1  0 0  79 0.45 0.47 [0.46,0.47]  0.45 0.47 [0.46,0.47] 

(47)  0 1 0 1 1 1 0  0 0  91 0.49 0.49 [0.48,0.49]  0.49 0.49 [0.48,0.49] 

(48)  0 1 0 1 1 1 1  0 0  72 0.36 0.36 [0.35,0.36]  0.36 0.36 [0.35,0.36] 

(49)  0 1 1 0 0 0 0  ? 0  4 0.30 0.42 [0.39,0.44]  0.30 0.42 [0.39,0.44] 

(50)  0 1 1 0 0 0 1  ? 1  2 0.83 0.84 [0.82,0.85]  0.83 0.84 [0.82,0.85] 

(51)  0 1 1 0 0 1 0  ? 0  10 0.50 0.44 [0.42,0.46]  0.50 0.44 [0.42,0.46] 
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(52)  0 1 1 0 0 1 1  ? 0  6 0.35 0.32 [0.31,0.34]  0.35 0.32 [0.31,0.34] 

(53)  0 1 1 0 1 0 0  0 0  43 0.48 0.44 [0.43,0.45]  0.48 0.44 [0.43,0.45] 

(54)  0 1 1 0 1 0 1  ? 0  29 0.56 0.56 [0.55,0.58]  0.56 0.56 [0.55,0.58] 

(55)  0 1 1 0 1 1 0  0 0  36 0.51 0.55 [0.54,0.56]  0.51 0.55 [0.54,0.56] 

(56)  0 1 1 0 1 1 1  0 0  34 0.31 0.39 [0.38,0.40]  0.31 0.39 [0.38,0.40] 

(57)  0 1 1 1 0 0 0  ? 0  2 0.37 0.36 [0.35,0.38]  0.37 0.36 [0.35,0.38] 

(58)  0 1 1 1 0 0 1  ? 1  6 0.89 0.84 [0.82,0.85]  0.89 0.84 [0.82,0.85] 

(59)  0 1 1 1 0 1 0  ? 0  17 0.44 0.43 [0.42,0.44]  0.44 0.43 [0.42,0.44] 

(60)  0 1 1 1 0 1 1  ? 0  12 0.52 0.55 [0.53,0.56]  0.52 0.55 [0.53,0.56] 

(61)  0 1 1 1 1 0 0  0 0  64 0.48 0.49 [0.48,0.50]  0.48 0.49 [0.48,0.50] 

(62)  0 1 1 1 1 0 1  ? 0  25 0.41 0.50 [0.49,0.52]  0.41 0.50 [0.49,0.52] 

(63)  0 1 1 1 1 1 0  0 0  31 0.43 0.45 [0.45,0.46]  0.43 0.45 [0.45,0.46] 

(64)  0 1 1 1 1 1 1  ? 0  25 0.37 0.40 [0.39,0.41]  0.37 0.40 [0.39,0.41] 

(65)  1 0 0 0 0 0 0  1 1  41 0.80 0.79 [0.78,0.80]  0.80 0.79 [0.78,0.80] 

(66)  1 0 0 0 0 0 1  1 1  48 0.79 0.79 [0.78,0.80]  0.79 0.79 [0.78,0.80] 

(67)  1 0 0 0 0 1 0  0 0  60 0.68 0.70 [0.69,0.71]  0.68 0.70 [0.69,0.71] 

(68)  1 0 0 0 0 1 1  0 0  74 0.55 0.54 [0.54,0.55]  0.55 0.54 [0.54,0.55] 

(69)  1 0 0 0 1 0 0  0 0  105 0.60 0.62 [0.62,0.63]  0.60 0.62 [0.62,0.63] 

(70)  1 0 0 0 1 0 1  0 0  128 0.60 0.59 [0.59,0.60]  0.60 0.59 [0.59,0.60] 

(71)  1 0 0 0 1 1 0  0 0  55 0.66 0.66 [0.66,0.67]  0.66 0.66 [0.66,0.67] 

(72)  1 0 0 0 1 1 1  0 0  121 0.52 0.51 [0.51,0.52]  0.52 0.51 [0.51,0.52] 

(73)  1 0 0 1 0 0 0  ? 0  11 0.63 0.61 [0.60,0.62]  0.63 0.61 [0.60,0.62] 

(74)  1 0 0 1 0 0 1  0 0  35 0.61 0.65 [0.64,0.66]  0.61 0.65 [0.64,0.66] 

(75)  1 0 0 1 0 1 0  0 0  35 0.62 0.63 [0.63,0.64]  0.62 0.63 [0.63,0.64] 

(76)  1 0 0 1 0 1 1  0 0  103 0.64 0.62 [0.62,0.63]  0.64 0.62 [0.62,0.63] 

(77)  1 0 0 1 1 0 0  0 0  135 0.54 0.53 [0.53,0.54]  0.54 0.53 [0.53,0.54] 

(78)  1 0 0 1 1 0 1  0 0  171 0.51 0.53 [0.52,0.53]  0.51 0.53 [0.52,0.53] 

(79)  1 0 0 1 1 1 0  0 0  76 0.57 0.61 [0.60,0.62]  0.57 0.61 [0.60,0.62] 

(80)  1 0 0 1 1 1 1  0 0  141 0.51 0.52 [0.52,0.53]  0.51 0.52 [0.52,0.53] 

(81)  1 0 1 0 0 0 0  ? 0  2 0.82 0.55 [0.53,0.58]  0.82 0.55 [0.53,0.58] 
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(82)  1 0 1 0 0 0 1  ? 0  2 0.57 0.46 [0.44,0.48]  0.57 0.46 [0.44,0.48] 

(83)  1 0 1 0 0 1 0  ? 0  17 0.79 0.73 [0.71,0.74]  0.79 0.73 [0.71,0.74] 

(84)  1 0 1 0 0 1 1  ? 0  21 0.55 0.55 [0.53,0.56]  0.55 0.55 [0.53,0.56] 

(85)  1 0 1 0 1 0 0  0 0  42 0.52 0.58 [0.57,0.58]  0.52 0.58 [0.57,0.58] 

(86)  1 0 1 0 1 0 1  0 0  38 0.48 0.48 [0.47,0.49]  0.48 0.48 [0.47,0.49] 

(87)  1 0 1 0 1 1 0  ? 0  21 0.63 0.58 [0.57,0.59]  0.63 0.58 [0.57,0.59] 

(88)  1 0 1 0 1 1 1  0 0  37 0.42 0.42 [0.41,0.43]  0.42 0.42 [0.41,0.43] 

(89)  1 0 1 1 0 0 0  ? ?  1 0.55 0.38 [0.36,0.40]  0.55 0.38 [0.36,0.40] 

(90)  1 0 1 1 0 0 1  ? 0  2 0.41 0.29 [0.28,0.30]  0.41 0.29 [0.28,0.30] 

(91)  1 0 1 1 0 1 0  ? 0  8 0.58 0.56 [0.54,0.57]  0.58 0.56 [0.54,0.57] 

(92)  1 0 1 1 0 1 1  ? 0  11 0.41 0.38 [0.36,0.39]  0.41 0.38 [0.36,0.39] 

(93)  1 0 1 1 1 0 0  0 0  32 0.37 0.43 [0.42,0.44]  0.37 0.43 [0.42,0.44] 

(94)  1 0 1 1 1 0 1  0 0  30 0.32 0.36 [0.35,0.36]  0.32 0.36 [0.35,0.36] 

