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A B S T R A C T   

Organic Rankine cycle systems are the most promising technology to recover the waste heat from heavy-duty 
vehicles in an efficient and economical way, thus increasing their energy efficiency and reducing their envi
ronmental impact. A major challenge for an efficient and profitable integration of the organic Rankine cycle unit 
is presented by the highly transient nature of the waste heat during a driving cycle. In order to cope with the 
rapid fluctuations of the waste heat and to ensure safe operation, advanced control techniques have gained 
particular attention in the last decade. This paper presents novel high-order advanced feedforward control 
concepts for organic Rankine cycle units that improve the performance of classical proportional integral con
trollers. The proposed approach enables the use of high-order nonlinear models for feedforward control of 
organic Rankine cycle systems, therefore allowing for more accurate estimation of the desired control action. As 
a reference, a proportional integral controller with feedforward is presented, acting on the pump mass flow rate 
to control the degree of superheating at the turbine inlet, which is a key variable to ensure high power output and 
safe operation of the organic Rankine cycle system. Static, linear and nonlinear dynamic inversed-model feed
forward controllers were integrated with a classical proportional integral controller and numerically evaluated 
under a realistic waste heat profile of a heavy-duty truck. The results suggest that the static and the linear 
feedforward concepts do not offer any advantages compared with the classical proportional integral controller, 
because they result in a higher absolute mean square tracking error and a higher cumulative controller effort. 
Instead, the high-order nonlinear dynamic inversed-model feedforward controller introduced in this work offers 
important advantages compared with the classical proportional integral controller by reducing the absolute root 
mean square tracking error from 10.8 K to 2.2 K without excessively increasing the controller cumulative effort 
(limited to 1.9%/s). On the contrary, the classical proportional integral controller could optimize only one of the 
objectives at the expenses of the other. The proposed control approach significantly improves the operation of 
the organic Rankine cycle unit, limiting the fluctuations of the degree of superheating and keeping this quantity 
within ±7 K of the desired set point. Thus, the novel feedforward concept will be highly beneficial in integrating 
classical proportional integral control of organic Rankine cycle units that involve highly transient heat sources.   

1. Introduction 

Heavy-duty vehicles contribute to more than one-quarter of the CO2- 
emissions from road transport, and approximately 5% of the total 
greenhouse gas emissions in the European Union (European Environ
mental Ag, 2018). In order to reduce the environmental impact of 
heavy-duty vehicles, the European Council developed a regulation that 
entered into force on 14 August 2019 and obliges truck manufacturers to 

cut the average CO2-emissions by 15% from 2025 onwards and by 30% 
from 2030 onwards compared to 2019 and 2020, respectively (Regu
lation () 2019/, 2019). A significant reduction of the CO2-emissions from 
trucks can be achieved by increasing the energy efficiency of the diesel 
internal combustion engines used as the powertrain for the trucks 
(Carstensen et al., 2019; Delgado and Lutsey, 2014). In fact, more than 
50% of the input fuel energy is released unused to the atmosphere in the 
form of waste heat. The available waste heat is found in the exhaust gas 
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at medium temperature (200–600 ◦C), while the remaining part is 
transferred to the environment through the engine coolant loop 
(<100 ◦C) and the charge air cooler (<200 ◦C) (Lion et al., 2017; 
Amicabile et al., 2015; Dolz et al., 2012; Teng et al., 2007). 

The organic Rankine cycle (ORC) technology constitutes an appro
priate solution to recover the waste heat and convert it into mechanical 
or electrical power in an efficient way (Macchi and Astolfi, 2017; 
Sprouse and Depcik, 2013; Quoilin et al., 2013). These systems are 
similar to classical steam Rankine cycle units, but use an organic 
working fluid with higher molecular weight and lower boiling point 
than water, thus achieving a better efficiency at low and medium tem
peratures of the waste heat (Teng et al., 2007). They are also beneficial 
for small-scale applications (from a few kWe to 10 MWe) with respect to 
steam Rankine cycles, especially in regard to the design of the expander, 
which can reach a high efficiency with a limited number of expansion 
stages (Macchi and Astolfi, 2017). Moreover, ORC units show a better 
part-load performance (de la Fuente and Greig, 2015; Andreasen et al., 
2017), which is of crucial importance to maximize the net power output 
of the waste heat recovery unit, given the fact that the waste heat con
ditions fluctuate over a broad range during the driving cycle (Lion et al., 
2017). The fluctuations are highly transient, posing significant chal
lenges to the dynamics and control of the ORC system (Seitz et al., 
2016). In fact, alongside the maximization of the net power output, 
several constraints need to be guaranteed during the ORC operation 
(Tona and Peralez, 2015; Hernandez et al., 2014; Rathod et al., 2019; 
Koppauer et al., 2018): i) the temperature of the working fluid has to be 
kept below its thermal degradation limit; ii) the pressure has to be kept 
below its maximum allowed by the mechanical components; iii) the 
pump has to be operated avoiding cavitation and within its operational 
limits; and iv) in the case of the turbo-expander, a positive degree of 
superheating at turbine inlet has to be ensured to avoid erosion of the 
blades and poor expander isentropic efficiency. 

The complexity of simultaneously satisfying the aforementioned 
constraints and the objective of maximizing the net power output have 
motivated researchers to investigate several control ideas, both 
numerically and experimentally. An extensive review of the main 
challenges and control concepts developed for the ORC technology is 
presented in Ref. (Imran et al., 2020). Proportional-integral-derivative 
(PID) controllers are the most common type of controllers used in in
dustry, thanks to their simplicity and robustness (Corriou, 2004). 
Although some control strategies with PID have been proposed (Quoilin 
et al., 2011; Marchionni et al., 2018; Pili et al., 2019a; Xu et al., 2020a), 
it has been highlighted that large deviations from the desired degree of 
superheating can occur when the ORC is subjected to the rapid waste 
heat fluctuations of truck engines (Imran and Haglind, 2019; Feru et al., 
2014). In the attempt of improving the control performance, several 
authors have studied advanced control concepts, like linear quadratic 
regulators (LQR), non-Gaussian control (NGC) and model predictive 
control (MPC). 

A LQR has the advantage of using a simple, fast algorithm, and is able 
to handle multivariable systems with very limited computational effort 
(Luong and Tsao, 2014a; Zhang et al., 2012a). As a drawback, the al
gorithm is based on model linearization and does not consider the 
nonlinear couplings among the degree of superheating, the evaporation 
pressure and other relevant quantities typical of ORC units. In addition, 
a proper choice of tuning parameters in the design of LQR controllers is 
required to ensure stable and high-performing operation, which implies 
a time-consuming tuning procedure. Examples of LQR control for waste 
heat recovery ORC systems can be found in Refs (Luong and Tsao, 
2014a). and (Zhang et al., 2012a). 

NGC aims to minimize the entropy function and the mean value of 
the squared tracking error, by assuming a non-Gaussian disturbance 
(Zhang et al., 2012b). As a drawback, the NGC solution is based on a 
time-consuming, multi-objective optimization that needs to be solved in 
real-time (Zhang et al., 2016a, 2018). Furthermore, this option has only 
been tested in a very limited operational range and requires a more 

general assessment based on realistic heat source conditions. 
MPC techniques have recently been gaining more attention (Her

nandez et al., 2014, 2015, 2016; Koppauer et al., 2018; Feru et al., 2014; 
Luong and Tsao, 2014a; Grelet et al., 2015a; Zhang et al., 2016b). MPC is 
also based on linearization as LQR but it uses a receding horizon 
approach to define its control action. In other words, it does not optimize 
the control action for an infinite operational time window, but only for a 
limited prediction horizon. At every time step, the optimization is 
repeated for the next prediction horizon. It is not clear what the best 
tuning parameters for the MPC are, although work is has been developed 
to provide general guidelines for MPC tuning (Pili et al., 2021). Overall, 
the MPC concepts proposed in literature could typically outperform 
classical PID controllers (and LQR in Ref (Luong and Tsao, 2014b).), but 
their performance has in almost all cases been evaluated based only on 
small step changes or far from realistic driving conditions (Tona and 
Peralez, 2015; Hernandez et al., 2014, 2015, 2016; Zhang et al., 2016b; 
Liu et al., 2017). Furthermore, it is unclear whether the gains achievable 
with the MPC solution justify its increased complexity and computa
tional costs (Vaupel et al., 2021). By using a nonlinear model of the ORC 
system and avoiding the approximations resulting from linearization, 
the nonlinear MPC has the potential for better performance, but the 
real-time implementation of this technique over a realistic heat source 
profile raises concerns regarding the required computational effort 
(Koppauer et al., 2018; Feru et al., 2014; Liu et al., 2017; Petr et al., 
2015; Wu et al., 2019). 

In contrast to the mentioned advanced control solutions, the classical 
feedback/feedforward control scheme can offer important advantages 
compared with the LQR, NGC and MPC approaches:  

• The feedback/feedforward controller does not require an online 
optimization. Instead, it is based on the inversion of an existing 
model. This considerably improves the feasibility for real-time 
control;  

• Recent research reported that the advantages provided by nonlinear 
MPC with respect to a feedback/feedforward structure are below 2% 
in terms of average ORC net power output, raising concerns whether 
such small gains justify the increased complexity, implementation 
and computational costs of nonlinear MPC (Vaupel et al., 2021). 
Since nonlinear MPC is one of the most powerful control approaches 
available, lower or equivalent improvement margins should be ex
pected for LQR, NGC and MPC;  

• The extension from linear to nonlinear models with high accuracy 
does not imply considerable increase in computational effort, since 
no optimization has to be carried out like in NGC and MPC;  

• The low-order nonlinear feedforward models in Refs (Peralez et al., 
2013, 2017; Seitz et al., 2018). can be extended to high-order 
nonlinear models with simple modifications, as presented in this 
work. This allows for the usage of more accurate models than those 
in LQR and MPC, which are based on linearization, without consid
erably increasing the computation time as in NGC and nonlinear 
MPC;  

• Uncertainties due to modeling, measurement errors or system aging 
can easily be compensated by the feedback part, whereas the feed
forward contributes to most of the control action. 

