
Chinese Journal of Aeronautics, (2022), 35(7): 19–29
Chinese Society of Aeronautics and Astronautics
& Beihang University

Chinese Journal of Aeronautics

cja@buaa.edu.cn
www.sciencedirect.com
Smooth free-cycle dynamic soaring in unspecified

shear wind via quadratic programming
* Corresponding author.
E-mail address: haichao.hong@tum.de (H. HONG).

https://doi.org/10.1016/j.cja.2021.09.012
1000-9361 � 2021 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Abstract Harvesting wind energy is promising for extending long-endurance flights, which can be

greatly facilitated by a flight technique called dynamic soaring. The presented study is concerned

with generating model-based trajectories with smooth control histories for dynamic soaring maneu-

vers exploiting wind gradients. The desired smoothness is achieved by introducing a trigonometric

series parameterization for the controls, which are formulated with respect to the normalized time.

Specifically, the periodicity of the trigonometric functions is leveraged to facilitate the connection of

cycles and streamline the problem formulation. Without relying on a specified wind profile, a free-

final-time quadratic programming-based control strategy is developed for the online correction of

the flight trajectory, which requires only the instant wind information. Offline and online numerical

studies show the trade-off to achieve the smoothness and demonstrate the effectiveness of the pro-

posed method in a varying wind field.
� 2021 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Since the first observations of the flight of albatrosses by
Rayleigh1 in 1883, dynamic soaring, which is a flying technique

that some birds perform to extract kinetic energy from the
moving air to support their long-endurance flights, has inter-
ested the research community continuously.2–5 Theoretical
analysis of the flight mechanics of dynamic soaring6–8 and

advancements in computational capacity made it possible to
perform numerical optimization.9–11 These have sparked the
determination of transferring the flight pattern from birds to

aircraft, especially Unmanned Aerial Vehicles (UAVs).12–15

Offline studies rely on prescribed wind profiles. However,
accurate modeling of the complete shear wind profile is not
feasible in real world, especially for real-time tasks. Efforts

to overcome this caveat by introducing online wind estimation
are undertaken in Ref. 16. The authors propose a closed-loop
control system including a wind estimation based on the air-

craft states, which is used to re-optimize the trajectory consid-
ering current wind conditions. A feedforward-feedback
controller is used to track the planned trajectory, reusing the

results from the trajectory planner as feedforward commands.
The problem is also addressed in Ref. 17 constructing a
parameter-dependent representation of the flight path, and a

deep neural network is utilized to adjust the parameterized
flight path according to the wind conditions. In Ref. 17, the
direct control inputs are determined by a path-following con-
troller. Therefore, the correction of the trajectory and the gen-

eration of control commands are separated, which facilitates
the deployment of different path-following controllers.
Nonetheless, to follow a desired trajectory requires the
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corresponding agility of aircraft. Taking the aircraft dynamics
into consideration might enhance the general performance. In
this regard, yet another characteristic that can be improved in

the field of dynamic soaring trajectory generation is the
smoothness of the control inputs. The controls, e.g., the lift
coefficient and the bank angle, account for the flying and

lift-generating mechanism. In principle, steps in control histo-
ries are undesirable, or even unachievable. However, with the
exception of Ref. 17, most existing studies utilize optimal con-

trol methods that do not emphasis such a requirement.
The presented study of dynamic soaring trajectory online

generation in an unspecified shear wind profile is originated
in Ref. 18. Here, an approximation of the wind strength vari-

ation is introduced and utilized in a convex optimization for-
mulation with control constraints for online correcting the
soaring trajectory in an unspecified wind profile. The optimiza-

tion formulation in Ref. 18 considers a fixed final time, so the
cycle time is fixed and needs to be specified. In addition, the
smoothness of control variables cannot be guaranteed. Fur-

thermore, state constraints, such as the altitude constraint,
cannot be considered. A trigonometric series-based smooth
trajectory generation method is developed in Ref. 19: These

controls, being infinitely differentiable and analytically
defined, render more practical applicable commands and thus
higher availability of the trajectory. Moreover, constraints on
control derivatives can be incorporated without introducing

new variables. These features may enable a smooth dynamic
soaring trajectory that can be readily implemented. However,
a free cycle is yet to be realized. Therefore, this paper aims

at enhancing the previous solution by addressing these con-
cerns. First, the trigonometric series design is applied to
parameterize the control variables for obtaining the smooth-

ness. The series are formulated with respect to the normalized
time in order to cope with the free final time. Moreover, the
period of the series is designed to be the same as the cycle time

so that the controls and control derivatives are equal at the
boundary points, which enforces smooth connections of
dynamic soaring cycles. An offline simulation study compares
the minimum wind strengths required by performing an

energy-neutral cycle for the full discretization and for the
trigonometric series design. Second, the relationship between
the wind strength variation and the variation of the trajectory

is derived. The wind strength variation is determined by the
changes of the reference wind speed in a nominal wind model.
The variation of the trajectory includes the incremental

changes of states, controls, replaced by the series coefficients,
and the final time. This relationship is considered in a strictly
convex Quadratic Programming (QP) formulation with all
constraints converted to forms with respect to the increments.