(95)  1 0 1 1 1 1 0  ? 0  21 0.60 0.59 [0.58,0.60]  0.60 0.59 [0.58,0.60] 

(96)  1 0 1 1 1 1 1  0 0  36 0.55 0.55 [0.54,0.56]  0.55 0.55 [0.54,0.56] 

(97)  1 1 0 0 0 0 0  ? 0  2 0.64 0.55 [0.53,0.58]  0.64 0.55 [0.53,0.58] 

(98)  1 1 0 0 0 0 1  ? 0  9 0.58 0.57 [0.55,0.59]  0.58 0.57 [0.55,0.59] 

(99)  1 1 0 0 0 1 0  ? 0  20 0.74 0.65 [0.64,0.67]  0.74 0.65 [0.64,0.67] 

(100)  1 1 0 0 0 1 1  0 0  77 0.59 0.56 [0.55,0.57]  0.59 0.56 [0.55,0.57] 

(101)  1 1 0 0 1 0 0  0 0  41 0.68 0.62 [0.62,0.63]  0.68 0.62 [0.62,0.63] 

(102)  1 1 0 0 1 0 1  0 0  95 0.54 0.53 [0.52,0.53]  0.54 0.53 [0.52,0.53] 

(103)  1 1 0 0 1 1 0  0 0  32 0.61 0.62 [0.61,0.63]  0.61 0.62 [0.61,0.63] 

(104)  1 1 0 0 1 1 1  0 0  146 0.43 0.44 [0.44,0.45]  0.43 0.44 [0.44,0.45] 

(105)  1 1 0 1 0 0 0  ? 0  5 0.47 0.54 [0.52,0.56]  0.47 0.54 [0.52,0.56] 

(106)  1 1 0 1 0 0 1  ? 0  16 0.62 0.63 [0.62,0.64]  0.62 0.63 [0.62,0.64] 

(107)  1 1 0 1 0 1 0  ? 0  15 0.57 0.57 [0.55,0.58]  0.57 0.57 [0.55,0.58] 

(108)  1 1 0 1 0 1 1  0 0  89 0.48 0.51 [0.51,0.52]  0.48 0.51 [0.51,0.52] 

(109)  1 1 0 1 1 0 0  0 0  51 0.56 0.54 [0.53,0.55]  0.56 0.54 [0.53,0.55] 

(110)  1 1 0 1 1 0 1  0 0  68 0.53 0.55 [0.54,0.56]  0.53 0.55 [0.54,0.56] 

(111)  1 1 0 1 1 1 0  0 0  37 0.49 0.54 [0.53,0.55]  0.49 0.54 [0.53,0.55] 
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(112)  1 1 0 1 1 1 1  0 0  64 0.43 0.40 [0.39,0.40]  0.43 0.40 [0.39,0.40] 

(113)  1 1 1 0 0 0 0  ? 0  3 0.74 0.73 [0.71,0.75]  0.74 0.73 [0.71,0.75] 

(114)  1 1 1 0 0 0 1  ? 0  4 0.31 0.46 [0.44,0.49]  0.31 0.46 [0.44,0.49] 

(115)  1 1 1 0 0 1 0  ? 0  14 0.66 0.64 [0.63,0.66]  0.66 0.64 [0.63,0.66] 

(116)  1 1 1 0 0 1 1  0 0  30 0.42 0.50 [0.49,0.51]  0.42 0.50 [0.49,0.51] 

(117)  1 1 1 0 1 0 0  0 0  34 0.70 0.69 [0.68,0.70]  0.70 0.69 [0.68,0.70] 

(118)  1 1 1 0 1 0 1  0 0  44 0.65 0.60 [0.60,0.61]  0.65 0.60 [0.60,0.61] 

(119)  1 1 1 0 1 1 0  ? 0  21 0.57 0.58 [0.57,0.59]  0.57 0.58 [0.57,0.59] 

(120)  1 1 1 0 1 1 1  0 0  46 0.46 0.46 [0.45,0.47]  0.46 0.46 [0.45,0.47] 

(121)  1 1 1 1 0 0 0  ? 0  3 0.42 0.49 [0.47,0.51]  0.42 0.49 [0.47,0.51] 

(122)  1 1 1 1 0 0 1  ? 0  6 0.44 0.52 [0.50,0.54]  0.44 0.52 [0.50,0.54] 

(123)  1 1 1 1 0 1 0  ? 0  10 0.72 0.65 [0.64,0.67]  0.72 0.65 [0.64,0.67] 

(124)  1 1 1 1 0 1 1  ? 0  20 0.53 0.49 [0.48,0.51]  0.53 0.49 [0.48,0.51] 

(125)  1 1 1 1 1 0 0  0 0  34 0.58 0.63 [0.62,0.64]  0.58 0.63 [0.62,0.64] 

(126)  1 1 1 1 1 0 1  ? 0  26 0.56 0.59 [0.58,0.60]  0.56 0.59 [0.58,0.60] 

(127)  1 1 1 1 1 1 0  ? 0  24 0.53 0.59 [0.58,0.60]  0.53 0.59 [0.58,0.60] 

(128)  1 1 1 1 1 1 1  0 0  40 0.57 0.61 [0.60,0.62]  0.57 0.61 [0.60,0.62] 
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Appendix 4.1.2: Full truth table for configurations associated with impactful innovations; model specification with recalibrated knowledge dissimilarity condition; 

the assigned outcome values for more common configurations with a conservative frequency cutoff of 0.5 % (30 cases) are listed under “cons.”; outcome values for 

rarer configurations with a frequency cutoff of 2 cases are listed under “rare”. 

  Conditions  OUT   Consistency  PRI 

  INST ETHN GEND KNOW_DIS RECOMB DEG MOB  cons. rare  N raw mean 90% CI  raw mean 90% CI 

(1)  0 0 0 0 0 0 0  0 0  58 0.53 0.53 [0.52,0.53]  0.53 0.53 [0.52,0.53] 

(2)  0 0 0 0 0 0 1  ? 0  27 0.68 0.62 [0.61,0.63]  0.68 0.62 [0.61,0.63] 

(3)  0 0 0 0 0 1 0  0 0  53 0.43 0.41 [0.40,0.41]  0.43 0.41 [0.40,0.41] 

(4)  0 0 0 0 0 1 1  0 0  53 0.50 0.50 [0.49,0.51]  0.50 0.50 [0.49,0.51] 

(5)  0 0 0 0 1 0 0  0 0  498 0.43 0.43 [0.42,0.43]  0.43 0.43 [0.42,0.43] 

(6)  0 0 0 0 1 0 1  0 0  104 0.47 0.46 [0.46,0.46]  0.47 0.46 [0.46,0.46] 

(7)  0 0 0 0 1 1 0  0 0  148 0.53 0.50 [0.50,0.50]  0.53 0.50 [0.50,0.50] 

(8)  0 0 0 0 1 1 1  0 0  110 0.45 0.45 [0.45,0.46]  0.45 0.45 [0.45,0.46] 

(9)  0 0 0 1 0 0 0  ? 0  8 0.65 0.62 [0.61,0.63]  0.65 0.62 [0.61,0.63] 

(10)  0 0 0 1 0 0 1  ? 0  8 0.55 0.60 [0.59,0.61]  0.55 0.60 [0.59,0.61] 

(11)  0 0 0 1 0 1 0  ? 0  22 0.50 0.53 [0.52,0.54]  0.50 0.53 [0.52,0.54] 