Although conceptually very simple, there is only a very limited 
number of studies on the application of feedforward control of ORC 
systems, and only seven of them deal with waste heat recovery from 
heavy-duty vehicles (Vaupel et al., 2021; Peralez et al., 2013, 2017; 
Padula et al., 2012; Usman et al., 2017; Xu et al., 2020b; Keller et al., 
2020). A dynamic inversed-model feedforward was investigated in Refs 
(Peralez et al., 2013, 2017). to control the degree of superheating at the 
turbine inlet of an ORC unit using R245fa as the working fluid. The 
feedforward action was based on a third-order moving boundary (MB) 
model of the ORC evaporator, which was inverted. In this way, the mass 
flow rate of the pump could be determined from the given desired 
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degree of superheating. The solution was tested experimentally on a 
realistic profile of the exhaust gases. The results indicated that the 
controller with feedforward could significantly improve the perfor
mance compared with the use of the PID controller only, with a 
maximum error in the degree of superheating of 1.9 K with respect to the 
set point. Similar numerical results were achieved in Ref. (Grelet et al., 
2015b). Given the very promising results of the dynamic inversed-model 
feedforward, a similar concept was presented in Ref. (Seitz et al., 2018). 
The feedforward model was this time a fourth-order MB evaporator 
coupled with a volumetric expander. The results suggested much larger 
oscillations in the degree of superheating (- 15/+60 K from the set point) 
than those presented in Ref. (Peralez et al., 2017). Nonetheless, the 
option using a gain-scheduled LQR integrated to the feedforward could 
achieve at least 25% higher thermal-to-electric efficiency than the other 
investigated options, such as static feedforward or dynamic feedforward 
with PI feedback. Keller et al. (2020) compared a PID controller com
bined with static feedforward with a MPC concept. The authors found 
that large oscillations in the evaporator outlet temperature occurred 
with the feedback/feedforward concept, while the MPC could keep a 
mean absolute error to 4.5 K over a transient heat source profile. Vaupel 
et al. (2021) compared nonlinear MPC solutions with a conventional 
PI/feedforward control. The feedforward concept was based on a linear 
filter acting on an offline steady-state optimized estimation of the mass 
flow rate as a function of the mass flow rate and inlet temperature of the 
exhaust gas. Based on a highly transient waste heat profile, the nonlinear 
MPC solutions could reach 0.5% higher net power output than the 
conventional PI/feedforward concept. By assuming perfect prediction of 
the waste heat profile, an improvement of about 2% could be achieved. 
Given the low improvements of the nonlinear MPC concepts with respect 
to the PI/feedforward control, which would amount to an absolute in
crease in engine performance of 0.1%, the authors conclude that, even if 
the real-time capability of nonlinear MPC could be achieved onboard, it 
might not be worthwhile to invest in the high development costs 
compared to the PI-feedforward solution. 

Given the positive results of dynamic inversed-model feedforward 
controllers (coupled with PID or LQR feedback control) that were re
ported in literature, this solution is a promising option to reject the 
fluctuations of the exhaust gases of truck internal combustion engines 
and keep the operation of the ORC unit close to the desired set point. 
However, the large deviations of the operation of the ORC unit from the 
desired set point found in Ref (Seitz et al., 2018). suggest that further 
research is required to improve the controller performance of nonlinear 
feedforward concepts, guaranteeing safe and efficient operation in real 
applications. Deviations of approximately 10 K were also found with the 
linear filtering concept in Ref. (Vaupel et al., 2021), and even larger 
deviations were reported by using the static feedforward concept in 
Ref. (Keller et al., 2020). High-order MB models of the evaporator are 
typically more accurate than the static feedforward model in Ref (Keller 
et al., 2020). and the low-order models used in Refs. (Vaupel et al., 2021; 
Peralez et al., 2013, 2017; Seitz et al., 2018), and these could be used to 
improve the performance of the feedforward controller in terms of 
tracking and disturbance rejection. However, the mathematical condi
tions necessary for the direct inversion of the higher-order MB models do 
not hold, because the high-order MB models are non-minimum phase 
(Peralez et al., 2012). Therefore, numerical approximations are required 
for this approach to be successful. The lack of methods that allow for 
satisfying the mathematical conditions required for developing 
nonlinear feedforward concepts based on high-order models has so far 
hindered the use of high-order models. 

This paper presents novel advanced feedforward control concepts for 
ORC units recovering waste heat from the exhaust gas of a heavy-duty 
truck. The main contribution of the paper is the novel approach used 
to integrate dynamic nonlinear inversed-model feedforward to a clas
sical PI control system, while considering high-order MB models 
together with innovative numerical approximations. In the analysis, we 
quantify the cumulative control effort that, although very important for 

the controller tuning, was typically neglected or not quantified in pre
vious works in the field of control of ORC power systems. In particular, 
the new numerical approximations modify the mass accumulation term 
in the energy balance of the two-phase and vapor regions, thus allowing 
for more accurate feedforward action and effective control. The 
nonlinear inversed-model feedforward controller was integrated and 
compared with a classical PI feedback controller. Alternative feedfor
ward concepts such as a static feedforward controller and a linear gain- 
scheduled feedforward controller were also compared. The ORC evap
orator was approximated by a FV model of the ORC evaporator devel
oped in Dymola (Systèmes, 2020) and imported in Simulink® 
(MathWorks®. Simulink® 201, 2019). The FV model was chosen as the 
reference test system, because it has proven to be more accurate than the 
MB model for the simulation of ORC evaporators (Wei et al., 2008). The 
feedforward control concepts were also developed in the Simulink® 
environment, but they were based on a MB model of the ORC evapo
rator, given its lower complexity and computational load. As a reference, 
a single-input-single-output PI controller with feedforward is presented, 
acting on the pump mass flow rate to control the degree of superheating 
at the turbine inlet, which is a key variable for the safe operation of the 
ORC system. For the analyzed control concepts, we present the trade-off 
between the minimization of the deviations from the desired set point 
and the cumulative controller effort. The performance of the controllers 
was evaluated by considering exhaust gas measurements provided by a 
truck manufacturer of a heavy-duty truck operating on a 45-min trip. At 
last, it is important to highlight that the control concepts presented in 
the paper can also be applied to other fields, including ORC plants that 
supply both heat and electric power (Pili et al., 2020a), heat pumps 
(Meesenburg et al., 2020), and thermal systems in general, which are 
subject to large variations of the heat source, heat sink or 
electro-mechanical load. 

The paper is divided into five sections. The design of the ORC system 
under study is presented in section 2; the dynamic modeling of the ORC 
system is described in section 3, while the controller development is 
presented in section 4; the results are presented in section 5, followed by 
an outline of the conclusions in section 6. 

2. Design of the organic Rankine cycle system 

This section describes the design of the ORC system considered in 
this work, together with the waste heat profile of the engine of the 
heavy-duty vehicle. 

2.1. Plant layout 

The case study considered in this work consists of a simple ORC 
power system recovering waste heat from the exhaust tailpipe of a 
heavy-duty truck. The plant layout is depicted in Fig. 1. The exhaust gas 
reaches the ORC after the post-treatment system (selective catalytic 
reactor) at point 1g, where harmful components and particles are 
removed. By transferring heat to the ORC unit, the gas is cooled down to 
point 2g, and it is then released to the environment through the tailpipe. 
A three-way valve is included to bypass the heat exchanger/evaporator 
(EVA), if needed to avoid overloading of the ORC unit. A simple ORC 
unit is shown on the right-hand side of Fig. 1. A simple configuration 
without a recuperator is chosen to guarantee the compactness and 
simplicity that are required to install the ORC onboard the truck cabin. 
The working fluid is forwarded by a pump (P) from the liquid state 0 to 
the evaporator (EVA) inlet at state 1, where the working fluid is pre
heated, vaporized and superheated up to state 2. The superheated vapor 
enters the turbine (T), where the thermo-mechanical conversion occurs. 
The working fluid exits the turbine at state 3, where it is condensed in 
the condenser (CO) to saturated liquid at state 0, thus closing the ther
modynamic cycle. 
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2.2. Waste heat profile 

The exhaust gas data used in this work were provided by a truck 
manufacturer and consist of measurements of a 450-hp (331 kW) 13-L 
turbocharged diesel engine over a 45-min trip of a heavy-duty truck; 
see Fig. 2. The exhaust data are provided as supplementary material in 
Appendix B. The data sampling time is 1 s. 

The fluctuations in temperature, shown in Fig. 2a, are dampened by 
the engine post-treatment system (selective catalytic reactor), and 
oscillate over a 65 K range between 270 ◦C and 335 ◦C. On the contrary, 
the fluctuations in mass flow rate are highly transient, fluctuating be
tween 0.05 kg/s and 0.52 kg/s and showing rapid variations from 
maximum to minimum and vice versa in the time scale of only a few 
seconds. 

From the mass flow rate ṁg in kg/s and inlet temperatureTg,in in K of 
the exhaust gas, the available waste heat rate Q̇g,a can be determined as 
follows: 

Q̇g,a = ṁgcp,g
(
Tg,in − 120 − 273.15

)
(1)  

where cp,g is the specific heat at constant pressure of the exhaust gas. The 
waste heat rate is referred here to an outlet temperature of the exhaust 
gas of 120 ◦C in order to avoid condensation of acidic substances in the 
tailpipe. It can be seen in Fig. 2b that the available waste heat is affected 
by large variability, fluctuating between 8 kW and 96 kW. Furthermore, 
the large variability of the available waste heat is confirmed by its 
profile load curve plotted in Fig. 3. It can be seen that the distribution of 
the available waste heat rate is approximately uniform. This causes 
particular challenges to the design of the ORC unit and leads to part-load 
operation for most of the time during the profile. Based on industry 
experience, the exhaust gas heat rate data corresponding to 51.5 kW was 
selected as the design point for the ORC unit. This approximately cor
responds to the average available waste heat rate over the profile in 
Fig. 2, and it is indicated with a red star in Fig. 3. 

Fig. 1. Basic layout of the ORC waste heat recovery system.  

Fig. 2. (a) Exhaust gas mass flow rate and inlet temperature and (b) available waste heat rate.  
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2.3. Design of the ORC system and evaporator 

The ORC system was designed by carrying out a steady-state ther
modynamic cycle optimization of the system depicted in Fig. 1. Details 
about the design can be found in Ref. (Carraro et al., 2021). The system 
design conditions are reported in Table 1. Water was assumed as the 
cooling medium, entering the condenser at 40 ◦C. The ORC working 
fluid is R245fa, analogously to that used in Ref. (Peralez et al., 2017). 
R245fa is selected as working fluid due to its high thermal degradation 
temperature of 300 ◦C and its low flammability, which is a significant 
benefit compared with hydrocarbons and siloxanes (highly flammable). 
The objective function to be maximized by the optimization routine is 
the net power output Pnet: 

Pnet = ṁwf
(
hwf ,T,in − hwf ,T ,out

)
+ ṁwf

(
hwf ,P,in − hwf ,P,out

)
(2)  

where ṁwf and hwf are the mass flow rate and the specific enthalpy of the 
working fluid, respectively, and the subscripts ‘T’ and ‘P’ refer to the 
turbine and the pump, respectively. The subscripts ‘in’ and ‘out’ refer to 
the inlet and the outlet of the component.. 

After the thermodynamic design, the evaporator was designed using 

an in-house design code written in MATLAB®. The code was originally 
developed in Refs (Pili et al., 2017). and also used in Ref. (Carraro et al., 
2021). A fin-and-tube evaporator is considered, where the exhaust gas 
flows on the shell side and the working fluid on the tube side in a 
crossflow arrangement. This type of heat exchanger is suitable for this 
application, because it can guarantee compactness while limiting the 
backpressure of the main diesel engine and being easy to clean in the 
case of fouling. These advantages are achieved thanks to the larger flow 
channels on the exhaust gas side compared with, e.g., plate heat ex
changers. The tubes are equipped with radial fins to enhance the heat 
transfer. The evaporator design is illustrated in Fig. 4, and the main 
geometrical parameters of the evaporator are summarized in Table 2. 
Stainless steel is chosen as the material to avoid corrosion from the 
exhaust gas acidic compounds. 