Third, solving the QP problem yields an updated soaring tra-
jectory with a new cycle time, for which only instant wind
information are needed instead of the complete wind profile.

This process is repeated to continuously update the trajectory.
Online trajectory correction studies are conducted to show the
effectiveness of the proposed method, where wind measure-

ment errors are considered as well.
The contributions of this paper are summarized as follows:

(A) The trigonometric parameterization of the controls is

applied for generating dynamic soaring flight trajectories with
smooth controls. (B) The proposed series design takes advan-
tage of the periodicity of trigonometric functions to simplify
the implementation of boundary constraints on controls and
control derivatives in accordance to the periodic soaring
maneuver. (C) Considering the trigonometric series design, a
free-final-time QP formulation including state, control, and

control derivative constraints is derived, leading to a free-
cycle flight trajectory generation. An approximation of the
wind strength variation is used in the QP form for online

updating the trajectory in unspecified wind profiles.
This paper is structured to provide not only technical

details but also insight about the proposed method: First,

the problem formulation is given in Section 2. Next, the
trigonometric series parameterization is detailed in Section 3,
illustrating the mathematical properties and the utilization of
them. After the development of the parameterization method,

an offline comparison is presented in Section 4, showing the
benefits and the corresponding trade-off of acquiring smooth
control inputs. The online trajectory correction based on

quadratic programming is then developed in Section 5,
including the modeling of the wind strength variation and
the formulation of the optimization problem. The simulation

results of the online trajectory correction are presented in
Section 6, the simulation scenario of which considers a ran-
domly generated wind field. Finally, conclusions are drawn

in Section 7.

2. Problem formulation

In this section, details of the problem formulation including
the Equations of Motion (EoM) and the constraints are intro-
duced. The problem formulation, including the mathematical
model and constraints, is developed based on Refs. 6,18.

The point-mass EoM are expressed in a locally fixed inertial
navigation frame as

duKg=dt ¼ �au1D=m� au2L=m ð1aÞ
dvKg=dt ¼ �av1D=m� av2L=m ð1bÞ
dwKg=dt ¼ �aw1D=m� aw2L=m� g ð1cÞ
dxg=dt ¼ uKg ð1dÞ
dyg=dt ¼ vKg ð1eÞ
dhg=dt ¼ wKg ð1fÞ
where xg; yg, and hg are the coordinates, while uKg; vKg;wKg are

the inertial velocity components. m is the mass and g is the
gravitational acceleration. The coefficients, aij i ¼ u; v;w;ð
j ¼ 1; 2Þ, are obtained from the transformation matrix between

the aerodynamic frame and the navigation frame as

au1 ¼ cos cA cos vA ð2aÞ
av1 ¼ cos cA sin vA ð2bÞ
aw1 ¼ sin cA ð2cÞ
au2 ¼ cos lA sin cA cos vA þ sin lA sin vA ð2dÞ
av2 ¼ coslA sin cA sin vA � sinlA cos vA ð2eÞ
aw2 ¼ � cos lA cos cA ð2fÞ
where cA; vA, and lA are the aerodynamic flight-path angle,
heading angle, and bank angle, respectively. The lift L and
drag D in Eq. (1) are expressed as

L ¼ 1

2
qV2

ASCL ð3Þ

D ¼ 1

2
qV2

ASCD ð4Þ



Fig. 1 Schematic representation of a bend-type dynamic soaring

cycle.18
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where q and S are the air density and the reference area,

respectively. VA is the airspeed. The drag coefficient CD is com-
puted as a function of the lift coefficient CL as

CD ¼ CD0 þ kiC
2
L ð5Þ

where CD0 is the zero-lift drag coefficient and ki is the induced
drag factor.

The wind triangle is given by

vK ¼ vA þ vW ð6Þ
where vA; vK, and vW are the aerodynamic velocity, the inertial
velocity, and the wind velocity vectors, respectively. The iner-
tial velocity is given by

vK ¼ uKg; vKg; wKg

� �T ð7Þ
The navigation frame can be specified to yield the expres-

sion of the wind velocity vector as

vW ¼ 0; �VW; 0½ �T ð8Þ
where VW is determined by

VW ¼ VWref

ln hg=h0
� �

ln href=h0ð Þ ð9Þ

where VWref is the reference wind speed at hg ¼ href, indicating

the wind strength. Substituting Eqs. (7) and (8) to Eq. (6) leads

to

vA ¼ uKg; vKg þ VW; wKg

� �T ð10Þ
Then, VA; vA, and cA can be computed as

VA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2Kg þ vKg þ VW

� �2 þ w2
Kg

q
ð11Þ

vA ¼ arctan
vKg þ VW

uKg

� �
ð12Þ

cA ¼ arcsin
wKg

VA

� �
ð13Þ

In summary, the state and control vectors of this dynamical
system are

x ¼ uKg; vKg;wKg; xg; yg; hg
� �T ð14Þ

u ¼ CL; lA½ �T ð15Þ
Next, the constraints are described. The dynamic soaring

cycle studied in this paper is the bend-type cycle form, which
is schematically shown in Fig. 1.18 This form is known for
facilitating long-distance traveling.8 An energy-neutral cycle