(12)  0 0 0 1 0 1 1  ? 0  22 0.43 0.43 [0.42,0.44]  0.43 0.43 [0.42,0.44] 

(13)  0 0 0 1 1 0 0  0 0  150 0.50 0.48 [0.48,0.49]  0.50 0.48 [0.48,0.49] 

(14)  0 0 0 1 1 0 1  0 0  90 0.40 0.42 [0.41,0.42]  0.40 0.42 [0.41,0.42] 

(15)  0 0 0 1 1 1 0  0 0  91 0.52 0.55 [0.55,0.56]  0.52 0.55 [0.55,0.56] 

(16)  0 0 0 1 1 1 1  0 0  70 0.41 0.40 [0.40,0.41]  0.41 0.40 [0.40,0.41] 

(17)  0 0 1 0 0 0 0  ? 0  10 0.54 0.51 [0.49,0.52]  0.54 0.51 [0.49,0.52] 

(18)  0 0 1 0 0 0 1  ? 0  5 0.60 0.57 [0.54,0.59]  0.60 0.57 [0.54,0.59] 

(19)  0 0 1 0 0 1 0  ? 0  12 0.45 0.42 [0.41,0.43]  0.45 0.42 [0.41,0.43] 

(20)  0 0 1 0 0 1 1  ? 0  14 0.59 0.57 [0.56,0.58]  0.59 0.57 [0.56,0.58] 

(21)  0 0 1 0 1 0 0  0 0  135 0.39 0.41 [0.41,0.42]  0.39 0.41 [0.41,0.42] 

(22)  0 0 1 0 1 0 1  ? 0  13 0.41 0.38 [0.37,0.39]  0.41 0.38 [0.37,0.39] 

(23)  0 0 1 0 1 1 0  0 0  42 0.30 0.38 [0.37,0.39]  0.30 0.38 [0.37,0.39] 

(24)  0 0 1 0 1 1 1  ? 0  18 0.30 0.33 [0.32,0.34]  0.30 0.33 [0.32,0.34] 

(25)  0 0 1 1 0 0 0  ? ?  0 - 0.47 [0.45,0.49]  - 0.47 [0.45,0.49] 
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(26)  0 0 1 1 0 0 1  ? 0  4 0.69 0.65 [0.63,0.67]  0.69 0.65 [0.63,0.67] 

(27)  0 0 1 1 0 1 0  ? 0  13 0.40 0.47 [0.45,0.48]  0.40 0.47 [0.45,0.48] 

(28)  0 0 1 1 0 1 1  ? 0  9 0.67 0.59 [0.57,0.60]  0.67 0.59 [0.57,0.60] 

(29)  0 0 1 1 1 0 0  0 0  63 0.45 0.42 [0.42,0.43]  0.45 0.42 [0.42,0.43] 

(30)  0 0 1 1 1 0 1  0 0  40 0.37 0.39 [0.38,0.40]  0.37 0.39 [0.38,0.40] 

(31)  0 0 1 1 1 1 0  ? 0  29 0.36 0.42 [0.41,0.43]  0.36 0.42 [0.41,0.43] 

(32)  0 0 1 1 1 1 1  0 0  30 0.35 0.40 [0.39,0.41]  0.35 0.40 [0.39,0.41] 

(33)  0 1 0 0 0 0 0  ? 0  16 0.68 0.61 [0.60,0.62]  0.68 0.61 [0.60,0.62] 

(34)  0 1 0 0 0 0 1  ? 0  8 0.68 0.59 [0.57,0.61]  0.68 0.59 [0.57,0.61] 

(35)  0 1 0 0 0 1 0  0 0  36 0.38 0.39 [0.38,0.40]  0.38 0.39 [0.38,0.40] 

(36)  0 1 0 0 0 1 1  0 0  57 0.60 0.63 [0.62,0.64]  0.60 0.63 [0.62,0.64] 

(37)  0 1 0 0 1 0 0  0 0  185 0.52 0.50 [0.50,0.50]  0.52 0.50 [0.50,0.50] 

(38)  0 1 0 0 1 0 1  0 0  40 0.49 0.48 [0.47,0.49]  0.49 0.48 [0.47,0.49] 

(39)  0 1 0 0 1 1 0  0 0  80 0.47 0.46 [0.45,0.46]  0.47 0.46 [0.45,0.46] 

(40)  0 1 0 0 1 1 1  0 0  36 0.36 0.35 [0.35,0.36]  0.36 0.35 [0.35,0.36] 

(41)  0 1 0 1 0 0 0  ? 0  3 0.69 0.62 [0.60,0.63]  0.69 0.62 [0.60,0.63] 

(42)  0 1 0 1 0 0 1  ? 0  15 0.80 0.72 [0.71,0.74]  0.80 0.72 [0.71,0.74] 

(43)  0 1 0 1 0 1 0  ? 0  20 0.52 0.50 [0.49,0.51]  0.52 0.50 [0.49,0.51] 

(44)  0 1 0 1 0 1 1  0 0  39 0.51 0.47 [0.46,0.48]  0.51 0.47 [0.46,0.48] 

(45)  0 1 0 1 1 0 0  0 0  128 0.52 0.53 [0.53,0.53]  0.52 0.53 [0.53,0.53] 

(46)  0 1 0 1 1 0 1  0 0  95 0.44 0.44 [0.43,0.44]  0.44 0.44 [0.43,0.44] 

(47)  0 1 0 1 1 1 0  0 0  81 0.52 0.52 [0.52,0.53]  0.52 0.52 [0.52,0.53] 

(48)  0 1 0 1 1 1 1  0 0  99 0.35 0.35 [0.35,0.36]  0.35 0.35 [0.35,0.36] 

(49)  0 1 1 0 0 0 0  ? 0  4 0.26 0.28 [0.27,0.30]  0.26 0.28 [0.27,0.30] 

(50)  0 1 1 0 0 0 1  ? 1  8 0.80 0.79 [0.77,0.80]  0.80 0.79 [0.77,0.80] 

(51)  0 1 1 0 0 1 0  ? 0  15 0.46 0.43 [0.42,0.44]  0.46 0.43 [0.42,0.44] 

(52)  0 1 1 0 0 1 1  ? 0  6 0.50 0.53 [0.52,0.55]  0.50 0.53 [0.52,0.55] 

(53)  0 1 1 0 1 0 0  0 0  51 0.43 0.41 [0.40,0.42]  0.43 0.41 [0.40,0.42] 

(54)  0 1 1 0 1 0 1  ? 0  10 0.34 0.41 [0.40,0.43]  0.34 0.41 [0.40,0.43] 

(55)  0 1 1 0 1 1 0  ? 0  26 0.48 0.47 [0.46,0.48]  0.48 0.47 [0.46,0.48] 
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(56)  0 1 1 0 1 1 1  ? 0  12 0.37 0.36 [0.35,0.37]  0.37 0.36 [0.35,0.37] 

(57)  0 1 1 1 0 0 0  ? 0  2 0.46 0.44 [0.42,0.45]  0.46 0.44 [0.42,0.45] 

(58)  0 1 1 1 0 0 1  ? ?  0 - 0.76 [0.75,0.78]  - 0.76 [0.75,0.78] 

(59)  0 1 1 1 0 1 0  ? 0  12 0.49 0.45 [0.44,0.46]  0.49 0.45 [0.44,0.46] 

