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A B S T R A C T

Fatigue failure risk can be mitigated both by increasing the design fatigue capacity of the structural components
and by conducting more frequent inspection and maintenance actions. The optimal combination of these two
types of safety measure is structure dependent. It depends, among others, on the relative cost of the safety
measures, the consequences of failure, the level of redundancy, the number of deteriorating components and the
statistical dependence among components. In this article, a generic system representation is used to parametrise
deteriorating structures according to these system characteristics. Based on this system representation, we
investigate patterns of optimal life-cycle fatigue mitigation and provide recommendations for fatigue design.
Results show that it can be cost-efficient to achieve system-level safety requirements with high component
reliabilities at design and less frequent inspections. Furthermore, we show that the minimum requirements
for fatigue design that are typically prescribed in design standards to avoid the need for inspections are not
enough unless sufficient redundancy is ensured.
1. Introduction

The reliability of fatigue deteriorating structures can be affected by
mitigation measures at different stages of their life cycle. For instance,
the deteriorating components can be designed with higher or lower
reliability at the design stage. Moreover, inspection and maintenance
(I&M) actions can be conducted during the service life of the structure;
e.g., inspections can be used to identify fatigue damage, which can then
be repaired. In general, a combination of mitigation measures can be
specified in order to satisfy a certain safety level during the service
life of a structure. This implies that minimum requirements for fatigue
design should depend on life-cycle considerations, such as how often
inspections will be conducted.

Standards [1–3] and recommended practice guidelines [4,5] for the
fatigue design of steel components typically prescribe different safety
levels depending on the accessibility for inspections and repair. For
accessible fatigue hot spots, i.e., hot spots that can be inspected, the
damage-tolerant approach can be followed. According to this approach,
cracks are tolerated and expected to develop and grow as long as
they are controlled by a preventive I&M program. Safety requirements
for component fatigue design are typically specified by the fatigue
design factor, denoted 𝐹𝐷𝐹 , which is defined as the ratio between the
deterministic fatigue life 𝑇𝐹𝐿 of the component and its design service
life 𝑇𝑆𝐿, i.e., 𝐹𝐷𝐹 = 𝑇𝐹𝐿∕𝑇𝑆𝐿. Generally, a fatigue design can be
specified for a component to satisfy a 𝐹𝐷𝐹 . For example, the diameter
and wall thickness of a tubular beam can be enlarged to increase
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its 𝐹𝐷𝐹 . Regarding the optimisation of the geometrical design of a
component to achieve a certain 𝐹𝐷𝐹 , the reader is referred to Schafhirt
et al. [6], among others.

Although fatigue design depends on the accessibility for inspections
and repair, standards and guidelines do not provide clear recommen-
dations on how to efficiently combine design and I&M measures to
mitigate fatigue failures [7,8]. The interplay between I&M and fatigue
design has been addressed in the literature, mainly in relation to the
offshore oil and gas industry in the 90s [9,10] and more recently,
in relation to the offshore wind energy sector [11,12]. Sørensen [11]
and Márquez-Domínguez and Sørensen [13] show that a significant
reduction of the 𝐹𝐷𝐹 can be tolerated by reducing the interval be-
tween inspections in an application for fatigue design of offshore wind
turbines. It was found that for a target reliability index of 3.1, the 𝐹𝐷𝐹
can be reduced from 6.1 (case with no inspections) to 1 by setting
the interval between inspections to 2.5 years. An overview of relevant
research on reliability and risk-based life-cycle fatigue optimisation can
be found in Mendoza et al. [8], where it is concluded, in agreement
with Yang et al. [14], that research in this field has typically neglected
system effects. Furthermore, [8] shows that system effects should be
considered to inform optimal life-cycle mitigation decisions as they
affect the risk of failure and the efficiency of inspections. Similar
conclusions were drawn by Moan [7], who indicated that inspection
scheduling and design for robustness need to be simultaneously re-
garded to arrive at acceptable risks. Recent efforts have been devoted to
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the modelling and reliability assessment of deteriorating systems with
statistically dependent components, see among others [15–19].

The consideration of system effects and the simultaneous optimisa-
tion of design and I&M is conceptually complex and computationally
demanding [8]. Therefore, the implementation of these aspects in the
general engineering practice is challenging. In this paper, we simulta-
neously optimise the fatigue design and I&M plans for systems with
varying redundancy and number of deteriorating components. These
results are used to identify patterns on how these system characteristics
affect the optimal fatigue mitigation strategy based on reliability and
risk criteria. Based on the identified patterns, general recommendations
for fatigue design are given. The methodology is presented in Section 2.
So-called equivalent Daniels systems are used to parametrise structural
systems according to the corresponding system features of interest and
to evaluate their time-variant reliability. A parametric investigation,
which is specified in Section 3, is conducted to study the optimal
fatigue mitigation strategy as a function of the system parameters. The
results are shown in Section 4. Practical implications of the obtained
results are discussed in Section 5. The main outcomes of the article are
summarised in Section 6.

2. Methodology

The aim is to investigate how the optimal life-cycle strategy to mit-
igate fatigue failures varies for different structural systems. Structural
systems are parametrised according to relevant system features such as
the level of redundancy and the number of deteriorating components.
An efficient parametric representation of structural systems is presented
in Section 2.1. This system representation is then used to conduct
a parametric study, as described in Section 3. The considered life-
cycle strategies encompass design and I&M mitigation actions, which
are respectively specified by the 𝐹𝐷𝐹 of the fatigue hot spots and
the frequency between inspection campaigns. The optimality of the
strategies is determined according to risk and reliability criteria. The
mathematical formulation of the corresponding objective functions is
presented in Section 2.2.

2.1. System idealisation with equivalent Daniels systems

Optimal fatigue mitigation depends on various system characteris-
tics. To arrive at meaningful recommendations on how to efficiently
mitigate fatigue deterioration, we study the patterns of the optimal fa-
tigue mitigation strategy as a function of relevant system characteristics
by means of a parametric study. For that purpose, structural systems are
to be conveniently parametrised. The desired system parametrisation
should allow to efficiently evaluate the system reliability as a function
of a mitigation strategy and the system parameters.

Generically, a structural system with 𝑛 components or fatigue hot
pots, and subject to extreme static and cyclic loads is considered. As
iscussed in [20], an exact representation of the structural system,
.g., as a combination of parallel subsystems in series [21], is not
onducive to general conclusions. As an alternative, the role of a given
omponent in the structural integrity of the system can be captured by
set of features such as the importance of the component for structural

ntegrity, the number of deteriorating components and the dependence
mong the deterioration processes at different locations within the
tructure [20].

Gharaibeh et al. [22] propose to measure the importance of a
omponent based on the sensitivity of the system reliability to changes
n the component’s reliability, both in the intact and post-failure states.
hese measures are useful to assess design for ultimate limit state (ULS).
owever, they are not meaningful to assess mitigation of deterioration
echanisms because they do not measure how the system reliability

s reduced by given component damage. For that purpose, we use the
ingle element importance 𝑆𝐸𝐼 proposed in [20]:

𝐸𝐼 = Pr(𝐹 |𝐹 ∩ ... ∩ 𝐹 ∩ 𝐹 ∩ 𝐹 ∩ ... ∩ 𝐹 ) − Pr(𝐹 | ∩𝑛 𝐹 ), (1)
2

𝑖 𝑠𝑦𝑠 1 𝑖−1 𝑖 𝑖+1 𝑛 𝑠𝑦𝑠 𝑗=1 𝑗
hich measures the increase of the structure’s probability of failure
esulting from failure of component 𝑖 only. Note that 𝐹𝑠𝑦𝑠 is the event of
ystem failure, and 𝐹𝑗 and 𝐹𝑗 indicate failure and survival of a compo-

nent 𝑗, respectively. The undamaged probability of system failure can
be alternatively expressed through the annual reliability index of the
undamaged system 𝛽𝐷̄𝑆 as

Pr(𝐹𝑠𝑦𝑠| ∩𝑛𝑗=1 𝐹𝑗 ) = Φ(−𝛽𝐷̄𝑆 ), (2)

where Φ(⋅) is the cumulative distribution function of the standard
normal distribution.