3. Dynamic modeling of the organic Rankine cycle system 

In this section, the modeling approaches used to simulate the ORC 
system and to develop the feedforward control concepts are described. 
Focus is set on the high-pressure part of the ORC unit consisting of the 
working fluid pump, the evaporator and the turbine. For simplicity, 
given its minor relevance, the condenser of the ORC unit is neglected. In 
particular, the evaporator is of central interest, since this component 
thermally connects the ORC unit with the heat source and is, therefore, 
an essential element for guaranteeing the maximum power output. Here, 
two models are illustrated: i) the finite volume model, which is typically 
more accurate and therefore used to simulate the real ORC system on 
which the control strategies are tested and ii) the moving boundary 
model, which is less computationally-intensive and therefore can be 
used to develop advanced control strategies, such as nonlinear 
feedforward. 

3.1. Finite volume evaporator model 

A dynamic model of the ORC evaporator was developed by using the 
commercial software Dymola and the commercial library TIL (hermo 
GmbSuit, 2016). Given its proven superior accuracy, a FV approach was 
used to simulate the real ORC system, whereas a moving boundary 
approach was used for the controller development; see section 3.2. The 
simulation model and the control system were integrated into the 
Simulink® environment, where the Dymola model was imported by 
using the Functional Mock-up Interface through the FMI Kit for Simulink 
(Systèmes, 2018). Given the high number of tube rows, the FV evapo
rator was modelled as a parallel flow heat exchanger. 1D discretization 
was performed by using 15 cells, distributed along the main ORC 
working fluid direction. 

The mass and energy balances for each cell of the working fluid are as 
follows: 

dMwf

dt
=

d
(
Vwf ρwf

)

dt
=Vwf

(∂ρwf

∂h

⃒
⃒
⃒
⃒

p

dhwf

dt
+

∂ρwf

∂p

⃒
⃒
⃒
⃒

h

dpWf

dt

)

= ṁwf ,in − ṁwf ,out (3)  

d
(
Mwf uwf

)

dt
=

d
(
Mwf hwf − Vwf pwf

)

dt
= ṁwf ,inhwf ,in − ṁwf ,out hwf ,out + Q̇cell,wf

(4)  

where M is the mass, V is the volume, ρ is the density, h is the specific 
enthalpy, p is the pressure, ṁ is the mass flow rate, u is the specific 
internal energy and Q̇cell is the heat transfer rate of the working fluid. 
The subscripts ‘in’ and ‘out’ refer to the inlet and the outlet of the cell, 
and the subscript ‘wf’ refers to the working fluid. The TIL library uses an 
upwind discretization scheme, according to which the specific enthalpy 

Fig. 3. Available waste heat rate of a 450-hp (331 kW) 13-L turbocharged 
diesel engine over a 45-min trip of a heavy-duty truck (assuming 120 ◦C as the 
reference temperature). 

Table 1 
Design parameters of the ORC unit (Carraro et al., 2021).  

Fluid Quantity Symbol Unit Value 

Exhaust gas Mass flow rate ṁg kg/s 0.25 
Exhaust gas Inlet temperature Tg,in 

◦C 320 
Exhaust gas Outlet temperature Tg,out 

◦C 120 
Working fluid Mass flow rate ṁwf kg/s 0.187 
Working fluid Inlet temperature Twf ,in 

◦C 56 
Working fluid Outlet temperature Twf ,out 

◦C 171 
Working fluid Evaporation pressure pwf ,EVA bar 29.0 
Working fluid Condensing pressure pwf ,CO bar 4.2 
Working fluid Turbine isentropic efficiency ηis,T,D % 85 
Working fluid Pump isentropic efficiency ηis,P,D % 75 
Working fluid Net mechanical power output Pnet kW 6.2  
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of the cell is assumed equal to the specific enthalpy of the fluid at the cell 
outlet, i.e. hwf ,out = hwf . The pressure drop was neglected here for 
simplicity, which is known to be a reasonable assumption for dynamic 
simulations. The energy balance for the metallic wall of the heat 
exchanger is as follows: 

Mwcw
dTw

dt
= − Q̇cell,wf + Q̇cell,g (5)  

where Mw, cw and Tw are the mass, specific heat and temperature of the 
wall, respectively. Q̇cell,g is the heat transfer rate between the exhaust gas 
and the ORC working fluid. Since the dynamics of the exhaust gas are 
much faster than those of the metallic wall and the working fluid, the 
cells of the exhaust gas were modelled at steady state as follows: 

ṁg,out = ṁg,in (6)  

Q̇cell,g = ṁg,incp,g
(
Tg,in − Tg,out

)
(7)  

where cp,g is the gas specific heat at constant pressure. The pressure drop 
was neglected also here for simplicity, which is known to be a reasonable 
assumption for dynamic simulations. The heat transfer rates at the 
working fluid and the gas side implemented in the TIL library were used 
here as follows (hermo GmbSuit, 2016): 

Q̇cell,wf =
1

1
αwf Ai

+ Rw
2

(
Tw − Twf

)
(8)  

Q̇cell,g= ṁg,incp,g

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 − exp

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−
1

[
1

αgAo

(
1+

Af
Ao (ηf − 1)

)+ Rw
2

]

ṁg,incp,g

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(
Tg,in − Tw

)

(9)  

where αwf and αg are the heat transfer coefficients on the working fluid 
and on the gaseous heat source side, Ai and Ao the respective heat 
transfer surface areas, Rw the thermal resistance of the metallic wall, Af 

the heat transfer area of the fins and ηf the fin efficiency. The expo
nential term of the heat transfer rate of the gas takes into account that 
the exhaust gas locally flows in crossflow with respect to the tubes. The 
Gnielinski-Dittus-Boelter correlation (Pili et al., 2019a) was used for the 
heat transfer coefficient αwf of the working fluid in single phase, while 
the Steiner correlation from the VDI Heat Atlas (Kind et al., 2010) was 
used for the two-phase region. For the exhaust gas, the correlation for 
heat transfer on the shell-side of tube bundles from the VDI Heat Atlas 
(Gaddis and Gnielinski, 2010) was used. The fin efficiency was deter
mined by using the method suggested by Schmidt (1945). The working 
fluid properties were retrieved using the REFPROP database (Lemmon 
et al., 2018), while the XTR dry air model of the TILMedia library 
(hermo GmbMedia, 2016) was used to model the properties of the 
exhaust gas. 

In the FV method, the cells of the working fluid do not necessarily 
have a unique fluid phase (liquid, two-phase or vapor). This can vary 
depending on the operating conditions and the heat transfer rate. 
However, the phase transition in a cell can lead to numerical problems in 
the solution, because of the large difference in the heat transfer coeffi
cient αwf and the fluid density ρwf between the liquid, two-phase and 
vapor. For this reason, a time filter with a time constant Tαwf = 1 s was 
included in the αwf calculation. This allows for a smoother phase change 
as follows: 

dα′

wf

dt
=

αwf − α′

wf

Tαwf

(10)  

where the filtered heat transfer coefficient α′

wf was used in Eq. (8) 

Fig. 4. Geometry of the fin-and-tube evaporator: (a) tube and fin cross section, (b) tube axial view and (c) fluid arrangement (Carraro et al., 2021).  

Table 2 
Main geometrical parameters of the fin-and-tube evaporator (Carraro et al., 
2021).  

Quantity Symbol Unit Value 

Tube inner diameter di mm 12.4 
Tube thickness t mm 1.1 
Tube length l mm 388.8 
Tube spacing between rows tnr mm 29.1 
Tube spacing between tubes in same row tnp mm 34.1 
Fin height h mm 5.4 
Fin thickness s mm 0.5 
Fin pitch a mm 3.3 
Number of tube rows nr – 17 
Number of tube per row np⋅nrp – 8 
Number of passes per row (tube side) nrp – 2 
Tube arrangement – – Staggered 
Tube and fin material – – Stainless steel  
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instead of αwf as the latter is determined by the heat transfer correla
tions for single and two-phase flow introduced before. 

In ORC power systems, the system response due to dynamic changes 
in operating conditions is governed by the heat exchangers. This is 
because the thermal transients have much larger time constants than the 
mechanical transients. For this reason, the dynamics of the fluid ma
chinery, i.e. the turbine and the pump, are neglected, and these com

ponents are modelled at steady state. When making this assumption, no 
significant loss of accuracy in the prediction of the dynamic trend for the 
system thermodynamic properties is expected (Imran et al., 2020). In 
addition, the turbine is assumed to operate at sonic condition, since this 
is typically the case for ORC applications (Macchi and Astolfi, 2017). 
Therefore, the following equation holds: 

ṁwf ,T

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
κwf ,T,in Zwf ,T,in Twf ,T ,in

√

pwf ,T ,in
= kT (11)  

whereκ is the ratio of the specific heats, and Z is the compressibility 
factor for the working fluid at the turbine inlet. The parameter kT =

0.128 kg
s

K0.5

kPa was estimated from the design values of mass flow rate, 
pressure and temperature at the turbine inlet. The isentropic efficiency 
of the turbine at part-load is defined by the correlation from Vetter 
(2014):  

where the subscript ‘D’ refers to the design point previously described in 
section 2. A positive-displacement pump was considered, and its 
part-load performance was estimated as a function of the pressure ratio 
of the pump pr as follows (Pili et al., 2019b):  

3.2. Moving boundary evaporator model 

The FV model presented in the previous section consists of 46 states, 
i.e. the specific enthalpies and the filter heat transfer coefficients of the 
working fluid cells, the pressure of the working fluid as well as the wall 
temperatures of the metallic wall cells. The high number of states of the 
FV model leads to a high computational effort, which is generally un
desirable for real-time control. For this reason, while the FV model was 
used in this work only to simulate the real system, a MB model was used 
for the development of the feedforward control. The model was imple
mented in Simulink®, which allows for flexible model modifications and 
easy development of innovative control concepts, such as the nonlinear 

dynamic inversed-model feedforward presented in this work. 
The MB model consists of three cells, corresponding to the liquid, 

two and vapor phase of the working fluid, respectively. During opera
tion, the interface between each phase region can move depending on 
the operating conditions and the local heat transfer rate. The mass 
balance in each cell is as follows:  

where ywf corresponds to the volume fraction of the cell with respect to 
the total volume Vwf ,tot. The energy balance for each cell is 

d
(
Hwf
)

dt
− Vwf ,tot ywf

dpwf

dt
= ṁwf ,in hwf ,in − ṁwf ,out hwf ,out + Q̇cell,wf (15)  

where Hwf = Mwf hwf is the enthalpy of the working fluid in the cell. The 
specific enthalpy of each cell was calculated, analogously to the corre
spondent TIL library model, as the average of the specific enthalpy at its 
inlet and outlet: 

hwf =
hwf ,in + hwf ,out

2
(16) 

The density and the enthalpy in the two-phase region are defined by 
the void fraction γwf , corresponding to the ratio of the volume occupied 
by the vapor phase to the total volume: 

ρwf = ρ′

wf

(
1 − γwf

)
+ ρ′′

wf γwf (17)  

Hwf =
[
ρ′

wf h
′

wf

(
1 − γwf

)
+ ρ′′

wf h′′
wf γwf

]
ywf Vwf ,tot (18)  

where ρ′ and ρ′′ are the densities of the saturated liquid and vapor, 

respectively. Analogously, h′ and h′′ are the specific enthalpies of the 
saturated liquid and vapor. The void fraction γwf was determined by 
using the correlation from Zivi (1964). 