(60)  0 1 1 1 0 1 1  ? 0  12 0.58 0.54 [0.53,0.56]  0.58 0.54 [0.53,0.56] 

(61)  0 1 1 1 1 0 0  0 0  56 0.51 0.51 [0.50,0.51]  0.51 0.51 [0.50,0.51] 

(62)  0 1 1 1 1 0 1  0 0  44 0.53 0.58 [0.57,0.59]  0.53 0.58 [0.57,0.59] 

(63)  0 1 1 1 1 1 0  0 0  41 0.44 0.49 [0.48,0.50]  0.44 0.49 [0.48,0.50] 

(64)  0 1 1 1 1 1 1  0 0  47 0.34 0.41 [0.40,0.42]  0.34 0.41 [0.40,0.42] 

(65)  1 0 0 0 0 0 0  1 1  49 0.76 0.75 [0.75,0.76]  0.76 0.75 [0.75,0.76] 

(66)  1 0 0 0 0 0 1  1 1  67 0.73 0.75 [0.74,0.75]  0.73 0.75 [0.74,0.75] 

(67)  1 0 0 0 0 1 0  0 0  55 0.69 0.67 [0.66,0.67]  0.69 0.67 [0.66,0.67] 

(68)  1 0 0 0 0 1 1  0 0  96 0.61 0.59 [0.59,0.60]  0.61 0.59 [0.59,0.60] 

(69)  1 0 0 0 1 0 0  0 0  119 0.54 0.55 [0.55,0.56]  0.54 0.55 [0.55,0.56] 

(70)  1 0 0 0 1 0 1  0 0  130 0.53 0.55 [0.55,0.56]  0.53 0.55 [0.55,0.56] 

(71)  1 0 0 0 1 1 0  0 0  64 0.60 0.63 [0.62,0.63]  0.60 0.63 [0.62,0.63] 

(72)  1 0 0 0 1 1 1  0 0  124 0.56 0.56 [0.55,0.56]  0.56 0.56 [0.55,0.56] 

(73)  1 0 0 1 0 0 0  ? 0  3 0.57 0.56 [0.55,0.57]  0.57 0.56 [0.55,0.57] 

(74)  1 0 0 1 0 0 1  ? 0  16 0.59 0.66 [0.65,0.67]  0.59 0.66 [0.65,0.67] 

(75)  1 0 0 1 0 1 0  0 0  40 0.61 0.68 [0.67,0.69]  0.61 0.68 [0.67,0.69] 

(76)  1 0 0 1 0 1 1  0 0  81 0.60 0.60 [0.60,0.61]  0.60 0.60 [0.60,0.61] 

(77)  1 0 0 1 1 0 0  0 0  121 0.57 0.58 [0.57,0.58]  0.57 0.58 [0.57,0.58] 

(78)  1 0 0 1 1 0 1  0 0  169 0.55 0.55 [0.55,0.55]  0.55 0.55 [0.55,0.55] 

(79)  1 0 0 1 1 1 0  0 0  67 0.59 0.63 [0.63,0.64]  0.59 0.63 [0.63,0.64] 

(80)  1 0 0 1 1 1 1  0 0  138 0.48 0.49 [0.48,0.49]  0.48 0.49 [0.48,0.49] 

(81)  1 0 1 0 0 0 0  ? ?  1 0.64 0.40 [0.38,0.42]  0.64 0.40 [0.38,0.42] 

(82)  1 0 1 0 0 0 1  ? ?  0 - 0.29 [0.27,0.30]  - 0.29 [0.27,0.30] 

(83)  1 0 1 0 0 1 0  ? 0  19 0.75 0.71 [0.70,0.72]  0.75 0.71 [0.70,0.72] 

(84)  1 0 1 0 0 1 1  ? 0  15 0.53 0.56 [0.54,0.57]  0.53 0.56 [0.54,0.57] 

(85)  1 0 1 0 1 0 0  ? 0  22 0.43 0.49 [0.48,0.50]  0.43 0.49 [0.48,0.50] 
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(86)  1 0 1 0 1 0 1  ? 0  14 0.30 0.34 [0.33,0.35]  0.30 0.34 [0.33,0.35] 

(87)  1 0 1 0 1 1 0  ? 0  21 0.61 0.62 [0.61,0.63]  0.61 0.62 [0.61,0.63] 

(88)  1 0 1 0 1 1 1  ? 0  28 0.52 0.57 [0.56,0.58]  0.52 0.57 [0.56,0.58] 

(89)  1 0 1 1 0 0 0  ? 0  2 0.62 0.49 [0.47,0.51]  0.62 0.49 [0.47,0.51] 

(90)  1 0 1 1 0 0 1  ? 0  4 0.41 0.37 [0.36,0.39]  0.41 0.37 [0.36,0.39] 

(91)  1 0 1 1 0 1 0  ? 0  6 0.60 0.59 [0.57,0.60]  0.60 0.59 [0.57,0.60] 

(92)  1 0 1 1 0 1 1  ? 0  17 0.49 0.44 [0.43,0.45]  0.49 0.44 [0.43,0.45] 

(93)  1 0 1 1 1 0 0  0 0  52 0.44 0.51 [0.50,0.52]  0.44 0.51 [0.50,0.52] 

(94)  1 0 1 1 1 0 1  0 0  54 0.43 0.44 [0.43,0.45]  0.43 0.44 [0.43,0.45] 

(95)  1 0 1 1 1 1 0  ? 0  21 0.60 0.57 [0.56,0.58]  0.60 0.57 [0.56,0.58] 

(96)  1 0 1 1 1 1 1  0 0  45 0.47 0.45 [0.45,0.46]  0.47 0.45 [0.45,0.46] 

(97)  1 1 0 0 0 0 0  ? 0  5 0.41 0.48 [0.46,0.50]  0.41 0.48 [0.46,0.50] 

(98)  1 1 0 0 0 0 1  ? 0  14 0.61 0.63 [0.62,0.65]  0.61 0.63 [0.62,0.65] 

(99)  1 1 0 0 0 1 0  ? 0  21 0.69 0.66 [0.65,0.67]  0.69 0.66 [0.65,0.67] 

(100)  1 1 0 0 0 1 1  0 0  68 0.57 0.59 [0.58,0.59]  0.57 0.59 [0.58,0.59] 

(101)  1 1 0 0 1 0 0  ? 0  29 0.52 0.51 [0.50,0.52]  0.52 0.51 [0.50,0.52] 

(102)  1 1 0 0 1 0 1  0 0  37 0.50 0.56 [0.55,0.57]  0.50 0.56 [0.55,0.57] 

(103)  1 1 0 0 1 1 0  0 0  34 0.46 0.56 [0.54,0.57]  0.46 0.56 [0.54,0.57] 

(104)  1 1 0 0 1 1 1  0 0  50 0.46 0.47 [0.46,0.47]  0.46 0.47 [0.46,0.47] 

(105)  1 1 0 1 0 0 0  ? 0  2 0.58 0.59 [0.57,0.61]  0.58 0.59 [0.57,0.61] 

(106)  1 1 0 1 0 0 1  ? 0  11 0.57 0.59 [0.57,0.60]  0.57 0.59 [0.57,0.60] 

(107)  1 1 0 1 0 1 0  ? 0  14 0.55 0.54 [0.52,0.55]  0.55 0.54 [0.52,0.55] 

(108)  1 1 0 1 0 1 1  0 0  98 0.50 0.51 [0.51,0.52]  0.50 0.51 [0.51,0.52] 