The 𝑆𝐸𝐼 of the components, together with a joint probabilistic
representation of deterioration, load, and resistance can be used to
represent a deteriorating structural system. More specifically, Straub
and Der Kiureghian [20] use this information to emulate the effect of
the 𝑛 components on the system reliability by means of 𝑛 equivalent
Daniels systems (EDS) of the form of Fig. 1. The EDS representa-
tion is used there to compute the required component reliabilities
needed to satisfy a given system reliability. Here, this idealisation is
extended to consider time-variant system reliability, which is linked
to a physics-based model of fatigue deterioration. The extended repre-
sentation allows us to compute the updated system reliability resulting
from inspections and repair actions at discrete points in time. Thus, the
extended representation can be used to determine optimal combined
design and integrity management strategies to mitigate fatigue failures
for components with given importance within a system.

The EDS model of a component 𝑖 consists of 𝑘 independent and
statistically identical Daniels systems in series, see Fig. 1. A Daniels
system is a system composed of statistically identical elements in par-
allel that are equally loaded [23,24]. The 𝑘 Daniels systems of an EDS
have 𝑛𝑖 elements and are subject to i.i.d. extreme annual loads 𝐿𝑗 , with
𝑗 = 1, 2,… , 𝑘. The EDS elements have i.i.d. ultimate resistances 𝑅𝑗,𝑙,
with 𝑙 = 1, 2,… , 𝑛𝑖. As discussed in [20], the parameter 𝑛𝑖 represents
the redundancy of the structural system with respect to failure of
component 𝑖; while 𝑘 provides information about the total number of
deteriorating components. By varying 𝑛𝑖 and 𝑘, the EDS serves as a
proxy for structural components with varying importance in systems
of different sizes.

The calibration of the EDS representation is elaborated hereafter.
The determination of the probability distribution of 𝐿𝑗 and 𝑅𝑗,𝑙 is pre-
sented in Section 2.1.1. The procedure to obtain the parameters 𝑛𝑖 and
𝑘 is explained in Section 2.1.2. The estimation of the annual probability
of system failure of the EDS is elaborated in Section 2.1.3. Furthermore,
the ability of the EDS idealisation to capture the behaviour of struc-
tural systems is studied with a case study in Appendix, which shows
that the estimated system reliability obtained from the idealisation is
sufficiently accurate to be used for reliability- and risk-based design.

2.1.1. Computation of 𝐿𝑗 and 𝑅𝑗,𝑙
The loads 𝐿𝑗 and resistances 𝑅𝑗,𝑙 of an EDS represent the char-

acteristics of the dominant load on the true structure and its global
ultimate capacity, respectively. For that purpose, they are modelled
with the same distribution type and coefficient of variation as per the
true structure. Let 𝜇𝑅𝑖 be the mean of 𝑅𝑗,𝑙 and 𝜇𝐿 be the mean of 𝐿𝑗
for the EDS of component 𝑖. The ratio 𝜇𝑅𝑖𝑛𝑖∕𝜇𝐿 is obtained iteratively
from the condition that the annual reliability index of the undamaged
EDS 𝛽′

𝐷̄𝑆
is equal to that of the true undamaged structure, i.e., 𝛽𝐷̄𝑆 in

Eq. (2):

𝛽′
𝐷̄𝑆

= −Φ−1 (1 − [1 − Pr(𝐶|𝑁𝐹 = 0)]𝑘
)

= 𝛽𝐷̄𝑆 , (3)

where 𝐶 denotes the event of failure of one of the 𝑘 Daniels systems and
𝑁𝐹 is the number of elements failed due to fatigue in the same Daniels
system. The relation between Eq. (3) and the load and resistance
parameters of the EDS depends on the behaviour of the elements.
Formulations for ideal brittle and ductile elements are shown in Straub
et al. [20]. For ductile behaviour, it is

Pr(𝐶|𝑁𝐹 = 𝑛𝐹 ) = Pr

(𝑛𝑖−𝑛𝐹
∑

𝑅𝑖 − 𝐿 ≤ 0

)

, (4)

𝑖=1
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Fig. 1. The equivalent Daniels system for a component 𝑖 is composed of 𝑘 statistically identical and serially connected Daniels systems, which consist of 𝑛𝑖 elements with capacities
𝑅𝑗,𝑙 (𝑗 ∈ [1, 𝑘], 𝑙 ∈ [1, 𝑛𝑖]) that are uniformly loaded by 𝐿𝑗 .
Source: Figure adapted from [20].
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where 𝑅𝑖 and 𝐿 have the distributions of 𝑅𝑗,𝑙 and 𝐿𝑗 , respectively, for
the EDS of component 𝑖.

It is worth noticing that the assumptions on the material behaviour
are not critical provided that the load and resistance variables are
calibrated to a certain system reliability [20].

2.1.2. Computation of 𝑛𝑖 and 𝑘
The parameter 𝑛𝑖 is a measure of the importance of component

𝑖 within the real structure and therefore, of the redundancy of the
structure given failure of component 𝑖. The parameter 𝑛𝑖 is computed
from the condition that the EDS elements must have the same single
element importance 𝑆𝐸𝐼 𝑖 of the corresponding component of the true
structure. The conditional probability of the true system given failure of
component 𝑖 needed to assess 𝑆𝐸𝐼 𝑖 from Eq. (1) can be computed from
pushover analysis, as explained in [8]. The 𝑆𝐸𝐼 of an EDS element is
computed noting that all elements of a given EDS are equally important
and that the failures of the different Daniels systems are statistically in-
dependent. The following expression can then be employed to compute
𝑛𝑖

𝑆𝐸𝐼 𝑖 = 1 − [1 − Pr(𝐶|𝑁𝐹 = 0)]𝑘−1[1 − Pr(𝐶|𝑁𝐹 = 1)] −𝛷(−𝛽𝐷̄𝑆 ), (5)

where the conditional probabilities Pr(𝐶|𝑁𝐹 = 0) and Pr(𝐶|𝑁𝐹 = 1)
are related to 𝑛𝑖 depending on the material behaviour, as explained in
Section 2.1.1.

The parameter 𝑘 is computed as the aggregate of the contributions
of the EDS elements in their respective systems:

𝑘 =
𝑛
∑

𝑖=1

1
𝑛𝑖
. (6)

It follows from this equation that larger 𝑛 leads to larger 𝑘 for constant
𝑛𝑖, with 𝑖 = 1,… , 𝑛. Thus, this parameter indirectly accounts for the
umber of deteriorating components of the true system.

The parameters 𝑛𝑖, 𝑘, 𝐿𝑗 and 𝑅𝑗,𝑙 of the EDS representation are
iteratively computed according to the algorithm in [20].

2.1.3. Probability of failure of the EDS
A simplified model to compute the annual probability of system fail-

ure is here regarded. On a system level, the integrity of any component
𝑖 is represented by a binary process with possible states: failed 𝐹𝑖(𝑡)
r not failed 𝐹𝑖(𝑡). This implies that the integrity of the structure is
ntact until any of its components fails. This simplification is acceptable
or systems subject to high-cycle fatigue for which structural collapse
s mainly driven by an extreme weather event [20], such as offshore
tructures subject to cyclic wave loading. For a system with 𝑛 compo-
ents, the deterioration state of the structure can then be determined
y a process 𝛹 (𝑡), which may take one of the 2𝑛 possible deterioration
tates, ranging from the undamaged state, 𝜓1 = {

⋂𝑛
𝑖=1 𝐹𝑖}, to the state

ith all components failed, 𝜓2𝑛 = {
⋂𝑛
𝑖=1 𝐹𝑖}, including all intermediate

ombinations. Let 𝐹 ∗
𝑠𝑦𝑠(𝑡) be the interval failure event, defined as the

vent of system failure in (𝑡−1, 𝑡] [25]. The interval failure probability
f the system Pr(𝐹 ∗

𝑠𝑦𝑠(𝑡)) is given by the total probability theorem:

Pr
(

𝐹 ∗
𝑠𝑦𝑠(𝑡)

)

=
2𝑛
∑

Pr
(

𝐹𝑠𝑦𝑠|𝜓𝑝
)

Pr
(

𝛹 (𝑡) = 𝜓𝑝
)

. (7)
3

𝑝=1 a
For an EDS with 𝑛𝑖𝑘 elements, the number of unique deterioration
tates is lower than 2𝑛𝑖𝑘, because all of its elements are statistically
nterchangeable. Hence, a more convenient way of specifying a dete-
ioration state of an EDS, denoted 𝛹 ′ = 𝜓 ′

𝑝, is by the number of failed
lements in each Daniels system 𝑁𝐹 ,𝑗 , 𝑗 = 1, 2,… , 𝑘. The outcome space
f 𝛹 ′ contains (𝑛𝑖 + 1)𝑘 distinct states, ranging from 𝜓 ′

1 = {𝑁𝐹 ,1 =
,… , 𝑁𝐹 ,𝑘 = 0} to 𝜓 ′

(𝑛𝑖+1)𝑘
= {𝑁𝐹 ,1 = 𝑛𝑖,… , 𝑁𝐹 ,𝑘 = 𝑛𝑖}. For a given

deterioration state, the conditional probability of failure of the EDS is
computed as

Pr
(

𝐹𝑠𝑦𝑠|𝜓
′
𝑝

)

= 1 −
𝑘
∏

𝑗=1

[

1 − Pr
(

𝐶𝑗 |𝑁𝐹 ,𝑗 (𝜓 ′
𝑝)
)]

, (8)

here 𝐶𝑗 is the event of failure of the 𝑗th Daniels system. The condi-
ional probability of failure of the 𝑗th Daniels system can be computed
sing Eq. (4).