The energy balance at the metallic wall accounts for the variation of 
the volume in each cell, being a modified version of Eq. (5): 

d
(
Vw,tot ρw yw cw Tw

)

dt
=
∑ d

(
Vw,tot ρw cw yw

)

dt
Tw,b − Q̇cell,wf + Q̇cell,g (19)  

where Vw,tot is the total volume of metallic wall material, ρw is the 
density of the metallic wall material, yw is the volume fraction of the 
considered region and Tw,b is the temperature of the neighboring region 

ηis,T

ηis,T,D
= 0.007 + 3.182

(
ṁwf ,T

ṁwf ,T,D

)

− 6.491
(

ṁwf ,T

ṁwf ,T,D

)2

+ 10.504
(

ṁwf ,T

ṁwf ,T,D

)3

− 11.413
(

ṁwf ,T

ṁwf ,T ,D

)4

+ 7.068
(

ṁwf ,T

ṁwf ,T,D

)5

− 1.856
(

ṁwf ,T

ṁwf ,T,D

)6

(12)   

ηis,P,v

(
pr

pr,D

)

= ηis,P,D

(
0.992 e− 0.01529 pr

pr,D − 0.6902 e− 6.82 pr
pr,D

)
ηis,P = ηis,P,D

ηis,P,v

(
pr

pr,D

)

ηis,P,v

(
pr

pr,D
= 1
) (13)   

dMwf

dt
=

d
(
Vwf ,tot ywf ρwf

)

dt
=Vwf ,tot

[

ρwf
dywf

dt
+ ywf

(∂ρwf

∂h

⃒
⃒
⃒
⃒

p

dhwf

dt
+

∂ρwf

∂p

⃒
⃒
⃒
⃒

h

dpWf

dt

)]

= ṁwf ,in − ṁwf ,out (14)   
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of working fluid, which changes according to the direction of change of 
the interface boundary: 

Tw,b =

⎧
⎨

⎩

Tw if
dyw

dt
< 0

Tw,n elsewhere
(20)  

where Tw,n is the wall temperature of the neighboring cell. The mass and 
energy balance equations for the gas cell are the same as in Eqs. (6) and 
(7). In order to simplify the calculation of the heat transfer coefficients in 
off-design conditions, the correlations were fitted by using an expo
nential function of the mass flow rate, similarly to what was carried out 
for the global heat transfer coefficient in Ref. (Pili et al., 2019b): 

α= αD

(
ṁ

ṁD

)τ

(21)  

where τ is an exponential factor. The heat transfer coefficients and the 
exponential factors used for the working fluid and the exhaust gas in 
each region are summarized in Table 3. The need of fins to enhance the 
heat transfer on the evaporator shell side is confirmed by the low heat 
transfer coefficient of the exhaust gas compared with the working fluid. 
In addition, it can be seen that the two-phase region shows the highest 
heat transfer coefficient for the working fluid. Untypically, the heat 
transfer coefficient of the working fluid is higher in the vapor region 
compared with the liquid region. This is due to the much larger velocity 

of the working fluid given by the lower density for the same available 
cross section in this region compared with the liquid region. Nonethe
less, the much lower heat transfer coefficient of the exhaust gas domi
nates the heat transfer capabilities of the heat exchanger and makes the 
differences in heat transfer coefficient of the working fluid in the 
different regions negligible. Section 3.3 shows the suitability of the 
fitting when estimating the part-load behavior of the evaporator on a 
test case. The REFPROP database was used to retrieve the properties of 
the working fluid, whereas the specific heat at constant pressure of the 
exhaust gas was approximated by a polynomial function: 

cp
(
Tg
)
= 2.19⋅10− 4 T2

g − 4.40⋅10− 2 Tg + 9.99⋅102 (22)  

where Tg is defined in K. By combining the mass and energy balances 
described by Eqs. (14) and (15), it can be concluded that the MB model 
has 8 states, i.e. the specific enthalpy of the working fluid at inlet and 
outlet of the evaporator, the pressure, the volume fraction of the liquid 
and vapor regions with respect to the total volume and the temperature 
of the metallic wall in the three regions. The number of states is 
significantly lower than that of the FV model, allowing for faster and 
more sophisticated control. 

3.3. Verification of evaporator models and model reduction 

In the absence of suitable experimental data, the Simulink® models 
were verified against the results of models in different software, such 
Aspen Exchanger Design and Rating (EDR) (Aspen Technology, 2017) 
and Dymola. The heat transfer coefficients of the evaporator are the 
largest element of uncertainty and largely affect the heat transfer area 
and the off-design behavior of the evaporator. Since the heat transfer 
correlations are static, a steady-state verification was first performed by 
varying the mass flow rate of the exhaust gas and working fluid over a 
broad range of operating conditions (25%–100% of the design mass flow 
rates). As the baseline, a simulation of the evaporator in Aspen EDR was 
used. The geometric parameters. 

presented in Table 2 and the exponential factors shown in Table 3 
were used. The results are presented in Fig. 5a, indicating that both the 
Dymola FV model and the Simulink® MB model are very close to the 
reference case in Aspen EDR, with a maximum deviation of 2%. 

A dynamic verification was also performed among the Dymola FV 
and MB models and the Simulink® MB model, by starting from nominal 
conditions and subjecting the evaporator to a positive step of 20% in 
pump mass flow rate at t = 500 s; see Fig. 5b. In this case, the FV and MB 
models of the TIL library are compared with the MB model developed in 
Simulink®. The step in pump mass flow rate causes the degree of 

Table 3 
Exponential factors for the estimation of the heat transfer coefficients.  

Fluid Phase Quantity Symbol Unit Value 

Exhaust gas – Design heat transfer 
coefficient 

αg,D W/ 
m2K 

66.4 

Design mass flow rate ṁg,D kg/s 0.25 
Exponential factor τg,D – 0.54 

Working 
fluid 

Liquid, L Design heat transfer 
coefficient 

αwf ,L,D W/ 
m2K 

770 

Design mass flow rate ṁwf ,L,D kg/s 0.187 
Exponential factor τwf ,L – 0.92 

Two- 
phase, LV 

Design heat transfer 
coefficient 

αwf ,LV,D W/ 
m2K 

1550 

Design mass flow rate ṁwf ,LV,D kg/s 0.187 
Exponential factor τwf ,LV – 0.67 

Vapor, V Design heat transfer 
coefficient 

αwf ,V,D W/ 
m2K 

1000 

Design mass flow rate ṁwf ,V,D kg/s 0.187 
Exponential factor τwf ,V – 0.86  

Fig. 5. Verification of evaporator models: (a) steady state simulations and (b) dynamic simulations of a 20% step change in the pump mass flow rate.  
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superheating to increase by more than 40 K. The FV model has a small 
fluctuation at t = 700 s, which is caused by a cell that switched from 
liquid to two-phase. This phenomenon is typical of FV models and well 
documented in literature (Desideri et al., 2016). Also the response of the 
MB model available from the TIL library in Dymola is shown. The dif
ferences in results between the MB model from Dymola and the MB 
Simulink® model are negligible. Both MB models have an offset in the 
degree of superheating compared with the FV model, although this re
mains below 5 K before and after the step change. The responses of the 
evaporator to the step change are very similar for the FV and MB 

evaporator models, with slightly more time required by the MB model to 
reach its steady state, because of the higher degree of superheating 
reached after the transient. Overall, the good agreement among the re
sults of the models indicates that the models are reasonable and reliable. 

Not all the states of the MB evaporator model have the same dynamic 
time scale. Some of them, e.g., the pressure, is significantly faster, while 
others, e.g., the wall temperatures, are considerably slower. Since the 
overall system dynamics are governed by the slowest states, the MB 
model can be reduced by neglecting the dynamic effect of the faster 
states, i.e. setting their time derivatives to zero. This should lead to only 
small deviations from the full-order original model. A comparison of the 
reduced-order models is carried out based on the 20% step change in 
pump mass flow rate previously used for the verification of the Simu
link® MB model, and the response is plotted in Fig. 6. Table 4 shows the 
states that are neglected and the corresponding model order. In addition, 
the time required to reach 63.2% of the final steady-state value is given. 
This time value corresponds to the time constant of first-order linear 
systems (Corriou, 2004), and is used here for comparison. The full MB 
model has a time constant of 58.6 s. It can be. 

seen that the models with order five to seven do not show significant 
deviation from the full MB model – the models with order five and six 
have time constants deviating less than 2 s from that of the full-order 
model, while the model with order seven has the same time constant 
as the full-order model. This means that the specific enthalpies at the 
evaporator inlet and outlet and the evaporation pressure have much 
faster dynamics than the other states. By neglecting the volume fraction 
of the vapor region, the time constant drops to about 51 s. A much more 
significant drop occurs by neglecting the time derivative of the liquid 
region, since the time constant is reduced to 23 s and the evaporator 
response becomes noticeably faster. In particular, the volume fraction of 
the liquid region has a greater influence on the dynamics than the vol
ume fraction of the vapor region, because of the much larger density and 
hence larger mass of working fluid included in the liquid phase. 

Fig. 6. Dynamic response of reduced-order MB models over a 20% step change 
in pump mass flow rate. 

Table 4 
Order reduction of MB model.  

Order Time derivative set to zero Symbol Time constant to reach 63.2% of final steady-state value, s 

8 (Full) - - 58.6 
7 Specific enthalpy at inlet hwf ,in 58.6 
6 Pressure pwf 60.8 
5 Specific enthalpy at outlet hwf ,out 60.1 
4 Volume fraction (length) of vapor region yw,V 50.8 
3 Volume fraction (length) of liquid region ywf ,L 23.0  

Fig. 7. Feedback control structure with PI control.  
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4. Control of the organic Rankine cycle system 

In this section, the reference PI control of the ORC system is first 
discussed, with focus on the control of the working fluid conditions at 
the evaporator outlet/turbine inlet. Subsequently, the static, linear and 
nonlinear inversed-model feedforward concepts are presented. 

4.1. Basic feedback control structure 

The basic PI control structure for the waste heat recovery ORC unit is 
the one illustrated in Fig. 7. Emphasis is set on the working fluid con
ditions at the turbine inlet (point 2), because these conditions are the 
most affected by the exhaust gas conditions and influence the mechan
ical power output of the turbine. Important constraints need to be 
satisfied at this point, such as the minimum degree of superheating and 
the maximum evaporation pressure. These conditions are required in 
order to ensure optimal and safe operation. For this purpose, two PI 
controllers were considered:  

1) A main controller with the task to keep the degree of superheating at 
point 2 at its desired set point SHSP by acting on the pump mass flow 
rate ṁwf ,P;  

2) A secondary controller with the task to ensure that the pressure at 
point 2 does not exceed the maximum allowed value pmax, which is 
set to 35 bar to avoid supercritical operation. In order to fulfill this 
task, a share of the exhaust gas can be bypassed the evaporator 
reducing the heat transfer rate of the evaporator. 

Both controllers are equipped with output limiters to ensure the 
practical feasibility of the solution and to avoid component damage. The 
operational range of the pump is constrained to a range of 20%–120% of 
its nominal value (Pili et al., 2019a), while the opening of the bypass 
valve may vary from completely closed (0) to completely open (1). An 
anti-windup system is included in the PI controllers to avoid accumu
lation of the integral part when the controller is either at the maximum 
or at the minimum value (Corriou, 2004). 