(109)  1 1 0 1 1 0 0  0 0  63 0.64 0.60 [0.59,0.61]  0.64 0.60 [0.59,0.61] 

(110)  1 1 0 1 1 0 1  0 0  126 0.53 0.52 [0.51,0.52]  0.53 0.52 [0.51,0.52] 

(111)  1 1 0 1 1 1 0  0 0  35 0.58 0.58 [0.57,0.59]  0.58 0.58 [0.57,0.59] 

(112)  1 1 0 1 1 1 1  0 0  160 0.41 0.41 [0.40,0.41]  0.41 0.41 [0.40,0.41] 

(113)  1 1 1 0 0 0 0  ? 0  2 0.83 0.74 [0.71,0.76]  0.83 0.74 [0.71,0.76] 

(114)  1 1 1 0 0 0 1  ? 0  9 0.42 0.63 [0.60,0.66]  0.42 0.63 [0.60,0.66] 

(115)  1 1 1 0 0 1 0  ? 0  13 0.82 0.72 [0.71,0.74]  0.82 0.72 [0.71,0.74] 
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(116)  1 1 1 0 0 1 1  ? 0  10 0.47 0.49 [0.48,0.50]  0.47 0.49 [0.48,0.50] 

(117)  1 1 1 0 1 0 0  ? 0  19 0.65 0.68 [0.67,0.69]  0.65 0.68 [0.67,0.69] 

(118)  1 1 1 0 1 0 1  ? 0  7 0.51 0.57 [0.55,0.58]  0.51 0.57 [0.55,0.58] 

(119)  1 1 1 0 1 1 0  ? 0  17 0.56 0.62 [0.61,0.63]  0.56 0.62 [0.61,0.63] 

(120)  1 1 1 0 1 1 1  ? 0  14 0.54 0.60 [0.58,0.61]  0.54 0.60 [0.58,0.61] 

(121)  1 1 1 1 0 0 0  ? 0  4 0.38 0.49 [0.46,0.51]  0.38 0.49 [0.46,0.51] 

(122)  1 1 1 1 0 0 1  ? ?  1 0.39 0.44 [0.43,0.46]  0.39 0.44 [0.43,0.46] 

(123)  1 1 1 1 0 1 0  ? 0  11 0.64 0.64 [0.63,0.65]  0.64 0.64 [0.63,0.65] 

(124)  1 1 1 1 0 1 1  0 0  40 0.51 0.54 [0.53,0.55]  0.51 0.54 [0.53,0.55] 

(125)  1 1 1 1 1 0 0  0 0  49 0.62 0.64 [0.63,0.65]  0.62 0.64 [0.63,0.65] 

(126)  1 1 1 1 1 0 1  0 0  63 0.63 0.60 [0.59,0.61]  0.63 0.60 [0.59,0.61] 

(127)  1 1 1 1 1 1 0  ? 0  28 0.54 0.58 [0.58,0.59]  0.54 0.58 [0.58,0.59] 

(128)  1 1 1 1 1 1 1  0 0  72 0.51 0.52 [0.51,0.52]  0.51 0.52 [0.51,0.52] 
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Appendix 4.1.3: Full truth table for configurations associated with impactful innovations; model specification with recalibrated knowledge dissimilarity and 

substituted conditions; the assigned outcome values for more common configurations with a conservative frequency cutoff of 0.5 % (30 cases) are listed under 

“cons.”; outcome values for rarer configurations with a frequency cutoff of 5 cases are listed under “rare”. 

  Conditions  OUT   Consistency  PRI 

  INST ETHN GEND KNOW_DIS DOM PRICOL MOB  cons. rare  N raw mean 90% CI  raw mean 90% CI 

(1)  0 0 0 0 0 0 0  0 0  476 0.44 0.44 [0.44,0.44]  0.44 0.44 [0.44,0.44] 

(2)  0 0 0 0 0 0 1  0 0  126 0.46 0.48 [0.47,0.48]  0.46 0.48 [0.47,0.48] 

(3)  0 0 0 0 0 1 0  0 0  227 0.48 0.47 [0.46,0.47]  0.48 0.47 [0.46,0.47] 

(4)  0 0 0 0 0 1 1  0 0  146 0.47 0.45 [0.44,0.45]  0.47 0.45 [0.44,0.45] 

(5)  0 0 0 0 1 0 0  ? 0  28 0.23 0.24 [0.24,0.25]  0.23 0.24 [0.24,0.25] 

(6)  0 0 0 0 1 0 1  ? 0  7 0.47 0.56 [0.54,0.58]  0.47 0.56 [0.54,0.58] 

(7)  0 0 0 0 1 1 0  ? 0  26 0.66 0.58 [0.57,0.59]  0.66 0.58 [0.57,0.59] 

(8)  0 0 0 0 1 1 1  ? 0  15 0.70 0.75 [0.74,0.77]  0.70 0.75 [0.74,0.77] 

(9)  0 0 0 1 0 0 0  0 0  188 0.50 0.49 [0.48,0.49]  0.50 0.49 [0.48,0.49] 

(10)  0 0 0 1 0 0 1  0 0  118 0.41 0.41 [0.41,0.42]  0.41 0.41 [0.41,0.42] 

(11)  0 0 0 1 0 1 0  0 0  60 0.51 0.53 [0.53,0.54]  0.51 0.53 [0.53,0.54] 

(12)  0 0 0 1 0 1 1  0 0  65 0.39 0.39 [0.39,0.40]  0.39 0.39 [0.39,0.40] 

(13)  0 0 0 1 1 0 0  ? 0  17 0.40 0.53 [0.51,0.55]  0.40 0.53 [0.51,0.55] 

(14)  0 0 0 1 1 0 1  ? ?  4 0.25 0.33 [0.31,0.35]  0.25 0.33 [0.31,0.35] 

(15)  0 0 0 1 1 1 0  ? 0  6 0.74 0.75 [0.73,0.76]  0.74 0.75 [0.73,0.76] 

(16)  0 0 0 1 1 1 1  ? ?  3 0.83 0.76 [0.74,0.78]  0.83 0.76 [0.74,0.78] 

(17)  0 0 1 0 0 0 0  0 0  143 0.36 0.40 [0.40,0.41]  0.36 0.40 [0.40,0.41] 

(18)  0 0 1 0 0 0 1  ? 0  14 0.40 0.39 [0.38,0.40]  0.40 0.39 [0.38,0.40] 

(19)  0 0 1 0 0 1 0  0 0  53 0.49 0.46 [0.45,0.46]  0.49 0.46 [0.45,0.46] 

(20)  0 0 1 0 0 1 1  0 0  35 0.50 0.47 [0.46,0.47]  0.50 0.47 [0.46,0.47] 

(21)  0 0 1 0 1 0 0  ? ?  1 0.05 0.05 [0.05,0.05]  0.05 0.05 [0.05,0.05] 

(22)  0 0 1 0 1 0 1  ? ?  1 0.00 0.00 [0.00,0.00]  0.00 0.00 [0.00,0.00] 

(23)  0 0 1 0 1 1 0  ? ?  2 0.25 0.24 [0.22,0.26]  0.25 0.24 [0.22,0.26] 

(24)  0 0 1 0 1 1 1  ? ?  0 - 0.30 [0.24,0.35]  - 0.30 [0.24,0.35] 