supported by proper wind profiles starts and ends with the
same state values except that the displacements in the longitu-
dinal and lateral directions are free. In this study, we do not

assume that the wind profile can support an energy-neutral
cycle. Therefore, the terminal constraints are defined as

y tfð Þ ¼ hg tfð Þ; vKg tfð Þ;wKg tfð Þ� �T ð16Þ

where y is the output vector. More specifically,

y tfð Þ ¼ y 0ð Þ ¼ hg 0ð Þ; 0; 0� �T ¼ yf ð17Þ

This constraint specifies that the cycle ends at a desired alti-
tude with desired velocity direction, and yet the absolute value

of the velocity can vary. On the other hand, an energy-neutral
cycle additionally requires
ug 0ð Þ ¼ ug tfð Þ ð18Þ
The altitude should be higher than the minimum value,

which is a state inequality constraint, as

hgðtÞ P hgmin ð19Þ
Generally speaking, the altitude constraint considered here

is a conservative selection in terms of exploiting the full poten-

tial of the wind field. In a nonlinear optimization context, the
wingtip clearance constraints introduced in Ref. 13 may be
considered to improve the optimality. The safe height is chosen

considering the wingspan b according to hgmin > j 1
2
b sin lAjmax.

Boundary constraints and path constraints are considered on
controls and control derivatives. At boundary points, i.e.,
the initial and terminal points connecting soaring cycles, the

controls are equal:

u 0ð Þ ¼ u tfð Þ ¼ ui ð20Þ
The control derivatives at boundary points are designed to

be zero

_u 0ð Þ ¼ _u tfð Þ ¼ 0 ð21Þ
The path constraints on controls and control derivatives are

given as

umin 6 u 6 umax ð22Þ
_umin 6 _u 6 _umax ð23Þ
3. Trigonometric series parameterization

In this paper, we apply a trigonometric series parameterization
method,19 to formulate the control variables, where the series

are infinitely differentiable. For aircraft/birds performing
dynamic soaring, no discontinuities of any kinematic state or
control physically exist in practice. Therefore, generated trajec-
tories using the trigonometric series parameterization, which

are guaranteed to be smooth, better represent the actual move-
ment of aircraft/birds in the real-world. Moreover, a smooth
trajectory may lead to a more efficient and robust usage of

the control authority, as it avoids sacrificing control authority
for following unphysical kinks and steps in the non-smooth
optimal trajectory.

On the basis of Ref. 19, the periodicity of the series func-
tions is designed to have the characteristic that can simplify
the optimization problem. Moreover, as a free-cycle is

required, the series are formulated with respect to the normal-
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ized time s ¼ t=tf 2 0; 1½ �. The expression of the i-th variable of
the control vector is given as:

ui sð Þ ¼ a0ð Þi þ
PM
n¼1

anð Þi cos 2pnsð Þ þ bnð Þi sin 2pnsð Þ� �
¼ sMi sð Þci; i ¼ 1; 2; . . . ; q

ð24Þ

where the basis vector and the coefficient vector are given by

sMi sð Þ ¼ 1; cos 2psð Þ; . . . ; cos 2pMsð Þ;½
sin 2psð Þ; . . . ; sin 2pMsð Þ� ð25Þ

ci ¼ a0ð Þi; a1ð Þi; . . . ; aMð Þi; b1ð Þi; . . . ; bMð Þi
� �T ð26Þ

Here, M is the order of the series, and q is the number of
controls. Therefore, the control vector can be written as

u sð Þ ¼

sM1 sð Þ 0 � � � 0

0 sM2 sð Þ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � sMq sð Þ

2
66664

3
77775

c1

c2

..

.

cq

2
66664

3
77775 ¼ SM sð Þc

ð27Þ
It can be noticed that u and SM have a periodicity of 1,

which automatically guarantees that the initial and terminal
values of u and their derivatives are equal.

u
nð Þ

0ð Þ ¼ u
nð Þ

1ð Þ; n 2 N0 ð28Þ
This feature facilitates a periodic dynamic soaring pattern

that can be repeated. Using the chain rule, the time derivative
of the controls can be obtained via

_u tð Þ ¼ du sð Þ
ds

� ds
dt

¼ dSM sð Þ
ds

	 

1

tf
c ð29Þ

Also, u being a linear function of c leads that the incremen-
tal change of u and _u are linear to the increments of c.