The probability of occurrence of a certain deterioration state, i.e.,
r(𝛹 (𝑡) = 𝜓𝑝), depends on the deterioration condition of the compo-
ents. Let 𝒂(𝑡) be a vector that collects the fatigue conditions of the
omponents of the system of interest: 𝒂(𝑡) = {𝑎1(𝑡), 𝑎2(𝑡),… , 𝑎𝑛(𝑡)}. The
atigue condition of the components can be expressed by their crack
engths and their integrity can be evaluated by a fracture-mechanics
imit state function, as explained below in Section 3.2. The probability
f the system taking a certain deterioration state is then given by

Pr(𝛹 (𝑡) = 𝜓𝑝) = ∫𝒂(𝑡)
𝜓(𝒂(𝑡))𝑓𝐴(𝒂(𝑡))𝐝𝒂(𝑡), (9)

here 𝑓𝐴(𝒂(𝑡)) is the joint probability density function of the crack
engths for all hot spots, and 𝜓(𝒂(𝑡)) is a map between the crack lengths
f the components and their integrity.

After the interval probability of failure is obtained from Eqs. (7)–(9),
he cumulative probability of failure Pr(𝐹𝑠𝑦𝑠,𝑐𝑢𝑚(𝑡)) is computed to rep-
esent the history leading up to time 𝑡 [25]. The cumulative probability
f failure is approximated by the upper bound, in accordance with [8],
ssuming that failures at different years are independent

Pr(𝐹𝑠𝑦𝑠,𝑐𝑢𝑚(𝑡)) = 1 −
∏

𝜏∈[0,𝑡]
[1 − Pr(𝐹 ∗

𝑠𝑦𝑠(𝜏))]. (10)

he annual probability of failure at year 𝑡 can now be computed as

Pr(𝐹𝑠𝑦𝑠,𝑦𝑟(𝑡)) = Pr(𝐹𝑠𝑦𝑠,𝑐𝑢𝑚(𝑡 + 1)) − Pr(𝐹𝑠𝑦𝑠,𝑐𝑢𝑚(𝑡)). (11)

.2. Risk- and reliability-based fatigue design and I&M planning

This section introduces the objective functions used to assess opti-
al mitigation strategies. First, the cost model is presented, followed

y the risk- and the reliability-based objective functions. Lastly, the
election of a target safety level for the current study is discussed.

.2.1. Cost model
A set of 𝑁𝑑 alternative designs  = {1,2,… ,𝑁𝑑 } and a set of

𝑠 I&M strategies  = {1,2,… ,𝑁𝑠} are considered. In this study, a
esign 𝑑 consists of the specification of the 𝐹𝐷𝐹 of the components
f the system; and a strategy 𝑠 is characterised by the specified time-
nterval between inspection campaigns 𝛥𝑡𝐼 and the decision rule that

ny detected damage is subsequently repaired. A combination of 𝑑
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and 𝑠 defines an integrated life-cycle mitigation strategy (ILMS). For
a given ILMS, the expected total life-cycle cost E[𝐶𝑇 ] is the sum of
the design cost 𝐶𝐷, the expected cost of inspection and maintenance
E[𝐶𝐼&𝑀 ] and the expected cost of failure E[𝐶𝐹 ]:

E[𝐶𝑇 (𝑑 ,𝑠)] = 𝐶𝐷(𝑑 ) + E[𝐶𝐼&𝑀 (𝑑 ,𝑠)] + E[𝐶𝐹 (𝑑 ,𝑠)], (12)

where E[⋅] is the expectation operator.
The three cost terms are elaborated hereafter:

• The design cost 𝐶𝐷(𝑑 ) is the cost associated with designing and
constructing the structural components for fatigue given a design
specification 𝑑 . The cost associated with constructing a compo-
nent with a given 𝐹𝐷𝐹 depends on the fatigue stresses that the
component is subject to. Consequently, for indeterminate systems,
the design cost depends on the configuration of the structural
system and the nominal cross-sections of the members [8].

• The expected inspection and maintenance cost E[𝐶𝐼&𝑀 (𝑑 ,𝑠)] is
the net present value cost of conducting an I&M strategy 𝑠 for a
given design 𝑑 . It is computed as the sum of the discounted costs
of starting an inspection campaign 𝐶𝐶 , conducting individual
inspections 𝐶𝐼 and repairing the fatigue damage 𝐶𝑅:

E[𝐶𝐼&𝑀 (𝑑 ,𝑠)] = E[𝐶𝐶 (𝑠)] + E[𝐶𝐼 (𝑠)] + E[𝐶𝑅(𝑑 ,𝑠)]. (13)

Discounting of the costs is applied at the time of intervention
using an interest rate 𝑟 and the discount function 𝛾(𝑡):

𝛾(𝑡) = 1
(1 + 𝑟)𝑡

. (14)

• The expected cost of failure E[𝐶𝐹 (𝑑 ,𝑠)], also known as the
failure risk, is given by

E[𝐶𝐹 (𝑑 ,𝑠)] =
𝑇𝑆𝐿
∑

𝑡=1
𝐶𝐹 ⋅ 𝛾(𝑡) ⋅ Pr

(

𝐹𝑠𝑦𝑠,𝑦𝑟(𝑑 ,𝑠; 𝑡)
)

, (15)

where 𝐶𝐹 is the cost of system failure and Pr(𝐹𝑠𝑦𝑠,𝑦𝑟(𝑑 ,𝑠; 𝑡)) is
the annual probability of system failure between years 𝑡 and 𝑡+1
associated with 𝑑 and 𝑠.

2.2.2. Risk-based design
The optimal risk-based ILMS is given by the minimisation of the

expected total cost, which is defined in Eq. (12), i.e.,

{𝑜𝑝𝑡,𝑜𝑝𝑡} = arg min
𝑠=1,…,𝑁𝑠 ;
𝑑=1,…,𝑁𝑑

{E[𝐶𝑇 (𝑑 ,𝑠)]}. (16)

The minimisation of the expected life-cycle cost in Eq. (16) is
sequentially assessed according to [8]:

Let E[𝐶𝐼𝑀𝐹 (𝑑 ,𝑠)] denote the inspection, maintenance and failure
(IMF) cost, defined as

E[𝐶𝐼𝑀𝐹 (𝑑 ,𝑠)] = E[𝐶𝐼&𝑀 (𝑑 ,𝑠)] + E[𝐶𝐹 (𝑑 ,𝑠)]. (17)

Given a certain design specification 𝑑 , the optimal I&M strategy
𝑜𝑝𝑡,𝑑 can be obtained by minimising the expected IMF cost:

𝑜𝑝𝑡,𝑑 = 𝑜𝑝𝑡|𝑑 = arg min
𝑠=1,…,𝑁𝑠

{E[𝐶𝐼𝑀𝐹 (𝑑 ,𝑠)]}. (18)

This optimisation is a well established problem and the subject of many
investigations, see e.g., [26–28].

The optimal ILMS {𝑜𝑝𝑡 ∈ ,𝑜𝑝𝑡 ∈ 𝑜𝑝𝑡}, where 𝑜𝑝𝑡 is the vector
𝑜𝑝𝑡 = {𝑜𝑝𝑡,1,𝑜𝑝𝑡,2,… ,𝑜𝑝𝑡,𝑁𝑑 }, is then computed as

{𝑜𝑝𝑡,𝑜𝑝𝑡} = arg min{E[𝐶𝑇 (𝑑 ,𝑜𝑝𝑡,𝑑 )]}. (19)
4

𝑑=1,…,𝑁𝑑
2.2.3. Reliability-based design
A target annual reliability index on the deteriorated structural sys-

tem is introduced, denoted 𝛽𝑇𝐷𝑆 . An ILMS is considered acceptable if at
all times during the service life 𝛽𝐷𝑆 > 𝛽𝑇𝐷𝑆 . Two ways of performing
the reliability-based design are considered.