The PI controllers were designed by using the ‘pidtune’ command 
available from the Controller System Toolbox™ of MATLAB® (Math
works®, 2019), based on the linearization of the system around the 
design point. The parameters were tuned with a standard phase margin 
of 60◦. The values for the proportional and integral gain of the PI 
controller are reported in Table 5. In addition, the PI tuning proposed in 
Ref (Skogestad, 2004). and available in the Control System Designer App 

of MATLAB® (MathWorks®, 2019) was used for comparison; see 
Table 5. It can be seen that the proportional gain for the pump controller 
is much higher, and the integral time constant is lower using the method 
presented in Ref (Skogestad, 2004). than those obtained using the 
‘pidtune’ command, leading to a much more aggressive controller using 
the method presented in Ref. (Skogestad, 2004) (see section 5). For the 

bypass controller, a pure proportional controller was obtained using the 
‘pidtune’ command, while a PI controller with a lower proportional gain 
was obtained using the method presented in Ref. (Skogestad, 2004). 

In the simple feedback configuration of Fig. 7, the measurements of 
mass flow rate ṁg and inlet temperature Tg,in of the exhaust gas are not 
directly given as information to the controllers, but they rather act as 
disturbances that affect the degree of superheating and the evaporation 
pressure. The PI controllers can counteract the influence of the distur
bances; however, they can only act after the detection of the distur
bances at point 2. 

A similar approach can be followed for the temperature and pressure 
of the working fluid at the condenser outlet (point 0), which correspond 
to the conditions at the pump inlet and can be considered as distur
bances for the control system in Fig. 7. Furthermore, it is common 
practice for ORC systems to control the condenser pressure by varying 
the mass flow rate of the cooling fluid. If no control is available, the heat 
transfer rate and pressure in the condenser are dependent only on the 
truck incoming air flow rate during a driving cycle, which in turn is 
directly related to the vehicle speed. Considerations of the condenser 
conditions require a specific analysis of the low-pressure part of the ORC 
unit, including the heat rejection capabilities of the system to the 
environment. In order to reduce the problem complexity, and given the 
slow variations affecting the operating conditions at the condenser 
compared to the fast variations in waste heat, considerations of the 
condenser conditions are discarded in the present work, as previously 
done in Ref. (Seitz et al., 2018). The condenser pressure is assumed to 
stay constant at the design value of 4.2 bar. 

4.2. Feedforward control 

This section describes the different feedforward concepts analyzed in 
this work, starting from the static feedforward concept, followed by the 
gain-scheduled linear feedforward concept and leading to the nonlinear 
dynamic inversed-model feedforward concept. Novel approximations to 
allow for the implementation of nonlinear dynamic inversed-model 
feedforward are described at the end of the section. 

4.2.1. Static feedforward 
Considering the turbine off-design law defined by Eq. (11) and 

assuming that the mass flow rate of the pump corresponds to the mass 
flow rate at the turbine inlet, a direct correlation is found between the 
mass flow rate of the pump and the desired degree of superheating:  

where pwf ,T,in = pwf ,EVA is the pressure measured at the turbine inlet and 
Twf ,sat,T,in( pwf ,T,in) is the saturation temperature of the fluid at the turbine 
inlet pressure. The main drawback of this concept lies in the fact that the 
time delay between the mass flow rate of the pump and that of the 
turbine is neglected, although it has a significant influence on the system 

Table 5 
Tuning of PI controllers.  

Controlled variable Manipulated variable Method Proportional gain Integral time constant 

Degree of superheating at turbine inlet Mass flow rate of pump pidtune − 0.0011 K/kg/s 7.35 s 
Degree of superheating at turbine inlet Mass flow rate of pump Ref. (Skogestad, 2004) − 0.0284 K/kg/s 4.04 s 
Maximum evaporation pressure Bypass opening pidtune − 0.0036 1/kPa – 
Maximum evaporation pressure Bypass opening Ref. (Skogestad, 2004) − 0.0021 1/kPa –  

ṁwf ,P ≅ ṁwf ,T = kT ⋅
pwf ,T ,in

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

κwf ,T,in
(
SHSP, pwf ,T,in

)
Zwf ,T,in

(
SHSP, pwf ,T ,in

) [
Twf ,sat,T ,in

(
pwf ,T,in

)
+ SHSP

]√ (23)   
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dynamic response.v 

4.2.2. Gain-scheduled linear dynamic inversed-model feedforward 
A model of the high-pressure part of the ORC unit can be inverted to 

find the value of mass flow rate of the pump that ensures the desired set 
point. The development of the inversed-model feedforward control can 
be simplified by approximating the ORC model as a first-order plus dead 
time (FOPDT) system, i.e. in the Laplace domain: 

SHwf ,T,in(s)=
KU

1 + TUs
e− LU sṀwf ,P(s) (24)  

where KU is the system gain, TU a time constant, LU the time delay 
resulting from the dead time, and SHwf ,T,in(s) and Ṁwf ,P(s) are the Laplace 
transform of the actual degree of superheating at turbine inlet and mass 
flow rate of the pump, respectively. The system gain KU, the time con
stant TU and the time delay LU are found by using the system identifi
cation method suggested in Ref. (Astrom and Hagglund, 2009). The 
degree of superheating stays at the desired set point only if the model 
perfectly matches the real system. If this is not the case, a deviation of 
the actual operating point from the desired set point will occur. The 
dynamic behavior of the ORC evaporator is highly nonlinear, and ac
cording to Refs. (Feru et al., 2014; Seitz et al., 2018) the approximation 
in Eq. (24) is not able to predict the system behavior with sufficient 
accuracy over a broad operating range. For this reason, the model is 
developed for several operating points, so that the system in Eq. (24) can 
be tuned as a function of a proper scheduling parameter θ: 

SHwf ,T,in(s)=
KU(θ)

1 + TU(θ)s
e− LU (θ)sṀwf ,P(s) (25) 

The same can be done to estimate the variation of degree of super
heating when the system is exposed to variations in mass flow rate Ṁg(s)
and inlet temperature Tg,in(s) of the exhaust gas: 

SHwf ,T,in(s)=
KD1(θ)

1 + TD1(θ)s
e− LD1(θ)sṀg(s) (26)  

SHwf ,T,in(s)=
KD2(θ)

1 + TD2(θ)s
e− LD2(θ)sTg,in(s) (27)  

where the subscript ‘D1’ (disturbance 1) refers to the mass flow rate and 
the subscript ‘D2’ (disturbance 2) refers to the inlet temperature of the 

Fig. 8. System identification for the ORC evaporator dynamic response: (a) normalized gain, (b) time constant and (c) time delays for the identified response of the 
ORC system. Identification on a 1% step change in input ‘U’ and disturbances ‘D1’ and ‘D2’. 

Fig. 9. Evaporation pressure as a function of the available waste heat 
(assuming 120 ◦C as the reference temperature). 
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exhaust gas. The coefficients are illustrated as a function of the evapo
ration pressure in Fig. 8, which is taken in this case as the scheduling 
parameter θ. The maximum scheduling pressure is limited to 35 bar, 
because this is the maximum allowed for the system under investigation. 
The relative root mean square error of the identified models compared 
with the original FV models is 3.2%. Linear interpolation is used during 
the simulations to estimate the parameters between consecutive iden
tified systems. It can be seen that the normalized gains KU and KD1 
(normalized with respect to the steady-state input and output) drop with 
increasing evaporation pressure, whereas KD2 oscillates around the 
values 14–16 (Fig. 8a). The time constants TU, TD1 and TD2 also drop 
with increasing evaporation pressure, as shown in Fig. 8b, although TU 
remains relatively close to 30 s. The identified time delay is plotted in 
Fig. 8c. While LU and LD1 are below 1 s and are relatively independent 
from the pressure, LD2 is between 1 and 2 s for low pressures, but grows 
up to 6.5 s for evaporation pressures above 30 bar. 

The large variability of the gains, time constants and time delays over 
the pressure range confirms the nonlinearity of the evaporator model 
and the need for parameter scheduling. Therefore, in addition to the 
evaporation pressure, the available waste heat rate Q̇g,a defined in Eq. 
(1) was used as an alternative scheduling parameter (Koppauer et al., 
2018). Fig. 9 shows that the evaporation pressure increases with 
increasing available waste heat rate. The increase in pressure is limited 
to 35 bar as previously mentioned. Results for the cases of the evapo
ration pressure and the available waste heat rate used as scheduling 
parameters are presented for the linear dynamic inversed-model feed
forward concept in section 5. 

Once the coefficients of the FOPTD models are identified, the total 
variation of the degree of superheating can be found by adding all the 
single contributions in Eqs. (25)-27): 

SHwf ,T,in(s)=GU(s, θ) Ṁwf ,P(s)+GD1(s, θ) Ṁg(s) + GD2(s, θ) Tg,in(s) (28)  

with GU(s, θ) =
KU(θ)

1+TU(θ)se
− LU(θ)s, GD1(s, θ) = KD1(θ)

1+TD1(θ)se
− LD1(θ)s and 

GD2(s, θ) = KD2(θ)
1+TD2(θ)se

− LD2(θ)s the transfer functions for the mass flow rate 
of the pump as well as the heat source parameters of the mass flow rate 
and inlet temperature, respectively. 

Given the desired set point SHSP(s), the mass flow rate of the pump 
can be determined by inverting Eq. (28) as follows: 

Ṁwf ,P(s)=
1

GU(s, θ)
SHSP(s) −

GD1(s, θ)
GU(s, θ)

Ṁg(s) −
GD2(s, θ)
GU(s, θ)

Tg,in(s) (29) 

The feedforward concept proposed in (Corriou, 2004) and shown in 
Fig. 10 is used to calculate the mass flow rate of the pump by 

Ṁwf ,P(s)= [Gr1(s, θ) +Gr2(s, θ)] Gc(s, θ) SHSP(s) − Gr1(s, θ) Ṁg(s)

− Gr2(s, θ) Tg,in(s) (30) 

By comparing Eq. (29) and Eq. (30), the transfer functions Gr1(s,θ), 
Gr2(s, θ) and Gc(s, θ) are found (the notation is consistent with that used 
in Ref (Corriou, 2004).): 

Gr1(s, θ) =
GD1(s, θ)
GU(s, θ)

(31)  

Gr2(s, θ) =
GD2(s, θ)
GU(s, θ)

(32)  

Gc(s, θ) =
1

GU(s, θ)[Gr1(s, θ) + Gr2(s, θ)]
=

1
GD1(s, θ) + GD2(s, θ)

(33) 

In order to ensure feasibility of the feedforward options, it has to be 
assured that the transfer functions Gr1(s,θ), Gr2(s, θ) and GC(s, θ) have a 
degree of the denominator higher or equal to the degree of the numer
ator. For this reason, a time filter with time constant Tf = 0.1 s is 
included in Gc(s, θ), and the delays LD1(θ) and LD2(θ) are neglected. In 
case of LD1(θ) < LU(θ) or LD2(θ) < LU(θ), the time delay is set to zero in 
Gr1(s, θ) and Gr2(s,θ), so that the resulting time delay is always positive 
and the transfer function is causal and therefore feasible. 

4.2.3. Nonlinear dynamic inversed-model feedforward 
The MB model expressed in section 3.2 can be expressed in a compact 

Fig. 10. Linear dynamic inversed-model feedforward concept for the high pressure part of the ORC unit as a function of the scheduling parameter θ. The concept has 
been presented in (Corriou, 2004). 

Table 6 
Approximations for inversed full-order and reduced-order MB models.  