(25)  0 0 1 1 0 0 0  0 0  79 0.46 0.45 [0.45,0.46]  0.46 0.45 [0.45,0.46] 
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(26)  0 0 1 1 0 0 1  0 0  51 0.39 0.43 [0.42,0.43]  0.39 0.43 [0.42,0.43] 

(27)  0 0 1 1 0 1 0  ? 0  22 0.32 0.34 [0.34,0.35]  0.32 0.34 [0.34,0.35] 

(28)  0 0 1 1 0 1 1  0 0  30 0.43 0.42 [0.41,0.43]  0.43 0.42 [0.41,0.43] 

(29)  0 0 1 1 1 0 0  ? ?  2 0.27 0.37 [0.34,0.41]  0.27 0.37 [0.34,0.41] 

(30)  0 0 1 1 1 0 1  ? ?  2 0.92 0.87 [0.84,0.90]  0.92 0.87 [0.84,0.90] 

(31)  0 0 1 1 1 1 0  ? ?  2 0.27 0.39 [0.36,0.42]  0.27 0.39 [0.36,0.42] 

(32)  0 0 1 1 1 1 1  ? ?  0 - 0.47 [0.38,0.56]  - 0.47 [0.38,0.56] 

(33)  0 1 0 0 0 0 0  0 0  191 0.49 0.47 [0.47,0.48]  0.49 0.47 [0.47,0.48] 

(34)  0 1 0 0 0 0 1  0 0  32 0.39 0.39 [0.38,0.39]  0.39 0.39 [0.38,0.39] 

(35)  0 1 0 0 0 1 0  0 0  111 0.43 0.43 [0.42,0.43]  0.43 0.43 [0.42,0.43] 

(36)  0 1 0 0 0 1 1  0 0  106 0.52 0.53 [0.52,0.53]  0.52 0.53 [0.52,0.53] 

(37)  0 1 0 0 1 0 0  ? ?  4 0.58 0.44 [0.42,0.47]  0.58 0.44 [0.42,0.47] 

(38)  0 1 0 0 1 0 1  ? ?  1 0.18 0.13 [0.11,0.16]  0.18 0.13 [0.11,0.16] 

(39)  0 1 0 0 1 1 0  ? 0  11 0.84 0.76 [0.74,0.78]  0.84 0.76 [0.74,0.78] 

(40)  0 1 0 0 1 1 1  ? ?  2 0.78 0.74 [0.71,0.76]  0.78 0.74 [0.71,0.76] 

(41)  0 1 0 1 0 0 0  0 0  158 0.50 0.51 [0.51,0.51]  0.50 0.51 [0.51,0.51] 

(42)  0 1 0 1 0 0 1  0 0  121 0.40 0.39 [0.39,0.40]  0.40 0.39 [0.39,0.40] 

(43)  0 1 0 1 0 1 0  0 0  52 0.52 0.49 [0.48,0.49]  0.52 0.49 [0.48,0.49] 

(44)  0 1 0 1 0 1 1  0 0  101 0.38 0.38 [0.38,0.39]  0.38 0.38 [0.38,0.39] 

(45)  0 1 0 1 1 0 0  ? 0  9 0.55 0.53 [0.50,0.55]  0.55 0.53 [0.50,0.55] 

(46)  0 1 0 1 1 0 1  ? 0  5 0.58 0.69 [0.65,0.73]  0.58 0.69 [0.65,0.73] 

(47)  0 1 0 1 1 1 0  ? 0  13 0.60 0.72 [0.70,0.74]  0.60 0.72 [0.70,0.74] 

(48)  0 1 0 1 1 1 1  ? 1  21 0.92 0.87 [0.85,0.88]  0.92 0.87 [0.85,0.88] 

(49)  0 1 1 0 0 0 0  0 0  60 0.43 0.43 [0.42,0.44]  0.43 0.43 [0.42,0.44] 

(50)  0 1 1 0 0 0 1  ? 0  12 0.35 0.39 [0.38,0.41]  0.35 0.39 [0.38,0.41] 

(51)  0 1 1 0 0 1 0  0 0  32 0.43 0.39 [0.38,0.40]  0.43 0.39 [0.38,0.40] 

(52)  0 1 1 0 0 1 1  ? 0  23 0.45 0.49 [0.48,0.50]  0.45 0.49 [0.48,0.50] 

(53)  0 1 1 0 1 0 0  ? ?  1 0.60 0.50 [0.45,0.54]  0.60 0.50 [0.45,0.54] 

(54)  0 1 1 0 1 0 1  ? ?  0 -  -  -  - 

(55)  0 1 1 0 1 1 0  ? ?  3 0.78 0.82 [0.79,0.85]  0.78 0.82 [0.79,0.85] 
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(56)  0 1 1 0 1 1 1  ? ?  1 1.00 0.88 [0.86,0.91]  1.00 0.88 [0.86,0.91] 

(57)  0 1 1 1 0 0 0  0 0  70 0.52 0.50 [0.50,0.51]  0.52 0.50 [0.50,0.51] 

(58)  0 1 1 1 0 0 1  0 0  58 0.45 0.51 [0.50,0.52]  0.45 0.51 [0.50,0.52] 

(59)  0 1 1 1 0 1 0  0 0  36 0.37 0.42 [0.41,0.42]  0.37 0.42 [0.41,0.42] 

(60)  0 1 1 1 0 1 1  0 0  36 0.39 0.42 [0.42,0.43]  0.39 0.42 [0.42,0.43] 

(61)  0 1 1 1 1 0 0  ? ?  3 0.54 0.77 [0.74,0.81]  0.54 0.77 [0.74,0.81] 

(62)  0 1 1 1 1 0 1  ? ?  4 0.87 0.93 [0.90,0.95]  0.87 0.93 [0.90,0.95] 

(63)  0 1 1 1 1 1 0  ? ?  2 0.59 0.70 [0.67,0.73]  0.59 0.70 [0.67,0.73] 

(64)  0 1 1 1 1 1 1  ? 1  5 0.89 0.93 [0.91,0.94]  0.89 0.93 [0.91,0.94] 

(65)  1 0 0 0 0 0 0  0 0  105 0.55 0.56 [0.56,0.57]  0.55 0.56 [0.56,0.57] 

(66)  1 0 0 0 0 0 1  0 0  112 0.51 0.53 [0.53,0.54]  0.51 0.53 [0.53,0.54] 

(67)  1 0 0 0 0 1 0  0 0  160 0.66 0.68 [0.67,0.68]  0.66 0.68 [0.67,0.68] 

(68)  1 0 0 0 0 1 1  0 0  265 0.62 0.61 [0.60,0.61]  0.62 0.61 [0.60,0.61] 

(69)  1 0 0 0 1 0 0  ? 0  7 0.60 0.61 [0.59,0.63]  0.60 0.61 [0.59,0.63] 

(70)  1 0 0 0 1 0 1  ? ?  4 0.43 0.64 [0.62,0.66]  0.43 0.64 [0.62,0.66] 

(71)  1 0 0 0 1 1 0  ? 0  16 0.69 0.71 [0.70,0.72]  0.69 0.71 [0.70,0.72] 

(72)  1 0 0 0 1 1 1  1 1  36 0.79 0.82 [0.80,0.83]  0.79 0.82 [0.80,0.83] 

(73)  1 0 0 1 0 0 0  0 0  145 0.57 0.59 [0.58,0.59]  0.57 0.59 [0.58,0.59] 