4. Offline optimization

This section is dedicated to showing the difference of the min-

imum required wind strength for an energy-neutral cycle
between using the Full Discretization (FD) and the Trigono-
metric Series (TS) parameterization. The model parameters

and constraint values are given in Table 1. We use FAL-
CON.m,20 which is a free-of-charge optimal control software,
to generate comparison results, and the TS solution serves as

the initial solution for the online simulation in the next section.
The vehicle dynamics, i.e., the EoM in Eq. (1) are transcribed
as equality constraints in the optimization problem. By
default, FALCON.m utilizes a trapezoidal collocation for the

discretization, where the control variables at each grid point
are independent. After deploying the trigonometric series
parameterization, the controls are functions of the coefficient

vector, and a fifth order series is used. Before showing the
numerical results, the two setups for the optimization problem
formulation are summarized. For the original problem, we

have

minimize
u;tf

J ¼ VWref

subject to EoM in Eq: ð1Þ
Constraints in Eqs: ð17Þ–ð20Þ; ð22Þ

8><
>: ð30Þ
Next, the formulation with the trigonometric series param-
eterization is

minimize
c;tf

J ¼ VWref

subject to EoM in Eq: ð1Þ
Parameterization in Eq: ð27Þ
Constraints in Eqs: ð17Þ–ð23Þ

8>>>><
>>>>:

ð31Þ

One can notice that the differences in the two problem for-

mulations are the unknown variables, the parameterization of
controls, and the constraints on the control derivatives. The
controls are the unknowns in Eq. (30), while in Eq. (31) the

series coefficients are to be determined. The boundary and
path constraints on control derivatives by Eqs. (21) and (22)
are not considered in Eq. (30).

In the following, the offline optimization results are pre-
sented. The trajectories are shown in Fig. 2, and the time his-
tories of the velocity components are displayed in Fig. 3. The

time histories of controls and control derivatives are presented
in Figs. 4 and 5, respectively. For analyzing the results, the
behavior of the generated controls is examined first. It can
be noticed in Fig. 4 that, although the boundary constraints

on controls are satisfied, they lead to big undesired steps near
the boundary points. This is because the controls are fully dis-
cretized in the FD scheme, and therefore they are mutually

independent and are optimized independently. On the other
hand, the controls are by construction smooth with the TS
parameterization. Both CL and lA change smoothly. In the

TS trajectory, the boundary constraints and the continuity of
the lift coefficient lead to a larger utilization of its authority
in the beginning and in the end. This results in larger turn rates
and thus a smaller displacement in the yg direction, which can

be seen in Fig. 2. Also, as a result of the full discretization, the
control derivatives are not continuous as shown in Fig. 5.
However, the control derivatives generated by the TS parame-

terization are smooth. One additional benefit that can be
noticed is that the bounds on the derivative are achieved by
the TS method without introducing new variables, while they
are not considered in the FD scheme. Moreover, the zero con-

ditions at the boundary points are satisfied. The cycle times are
7:31 s and 7:40 s for FD and TS, respectively. The cycle time is
marginally longer for the TS solution. The minimum required

wind strength are 8:12 m=s and 8:49 m=s for FD and TS,
respectively. There is a 4:6% of suboptimality using the TS
parameterization, whereas the smoothness of controls is signif-

icantly improved.

5. Online trajectory correction

This section summarizes the different approaches used for an
online trajectory correction, consisting of wind strength varia-
tion (Section 5.1), reformulation of the dynamics (Section 5.2),

and QP formulation (Section 5.3).

5.1. Wind strength variation

The philosophy of approximating the wind strength variation

is to calculate the incremental change of a parameter in the
wind profile model in Eq. (9).18 This approach is developed
based on the assumption that the instant altitude and wind

information is available. This assumption can be justified by



Table 1 Model parameters and constraint values.

Parameter Value Parameter Value

m 8:5 kg hgmin 1:8 m

g 9:81 m=s2 b 3:5 m

q 1:225 kg=m3 x 0ð Þ ½0 m; 0 m; 2 m; 20 m=s; 0 m=s; 0 m=s�T
CD0 0:023 ui 1:5; 70 �½ �T
ki 0:019 umin 0:5; �70 �½ �T
S 0:65 m2 umax 1:5; 70 �½ �T
href 10 m _umin �1 s�1; �70 �=s

� �T
h0 0:03 m _umax 1 s�1; 70 �=s

� �T

Fig. 2 Offline: Trajectories.

Fig. 3 Offline: Time histories of inertial velocity.
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the recent progress in on-board wind estimation methods.21–24

Provided that hg and VW are known, the reference wind

strength VWref can be computed using Eq. (9), referred to as
the nominal profile hereafter. The incremental change of

VWref between two consecutive time instances, i.e., the wind
strength variation denoted by dVWref, can be thus calculated.
The process is schematically shown in Fig. 6.18 The difference
in VWref between two red dashed lines is the approximated
wind strength variation, dVWref. Moreover, it is important to

note that we do not assume that the actual wind profile is in
either the nominal shape nor any other certain shape.