1. The minimum requirements for one of the decision parameters
can be prescribed as a function of the other. Finding the min-
imum acceptable decision parameter becomes a minimisation
problem when a discretised set of the parameter is considered.
In the following, we focus on the more intuitive case of a
maximum allowed inspection interval 𝛥𝑡𝐼,𝑚𝑎𝑥 for a given 𝐹𝐷𝐹 .
Let 𝛽𝑚𝑖𝑛𝐷𝑆 denote the minimum reliability index during service
life, i.e., 𝛽𝑚𝑖𝑛𝐷𝑆 = min𝑡=0,1,…,𝑇𝑆𝐿{𝛽𝐷𝑆 (𝑡)}. The maximum allowed
inspection interval is estimated as

𝑚𝑖𝑛|𝑑 = 𝛥𝑡𝐼,𝑚𝑎𝑥(𝐹𝐷𝐹 ) = arg min
𝑠=1,…,𝑁𝑠

[

𝛽𝑚𝑖𝑛𝐷𝑆 (𝑠,𝑑 ) − 𝛽𝑇𝐷𝑆
]

,

s.t. 𝛽𝑚𝑖𝑛𝐷𝑆 (𝑠,𝑑 ) > 𝛽𝑇𝐷𝑆 .
(20)

2. The optimal reliability-based ILMS is defined as the one that
minimises the total mitigation cost 𝐶𝑇 ,𝑀 , while satisfying the
target reliability:

{𝑜𝑝𝑡,𝑜𝑝𝑡} = arg min
𝑠=1,…,𝑁𝑠 ;
𝑑=1,…,𝑁𝑑

[

𝐶𝑇 ,𝑀 (𝑑 ,𝑠)
]

,

s.t. 𝛽𝑚𝑖𝑛𝐷𝑆 (𝑠,𝑑 ) > 𝛽𝑇𝐷𝑆 .
(21)

The total mitigation cost 𝐶𝑇 ,𝑀 is defined as the sum of the design
and expected inspection and maintenance cost:

𝐶𝑇 ,𝑀 (𝑑 ,𝑠) = 𝐶𝐷(𝑑 ) + E[𝐶𝐼&𝑀 (𝑑 ,𝑠)], (22)

where E[𝐶𝐼&𝑀 (𝑑 ,𝑠)] is defined in Eq. (13).

2.2.4. Selection of the target safety level
Institutions such as the International Organization for Standard-

ization (ISO) and the Joint Committee on Structural Safety (JCSS)
prescribe target safety levels in the form of target reliability indices
𝛽𝑇 [29,30]. According to this criterion, a component or structure is
considered acceptable if its reliability index is larger than 𝛽𝑇 . For in-
stance, JCSS’s Probabilistic Model Code specifies ULS target reliability
indices for nine different classes. Classes are specified according to the
consequence of component failure (minor, moderate and large) and
the relative cost of the safety measure (small, normal and large). The
adoption of this classification in the current study is discussed in the
following.

The consequences of component failure are, for a given cost of
system failure, explicitly represented in the proposed system idealisa-
tion by the parameter 𝑛𝑖. The classification according to the relative
cost of the safety measure does not accommodate for the simultaneous
consideration of two different safety measures. Pragmatically, one can
regard the most effective safety measure for categorisation.

In the current study, two different ULS are considered: ultimate load
limit state (STR) and fatigue limit state (FLS). Structural reliability for
STR is measured by the reliability index of the undamaged system 𝛽𝐷̄𝑆 .
The reliability during service life is measured by the reliability index
of the damaged system 𝛽𝐷𝑆 . During service life, the reliability of the
structure decreases over time due to deterioration if no actions are
taken, i.e., 𝛽𝐷𝑆 ≤ 𝛽𝐷̄𝑆 . The reliability index of the damaged system
relates to both STR and FLS. It is unclear whether the prescribed target
reliability values in [29–31] refer to the undamaged or the damaged
system, i.e., if they are a direct constraint to 𝛽𝐷̄𝑆 or 𝛽𝐷𝑆 . On the one
hand, applying the requirement to 𝛽𝐷̄𝑆 , i.e., 𝛽𝑇

𝐷̄𝑆
= 𝛽𝑇 , requires to

specify an additional annual target reliability index for the deteriorated
system 𝛽𝑇𝐷𝑆 , with 𝛽𝑇𝐷𝑆 ≤ 𝛽𝑇 . On the other hand, applying it to 𝛽𝐷𝑆 ,
i.e., 𝛽𝑇𝐷𝑆 = 𝛽𝑇 , would leave 𝛽𝐷̄𝑆 as another degree of freedom of the
ptimisation problem. The latter interpretation would greatly increase
he complexity of the problem.
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Typically, standards and recommended practice guidelines sepa-
rately prescribe required safety levels for FLS and STR. For example,
the Eurocode 0 [31] requires a 50-year cumulative reliability index for
FLS in the range 1.5 to 3.8 depending on the ‘‘degree of inspectability,
repairability and damage tolerance". Similarly, DNV [4] requires a
20-year cumulative reliability index for FLS between 2.3 and 3.7,
depending on the consequences of component failure. This separate
prescription of target reliabilities for FLS strengthens the argument
that the prescribed levels for ULS refer to the undamaged system.
Accordingly, we follow this interpretation and adopt the criterion
𝛽𝐷̄𝑆 > 𝛽𝑇 . We use the annual target 𝛽𝑇 = 4.2 in the numerical inves-
tigation, since it is associated with the most common design class in
ISO 2394:2015 [29] and JCSS [30]. Additionally, the target reliability
index of the deteriorated system 𝛽𝑇𝐷𝑆 is set to a value relatively close
to 𝛽𝑇 . We choose 𝛽𝑇𝐷𝑆 = 4, which is approximately 5% lower than
𝛽𝑇 = 4.2 and that corresponds to the target reliability index set for
offshore structures in ISO 19902:2020 [3,32].

3. Characteristics of the numerical investigation

A parametric study is conducted over the parameters 𝑛𝑖 and 𝑘 of the
EDS representation to find how the ILMS varies with 𝑛𝑖 and 𝑘. Optimal
ILMS is assessed by exhaustive search, i.e., by evaluating the system
reliability and the expected total life-cycle cost for all considered ILMS.
Despite the availability of more efficient optimisation algorithms, the
use of exhaustive search is preferable for the current application. This is
due to the fact that risk- and reliability-based optimal ILMS depend on
the cost model. Consequently, systematically evaluating all ILMS allows
to efficiently compute the optimum for any cost model by appropriately
scaling the results. This is convenient in the context of standardisation,
where prescriptions are given as a function of the relative cost of the
safety measures and the consequence class.

The optimisation searches within a discrete set of 𝑁𝑑 = 7 designs
 associated with 𝐹𝐷𝐹 = {1, 2, 3, 4, 5, 6, 10}. These values cover the
typical range in design standards [33]. Note that 𝐹𝐷𝐹 = 10 is of-
ten prescribed for non-accessible hot spots [1]. All 𝑛𝑖𝑘 elements are
assigned the same 𝐹𝐷𝐹 . A set of 𝑁𝑠 = 11 strategies  are consid-
ered, given by the inspection intervals between inspection campaigns
𝛥𝑡𝐼 = {1, 2,… , 10} [years], plus the case with no inspections, here
denoted NI. All 𝑛𝑖𝑘 EDS elements are inspected at every inspection
campaign and, as simplifying convention, every detected fatigue crack
is subsequently repaired. Repairs are assumed to restore the fatigue
condition to as-new, i.e., that of a component at time zero.

For each considered structural configuration and combination of
life-cycle mitigation measures, the annual probability of failure of the
EDS is computed using the sampling-based method proposed in [28].
It is noted that this method is computationally expensive. For each
design situation, 250 deterioration histories are sampled. In our im-
plementation in Matlab, this requires an average of around 35 s per
component by using the processor Intel Xeon Gold 6132. Thus, in order
to remain computationally feasible, the scope of the parametric study
needs to be carefully specified in terms of the discretisation of the
decision variables as well as the considered combinations of 𝑛𝑖 and 𝑘.