(74)  1 0 0 1 0 0 1  0 0  200 0.49 0.50 [0.50,0.50]  0.49 0.50 [0.50,0.50] 

(75)  1 0 0 1 0 1 0  0 0  67 0.58 0.62 [0.61,0.62]  0.58 0.62 [0.61,0.62] 

(76)  1 0 0 1 0 1 1  0 0  182 0.57 0.58 [0.57,0.58]  0.57 0.58 [0.57,0.58] 

(77)  1 0 0 1 1 0 0  ? 0  10 0.59 0.60 [0.58,0.61]  0.59 0.60 [0.58,0.61] 

(78)  1 0 0 1 1 0 1  ? 0  6 0.65 0.63 [0.62,0.65]  0.65 0.63 [0.62,0.65] 

(79)  1 0 0 1 1 1 0  ? 1  9 0.81 0.80 [0.79,0.82]  0.81 0.80 [0.79,0.82] 

(80)  1 0 0 1 1 1 1  ? 0  17 0.69 0.71 [0.69,0.73]  0.69 0.71 [0.69,0.73] 

(81)  1 0 1 0 0 0 0  ? 0  17 0.40 0.41 [0.40,0.42]  0.40 0.41 [0.40,0.42] 

(82)  1 0 1 0 0 0 1  ? 0  17 0.38 0.40 [0.39,0.41]  0.38 0.40 [0.39,0.41] 

(83)  1 0 1 0 0 1 0  0 0  44 0.72 0.69 [0.68,0.70]  0.72 0.69 [0.68,0.70] 

(84)  1 0 1 0 0 1 1  0 0  40 0.50 0.54 [0.53,0.55]  0.50 0.54 [0.53,0.55] 

(85)  1 0 1 0 1 0 0  ? ?  0 - 0.41 [0.38,0.44]  - 0.41 [0.38,0.44] 
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(86)  1 0 1 0 1 0 1  ? ?  0 - 0.00 [0.00,0.00]  - 0.00 [0.00,0.00] 

(87)  1 0 1 0 1 1 0  ? ?  2 0.00 0.00 [0.00,0.00]  0.00 0.00 [0.00,0.00] 

(88)  1 0 1 0 1 1 1  ? ?  0 - 0.33 [0.30,0.36]  - 0.33 [0.30,0.36] 

(89)  1 0 1 1 0 0 0  0 0  53 0.47 0.51 [0.50,0.51]  0.47 0.51 [0.50,0.51] 

(90)  1 0 1 1 0 0 1  0 0  63 0.45 0.44 [0.43,0.44]  0.45 0.44 [0.43,0.44] 

(91)  1 0 1 1 0 1 0  ? 0  24 0.56 0.56 [0.55,0.57]  0.56 0.56 [0.55,0.57] 

(92)  1 0 1 1 0 1 1  0 0  52 0.40 0.39 [0.39,0.40]  0.40 0.39 [0.39,0.40] 

(93)  1 0 1 1 1 0 0  ? ?  4 0.66 0.72 [0.69,0.75]  0.66 0.72 [0.69,0.75] 

(94)  1 0 1 1 1 0 1  ? ?  1 0.84 0.73 [0.70,0.76]  0.84 0.73 [0.70,0.76] 

(95)  1 0 1 1 1 1 0  ? ?  0 - 0.11 [0.10,0.13]  - 0.11 [0.10,0.13] 

(96)  1 0 1 1 1 1 1  ? ?  4 0.99 0.65 [0.62,0.68]  0.99 0.65 [0.62,0.68] 

(97)  1 1 0 0 0 0 0  0 0  35 0.53 0.53 [0.52,0.53]  0.53 0.53 [0.52,0.53] 

(98)  1 1 0 0 0 0 1  0 0  37 0.44 0.47 [0.46,0.48]  0.44 0.47 [0.46,0.48] 

(99)  1 1 0 0 0 1 0  0 0  48 0.55 0.58 [0.57,0.58]  0.55 0.58 [0.57,0.58] 

(100)  1 1 0 0 0 1 1  0 0  131 0.56 0.58 [0.58,0.59]  0.56 0.58 [0.58,0.59] 

(101)  1 1 0 0 1 0 0  ? ?  1 0.57 0.59 [0.55,0.63]  0.57 0.59 [0.55,0.63] 

(102)  1 1 0 0 1 0 1  ? ?  0 - 0.26 [0.23,0.29]  - 0.26 [0.23,0.29] 

(103)  1 1 0 0 1 1 0  ? 0  5 0.47 0.68 [0.64,0.71]  0.47 0.68 [0.64,0.71] 

(104)  1 1 0 0 1 1 1  ? ?  1 0.18 0.14 [0.12,0.15]  0.18 0.14 [0.12,0.15] 

(105)  1 1 0 1 0 0 0  0 0  76 0.60 0.59 [0.58,0.59]  0.60 0.59 [0.58,0.59] 

(106)  1 1 0 1 0 0 1  0 0  182 0.46 0.46 [0.46,0.47]  0.46 0.46 [0.46,0.47] 

(107)  1 1 0 1 0 1 0  0 0  32 0.60 0.55 [0.54,0.55]  0.60 0.55 [0.54,0.55] 

(108)  1 1 0 1 0 1 1  0 0  196 0.48 0.47 [0.47,0.48]  0.48 0.47 [0.47,0.48] 

(109)  1 1 0 1 1 0 0  ? ?  4 0.82 0.73 [0.71,0.76]  0.82 0.73 [0.71,0.76] 

(110)  1 1 0 1 1 0 1  ? 0  12 0.75 0.76 [0.74,0.78]  0.75 0.76 [0.74,0.78] 

(111)  1 1 0 1 1 1 0  ? ?  2 0.78 0.80 [0.78,0.83]  0.78 0.80 [0.78,0.83] 

(112)  1 1 0 1 1 1 1  ? 0  5 0.27 0.27 [0.25,0.28]  0.27 0.27 [0.25,0.28] 

(113)  1 1 1 0 0 0 0  ? 0  23 0.51 0.54 [0.53,0.56]  0.51 0.54 [0.53,0.56] 

(114)  1 1 1 0 0 0 1  ? 0  8 0.49 0.54 [0.53,0.55]  0.49 0.54 [0.53,0.55] 

(115)  1 1 1 0 0 1 0  ? 1  27 0.83 0.77 [0.76,0.78]  0.83 0.77 [0.76,0.78] 
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(116)  1 1 1 0 0 1 1  0 0  32 0.47 0.54 [0.53,0.56]  0.47 0.54 [0.53,0.56] 

(117)  1 1 1 0 1 0 0  ? ?  1 0.96 0.90 [0.87,0.92]  0.96 0.90 [0.87,0.92] 

(118)  1 1 1 0 1 0 1  ? ?  0 - 0.00 [0.00,0.00]  - 0.00 [0.00,0.00] 

(119)  1 1 1 0 1 1 0  ? ?  0 - 0.54 [0.11,0.96]  - 0.54 [0.11,0.96] 

(120)  1 1 1 0 1 1 1  ? ?  0 - 0.45 -  - 0.45 - 

(121)  1 1 1 1 0 0 0  0 0  63 0.58 0.61 [0.60,0.61]  0.58 0.61 [0.60,0.61] 

(122)  1 1 1 1 0 0 1  0 0  80 0.57 0.55 [0.54,0.55]  0.57 0.55 [0.54,0.55] 