5.2. Reformulation and linearization of dynamics

The derivative of the state vector with respect to the normal-
ized time s can be defined using the chain rule as:

x0 :¼ dx

ds
¼ dx

dt
� dt
ds

¼ tf
dx

dt
ð32Þ

where dx
dt

is the dynamics presented in Eq. (1), and x0 is the

reformulated dynamics that are linearized and used in the opti-

mization problem. It can be noticed that x0 is a function of
x; u;VWref, and tf as

x0 x sð Þ; u sð Þ;VWref; tfð Þ ¼ tf f x sð Þ; u sð Þ;VWrefð Þ ð33Þ
Here, using the same numerical integration method as in

the previous section, i.e., the trapezoidal rule, a discrete form
of system dynamics can be expressed as

xkþ1 ¼ x0
k þ x0

kþ1

� �ðdsÞ=2þ xk ð34Þ
where k ¼ 1; 2 . . . ;N� 1 are the discrete grid points in the
normalized cycle and ds is the normalized time step length.

Next, Eq. (34) is linearized with respect to the previous trajec-
tory denoted by superscript p as

dxkþ1 ¼ ds
2

ox0

ox

	 
p
k

dxk þ ds
2

ox0

ou

	 
p
k

duk

þ ds
2

ox0

oVWref

	 
p
k

dVWref þ
ds
2

ox0

otf

	 
p
k

dtf

þ ds
2

ox0

ox

	 
p
kþ1

dxkþ1 þ ds
2

ox0

ou

	 
p
kþ1

dukþ1

þ ds
2

ox0

oVWref

	 
p
kþ1

dVWref þ
ds
2

ox0

otf

	 
p
kþ1

dtf þ dxk

þ ekþ1 ð35Þ
where dx; du; dVWref, and dtf are the incremental changes of
states, controls, wind strength, and cycle time, respectively,
compared to the previous trajectory as

dx :¼ x� xp ð36aÞ
du :¼ u� up ð36bÞ
dVWref :¼ VWref � VWrefð Þp ð36cÞ
dtf :¼ tf � tfð Þp ð36dÞ



Fig. 4 Offline: Time histories of controls.

Fig. 5 Offline: Time histories of control derivatives.
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and e is the error in this step. This kind of method is referred to

as successive linearization25 and was already successfully
applied in other trajectory optimization tasks26–28. To make
sure that the updated states and controls still adhere to the

nonlinear dynamics, the computation of e needs to be
accounted for. First, we define the states at kþ 1 obtained
via the trapezoidal rule as

x
�p
kþ1 ¼ x0

k

� �p þ x0
kþ1

� �p� �
dsð Þ=2þ xp

k ð37Þ
Noticing that only in the initial guess provided by the off-

line simulation, where the trapezoidal rule is used,

~xp
kþ1 ¼ xp

kþ1. Otherwise, xp
kþ1 is obtained by using Eq. (36a),

and thus ~xp
kþ1 – xp

kþ1. Therefore, the expression of e can be

given by

ekþ1 ¼ ~xp
kþ1 � xp

kþ1 ð38Þ
Noticing the linearity of the control vector with respect to

the series coefficients in Eq. (27), Eq. (35) can be modified as
dxkþ1 ¼ ds
2

ox0

ox

	 
p
k

dxk þ ds
2

ox0

ou

	 
p
k

SMð Þkdc
� �

þ ds
2

ox0

oVWref

	 
p
k

dVWref þ
ds
2

@x0

@tf

	 
p
k

dtf

þ ds
2

ox0

ox

	 
p
kþ1

dxkþ1 þ ds
2

ox0

ou

	 
p
kþ1

SMð Þkþ1dc
� �

þ ds
2

ox0

oVWref

	 
p
kþ1

dVWref þ
ds
2

ox0

otf

	 
p
kþ1

dtf þ dxk

þ ekþ1 ð39Þ
To serve the purpose of determining unknown variables,

Eq. (39) is rearranged. Moving all the terms on the right-
hand side except the ones with dVWref and e to the left hand
side yields