Order Approximations 

8 (Full)/ 
7  

•
dy1

dt
= 0 in the energy balance for working fluid in the two-phase cell 

(‘LV’)  

•
dM3

dt
= 0 in the energy balance for working fluid in the vapor cell (‘V’)  

• Filter on the outlet specific enthalpy with τh = 0.4 s: 
dhwf ,out

dt
=

h(SHSP, pwf ) − hwf,out

τh 
6  • Energy balance for the working fluid in the two-phase cell (‘LV’) at 

steady state 0 = ṁwf ,LV,inh′

wf − ṁwf ,LV,outh′′
wf + Q̇LV,wf  

• Energy balance for the working fluid in the vapor cell (‘V’) at steady 
state 0 = ṁwf ,V,inh′′

wf − ṁwf ,outhwf,out + Q̇V,wf  

• Filter on the outlet specific enthalpy with τh = 0.4 s: 
dhwf ,out

dt
=

h(SHSP, pwf ) − hwf,out

τh 
5  • Energy balance for the working fluid in the two-phase cell (‘LV’) at 

steady stat 0 = ṁwf ,LV,inh′

wf − ṁwf ,LV,outh′′
wf + Q̇LV,wf  

• Energy balance for the working fluid in the vapor cell (‘V’) at steady 
state 0 = ṁwf ,V,inh′′

wf − ṁwf ,outhwf,out + Q̇V,wf 

4  • Energy balance for the working fluid in the two-phase cell (‘LV’) at 
steady state 0 = ṁwf ,LV,inh′

wf − ṁwf ,LV,outh′′
wf + Q̇LV,wf 

3 No approximation required: minimum phase system  
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form as follows: 

ẋ= f (x, u, d) y= g(x, u, d) (34)  

where x is the state vector, u is the input vector, d is the disturbance 
vector, y is the output vector, f is the state function and g is the output 
function. Given a desired set point of the output ySP, the nonlinear dy
namic inversed-model feedforward control law is defined as follows: 

uFFW = g− 1( x, ySP, d
)

(35)  

where uFFW is the vector of the ideal manipulated variables given by the 
feedforward control. It can be seen that the feedforward law requires 
knowledge of the system state x, the desired set point ySP and the 
disturbance d. If some of these quantities are not known or measurable, 
they need to be estimated. As state estimators for nonlinear systems, an 
Extended Kalman Filter (EKF) can be used analogously to the approach 
presented in Refs. (Rathod et al., 2019; Koppauer et al., 2018; Peralez 
et al., 2017). As an alternative, the Unscented Kalman Filter (UKF) was 
adopted. 

in Ref. (Pili et al., 2020b). Even though the EKF is more commonly 
used, the EKF and UKF showed comparable computational effort (Kan
depu et al., 2008). The feedforward control requires also an inversion of 
the output function g, which is only possible for minimum phase sys
tems, i.e. systems whose inverse and themselves are causal and stable. 
The full-order MB model and the reduced-order models, except the 
third-order model, are not minimum phase (also called non-minimum 
phase). That is, an inversed-model feedforward concept cannot be 
developed unless the original model description (described by Eq. (34)) 
is modified. An example of approximation for a linear non-minimum 
phase system is briefly explained in Appendix A. 

4.2.4. Approximations for nonlinear dynamic inversed-model feedforward 
concepts 

The nonlinear full-order and reduced-order MB models, compared in 
section 3.3, can be approximated in a way that the inversed-models are 
causal and stable and can thus be used for feedforward control. The 
approximations made for each model order are reported in Table 6. In 
general, the approximations for models of order four to six assume 
steady state energy balances in the two-phase and vapor regions. For the 
models of order seven and eight, where the time derivative of the 
pressure is different from zero, the inversed system can be stabilized by 
setting dy1

dt = 0 in the energy balance of the two-phase region and dM3
dt = 0 

in the energy balance of the vapor region. Although the approximations 
are the same, the models of order seven still differs from the eight-order 
model because the model of order seven neglects the time derivative of 
the specific enthalpy of the working fluid at inlet, i.e. dhwf ,in

dt = 0. 
Additionally, the derivative of the specific enthalpy at the evaporator 

outlet in the inversed models of order five to eight is determined by 
using a time filter, which accounts for variations of the set point SHSP 

and evaporation pressure. The time constant τh = 0.4 s was found to 
ensure sufficient stability of the ORC system with the feedforward 
concept. 

The approximations in the two-phase and vapor energy balances 
reduce the time delay caused by the mass accumulation terms in the 
two-phase and vapor regions. Fig. 11 shows the impact of the time delay 
on the cell density ρwf and volume fraction ywf . The time delay is 
responsible for the initial inversed response of the degree of super
heating at the evaporator outlet. The fourth-order system is subjected to 
a 1% negative step change in the pump mass flow rate. 

In this system, the vapor region is completely at steady state, whereas 
the mass and energy balances of the two-phase regions are 

− Vwf ,tot

[
(1 − γ)ρ′

wf + γρ′′
wf

] dywf ,L

dt
= ṁwf ,LV,in − ṁwf ,out (36)  

− Vwf ,tot

[
(1 − γ)ρ′

wf h
′

wf + γρ′′
wf h

′′
wf

] dywf ,L

dt
= ṁwf ,LV,inh′

wf − ṁwf ,outh′′
wf + Q̇LV,wf

(37) 

The approximated energy balance is 

0= ṁwf ,LV ,inh′

wf − ṁwf ,outh′′
wf + Q̇LV,wf (38)a 

The effect of the approximation can be described as follows (see 
Fig. 11a). First, the negative step in mass flow rate leads to a reduction of 
the volume fraction of the liquid zone ywf ,L, in order to satisfy the mass 
and energy balance in this region (Eqs. (14) and (15)). This leads in turn 
to an initial increase in the mass flow rate moving from the liquid to the 
two-phase region and thus to mass accumulation in the two-phase re
gion. This causes a steep initial increase of the volume fraction of the 
two-phase region ywf ,LV. The satisfaction of the energy balance in the 
two-phase region causes the initial increase in the two-phase region to 
be larger than the decrease in the liquid region, resulting in an initial 
decrease of the volume fraction of the vapor region ywf ,V and in the total 
heat exchanger volume remaining constant. Consequently, the degree of 
superheating at the evaporator outlet also decreases. However, after the 
initial transient, the reduction in mass flow rate of the pump causes the 
working fluid to require less volume fraction ywf ,LV to be fully evapo
rated. As a result, the vapor volume fraction ywf ,V increases, and so does 
the degree of superheating at the evaporator outlet. It can be seen in 
Fig. 11b that by neglecting the mass accumulation in the two-phase 
energy balance, the initial inversed response of the original model 
(although small) disappears. 

5. Comparison of control concepts 

The feedback and feedforward concepts described in section 4 are 
compared. In particular, the following cases are investigated: 

Fig. 11. Approximation of the fourth-order MB model subjected to 1% step 
change in the pump mass flow rate: (a) volume fraction of each phase region 
and (b) degree of superheating. 
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• only feedback (PI) using ‘pidtune’;  
• only feedback (PI) using the tuning rules from Ref. (Skogestad, 

2004); 
• feedback using ‘pidtune’ and linear dynamic inversed-model feed

forward using the evaporation pressure as the scheduling parameter; 
• feedback using ‘pidtune’ and linear dynamic inversed-model feed

forward using the available waste heat rate as the scheduling 
parameter;  

• feedback using ‘pidtune’ and nonlinear dynamic inversed-model 
feedforward from order three to eight, with the Extended Kalman 
Filter (EKF, see section 4.2.3) for state estimation (sample time equal 
to 0.5 s). 

A basic general control scheme is presented in Fig. 12. The mass flow 
rate of the pump ṁwf ,P is controlled to achieve the desired set point in 
degree of superheating SHSP. The controller acting on the pump consists 
of a feedforward and a feedback part. The feedback part has been 
described in section 4.1. The feedforward can be based on the static, 
gain-scheduled linear or the nonlinear concepts presented in section 4.2. 
The static and gain-scheduled linear feedforward are based on algebraic 
and transfer functions, respectively, and do not need any state estima
tion. If a nonlinear feedforward is included, this. 

requires the estimation x̂ of the system state x. This is done by using 
an EKF, based on the MB model of the correspondent order of the 
feedforward model. The EKF uses the evaporation pressure pwf ,EVA and 
the temperature of the working fluid at evaporator outlet (derived by the 
degree of superheating at turbine inlet SHwf ,T,in and the evaporation 
pressure pwf ,EVA) as measurements (system outputs) for the state esti
mation. In addition, the mass flow rate of the pump ṁwf ,P and the dis
turbances are given as input to the EKF. As mentioned in section 4.1, a 
second feedback controller limits the maximum pressure of 35 bar by 
acting on the bypass opening of the exhaust gas βg to avoid excessive 
pressure and keep the operation in the subcritical region. 

The analysis of the controller performance focuses mainly on the 
pump controller, given the fact that the bypass controller has the only 
objective of limiting the maximum pressure of the ORC evaporator. In 
order to compare the pump controller performance, two main variables 
are considered, namely, the absolute root mean square tracking error 
(ARMSTE) and the cumulative controller effort Qu: 

ARMSTE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
tf

∫tf

0

(
SHwf ,T , in − SHSP

)2dt

√
√
√
√
√ (38)b  

Qu=
1
tf

1
⃒
⃒ṁwf ,P, max − ṁwf ,P, min

⃒
⃒

∫tf

0

⃒
⃒
⃒
⃒
dṁwf ,P

dt

⃒
⃒
⃒
⃒dt (39)  

where tf = 45 min is the profile time duration and ṁwf ,P, max and ṁwf ,P, min 

are the maximum and minimum mass flow rates of the pump, respec
tively. The ARMSTE is a measure of the average absolute deviation of the 
degree of superheating from the desired set point. Given the fact that the 
set point is kept constant during the entire driving cycle while the waste 
heat varies rapidly and acts as a disturbance, in this work the ARMSTE 
measures the controller performance in terms of disturbance rejection. 
For the controller to have good disturbance rejection capability, the 
ARMSTE should be as low as possible. Qu is a measure of the average 
absolute time variation of the mass flow rate of the pump, normalized 
with respect to the possible variation range. The higher the Qu, the more 

Fig. 12. General scheme of the feedforward and feedback control concepts.  

Fig. 13. Maximum and minimum degree of superheating for different control 
concepts. Legend: ‘pidtune PI’ = PI feedback with MATLAB® pidtune com
mand, ‘PI Ref (Skogestad, 2004). = PI feedback with tuning rule from Ref 
(Skogestad, 2004).’, ‘static FFW’ = static feedforward, ‘GS FFW’ = linear dy
namic inversed-model feedforward with gain-scheduling, ‘NL FFW’ = nonlinear 
dynamic inversed-model feedforward. 
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aggressive and oscillatory the controller action and vice versa. However, 
in order to extend the lifetime of the ORC pump, it is desirable to achieve 
the smoothest operation possible. For this reason, the Qu should also be 
as low as possible. Other important quantities for the comparison are the 
minimum and the maximum degree of superheating. In particular, the 
degree of superheating should always be positive to avoid liquid drop
lets at the turbine inlet, because droplets could damage this component. 

