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In this paper we identify drivers for energy poverty in Europe using machine learning. The establishment
of predictors for energy poverty valid across countries is a call made by many experts, since it could pro-
vide a basis to effectively target energy-poor households with adequate policy measures. We apply a ‘‘low
income, high expenditure” framework that classifies households as being at risk of energy poverty to a
dataset from a survey conducted at the household-level in 11 European countries with vastly different
economies, cultures, and climates. A gradient boosting classifier is successfully trained on a set of
socio-economic features hypothesized as predictors for energy poverty in this diverse set of countries.
The classifier’s internal model is analyzed, providing novel insights into the intricacies that underlie
energy poverty. We find that besides the main driver - income - floor area and household size can be con-
firmed as predictors. Our results suggest the presence of universal predictors that are valid across Europe,
and contextual ones that are governed by local characteristics. To facilitate advanced research into energy
poverty in Europe, we recommend to increase and streamline household data collection efforts, both at
the country- and EU-level.

� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The concept of energy poverty has been studied since the oil
crises in the 1970s. In the United Kingdom, the term fuel poverty
was coined; a person affected by fuel poverty was defined as ‘‘a
person [who] is a member of a household living on a lower income
in a home which cannot be kept warm at reasonable cost” [41].
Although fuel poverty is a field of active research, it is still poorly
understood [42], and identifying fuel-poor households and target-
ing them with adequate policies remains a challenge [38,36,6].
Energy poverty is considered a similar, but broader concept than
fuel poverty [4]. While fuel poverty is mainly associated with the
affordability of (fossil) fuels to provide heating services in dwell-
ings, the term energy poverty also encompasses the issues of
energy efficiency, house insulation, electricity provision and fossil
phase-out in the residential sector. In this paper we use the term
energy poverty to refer to adequate provision of energy services
at large in dwellings, in the context of the energy transition.
Besides in the UK and Ireland, energy poverty research has largely
focused on developing countries, where access to modern energy
services is not assured for a substantial share of the population.
However, the transition to a more sustainable energy supply is
expected to radically transform energy infrastructure, both in
developing and developed countries. The cost of this transforma-
tion needs to be distributed in such a way that all households con-
tinue to be able to afford their energy bills. This has led to energy
poverty research gaining more prominence in developed countries
that are on the forefront of the energy transition as well. In these
countries, energy poverty is defined as the inability of a household
to afford its energy bills [10,4,6] . Issues of energy poverty in Eur-
ope may become particularly apparent in times of economic crisis
or international conflict, such as currently experienced as a result
of the war between Russia and Ukraine.

The field of energy poverty has become truly widespread in the
European policy discourse since 2008, as in that year EU institu-
tions and consultative committees began calling for a Europe-
wide definition of energy poverty [40]. In 2013, the European Eco-
nomic and Social Committee called for ‘‘European energy poverty
indicators to be established and for statistics to be harmonised in
order to identify, prevent and tackle the problem more effectively
at the European level and to generate solidarity in this area” [9].
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Many indicators and metrics have been, and are being, proposed in
the literature to measure energy poverty at the European scale (see
e.g. [3], for a recent overview) and at the national and local scales
(see e.g. [21,18]). A large-scale study in 2019 found that an indica-
tor for energy poverty valid across countries is still absent. This has
resulted in a lack of research comparing countries, since no metric
exists that can be used to contrast them [20]. Concurrently,
Castaño-Rosa et al. [6] observed a lack of standards to assess
energy poverty across Europe and, instead, argued for a multiple
indicator approach as starting point for policy decisions to reduce
energy poverty in Europe. A recent study assumed that construct-
ing all-encompassing predictors to assess energy poverty is unfea-
sible [36]. These three papers highlight (i) the need for the
establishment of consistent energy poverty metrics that can enable
cross-country comparisons and assist European legislation, and (ii)
the current debate on whether the concept of universal energy
poverty predictors is a meaningful one.

This research aims to improve our understanding of energy pov-
erty in Europe by employing a data-driven approach based on
machine learning (ML). We make use of two unique advantages
offered by ML. First, ML models are able to find complex relations
in large datasets that would require excessive amounts of manual
labor using traditional statistical tests or running and evaluating
standard regressions [1]. Second, by applying eXplainable Artificial
Intelligence (XAI) methods one can gain significant insights on the
intricate links between the inputs and outputs of ML models,
which facilitates the understanding of sophisticated systems [27].
This was recently demonstrated, for example, when XAI methods
enabled researchers to identify crucial predictive biomarkers of
disease mortality briefly after the outbreak of the COVID-19 pan-
demic [43].