In order to choose the range of considered 𝑛𝑖 and 𝑘, their effect on
the 𝑆𝐸𝐼 ′ is assessed. Fig. 2 shows the 𝑆𝐸𝐼 ′ of EDS elements for varying
𝑛𝑖 and 𝑘, which is computed using Eq. (5). Increasing 𝑛𝑖 from 1, i.e., no
redundancy or 𝑆𝐸𝐼 ′ ≈ 1, to say 5 reduces the 𝑆𝐸𝐼 ′ noticeably. Further
increasing 𝑛𝑖 has a smaller impact on the 𝑆𝐸𝐼 ′. Increasing 𝑘, which is
associated with the size of the true structure, also results in a reduction
of the 𝑆𝐸𝐼 ′, although its impact is overall less important than that of
𝑛𝑖. For these reasons, the parametric study presented in this article is
constrained to 𝑛𝑖 ∈ [1, 5] and 𝑘 ∈ [1, 6]. The considered combinations
of 𝑛𝑖 and 𝑘 are shown in Fig. 3. Thus, the total number of simulations
is 23 ⋅ 7 ⋅ (10 ⋅ 250 + 1) = 402661.
5

Fig. 2. Single element importance 𝑆𝐸𝐼 ′ as a function of the equivalent Daniels system
parameters 𝑛𝑖 and 𝑘 for a reliability index of the intact structure 𝛽𝐷̄𝑆 = 4.2.

Fig. 3. Considered combinations of 𝑛𝑖 and 𝑘.

3.1. Probabilistic load and resistance model

The probabilistic model of the load and resistance variables is
chosen to be representative for offshore platforms. Nonetheless, the
proposed method can accommodate for the use of any other probabilis-
tic models. The 𝑛𝑖𝑘 EDS elements are assumed to have ductile material
behaviour, with log-normal distributed resistances 𝑅. The coefficient
of variation of 𝑅 is taken as 𝛿𝑅 = 0.15, which is a representative
value according to [34,35]. The loads on the Daniels systems 𝐿 is
represented with a Gumbel distribution with coefficient of variation
𝛿𝐿 = 0.35. The probabilistic model of 𝑅 and 𝐿 is calibrated, as explained
in Section 2.1.1, to an annual reliability of the undamaged system
𝛽𝐷̄𝑆 = 4.2.

3.2. Fatigue component reliability

A stochastic physics-based model is used to assess the fatigue de-
terioration process. For a given hot spot, the crack length is used as
a physical indicator of fatigue deterioration. The crack length of a
hot spot is predicted using a fracture mechanics model based on prior
information. A brief description of the employed crack growth model
is here presented. The parameters and assumptions of the model are
described in more detail in [8]. The crack length of a hot spot at time
𝑡 is given by

𝑎(𝑡) =
[(

1 − 𝑚
2

)

⋅ 𝐶 ⋅ 𝛥𝑆𝑚𝑒 ⋅ 𝜋𝑚∕2 ⋅ 𝜈 ⋅ 𝑡 + 𝑎(1−𝑚∕2)0

](1−𝑚∕2)−1
, (23)

where 𝐶 and 𝑚 are material parameters, 𝜈 is the number of stress
cycles per year, 𝑎 is the initial crack length, and 𝛥𝑆 is the equivalent
0 𝑒
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Table 1
Distribution of the variables of the fatigue deterioration model.

Variable Type Mean Standard deviation

𝑎0 Exponential 1 mm 1 mm
𝑚 Normal 3.5 0.3
ln 𝑘𝛥𝑆 ∗ Normal 𝑓 (𝐹𝐷𝐹 ) 0.22
𝜆 Deterministic 0.8 –
𝑎𝑐𝑟 Deterministic 10 mm –
𝜈 Deterministic 105 cycles/year –
𝑇𝑆𝐿 Deterministic 20 years –

Notes: ∗𝑘𝛥𝑆 has units of N/mm2; 𝑓 (𝐹𝐷𝐹 ) = function of 𝐹𝐷𝐹 .

Fig. 4. Calibrated mean value of the stress range Weibull parameter 𝑘𝛥𝑆 as a function
of the fatigue design factor 𝐹𝐷𝐹 .

fatigue stress range, which represents the stress process. The values of
the deterioration parameters are shown in Table 1. The parameter 𝐶 is
computed as ln𝐶 = −1.567𝑚 − 27.517, according to Bismut et al. [36].

The fatigue stress process 𝛥𝑆(𝑡) is assumed to be represented by a
Weibull distribution with scale parameter 𝑘𝛥𝑆 and shape parameter 𝜆.
The equivalent stress range 𝛥𝑆𝑒 is then given by

𝑆𝑒 = E[𝛥𝑆(𝑡)𝑚](1∕𝑚) = 𝑘𝛥𝑆 ⋅ 𝛤
(

1 + 𝑚
𝜆

)(1∕𝑚)
, (24)

here 𝛤 (⋅) is the gamma function.
The fatigue reliability of a component is assessed according to the

imit state function

𝑐 (𝑡) = 𝑎𝑐𝑟 − 𝑎(𝑡), (25)

hich indicates component failure 𝑔𝑐 ≤ 0 if the crack length 𝑎 reaches
critical magnitude 𝑎𝑐𝑟.

Increasing the 𝐹𝐷𝐹 of a hot spot decreases the fatigue stress range
hat it experiences. This is accounted for in the model by calibrating
he mean value of the shape parameter 𝑘𝛥𝑆 so that the cumulative
robability of fatigue failure of the component at the end of service life
orrectly represents its 𝐹𝐷𝐹 [8], see Fig. 4. It is assumed that the global
esponse of the structure is independent of the 𝐹𝐷𝐹 of the components.
his assumption should be verified on a case-by-case basis, specially for
ery low and very high values of the 𝐹𝐷𝐹 .

The parameters 𝑎0, 𝑚 and 𝑘𝛥𝑆 are statistically dependent among the
ifferent hot spots. These dependencies are represented by the follow-
ng assumed linear correlation coefficients: 𝜌𝐴0

= 0.5, 𝜌𝑀 = 0.6 and
𝐾𝛥𝑆 = 0.8 for 𝑎0, 𝑚 and 𝑘𝛥𝑆 , respectively. The statistical dependence is
fficiently represented by the hierarchical Bayesian Network developed
y Luque et al. [37].

.3. Likelihood model of the inspection technique

Inspections can be conducted during the service life of the structure.
he outcomes of these inspections are imperfect, meaning that cracks
re not identified with absolute certainty. The employed likelihood
unctions that are used to model the quality of the inspections are taken
6

𝛽

after [38]. The probability of detection (PoD) curve that is used to
assess the likelihood of detecting a crack with length 𝑎 is:

𝑃𝑜𝐷(𝑎) = 1 − exp(−𝑎∕𝜉), (26)

where 𝜉 is the expected minimum crack that can be detected. 𝜉 is
set to 10 mm, which corresponds to a relatively unreliable inspection
technique, such as visual inspections.

Furthermore, detected cracks are imperfectly measured. The mea-
surement of a crack, denoted 𝑧, is modelled by the following likelihood
function:

𝑓𝑍|𝑎(𝑧|𝑎) = 𝑃𝑜𝐷(𝑎) ⋅
𝜑
(

𝑧 − 𝑎
𝜎𝜀

)

1 − Φ
(

−𝑎
𝜎𝜀

) for 𝑧 > 0, (27)

here 𝜎𝜀 = 0.1 mm is the measurement error and 𝜑(⋅) is the probability
ensity function of the standard normal distribution. The information
f the measurement of the crack length is propagated to the rest of
he hot spots of the system applying inference using the hierarchical
ayesian Network.

.4. System reliability

The system reliability is assessed according to an ultimate load limit
tate. The probability of failure of the system conditional on a deteri-
ration state Pr

(

𝐹𝑠𝑦𝑠|𝜓 ′
𝑝

)

, defined in Eq. (8), can be pre-computed for
he different (𝑛𝑖 + 1)𝑘 deterioration states. It is assumed that the EDS
lements are ductile and thus, the term Pr(𝐶𝑗 |𝑁𝐹 ,𝑗 ) in that equation
s computed using Eq. (4). It is noted that modelling the behaviour as
rittle would not lead to significantly different conclusions, since the
DS is calibrated to a given system reliability.

As previously shown, the reliability of the system is time-dependent
nd is influenced by the deterioration condition of the components.

Bayesian Network (BN) is used to represent the causal structure
etween mitigation measures of fatigue deterioration at the component
evel and the system reliability. The employed BN is proposed in [8]
nd based on original work in [28,37,38]. The reader can refer to these
ublications for further information.