In � ds
2

ox0

ox

	 
p
kþ1

� �
dxkþ1 � In þ ds

2

ox0

ox

	 
p
k

� �
dxk

� ds
2

ox0

ou

	 
p
k

SMð Þk þ
ox0

ou

	 
p
kþ1

SMð Þkþ1

� �
dc

� ds
2

ox0

otf

	 
p
k

þ ox0

otf

	 
p
kþ1

� �
dtf

¼ ds
2

ox0

oVWref

	 
p
k

þ ox0

oVWref

	 
p
kþ1

� �
dVWref þ ekþ1 ð40Þ

The relationships for all grid points, k ¼ 1; 2; . . . ; N� 1,

can be expressed using Eq. (40). Considering

F�
x

� �
k
¼ In � ds

2

ox0

ox

	 
p
k

ð41aÞ

Fþ
x

� �
k
¼ In þ ds

2

ox0

ox

	 
p
k

ð41bÞ

Fc½ �k ¼
ds
2

ox0

ou

	 
p
k

SMð Þk þ
ox0

ou

	 
p
kþ1

SMð Þkþ1

� �
ð41cÞ

Ftf

� �
k
¼ ds

2

ox0

otf

	 
p
k

þ ox0

otf

	 
p
kþ1

� �
ð41dÞ

FVWref

� �
k
¼ ds

2

ox0

oVWref

	 
p
k

þ ox0

oVWref

	 
p
kþ1

� �
ð41eÞ

the relationships can be written in a compact manner as:

F�
x

� �
2

0 � � � 0

0 F�
x

� �
3

� � � 0

..

. ..
. . .

. ..
.

0 0 0 F�
x

� �
N
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dx2

dx3

..

.

dxN
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�
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x
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. . .

. ..
.
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x

� �
N�1
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dx1

dx2
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.

dxN�1
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3
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Fc½ �1
Fc½ �2
..
.
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2
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3
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�

Ftf

� �
1

Ftf

� �
2

..

.

Ftf

� �
N�1

2
666664

3
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dtf ¼

FVWref

� �
1

FVWref

� �
2

..

.

FVW ref

� �
N�1

2
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3
777775
dVWref þ

e2

e3

..

.

eN

2
66664

3
77775

ð42Þ



Fig. 6 Approximations of wind profile.18
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The above equation can be further modified as

Mzo ¼ vþ e ð43Þ
where

M¼

� Fþ
x

� �
1

F�
x

� �
2

0 � � � 0 � Fc½ �1 � Ftf

� �
1

0 � Fþ
x

� �
2

F�
x

� �
3

� � � 0 � Fc½ �2 � Ftf

� �
2

..

. ..
. . .

. . .
. ..

. ..
. ..

.

0 0 0 � Fþ
x

� �
N�1

F�
x

� �
N

� Fc½ �N�1 � Ftf

� �
N�1

2
666664

3
777775

ð44aÞ
zo ¼ dx1ð ÞT; dx2ð ÞT; . . . ; dxNð ÞT; dcð ÞT;dtf

h iT
ð44bÞ

v¼

FVW ref

� �
1

FVW ref

� �
2

..

.

FVW ref

� �
N�1

2
66664

3
77775dVWref ð44cÞ

e¼ e2ð ÞT; e3ð ÞT; . . . ; eNð ÞT
h iT

ð44dÞ

Here, zo from the left-hand side consists of all unknown
increments that are used for correcting the flight trajectories.

On the right-hand side, there are two terms, namely, v and e,
representing the increments in states caused by the wind
strength variation and the linearization errors, respectively.

We assume that the wind strength variation between two con-
secutive steps is small, as the step itself is small. Therefore,
dVWref is considered to be approximately equal to the wind
strength variation obtained in Section 5.1 as

dVWref � dVWref ð45Þ
Taking into account the nonlinear EoM, the linearized

equation in Eq. (43) specifies the relationship between the wind
strength variation and the increments of states, series coeffi-

cients, and the final time. This equation is considered in the
QP formulation detailed in the next section.

5.3. Quadratic programming formulation

The QP problem is formulated for correcting the flight trajec-
tory online based on the initial solution, which is the energy-

neutral trajectory that has been shown in Section 4. The core
objective is to determine the increment variables and update
the cycle time and the associated controls for performing

appropriate dynamic soaring in an unspecified wind profile.
To do this, at first, the constraints in Section 2 are converted
to expressions with respect to the unknown variables. After
that, some constraints that facilitate the online implementation
are given.

The current time step is defined as

kc 2 1; 2; 3; . . . ;N� 1f g, being any step within a cycle. The
optimization formulation is applied to a shrinking horizon.
First, the terminal constraint that specifies the final altitude

and the velocity direction in Eq. (17) is modified into

oy
ox

dxN ¼ yf �
oy
ox

dxp
N ð46Þ

Next, the boundary constraints of controls and control
derivatives are reformulated. As the initial guess satisfies these
constraints, the increments being zero guarantee the satisfac-

tion of the constraints in Eqs. (20) and (21). Moreover, as con-
trols are parameterized as trigonometric series, the constraints
are on the increment of series coefficients as

duN ¼ SMð ÞNdc ¼ 0 ð47Þ

du
_
N ¼ dSM

ds

	 

N

dc ¼ 0 ð48Þ

Then, the inequality constraints in Eq. (19) are modified.