A similar methodology has already successfully been used to
study energy poverty predictors in the Netherlands [10]. The pre-
sent research aims at extending this approach to investigate
energy poverty predictors within a larger geographic area, involv-
ing eleven countries in Europe. Finding predictors valid across Eur-
ope could aid the assessment of the prevalence of energy poverty
in European countries, and subsequently assist in adequate policy
design. We attempt to identify pan-European predictors through
the use of XAI. In Section 2 the ML technique of gradient boosting
is described, as well as the energy poverty framework used to clas-
sify households into energy poverty risk categories. In Section 3 the
results of applying the classification framework to the dataset, and
the resulting gradient boosting model are presented and analyzed.
In Section 4 the findings are interpreted and the presence of two
types of predictors, universal and contextual, is hypothesized. Fur-
thermore, recommendations regarding the collection and accessi-
bility of data are given, in order to better address energy poverty
in Europe, and provide guidance for future research endeavors in
this field.
2. Methodology

For this research, a survey on energy use in Europe conducted in
2018 by Enable-EU is used [12]. Enable-EU is an ongoing endeavor
funded by the European Union’s Horizon 2020 research and inno-
vation program with the mission statement: ‘‘[Enable-EU] seeks to
understand what determines people’s choices in three key con-
sumption areas: transportation, heating & cooling, and electricity”
[13]. The survey was targeted at a group of 11 diverse countries in
Europe: Bulgaria (BG), France (FR), Germany (DE), Hungary (HU),
Italy (IT), Norway (NO), Poland (PL), Serbia (RS), Spain (ES), Ukraine
(UA), and the United Kingdom (UK). A report outlining and com-
paring the outcomes of participating countries was published
along with the dataset [19]. While some questions, for example
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on prosumers, are country-specific, all respondents were asked to
complete those sections of the survey with generic and socioeco-
nomic questions, which provides us with a complete dataset on
these topics. Most notably, participants were asked to report their
income and energy expenditure, two variables crucial for assigning
data points to the energy poverty risk classes employed in this
paper. The diversity in the assessed countries and the homogeneity
of the socioeconomic questions make this dataset particularly
interesting for the purpose of investigating energy poverty predic-
tors at the European level.

A more detailed characterization of the dataset, along with an
in-depth explanation of the procedure we employed for data pre-
processing can be found in van Hove [23]. Additionally, the energy
expenditure and income distribution per country in the dataset is
plotted in Figs. A.1 and A.2.

The energy poverty classification framework proposed by Dalla
Longa et al. [10] is used to categorize each household in our dataset
into one of four energy poverty risk categories. The framework
operates on an income vs. energy expenditure grid that is divided
into four quadrants using two thresholds, one for each axis. This is
illustrated in Fig. 1. A household with income above and energy
expenditure below the respective thresholds is categorized as
‘‘No risk” (green). If one of the variables crosses a threshold, the
label ‘‘Income risk” (yellow) or ‘‘Expenditure risk” (orange) is
assigned. If both thresholds are crossed, the household is catego-
rized as being at highest risk of energy poverty, labelled ‘‘Double
risk” (red).

The Enable-EU survey required respondents to classify their
income after taxes and other deductions into the corresponding
decile in their respective country. The brackets were presented as
income ranges of the respective country the respondent lived in.
The results can be categorized into 10 brackets. This enables a nor-
malized measure of income across the participating countries. The
income threshold is set for all countries between income deciles
three and four. This particular threshold choice is made for three
main reasons. First, analysis showed that for most countries the
respective minimum wage corresponds to bracket 3. Second, the
Low Income High Costs (LIHC) indicator applied in the UK, results
in the vast majority of households categorized as energy poor
being in the first three income deciles [35]. Third, this threshold
ensures that all risk classes contain enough data points to produce
reliable classifiers [10]. Energy expenditure is derived using two
questions in which respondents were asked to report their latest
heating and electricity costs. During preprocessing, all currencies
are converted to Euros and all costs to annual costs, yielding yearly
energy expenditure values for all households. The energy expendi-
ture threshold is set at the 80th quantile of the absolute energy
expenditure in the respective country, resulting in a different abso-
lute value for every country. The 80th quantile threshold was cho-
sen based on two main considerations: (i) this value was used in
Dalla Longa et al. [10] to reproduce expected energy poverty levels
found in prior studies for the Netherlands, and (ii) this choice
ensures that the number of datapoints in the minority category
is sufficient to train a ML model. While these two considerations
provide a robust indication that the 80th quantile is adequate for
our purposes, we recognize that this particular choice is somewhat
arbitrary. As explored in detail in Dalla Longa et al. [10], this is
linked to the practical difficulty of defining an objective threshold
for energy poverty.