5.1. Results 

Fig. 13 presents a comparison of the different control alternatives by 
illustrating the maximum and the minimum degree of superheating as a 
function of the ARMSTE. At this point, only the ability of the control 
system to keep the degree of superheating close to the set point is 
evaluated, and no considerations are made about how severe the 
controller action acts on the ORC pump. The set point is marked in 
Fig. 13 by a solid horizontal line. The closer the maximum and minimum 
degree of superheating are to the set point line, the better can the 
controller reject the waste heat disturbances. It can be seen that there is 
a correlation between the ARMSTE and the maximum and minimum 
degree of superheating over the profile. The points where the ARMSTE is 
the lowest result in the maximum and minimum degrees of superheating 
being closer to the set point of 28.9 K and vice versa. The ‘pidtune’ 
feedback PI controller shows an ARMSTE of 10.8 K, and a minimum 
degree of superheating of 0.7 K. Therefore, the risk of liquid droplets at 
the turbine inlet with this controller is high. The feedback PI tuned using 
the tuning rules presented in Ref. (Skogestad, 2004), instead, out
performs all other feedback/feedforward concepts in terms of ARMSTE, 
keeping the degree of superheating very close to the set point, with 
fluctuations only between 26.3 K and 31.3 K. The feedforward (‘static 
FFW’) and the linear dynamic inversed-model feedforward (‘GS FFW’) 
cannot ensure a positive degree of superheating over the entire heat 
source profile. This is mainly because they are not able to predict the 
dynamics of the ORC unit with sufficient accuracy. For this reason, they 
are not applicable solutions. The result is that they even worsen the 

already insufficient performance of the ‘pidtune’ PI feedback controller. 
On the contrary, the nonlinear dynamic inversed-model feedforward 
options (‘NL FFW’) are able to reduce the ARMSTE with respect to the 
‘pidtune’ feedback PI and guarantee a positive degree of superheating. 
An exception is caused by the sixth-order NL FFW model that, despite 
the low ARMSTE, is affected by a large fluctuation in the degree of 
superheating at t = 1600 s, which leads to liquid droplets at the turbine 

Fig. 14. Controller performance: (a) disturbance rejection on degree of superheating and (b) mass flow rate of the pump.  

Fig. 15. Controller performance: absolute mean square tracking error as a 
function of the cumulative controller effort. ‘pidtune PI’ = PI feedback with 
MATLAB® pidtune command, ‘PI Ref (Skogestad, 2004). = PI feedback with 
tuning rule from Ref (Skogestad, 2004).’, ‘static FFW’ = static feedforward, ‘GS 
FFW’ = linear dynamic inversed-model feedforward with gain-scheduling, ‘NL 
FFW’ = nonlinear dynamic inversed-model feedforward. 
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inlet for approximately 10 s. For this reason, the spread between the 
maximum and minimum degrees of superheating is larger in this case. 
Among the NL FFW solutions, the fifth-order model shows the lowest 
ARMSTE at 2.2 K, and the smallest fluctuations in the degree of super
heating between 21.7 K and 37.4 K. 

Considering the results of Fig. 6, a similar dynamic response of the 
degree of superheating should be expected among the NL FFW models of 
order higher than four. However, the ARMSTE of the fifth-order NL FFW 
model is lower than the ARMSTE of the models of higher order. The 
reason for this is the difference in the time derivative of the specific 
enthalpy at the evaporator outlet, which is directly related to the degree 
of superheating. In fact, differently from the fifth-order NL FFW model, 
the specific enthalpy at the evaporator outlet is a state in the models of 
order from six to eight, and its time derivative is determined by using a 
first-order filter (see Table 6). The filter, which is necessary to ensure the 
feasibility of the feedforward concept, includes a fictitious lag to the 
thermodynamic conditions at turbine inlet and thus worsens the dy
namic prediction capabilities of the feedforward concept. As a result, the 
control performance in terms of disturbance rejection degrades for 
models of order higher than five, in contrast to the considerable 
improvement that is achieved when increasing the model order from 
three to five. 

A comparison of the ‘pidtune’ feedback case and the fifth-order NL 
FFW case over time is illustrated in Fig. 14. This comparison can show 
the benefits of including the feedforward scheme to a classical PI feed
back scheme. The time behavior of the degree of superheating is plotted 
in Fig. 14a. The results show that the ‘pidtune’ feedback controller is not 
able to keep the degree of superheating close to the set point, which 
oscillates in the range ±30 K from the set point. On four occasions, the 
degree of superheating drops below 5 K, showing high risk of liquid 
droplets at the turbine inlet. The integration of the fifth-order NL FFW to 
the same classical PI controller can, on the other hand, considerably 
reduce the oscillations in the degree of superheating to ±7 K from the set 
point, with the minimum degree of superheating more than 20 K away 
from the critical operating range for the turbine. However, as shown in 
Fig. 14b, the mass flow rate of the pump changes much faster in the fifth- 
order system to adapt the mass flow rate of the working fluid to the quick 
variations of the mass flow rate of the exhaust gas. This causes higher 
mechanical and thermal stresses on the ORC pump and its drive. 

In order to account for both the disturbance rejection capabilities 
and the stresses on the system actuator, an overview of the performance 
of the different control solutions is presented in Fig. 15. The cumulative 
controller effort, linked to the component stresses, is shown on the ab
scissa, and the ARMSTE, representative of the disturbance rejection 
capabilities, is shown on the ordinate. The results indicate that the 
‘pidtune’ feedback PI controller, although showing high ARMSTE, rea
ches the lowest cumulative controller effort at 0.8%/s. On the other 
hand, the remarkably good disturbance rejection capabilities of the 
tuning rules of Ref (Skogestad, 2004). described previously are achieved 
with a significantly higher Qu of 2.8%/s, which indicates that the 
controller is relatively aggressive and changes the mass flow rate quite 
rapidly (the Qu value is 3.5 times higher than that of the ‘pidtune’ 
feedback controller). The very high Qu might strongly affect the feasi
bility of the feedback PI controller based on the tuning rules of 
Ref. (Skogestad, 2004), because of the lifetime reduction induced by the 
rapid actuator changes imposed by the controller. For instance, the 
electric motor driving the pump could fail because of the excessive 
torque demand required by very rapid accelerations in rotational speed. 
For this reason, a better trade-off between the ARMSTE and Qu is 
desirable. 

Fig. 15 highlights the advantages of using a nonlinear model to 
develop an inversed-model feedforward compared to the feedback 
controllers and the other FFW options. The NL FFW is able to reduce the 
ARMSTE with respect to the ‘pidtune’ feedback controller, by keeping a 
moderate Qu. The dashed straight line in Fig. 15 highlights the trade-off 
between disturbance rejection performance (low ARMSTE) and long 

lifetime of the pump (low Qu). All NL FFW cases except for the sixth- 
order model lie in the proximity of the dashed straight line. The NL 
FFW third-order model, which is minimum phase and does not require 
any approximation, is able to achieve an ARMSTE of 8.4 K and a Qu of 
1.1%/s. The fifth-order model provides the lowest ARMSTE among the 
NL FFW solutions at 2.2 K, but higher Qu at 1.9%/s. 

Both the static FFW and the GS FFW lead to neither a lower ARMSTE 
nor a lower Qu with respect to the ‘pidtune’ feedback and the NL FFW 
cases, and therefore they are not beneficial. The static FFW leads to a 
higher ARMSTE and cumulative controller effort compared with the 
‘pidtune’ PI case, and does not lead therefore to any advantage. The 
same occurs for the GS FFW which can only outperform the static FFW. 
The case of the evaporation pressure performs better as the scheduling 
parameter than the available waste heat rate, with lower cumulative 
controller effort at 1.87%/s compared to 2.14%/s, and lower ARMSTE at 
13.3 K compared with 14.5 K. 

5.2. Discussion and comparison to previous works 

The results discussed so far can be compared with the third-order 
nonlinear inversed-model feedforward suggested in Ref. (Peralez 
et al., 2017), which achieved outstanding performance in rejecting the 
fluctuations of waste heat. The model presented in Ref (Peralez et al., 
2017). differs from the third-order NL FFW case illustrated in this work, 
because a multivariable approach was used based on the assumption of a 
two-time-scale dynamic behavior between the degree of superheating 
and the pressure control. In that case, the superheating control was 
assumed to be much faster than the pressure control and, consequently, 
the state observer (still based on an EKF estimator) and the pressure 
controller (which acted on the exhaust gas bypass opening) were 
developed considering the degree of superheating equal to its set point. 
In this way, only the pressure is considered as the suitable input mea
surement for the EKF, while the temperature of the working fluid at the 
evaporator outlet can be found by the evaporation pressure and the set 
point in the degree of superheating. This assumption allowed for the 
development of a relatively simple, implicit continuous-time EKF state 
observer and a nonlinear feedback controller for the control of the 
evaporation pressure by acting on the exhaust gas bypass valve. Another 
important difference between the controller presented in Ref (Peralez 
et al., 2017). and the third-order NL FFW suggested in this work is the 
flow arrangement for the exhaust gas, which is in crossflow in Ref 
(Peralez et al., 2017). and in parallel flow in the third-order NL FFW 
case. However, the crossflow arrangement leads to relatively large de
viations for heat exchangers with a high number of tube rows. For 
example, the TIL library (hermo GmbSuit, 2016) suggests to use the 
parallel flow arrangement for a number of tube rows higher than three, 
and it was therefore preferred for the evaporator considered in this 
work, which has 17 tube rows. Other sources of uncertainty are the 
controller and the EKF parameters used in Ref. (Peralez et al., 2017), 
whose values are not explicitly stated in the original research, nor are 
any other numerical details on the original heat exchanger geometry and 
setup available. For the comparison, the proportional constant k =

0.5 kPa− 1 and the same covariance matrices as in the third-order NL 
FFW case are used. 

The time response of the degree of superheating is compared with the 
third-order and fifth-order NL FFW models in Fig. 16a. It can be seen that 
the degree of superheating oscillates more frequently and with a higher 
amplitude in the case of Ref (Peralez et al., 2017). compared with the 
other NL FFW models. The time behavior of the mass flow rate of the 
pump is shown in Fig. 16b. The fluctuations are less abrupt for the 
approach presented in Ref. (Peralez et al., 2017), followed by the 
third-order NL FFW case. The fifth-order NL FFW model has the fastest 
variations in mass flow rate of the pump and can thus achieve a better 
disturbance rejection performance. Correspondingly, the cumulative 
controller effort Qu for the model in Ref (Peralez et al., 2017). was close 
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to the third-order NL FFW case (1.2%/s vs 1.1%/s), but lower than the 
fifth-order case at 1.9%/s. On the other hand, the ARMSTE was 1.6 K 
higher than the third-order NL FFW and 7.8 K higher than the fifth-order 
NL FFW case. The main reasons for the poorer disturbance rejection 
performance of the model in Ref (Peralez et al., 2017). could lie in the 
assumption of the crossflow arrangement between the heat source and 
the ORC working fluid and the assumption of constant degree of 
superheating (equal to the set point) for the state observer and evapo
ration pressure control. The significant improvements of the NL FFW 
solutions compared to Ref (Peralez et al., 2017). highlight the benefits of 
the NL FFW solutions introduced in this work, thanks to the higher ac
curacy of the dynamic models on which they are based. 