The minimum altitude constraint can be expressed by

ohg
ox

xk > hgmin �
ohg
ox

xp
k; k ¼ kc; kc þ 1; . . . ;N� 1 ð49Þ

The path constraints in Eqs. (23) and (22) for
k ¼ kc; kc þ 1; . . . ;N are rewritten as

umin � upk 6 duk ¼ SM½ �kdc 6 umax � upk ð50Þ

u
_
min � u

_ p
k 6 du

_
k � 1

tpf

dSM

ds

	 

k

dc 6 u
_
max � u

_ p
k ð51Þ

The online constraints include an equality that regulates the
current states, equality constraints that ensure the smoothness

of the control histories, and an inequality constraint that min-
imize the deviation of the terminal velocity to the initial veloc-
ity. The state constraints are given as

dxkc ¼ xa
kc
� xp

kc
ð52Þ

where xa
kc
is the actual states at k ¼ kc. This constraint guaran-

tees that the actual location and velocity are on the updated
trajectory. As the control histories are parameterized as
trigonometric series, they are inherently smooth. However, to

ensure that the controls are still continuous with respect to
the previous and future control histories after the update of
trajectory, the following constraints are enforced:

dukc ¼ SMð Þkcdc ¼ 0 ð53aÞ
dukcþ1 ¼ SMð Þkcþ1dc ¼ 0 ð53bÞ

For facilitating repeated cycles of dynamic soaring, the final
speed is designed to be close to the initial speed. An inequality

constraint on ug is formulated as

ugN � ug i
�� �� < r ð54Þ
where ug i is the initial value, and r is a new unknown variable

and a positive penalty variable to be minimized:

r > 0 ð55Þ
As a shrinking horizon is concerned, the vector is defined as

zc ¼ dxkcð ÞT; . . . ; dxNð ÞT; dcð ÞT; dtf
h iT

ð56Þ



Fig. 7 Single-cycle: Trajectories and wind profiles.

Fig. 8 Single-cycle: Time histories of speed and altitude.

Fig. 9 Single-cycle: Time histories of inertial velocity.
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Therefore, the total unknown variable vector to be deter-
mined is defined as

z ¼ zcð ÞT; r
h iT

ð57Þ

Recall that the existing variables in zo are all incremental

changes and expected to be minimized. Therefore, a quadratic
cost function is selected to minimize all unknowns as:

J ¼ zð ÞTHz ð58Þ
where H is a positive definite weighting matrix.

minimize
z

J ¼ zð ÞTHz

subject to M kc : N� 1½ �zc ¼ v kc : N� 1½ � þ e kc : N� 1½ �
Constraints in Eqs: ð46Þ–ð55Þ

ð59Þ
where kc : N� 1½ � denotes the rows from kc to N� 1. It can be
noted that the optimization problem in Eq. (59) is of a strictly

convex QP form. Therefore, it can be efficiently solved by a
dedicated solver. Moreover, the QP problem is solved in
between every two consecutive time steps to correct/update

the flight trajectory, which does not rely on iterations. The
needed information consists of the previous trajectory, the
actual states at the current time step, and the wind strength
variation.

6. Numerical results of online trajectory correction

In this section, simulation studies are made for demonstrating

the effectiveness of the proposed methods and results are pre-
sented. The simulation parameters are the same as in the pre-
vious Section 4. Time-varying wind profiles are generated for

simulation purpose. We do not assume that the wind profile
is always strong enough to support an energy-neutral dynamic
soaring cycle. The used profiles may not coincide with the real-

world patterns of the shear wind, but it is rational to verify the
proposed method in randomly generated scenarios.

6.1. Single-cycle flight

This section presents the simulation results of a single cycle
flight for a close observation of the flight. The actual wind pro-
file is designed as

VW ¼ exp � xg

50þ hg

� �
VWref

ln hg=h0
� �

ln href=h0ð Þ ð60Þ

At xg ¼ 0, the actual profile is equivalent to the minimum-

strength nominal profile. Moreover, except the initial time, the
profile is not of the nominal shape. The overall strength

decreases as xg increases. The profiles are visualized in

Fig. 7. The opaque surface is the actual wind profile, while
the transparent surface represents the minimum-strength nom-
inal profile, which also shows the actual flight trajectory and
the initial trajectory. The actual flight trajectory deviates from

the initial trajectory and is generally lower, which can be
checked from the time histories of hg shown in Fig. 8. Fig. 8

also displays the time histories of the inertial speed. The termi-
nal speed are 19:48 m=s and 20 m=s for the actual and initial

trajectories, respectively. Therefore, the actual trajectory still
makes good use of the wind energy to support the non-
powered flight, although the actual wind profile is not strong
enough to support an energy-neutral cycle. Moreover, seen

from the histories of the inertial velocity in Fig. 9, the terminal
velocity satisfies the terminal output constraints, as the termi-
nal values of vg and wg are both zero. The cycle times for the

actual and initial trajectories are 6:91 s and 7:41 s, respectively.



Fig. 10 Single-cycle: Time histories of controls.