The annual probability of failure Pr(𝐹𝑠𝑦𝑠,𝑦𝑟(𝑡)) is computed from
q. (11) as explained in Section 2.1.3. In addition to the annual
robability of failure, we introduce the hazard function ℎ(𝑡), which is
efined as the probability of system failure during (𝑡, 𝑡 + 1] conditional
n the system not having failed up to time-step 𝑡. The hazard function
s expressed mathematically as

(𝑡) =
Pr(𝐹𝑠𝑦𝑠,𝑦𝑟(𝑡))

1 − Pr(𝐹𝑠𝑦𝑠,𝑐𝑢𝑚(𝑡))
. (28)

The difference between the hazard function and the annual prob-
bility of failure is illustrated in Fig. 5. It can be seen that both
r(𝐹𝑠𝑦𝑠,𝑦𝑟(𝑡)) and ℎ(𝑡) are practically identical when the cumulative
robability of failure is low, which is the case during the initial service
ears. The difference between the two probabilities increases as the
ystem deteriorates, and is large for cases with low fatigue reliability,
ay 𝐹𝐷𝐹 < 3. In fact, the annual probability of failure starts decreasing
fter a number of service years for 𝐹𝐷𝐹 < 3, because the cumulative
robability of failure asymptotically approaches unity and therefore,
he rate at which it increases between two subsequent time steps
ecreases. Because the annual probability of failure is not necessarily
onotonically increasing during the service life of the structure, we
se the hazard rate to estimate the annual reliability index of the
eteriorated structural system 𝛽𝐷𝑆 (𝑡) in this paper:

(𝑡) = −Φ−1 ℎ(𝑡) . (29)
𝐷𝑆 [ ]



Reliability Engineering and System Safety 222 (2022) 108390J. Mendoza et al.

h

t

𝐴

C
a

𝐶

s
p
o
m
d
o
g
f
m
a
c

𝑝

w

Fig. 5. Time evolution of the annual probability of system failure Pr(𝐹𝑠𝑦𝑠,𝑦𝑟(𝑡)) and
azard function ℎ(𝑡) with no inspections for 𝑘 = 2 and 𝑛𝑖 = 1.

Table 2
Unitary cost input of reference cost model.
Cost Symbol Value

Inspection campaign 𝑐𝐶 1 ke
Inspection 1 component 𝑐𝐼 0.1 ke
Repair 1 component 𝑐𝑅 0.3 ke
System failure 𝑐𝐹 1,000 ke
Discount rate 𝑟 0.02
Cost per kg of steel 𝑐𝑠 6 e

3.5. Cost input

The cost model has a large impact on the optimality of deci-
sions. Here, the expected life-cycle cost is linearly proportional to
the expected values of the different unitary costs model. Therefore,
translating the results to different situations is a matter of accordingly
scaling the different costs. The employed unitary cost model is shown in
Table 2. The unitary costs of inspection and repair actions are adopted
after [28], which uses them to represent an offshore structure. The
fatigue design cost is computed according to the model proposed in [8],
which is developed for structures consisting of tubular members. In that
model, the cross-section area of a hot spot, denoted 𝐴𝐻𝑆 , is expressed
as a function of the mean equivalent fatigue stress range E[𝛥𝑆𝑒] and
he equivalent internal fatigue load range 𝛥𝑁𝑒

𝐻𝑆 (𝐹𝐷𝐹 ) =
𝛥𝑁𝑒

E[𝛥𝑆𝑒]
=

𝛥𝑁𝑒

E[𝑘𝛥𝑆 ] ⋅ E
[

𝛤
(

1 + 𝑚
𝜆

)(1∕𝑚)
] , (30)

The parameter E[𝑘𝛥𝑆 ] is a function of the 𝐹𝐷𝐹 , as specified in Fig. 4.
onsequently, the fatigue design cost of a hot spot, denoted 𝐶𝐻𝑆 , is
lso a function of the 𝐹𝐷𝐹 and is estimated as

𝐻𝑆 = 3𝜋
2
𝜌𝑠 ⋅ 𝑐𝑠 ⋅ 𝐴

3∕2
𝐻𝑆 , (31)

where 𝜌𝑠 = 7850 kg/m3 is the density of steel and 𝑐𝑠 is the cost of steel
shown in Table 2, which includes the cost of welding.

The fatigue design cost is case dependent because it is a function
of the nominal load carried by the member of interest, among other
factors. Two costs models are employed here for the purpose of illus-
tration and to study the robustness of the results with respect to the cost
model (see Fig. 6): cost model C1 takes 𝛥𝑁𝑒 = 0.6 MN; and cost model
C2 takes 𝛥𝑁𝑒 = 1.25 MN, which corresponds to a three-fold increase
of the fatigue design cost associated with C1. In spite of using these
two cost models, most of the presented results are independent of the
fatigue design cost to strive for generalisation.

3.6. Regression model of the expected repair costs

The estimation of the expected I&M cost is associated with statistical
uncertainty, which have its origin in the limited number of Monte Carlo
7

Fig. 6. Fatigue design cost 𝐶𝐻𝑆 as a function of the fatigue design factor 𝐹𝐷𝐹 for the
two costs models C1 and C2.

Fig. 7. Contour plot of the probability of conducting one repair 𝑝𝑟𝑒𝑝 as a function of
the interval between inspection campaigns 𝛥𝑡𝐼 and the fatigue design factor 𝐹𝐷𝐹 .

imulations that are sampled to evaluate the stochastic deterioration
rocess. This statistical uncertainty primarily affects the estimation
f the expected repair costs. To reduce this uncertainty, a regression
odel of the expected repair cost is developed from all the simulated
ata, thereby taking advantage of the 402,661 simulations, instead
f just the 250 ones that are associated with a particular EDS and a
iven ILMS. First, the expected number of repairs 𝑛𝑟𝑒𝑝 is calculated
or each tested combination of 𝑘 and 𝑛𝑖 and as a function of the
itigation parameters from 250 samples. The probability of conducting
component repair during an inspection campaign, denoted 𝑝𝑟𝑒𝑝, is

omputed as

𝑟𝑒𝑝 =
𝑛𝑟𝑒𝑝

𝑛𝑖𝑛𝑠𝑝,𝑐 ⋅ 𝑘 ⋅ 𝑛𝑖
. (32)

where 𝑛𝑖𝑛𝑠𝑝,𝑐 is the number of inspection campaigns, given by

𝑛𝑖𝑛𝑠𝑝,𝑐 =
⌊

𝑇𝑆𝐿 − 1
𝛥𝑡𝐼

⌋

, (33)

ith ⌊⋅⌋ being the flooring operator.
A power-law of the form 𝑝𝑟𝑒𝑝 = 𝑎⋅𝐹𝐷𝐹 𝑏 ⋅𝛥𝑡𝑐𝐼 is fitted to the simulated

data. The regression parameters are computed using the maximum
likelihood method, resulting in 𝑎 = 0.100, 𝑏 = −0.385 and 𝑐 = 0.209.
The fitted curve is shown in Fig. 7. Note that the validity of the curve
is bound to 1 ≤ 𝐹𝐷𝐹 ≤ 10 and 1 ≤ 𝛥𝑡𝐼 ≤ 10. The coefficient of
determination of the regression model is 0.6. This low value is partially
due to the large variability in the obtained number of repairs from the
numerical simulations. Nevertheless, using the model is justified since
we are only interested in the average cost of repair for decision making

purposes.



Reliability Engineering and System Safety 222 (2022) 108390J. Mendoza et al.
Fig. 8. Annual reliability index of the deteriorated structural system 𝛽𝐷𝑆 (𝑡 = 𝑇𝑆𝐿) at
the end of service life as a function of 𝑛𝑖 with no conducted inspections. Plots are given
for various values of 𝑘 and 𝐹𝐷𝐹 .

The expected cost of repair is then given by

𝐶𝑅 = 𝑐𝑅 ⋅ 𝑝𝑟𝑒𝑝 ⋅ 𝑘 ⋅ 𝑛𝑖

𝑛𝑖𝑛𝑠𝑝
∑

𝑗=1
𝛾(𝑗 ⋅ 𝛥𝑡𝐼 )[1 − 𝐹𝑠𝑦𝑠,𝑐𝑢𝑚(𝑗 ⋅ 𝛥𝑡𝐼 )], (34)

where 𝛾 is the discount function defined in Eq. (14). At a given
inspection time 𝑗 ⋅𝛥𝑡𝐼 , the cost of repair is multiplied by the probability
of survival, since a repair will only be conducted if the structure is not
failed.