As is illustrated in Fig. 15, an outstanding disturbance rejection 
performance can be achieved by only employing PI feedback control 
with the tuning rule of Ref. (Skogestad, 2004), at the expense of a high 
cumulative controller effort. On the other hand, the ‘pidtune’ PI 
controller indicates a very high ARMSTE, but a low cumulative 
controller effort. Since the two PI solutions are at the opposite extremes 
of Fig. 15, it is possible that, by employing a different tuning, a better 
trade-off between the ARMSTE and the cumulative controller effort can 
be attained also for the PI feedback controllers. However, this would 
require a comprehensive analysis of the effects of tuning parameters on 
the performance PI feedback controllers. Dropping standard tuning rules 
and performing such a comprehensive analysis for each ORC design 
would result in a very computationally-intensive task. As shown in the 
present paper, the integration of feedforward control can support a PI 
feedback controller and lead to a better trade-off between the ARMSTE 
and the cumulative controller effort than achieved with the two PI 
feedback controllers. Lastly, it is important to highlight that the feed
forward can integrate a PI controller independently from the tuning rule. 

6. Conclusions 

This work presented nonlinear dynamic inversed-model feedforward 

concepts to control the degree of superheating at the inlet of the organic 
Rankine cycle turbine by using high-order moving boundary models of 
the organic Rankine evaporator. High-order models include dynamic 
effects that are neglected by low-order models and have, therefore, the 
potential to improve significantly the controller performance. The main 
challenge was caused by the fact that moving boundary models of order 
higher than three are non-minimum phase and therefore do not satisfy 
the mathematical conditions required by the inversed-model feedfor
ward. For this reason, novel approximations were introduced by modi
fying the mass accumulation term in the energy balance of the two- 
phase and vapor regions, thus avoiding the non-minimum phase 
behavior. The state estimation required by the nonlinear dynamic 
feedforward was carried out by using an Extended Kalman Filter with 
sample time of 0.5 s. The nonlinear feedforward solution was compared 
to classical proportional-integral feedback, static feedforward and linear 
dynamic inversed-model feedforward with gain-scheduling, using the 
evaporation pressure and the available waste heat rate as scheduling 
parameters. The controllers were tested on a waste heat profile available 
from the exhaust gas of a truck over a real driving cycle of 45 min. 

The results of the numerical simulations show that a trade-off has to 
be found between the disturbance rejection performance of the 
controller, i.e. capability of keeping the degree of superheating close to 
the desired set point despite the rapid variations of waste heat, and the 
cumulative controller effort, i.e. how aggressive the controller acts on 
the pump to level off the variations of the available waste heat. While 
poor disturbance rejection performance can lead to inefficiencies and 
dangerous operation (i.e. liquid droplets at the turbine inlet), an 
excessively aggressive controller increases the risk of failure and reduces 
the lifetime of the pump. The results indicate that in general, the better 
the disturbance rejection performance of the controller, the higher the 
cumulative controller effort. Considering the feedback proportional- 
integral controllers, the ‘pidtune’ command from MATLAB® results in 
a gentler controller with relatively high absolute mean square tracking 
error in terms of the degree of superheating. The deviations from the set 

Fig. 16. Performance of nonlinear inversed-model dynamic feedforward: (a) degree of superheating and (b) mass flow rate of the pump of third-order and fifth-order 
models compared to the model presented in Ref. (Peralez et al., 2017). 
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point largely decrease by using the proportional-integral tuning method 
described in Ref. (Skogestad, 2004); however, the cumulative controller 
effort also increases by 3.5 times. The results suggest that the static 
feedforward concept does not offer any advantages compared with the 
feedback ‘pidtune’ controller, because it results in higher absolute mean 
square tracking errors and a higher cumulative controller effort. This is 
also true for the linear feedforward with the evaporation pressure and 
available waste heat rate as scheduling parameters. These options could 
only achieve an absolute mean square tracking error 2.5 K higher than 
the ‘pidtune’ case with higher cumulative controller effort (from 0.8%/s 
to 1.9%/s and 2.1%/s). 

On the other hand, the results for the nonlinear dynamic inversed- 
model feedforward controller highlight the capability of this solution 
to improve the disturbance rejection performance of the ‘pidtune’ 
feedback proportional-integral controller by reducing the absolute mean 
square tracking error from 10.8 K to only 2.2 K with the fifth-order 
model. The cumulative controller effort increases more moderately 
than the tuning rules used in Ref. (Skogestad, 2004), from 0.8%/s to 
1.9%/s. The minimum degree of superheating increases from 0.7 K to 
21.7 K. The nonlinear feedforward reduced-order models lie approxi
mately (excluding the sixth-order model) on a straight line of negative 
slope, − 772 K s, which highlights the counter-effect between the abso
lute mean square tracking error and the cumulative controller effort. 

As demonstrated, the novel nonlinear feedforward models investi
gated in this work can lead to a significantly better trade-off between the 
disturbance rejection performance and the cumulative controller effort 
than that of the simple proportional-integral feedback control, allowing 
for continuous safe operation of the ORC unit, keeping it far from 
potentially dangerous operating regions, ensuring a more gentle oper
ation and extending the component lifetime. Thereby, the nonlinear 
feedforward models constitute an effective, easy alternative to more 
complex, computationally intensive advanced control concepts, such as 
model predictive control. Nevertheless, it would be of interest to 
compare the performance of the novel nonlinear feedforward concepts 

proposed here with those of other control solutions, such as model 
predictive control, nonlinear model predictive control and simple 
proportional-integral controllers with optimized tuning parameters. 
Such analyses will be part of future work, including numerical as well as 
experimental investigations on a test rig that is currently under con
struction at the Department of Mechanical Engineering, Technical Uni
versity of Denmark. 
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Nomenclature 

Abbreviations 
ARMSTE Absolute Root Mean Square Tracking Error 
CO Condenser 
EKF Extended Kalman Filter 
EVA Evaporator 
FFW Feedforward (control) 
FOPTD First Order Plus Time Delay (model) 
FV Finite Volume (model) 
GS Gain Scheduling 
LQR Linear Quadratic Regulator 
MB Moving Boundary (model) 
MPC Model Predictive Control 
NGC Non-Gaussian Control 
NL Nonlinear (control) 
ORC Organic Rankine Cycle 
P Pump 
PI Proportional Integral (control) 
PID Proportional Integral Derivative (control) 
T Turbine 
UKF Unscented Kalman Filter  

Symbols 
A(m2) Surface area 

R. Pili et al.                                                                                                                                                                                                                                      

https://doi.org/10.1016/j.jclepro.2022.131470


Journal of Cleaner Production 351 (2022) 131470

19

a(m) Fin pitch 
cp(J/kgK) Specific heat at constant pressure 
cW(J/kgK) Specific heat of solid material (wall) 
d(–) Disturbance 
d(m) Tube diameter 
f(–) State function 
G (s)(–) Transfer function 
g(–) Output function 
H(J) Enthalpy 
h(m) Fin height 
h(J/kg) Specific enthalpy 
k(1/Pa) Controller proportional constant 
kT(kg/sK0.5/Pa) Turbine constant 
l(m) Tube length 
M(kg) Mass 
Ṁ(s)(kg/s) Laplace transform of mass flow rate 
ṁ(kg/s) Mass flow rate 
np(–) Number of passes per row (tube side) 
nr(–) Number of tube rows 
nrp(–) Number of flow reversals per row 
P(W) Power 
p(Pa) Pressure 
pr(–) Pressure ratio 
Q̇(W) Heat transfer rate 
Qu(1/s) Cumulative controller effort 
R(K/W) Thermal resistance 
SH(s)(K) Laplace transform of degree of superheating 
s(m) Fin thickness 
s(–) Laplace variable 
T(K) Temperature 
T(s)(K) Laplace transform of temperature 
t(m) Thickness 
t(s)) Time 
tnp(m) Tube spacing between tubes in same row 
tnr(m) Tube spacing between rows 
u(J/kg) Specific internal energy 
V(m3) Volume 
x(–) State 
Y(s)(–) Laplace transform of output 
y(–) Output 
y(–) Volume fraction for each phase region 
Z(–) Compressibility factor  

Greek symbols 
α(W/m2K) Heat transfer coefficient 
γ(–) Volume fraction in two-phase region 
η(–) Efficiency 
κ(–) Ratio of specific heats 
θ(–) Scheduling parameter 
ρ(kg/m3) Density 
τ(–) Power law exponent  

Superscripts and subscripts 
‘ filtered variable/saturated liquid 
‘’ saturated vapor 
A Available 
B -boundary 
D Design 
D1 disturbance 1 
D2 disturbance 2 
ExG exhaust gas 
F working fluid 
F fins/finned 
G exhaust gas 
I Inner 

R. Pili et al.                                                                                                                                                                                                                                      



Journal of Cleaner Production 351 (2022) 131470

20

In inlet/input 
Is Isentropic 
L liquid phase 
LV two-phase 
max Maximum 
min Minimum 
N neighbor cell 
O outer bare (surface area) 
out outlet/output 
SP set point 
sat Saturation 
tot Total 
U Input 
V vapor phase 
V Volumetric 
W Wall 
Wf working fluid 

Appendix A. Non-minimum phase systems 

The explained feedforward concepts in section 4.2.3 cannot be used if the system is non-minimum phase. Examples of non-minimum phase systems 
are systems with time delay, which would require the controller to act in the past for the current desired set point, as for instance: 

y(t)= u(t − L) (A.1)  

where L is the time delay. A similar case is the FOPTD model presented in section 4.2.2. Non-minimum phase systems can result from the opposite 
contribution of two responses having different time scales. For instance, the following system: 

ẋ1 = − 6.67 x1 − 2.08 x2 + 4 u

ẋ2 = 2 x1 ↔ Y(s) = − 5
3s − 5

(s + 5)(3s + 5)
U(s)

y = − 2.5 x1 + 1.04 x2

(A.2) 

is non-minimum phase. The positive zero at 5/3 = 1.67 can be seen in the numerator of its transfer function in Eq. A.2. The system response to a 
unit step with initial state (x1, x2) = (0,0) is the sum of the contributions of a steady-state term, a faster term causing a first positive peak, and a slower 
third term, which dominates after a few seconds and causes the decreasing part of the transient: 

y(t)= 1 + 2 e− 5t − 3 e− 1.67t (A.3) 

The response is shown in Fig. A1a. An approximation can be carried out to avoid the inversed peak response, by the elimination of the positive zero 
in the transfer function. The inverse response can be avoided if the slower term becomes dominant also at the initial phase of the transient, e.g.: 

Y ′

(s)= 25
1

(s + 5)(3s + 5)
U(s) ↔ Y ′

(s)= 25
1

(s + 5)(3s + 5)
U(s) (A.4) 

Fig. A.1b shows the response by using Eq. A.4. It can be seen that the inversed peak in the output y has now disappeared. The inverse of this system 
is now causal and stable. In order to make the inversion physically realizable, two filters are included in the numerator, without altering significantly 
the response, as shown in Fig. A1b. In this way, the inverse is minimum phase, and the feedforward can be realized. 

Y
′

(s)=
25

1600
(s + 40)2

(s + 5)(3s + 5)
U(s)→ Uff (s)=

1600
25

(s + 5)(3s + 5)
(s + 40)2 YSP(s) (A.5)   
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Fig. A.1. Example of an approximation for a non-minimum phase system: (a) original step response and (b) approximation.  

Appendix B. Supplementary data 

The waste heat profile illustrated in Fig. 2 can be found as supplementary material to this document. 
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