Fig. 12 Multi-cycle: Trajectory and wind profile.
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A shorter cycle is generated online compared to the initial solu-
tion. The control histories are shown in Fig. 10, and the histo-
ries of the control derivatives are embodied in Fig. 11. The
boundary constraints are all met, facilitating good connections

of cycles. The path constraints are satisfied as well. The conti-
nuity of control derivatives suggests that the smoothness of
controls are retained in the online updating process. Solving

a QP problem on a Windows platform with an i7-6700 and
16 GB of RAM using OSQP 29, which is a dedicated convex
QP problem solver, in a Matlab environment takes no more

than 0:005 s, whereas the time step size is around 0:07 s.

6.2. Multiple-cycle flight

In this section, a simulation is carried out to verify the effec-

tiveness of the proposed method in a multiple-cycle dynamic
soaring flight. According to Ref. 21, when all measurements
are used, an accurate wind estimation can be achieved. How-

ever, to demonstrate the effectiveness of the proposed method
in a practical scenario in this section, we consider the wind
measurement error as a normally distributed uncertainty

(3r ¼ 10%). The wind profile is expressed by
Fig. 11 Single-cycle: Time histories of control derivatives.
VW ¼ 1þ 0:4 sin
�xg

50

� 
� 

VWref

ln hg=h0
� �

ln href=h0ð Þ ð61Þ
and visualized in Fig. 12, in which the flight trajectory is also
shown. Fig. 13 depicts the time histories of inertial speed
and altitude. Cycles are distinguished by the background grids.
The cycle times are 7:19 s; 7:18 s; 7:59 s; 7:87 s, and 7:32 s. In

combination with the wind profile seen in Fig. 12, one can
notice that generally, a dynamic soaring cycle is shorter and
has a smaller change in altitude when the wind is weaker

and vice versa. The velocity components are embodied in
Fig. 14, showing that the periodical dynamic soaring cycles
Fig. 13 Multi-cycle: Time histories of speed and altitude.

Fig. 14 Multi-cycle: Time histories of inertial velocity.



Fig. 15 Multi-cycle: Time histories of controls.

Fig. 16 Multi-cycle: Time histories of control derivatives.
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are performed with slight differences due to the wind variation.
The control histories, shown in Fig. 15, exhibit some differ-
ences among cycles. This is because the controls, especially
the lift coefficients, need to be adjusted according to the wind

strength variation, in order to make good use of the wind gra-
dients. Finally, the time histories of the control derivatives are
shown in Fig. 16. Control derivatives remain bounded. The

oscillations are inevitable owing to the wind variation and
the measurement errors. Consequently, the proposed method
still performs well in the presence of wind measurement

uncertainties.

7. Conclusions

This work investigated the smooth trajectory generation for
dynamic soaring maneuvers. The introduction of the trigono-
metric series parameterization significantly enhances the

smoothness of controls with a fair trade-off in terms of the min-
imum required wind strength for performing an energy-neutral
cycle. The expression of the trigonometric series also by con-
struction guarantees the connection of control inputs, simplify-
ing the optimization formulation. The online optimization-

based strategy utilizes thewind strength variation approximated
by the incremental change of a referencewind strength to correct
the flight trajectory, featuring a free cycle time. The formulated

quadratic programming problem can be very efficiently solved.
The effectiveness of the proposed method is verified in scenarios
where single andmultiple dynamic soaring cycles are performed

while the wind profiles are unspecified.
Future works include: (A) the study with more realistic wind

field modeling, (B) the development and utilization of a six
degrees-of-freedom dynamicmodel, (C) powered dynamic soar-

ing, and (D) hardware-in-the-loop simulations. Furthermore,
the control algorithm will be utilized in the scope of a research
project on the application of dynamic soaring for UAVs.
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20. Rieck M, Bittner M, Grüter B, et al. FALCON.m user guide.

Institute of Flight System Dynamics, Technical University of

Munich, 2020. Available from: url:www.falcon-m.com..

21. Rhudy MB, Gu Y, Gross JN, et al. Onboard wind velocity

estimation comparison for unmanned aircraft systems. IEEE

Trans Aerosp Electron Syst 2017;53(1):55–66.
22. Tian PZ, Chao HY, Rhudy M, et al. Wind sensing and estimation

using small fixed-wing unmanned aerial vehicles: A survey. J

Aerosp Inf Syst 2021;18(3):132–43.

23. Bronz M, Gavrilovic N, Drouin A, et al. Flight testing of dynamic

soaring part-1: Leeward inclined circle trajectory. AIAA Scitech

2021 Forum; 2021 Jan 11–15 21; Virtual Event.Reston: AIAA;

2021. p. 1527.

24. Sun K, Regan CD, Egziabher DG. GNSS/INS based estimation of

air data and wind vector using flight maneuvers. 2018 IEEE/ION

Position, Location and Navigation Symposium (PLANS). 2018

Apr 23-26; Monterey, USA. Piscataway: IEEE Press; 2018. p.

838–49.
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