4. Results

The results of the parametric investigation are presented in this
section. First, the results of the reliability-based study are shown in
Section 4.1. The results of the risk-based optimisation are shown in
Section 4.2.

4.1. Reliability-based life-cycle optimisation

Fig. 8 shows the annual reliability index at the end of service life
𝛽𝐷𝑆 (𝑡 = 𝑇𝑆𝐿) for varying 𝑛𝑖, 𝑘 and 𝐹𝐷𝐹 when no inspections are
conducted. It is observed that the level of redundancy, measured via
8

𝑛𝑖, is a crucial factor in assuring sufficient safety for systems that are
sensitive to fatigue deterioration. Even for 𝐹𝐷𝐹 = 10, no redundancy
results in 𝛽𝐷𝑆 being only around 3, which is significantly lower than
the undamaged reliability index 𝛽𝐷̄𝑆 = 4.2.

Minimum requirements for the mitigation measures are computed
according to the target reliability index 𝛽𝑇𝐷𝑆 = 4. As an example,
Fig. 9 shows which combinations of the mitigation measures satisfy
this requirement for 𝑘 = 4 and 𝑛𝑖 = 1, 2, 3. The maximum acceptable
inspection interval is computed as a function of the 𝐹𝐷𝐹 according to
Eq. (20). The results are displayed in Fig. 10. Note that the curves are
only plotted for the situations satisfying the target reliability criterion.

Optimal reliability-based mitigation strategies are then computed
according to Eq. (21). The optimal reliability-based ILMS are marked
in red and blue in Fig. 10 for the cost models C1 and C2, respectively.
It can be seen that an increase of a factor of three in the design
cost model has a minimal impact in the optima for the employed
discretisation of the design parameter. The optimal allocation of the
total mitigation cost 𝐶𝑇 ,𝑀 among the design and I&M measures is
plotted for cost C1 in Fig. 11, where the expected I&M cost E[𝐶𝐼&𝑀 ]
is divided into the campaign 𝐶𝐶 , inspection 𝐶𝐼 and repair 𝐶𝑅 costs.
When the optimal ILMS is associated with very frequent inspections
(see 𝑘 = 1, 𝑛𝑖 = 1), the total mitigation cost is driven by the I&M
cost. In particular for this case, the I&M cost is largely associated with
the inspection campaign cost, which is explained by (a) the campaign
cost is ten times larger than the cost of inspecting one component;
and (b) most inspections will lead to not detecting a crack because
of the large 𝐹𝐷𝐹 value and thereby, to not conducting many repairs.
Furthermore, it is seen that for systems with large redundancy, one
can afford to do without preventive inspections. For multi-components
systems with some redundancy, a balance between design and I&M
mitigation measures is optimal. For these cases, the optimal inspection
interval is large, and as consequence, the repair cost tends to take a
large share of the total mitigation cost, due to fact that the probability
of detecting cracks increases.

4.2. Risk-based life-cycle optimisation

The expected life-cycle cost E[𝐶𝑇 ] is computed according to Eq. (12)
for the considered combinations (see Fig. 3) and plotted for 𝑘 = 1 and
𝑛𝑖 = 1, 2, 5 in Fig. 12 as a function of the inspection interval 𝛥𝑡𝐼 and
for the different 𝐹𝐷𝐹 . It is observed that the expected life-cycle cost
curve becomes flatter around the optimum I&M strategy for increasing
𝐹𝐷𝐹 . It is also seen that increasing 𝑛𝑖 eventually reduces the efficiency
of increasing the 𝐹𝐷𝐹 to reduce the life-cycle cost.

The optimal inspection interval for given 𝐹𝐷𝐹 is summarised in
Fig. 13. It is cost-efficient from a risk-based perspective to conduct
Fig. 9. Colour-map representing which combinations of the mitigation measures satisfy or not the reliability criterion given by a target reliability index of the deteriorated structure
𝛽𝑇𝐷𝑆 = 4, i.e., 𝛽𝑚𝑖𝑛𝐷𝑆 > 𝛽

𝑇
𝐷𝑆 . Note that for 𝑛𝑖 = 1, 𝑘 = 4 no mitigation strategy satisfy the criterion.
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Fig. 10. Maximum acceptable inspection interval 𝛥𝑡𝐼 as a function of the fatigue design factor 𝐹𝐷𝐹 and for given 𝑘 and 𝑛𝑖. A target reliability index of the deteriorated structure
𝛽𝑇𝐷𝑆 = 4 is used. The resulting combined optimal reliability-based 𝐹𝐷𝐹 and 𝛥𝑡𝐼 are marked for cost models C1 and C2.

Fig. 11. Allocation of the total mitigation cost associated with the optimal reliability-based mitigation strategy for cost model C1 (marked in red in Fig. 10) among the design
cost 𝐶𝐷 and the expected inspection and maintenance cost E[𝐶𝐼&𝑀 ], which is the sum of the costs of campaign 𝐶𝐶 , inspection 𝐶𝐼 and repair 𝐶𝑅. Only the mitigation strategies
that satisfy the minimum reliability requirements are plotted.

Fig. 12. Expected total life-cycle cost E[𝐶𝑇 ] for different structural systems, parametrised by 𝑛𝑖 and 𝑘, as a function of the inspection interval 𝛥𝑡𝐼 . The different curves correspond
from higher to lower costs to 𝐹𝐷𝐹 = 1, 2, 3, 4, 5, 6, 10. Minimal expected total cost for given 𝐹𝐷𝐹 is marked with a red dot. Note that NI refers to no inspections.
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Fig. 13. Risk-based optimal inspection interval 𝛥𝑡𝐼,𝑜𝑝𝑡 as a function of the fatigue design factor 𝐹𝐷𝐹 for all considered values of 𝑘 and 𝑛𝑖.
inspection campaigns for systems with no redundancy (𝑛𝑖 = 1), even
for components with 𝐹𝐷𝐹 = 10, which indicates that it might be
cost-efficient to reach larger safety levels than the ones prescribed in
standards for this situation [1,4].

5. Discussion

The current fatigue design practice focuses on the specification
of component design parameters and is not thoroughly preoccupied
with the simultaneous prescription of the associated posterior integrity
management. The fact that requirements for the I&M program are
not specified for a given fatigue design suggests that one should, at
later stages of the life cycle, identify and choose an I&M program that
satisfies the reliability requirements. Generally, this approach leads to
sub-optimal decisions. In this paper, we showed that the consideration
of system effects and life-cycle mitigation alternatives at the design
phase has the potential to significantly lower the expected total cost.
However, additionally taking these aspects into account is computa-
tionally demanding. In this paper, we have studied patterns of optimal
life-cycle mitigation strategies to provide simplified recommendations
that can be followed in practice.

We use and extend the EDS representation proposed by Straub
et al. [20] to idealise and differentiate structural configurations ac-
cording to selected key features. The employed level of abstraction is
appropriate for the purpose of standardisation and code-calibration.
The obtained results can be used by code-makers for the prescription
of mitigation measures at the design stage and to bring attention to
the important issue of accounting for system effects for the design of
deteriorating systems. Furthermore, the results of the study show the
potential improvement in efficiency of fatigue mitigation associated
with using structural redundancy as an additional design parameter.

The optimisation of fatigue mitigation measures has been separately
conducted in accordance with reliability- and risk-based criteria, as
both criteria are relevant to engineering practice. Following one cri-
terion or the other is a choice of the designer, infrastructure owner,
and operator, provided that the applicable regulations allow for such
choice. In principle, reliability-based design is coherent with the risk-
based criterion as long as the employed target probability of failure is
calibrated by risk-based optimisation.

Minimum requirements for inspection plans to satisfy the target
𝑇

10

reliability index 𝛽𝐷𝑆 = 4 throughout the service life are studied as a
function of the 𝐹𝐷𝐹 . Fig. 10 shows that the specification of low 𝐹𝐷𝐹
(in the range 3 to 4) is acceptable for systems with some redundancy
and when accompanied by frequent inspections (every 1 to 3 years).
Nevertheless, the results in Figs. 10 and 11 indicate that it is optimal
to specify larger 𝐹𝐷𝐹 at design. Therefore, for structures that are
identified with the employed cost models, which can be the case for
offshore structures, we recommend to design the fatigue components
with high reliability (𝐹𝐷𝐹 ≈ 10) and subsequently find an appropriate
inspection plan.