(123)  1 1 1 1 0 1 0  ? 0  24 0.63 0.63 [0.62,0.64]  0.63 0.63 [0.62,0.64] 

(124)  1 1 1 1 0 1 1  0 0  91 0.51 0.54 [0.54,0.55]  0.51 0.54 [0.54,0.55] 

(125)  1 1 1 1 1 0 0  ? ?  4 0.64 0.76 [0.72,0.80]  0.64 0.76 [0.72,0.80] 

(126)  1 1 1 1 1 0 1  ? ?  3 0.99 0.68 [0.63,0.73]  0.99 0.68 [0.63,0.73] 

(127)  1 1 1 1 1 1 0  ? ?  1 0.64 0.57 [0.55,0.60]  0.64 0.57 [0.55,0.60] 

(128)  1 1 1 1 1 1 1  ? ?  2 0.99 0.67 [0.63,0.71]  0.99 0.67 [0.63,0.71] 
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Appendix 4.2: Calibration Thresholds for the Robustness Tests 

Outcome46 Calibration Threshold(s) 

Innovation Impact 

(IMPACT_INNO) 

Fuzzy calibration47: 

e: 5th percentile (poor outcomes) 

c: 50th percentile 

i: 95th percentile (highly impactful outcomes) 

Condition Calibration Threshold(s) 

Knowledge Dissimilarity 

(KNOW_DIS) 

Inverse-U-shaped fuzzy calibration: 

e1: 10th percentile 

c1: 20th percentile 

i1: 40rd percentile 

i2: 60th percentile 

c2: 80th percentile 

e2: 90th percentile 

 

Fuzzy calibration: 

e: 10th percentile 

c: 50th percentile 

i: 90th percentile 

Ethnic Diversity 

(ETHN) 

Fuzzy calibration: 

e: 0 (no ethnic diversity) 

c: 0.25 (moderate diversity) 

i: 0.80 (significant diversity) 

Gender Diversity 

(GEND) 

Fuzzy calibration: 

e: 0 (male / female only team) 

c: 0.25 (moderate diversity) 

i: 0.45 (significant diversity) 

Institutional Diversity 

(INST) 

Fuzzy calibration: 

e: 0 

c: 75th percentile 

i: 90th percentile 

Domain Experience 

(DOM) 

Crisp calibration48: 

c: > 1 (on average, each team member has filed a patent in the same domain in the past) 

Degree Centrality 

(DEG) 

Fuzzy calibration: 

e: 0 (no outside collaborations) 

c: 50th percentile 

i: 90th percentile 

Prior Collaboration 

(PRICOL) 

Fuzzy calibration: 

e: 0 (no prior collaboration) 

c: 1.5 (members have worked with each other one and a half times on average) 

i: 3 (members have worked with each other three times on average) 

Inventor Mobility 

(MOB) 

Fuzzy calibration: 

e: 10th percentile 

c: 50th percentile 

i: 90th percentile 

Recombination Novelty 

(RECOMB) 

Fuzzy calibration: 

e: 0.1 (mainly familiar combinations, exploitation) 

c: 0.5 (half the combinations are novel to the team) 

i: 1 (only unfamiliar combinations, exploration) 

 
46 Robustness tests with the recalibrated outcome were conducted using the initial calibrations for the causal conditions from 

Table 3.1. 
47 Although technically applying a fuzzy calibration here, I only use full members and full non-members to create more contrast 

in the outcome. Therefore, this can also be viewed as a crisp calibration with two thresholds. 
48 The data distribution is highly skewed with most cases exhibiting no domain experience. I therefore maintain a crisp 

calibration. 
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Appendix 4.3: Configuration Chart for Impactful Innovations with Substituted Conditions and 

Condition Calibrations for Robustness Tests. 

 Common 
Configurations 

Including Rare 
Configurations 

 (1a) (1b) (1c) (2) (3) 
   

Institutional Diversity      

Ethnic Diversity      

Gender Diversity      

Knowledge Dissimilarity (  )      

Domain Experience      

Prior Collaboration      

Mobile Inventors      
 

  

Consistency 0.85 0.82 0.85 0.83 0.87 

Raw Coverage 0.006 0.012 0.011 0.007 0.006 

Unique Coverage - 0.005 0.002 0.004 0.006 

Overall Model Consistency 0.79 0.83 

Overall Model Coverage 0.008 0.026 

Note: Knowledge dissimilarity has a logistic calibration curve. Also, for both frequency cutoffs, alternate solutions emerge (model ambiguity), 

depending on the choice of prime implicants. However, all alternate solutions have significantly lower model performance (w.r.t. consistency 

and coverage) and are, thus, not reported. 

 

Appendix 4.4: Supplemental Online Appendix 

I provide the truth tables for the analysis of the absence of the outcome (i.e., non-impactful innovations) as 

well as the truth tables for the robustness tests in an online appendix. For access, contact 

niklas.hagenow(at)tum.de. 
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Contributions and Supplemental Aids 

Contributions Chapter 2 

I developed the idea of the literature review presented in this chapter in collaboration with my supervisor 

and co-author Siddharth Vedula as well as my co-author Claudia Doblinger. I developed the conceptual 

approach to this chapter and wrote this chapter myself, while incorporating comments made by my co-

authors over multiple iterations on the manuscript. Susanne Kurowski, as additional co-author, supported 

the process by reviewing the selection of articles based on a random selection of a portion of the articles to 

be included or excluded. 

Co-authors: Siddharth Vedula, Claudia Doblinger, Susanne Kurowski 

Contributions Chapter 3 

I elaborated an earlier version of the methodological approach introduced in this chapter in collaboration 

with my supervisor and co-author Siddharth Vedula. The initial approach was based on using feature 

importance values resulting from a random forest analysis to identify the most influential conditions in a 

data-driven way. After discarding that approach, I revised some of the initial ideas and developed the 

cluster-based method by myself. Using solution consistency and coverage to compare the performance of 

different model specifications was discussed with Peer Fiss (University of Southern California) during a 

QCA Paper Development Workshop at the Antwerp Management School in December 2023. The chapter 

was written by myself and revised based on comments by my supervisor. 

Co-authors: Siddharth Vedula 

Contributions Chapter 4 

The idea and conceptual approach for the QCA study presented in this chapter was developed in 

collaboration with my supervisor and co-author Siddharth Vedula as well as my co-author Claudia 

Doblinger. The manuscript was written by myself and revised in multiple iterations based on comments 

made by my co-authors and valuable feedback received during the DRUID22 conference in Copenhagen, 

the EGOS24 conference in Milan, as well as QCA Paper Development Workshops in Zurich (December 

2022) and Antwerp (December 2023). Scholars providing comments on earlier stages of this chapter include 

Peer Fiss (University of Southern California), Adrian Duşa (University of Bucharest), Roel Rutten (Tilburg 

University), Christian Rupietta (Queen's University Belfast), and Petteri Leppänen (IE University). 

Co-authors: Siddharth Vedula, Claudia Doblinger 
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Supplemental Aids 

I used AI tools (e.g., ChatGPT) to revise the form and language of my writing. All sections were written by 

me and were merely revised using AI tools to correct spelling and punctuation and to enhance the sentence 

structure and wording to improve the overall reading flow where advisable. Suggestions were only included 

after a thorough assessment by myself. Furthermore, I used AI to aid and revise my coding in Python and 

R. For computationally intense tasks, I had access to cloud computing resources provided by the Leibniz 

Rechenzentrum (LRZ). 