The results in Fig. 10 also show that hot spots that cannot be
inspected need to be designed with 𝐹𝐷𝐹 ≥ 10 and that, additionally,
certain structural redundancy must be assured in order to satisfy the
reliability requirements. Systems with no redundancy can only satisfy
the imposed reliability requirements when there is one single deterio-
rating component (𝑘 = 1) and by specifying 𝐹𝐷𝐹 ≥ 10 together with a
strict I&M program. This suggests that minimum requirements in most
design standards are associated with lower system reliability than the
target that is used in the current study, i.e., 𝛽𝑇𝐷𝑆 = 4.

Optimal risk-based I&M strategies for given design are explored in
Fig. 13. It is shown that optimal risk-based ILMS are less strict than the
reliability requirements discussed above. For instance, results for 𝐹𝐷𝐹
in the range 2 to 4 are associated with a reliability index between 2.4
to 3.6, which is significantly lower than 𝛽𝑇𝐷𝑆 = 4. These results can
be particularly useful for the design of unmanned structures with low
consequences of failure, such as offshore wind turbines.

6. Conclusions

In this paper, the efficiency of life-cycle fatigue mitigation measures
have been assessed as a function of two selected system features,
namely the redundancy and the number of deteriorating components.
Considered mitigation measures are the specification of the fatigue
design factor for the hot spots and the fixed time-interval between
inspection campaigns. Reliability-based requirements for the mitiga-
tion measures and risk-based optimal mitigation strategies have been
studied within a parametric study over the system features. Results
show the potential reduction of the expected total cost that can be
achieved by considering life-cycle mitigation alternatives and assessing
structural design from a system perspective. Based on a cost model
that is representative for offshore structures, we showed that it is

optimal to design the fatigue hot spots with high reliabilities (𝐹𝐷𝐹



Reliability Engineering and System Safety 222 (2022) 108390J. Mendoza et al.

1
t
b
r
t
f

t
c
t
i
m
o

C

M
d
d
F
r
S

D

c
i

A

N
S
(
E

A

t
g
t
s
l
i
t
t
E
s

s
c
T
s
i
o
a
s
i
a
t
a

around 10) and to prescribe a corresponding inspection plan to satisfy
the system reliability requirements. Furthermore, specifying 𝐹𝐷𝐹 =
0 for the components of non-redundant structures is not sufficient
o avoid preventive inspections. Lastly, we showed that optimal risk-
ased designs are associated with lower reliabilities than the optimal
eliability-based designs, which can be used as arguments to lower
he requirements for unmanned structures with low consequences of
ailure.

The results of the present study are subject to the applicability of
he employed probabilistic load and resistance models. Further studies
ould be carried out for different probabilistic models to study how
hese choices affect the conclusions. Moreover, future studies could
mplement more sophisticated risk-acceptance criteria, such as the
arginal life-saving costs criterion, to assess acceptability as a function

f the expected number of fatalities given the societal budget for safety.
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ppendix. Model validation

The EDS representation was shown in [20] to perform well for
he calibration of the reliability index of deteriorating components
iven safety level requirements for the system. In that case, the de-
erioration condition was represented by a random variable with two
tates: ‘‘failed’’ and ‘‘safe’’. As a consequence, the deterioration process
eading to failure of the components was neglected. To assess optimal
nspection planning, the evolution of an observable indicator, such as
he fatigue cracks, needs to be explicitly considered. We present in
his section a validation example to evaluate the performance of the
DS representation in comparison to the assessment of the complete
tructural system (CSS).

Exemplary, the lattice structure in Fig. A.14 is considered. This
tructure is analysed in detail in [8]. It consists of six tubular members
onnected by welded joints and a horizontal, rigid beam at the top.
he structure is redundant with respect to single member failure. The
tructure is subject to an extreme environmental load with annual max-
mum 𝑄, which is represented by a Gumbel distribution with coefficient
f variation 𝛿𝑄 = 0.35. The resistance of the structural members is
ssumed to be deterministic. The reliability index of the undamaged
tructure is 𝛽𝐷̄𝑆 = 4.6. In addition to the extreme environmental load-
ng, the structure is subject to cyclic loading. Four hot spots (HS1–HS4)
re identified near the welded connections, see Fig. A.14. It is assumed
hat the remaining connections have a sufficiently large reliability and
re not sensitive to fatigue failure. The four hot spots are associated
11
Fig. A.14. Structure used for the validation example of the equivalent Daniels system
representation.
Source: Edited from [8].

with 𝑆𝐸𝐼 = 0.0030. The cyclic load induces fatigue stress ranges 𝛥𝑆𝑖(𝑡)
at the hot spots. 𝛥𝑆𝑖(𝑡) is represented by a Weibull distributed process
with shape parameter 𝑘𝑤,𝑖 and 𝜆𝑤, as per the parametric study above.

The validation example is conducted for two situations: (1) all hot
spots have 𝐹𝐷𝐹 = 5, and (2) all hot spots have 𝐹𝐷𝐹 = 10. The
fatigue integrity of the hot spots is assessed using a critical crack depth
𝑎𝑐 = 10 mm. The parameters 𝑛𝑖 and 𝑘 of the EDS representation are
calculated as explained above, see Eqs. (5) and (6), resulting in 𝑛𝑖 = 2
and 𝑘 = 2 for all components.

A.1. Accuracy of the reliability estimation

The error in the estimation of the annual reliability index of the
deteriorating system 𝛽𝐷𝑆 is investigated. This reliability index is com-
puted as explained in Section 2.1.3. Eq. (7) is used to compute the
interval failure probability, which requires summing over 24 = 16
deterioration states for the CSS and over (2 + 1)2 = 9 deterioration
states for the EDS. The probability of system failure conditional on
the deterioration state is computed from pushover analysis for the true
structure and Eq. (8) is used for the EDS. For both the CSS and the
EDS, Eqs. (10) and (11) are used to compute the annual probability
of system failure. The annual reliability index 𝛽𝐷𝑆 is computed from
the hazard function, see Eqs. (28) and (29). The results are shown in
Fig. A.15. If no inspections are conducted, the error of the EDS model
grows in time and for decreasing 𝐹𝐷𝐹 . At the last year, the relative
error is 3.5% for 𝐹𝐷𝐹 = 5 and 2% for 𝐹𝐷𝐹 = 10, which is below
the 5% maximum model error recommended by JCSS [30]. Departing
from the undamaged system increases the likelihood of combinations
of failure modes that the EDS model can only approximate. Thus,
in general lines, the error increases for increasing deterioration; in
other words, for decreasing 𝛽𝐷𝑆 . When inspections are conducted, the
deviation between the two models tends to be lower for decreasing
inspection interval 𝛥𝑡𝐼 . It is nonetheless noted that a significant part
of the deviation is attributed to the variability associated with the
sampling technique. This part of the deviation would disappear if the
same inspection outcome histories would be sampled for both models.

We argue in this article that the target safety level for the deterio-
rated structure should be somewhat close to the one prescribed for the
non-deteriorated one. If that criterion is employed, the use of the EDS
model incurs only a small error in comparison to assessing the complete
structural system.
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Fig. A.15. Annual reliability index of the system 𝛽𝐷𝑆 , estimated from the complete structural system (CSS) model and the equivalent Daniels system (EDS) model.
Fig. A.16. Results of the computation of the expected cost of inspections, maintenance and failure risk E[𝐶𝐼𝑀𝐹 ] and the failure risk obtained by assessing the complete structural
system and the equivalent Daniels system (EDS) are compared.
A.2. Accuracy of the estimation of risk-based inspection planning

The performance of the EDS model is also tested for optimal risk-
based inspection planning. The individual costs in Table 2 are used to
build the cost model. The expected total inspection and maintenance
cost E[𝐶𝐼𝑀𝐹 ] and the risk of failure are plotted in Fig. A.16 for different
inspection intervals 𝛥𝑡𝐼 . It is seen that both models predict the same
optimal inspection interval, which is eight years for 𝐹𝐷𝐹 = 5 and not
to conduct inspections for 𝐹𝐷𝐹 = 10. It is noted that due to the error
n the estimation of the reliability index (and consequently the risk
f failure) the EDS will assess different optimal inspection interval for
ome situations. This disagreement is expected to be more accentuated
hen the E[𝐶𝐼𝑀𝐹 ] curve is flatter around the optimal decision due to

he optimisation problem being ill-conditioned.

.3. Conclusion of the validation example

It is concluded that the use of the EDS representation results in an
stimation of the reliability index that is sufficiently accurate for the
eliability- and risk-based prescription of optimal mitigation of fatigue
ailure risk for standardisation purposes.
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