Mapping all households of the Enable dataset into the frame-
work defined in Fig. 1 allows us to assign one of the four energy
poverty risk labels to each datapoint. This labelled dataset allows
us to employ supervised ML to train a model that attempts to pre-
dict the correct label for each individual household, represented by
a selection of socio-economic features. For this purpose we employ
an ML technique known as gradient boosting. This technique incre-



Fig. 1. Visual representation of the quadrants that the classification framework
uses to assign households to a risk category.
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mentally adds weak prediction models - in our case decision trees -
to obtain a so-called ensemble that displays a better prediction
performance than any of the weak models it is built from [17]. Gra-
dient boosting achieves state-of-the-art performance on many
modeling tasks [33], i.e. recommender systems. Especially on tab-
ular data, decision tree methods consistently achieve high perfor-
mance scores and provide a vast range of tools to analyze the
internal model [27,8], which we can exploit to gain insight into
the complex mechanisms linking energy poverty risk with its dri-
vers. The Enable dataset contains many categorical features, i.e.
one answer is to be selected from a list of possible options (cate-
gories). CatBoost is chosen as gradient boosting library since, as
opposed to other popular gradient boosting libraries, it can deal
with categorical features without requiring extensive preprocess-
ing by the user [33,11].

The final step in our analysis entails assessing the identified fea-
tures in terms of the influence they have on the final model out-
come, i.e. estimating their feature importance. We use XAI
techniques to quantify feature importance scores according to dif-
ferent metrics. These can be thought of as indicators of a feature’s
predictive power in the sense that, if a feature displays high impor-
tance scores for a good-performing model, this would suggest that
it is a true predictor of energy poverty. A detailed description of the
ML and XAI methodologies used in this work can be found in the
supplementary online document and in van Hove (2020) [23].
1 All euros reported in this research are in €(2018).
3. Results

We divide the exposition of our results into three parts: (i) clas-
sification of the Enable dataset into our framework, (ii) the final ML
model that was trained on the labeled data, (iii) analysis of the ML
model with XAI techniques to identify and comprehend energy
poverty predictors.

3.1. Energy poverty classification

The distribution over the income deciles in the entire dataset
can be found in Fig. 2, left panel. Ideally, a representative sample
of a population has the same number of respondents in each
income bracket. However, in the Enable dataset a selection bias
towards the lower-income brackets can be observed. On the
country-level, this discrepancy is more prominent. This skewness
3

of the income distribution on the country-level is not deemed a
fundamental problem for our purposes, as we are seeking predic-
tors that are valid across Europe, and over the entire dataset the
selection bias is less pronounced. The right panel of Fig. 2 presents
the distribution of yearly energy expenditure from the Enable data-
set. This varies withing a wide spectrum from nearly zero to
€15000 per household, with an overall median of € 997. At
country-level Ukraine has the lowest per household median expen-
diture of € 267, and Norway has the highest median of € 2311. The
majority of households in the dataset spend up to € 2000 per year
on energy, with those spending more than that predominantly being
from Norway and, to a lesser extent, from other Western European
countries.

In order to provide a qualitative assessment of the chosen clas-
sification framework, in Fig. 3 we show the answers to a self-
reported poverty question for the entire dataset. Each household
is a colored line: the color depicts the response to the question
‘‘which of the descriptions bellow [sic] comes closest to how you
feel about your household’s income nowadays?”. All households
are plotted on a grid with income bracket on the x-axis and relative
energy expenditure on the y-axis. The relative energy expenditure
is an approximated estimate. Absolute energy expenditure is avail-
able in the data; however, income is only available in deciles. An
approximate income for each household is obtained by taking
the disposable income per decile for each country from the Statis-
tics on Income and Living Conditions dataset [16]. This is used to
provide a uniform measure of energy expenditure, thus allowing
all households to be plotted on the same axis. Since households
struggling to make ends meet are in general more vulnerable to
energy poverty, we expect the distribution of colors in Fig. 3 to
roughly match the four quadrants defined in Fig. 1. Indeed a gradi-
ent from red (‘‘finding it very difficult on current household”) in
the top left, to green (‘‘living comfortably on current income”) in
the bottom right can be observed in Fig. 3. To further highlight this,
in Fig. 4 we apply our energy poverty classification framework to
Ukrainian households. The qualitative resemblance of Fig. 3 and
Fig. 4 corresponds to the close connection between poverty and
energy poverty, and provides an empirical indication that the clas-
sification framework employed in this work can be effective in
identifying energy poverty.

The energy poverty class composition that results from apply-
ing the risk framework on the dataset, for each of the 11 countries
in the Enable-EU dataset, is plotted in Fig. 5. The countries are
sorted by the share of households classified in the double risk cat-
egory. The proportion of households classified as having the high-
est risk of energy poverty, i.e. the double risk category, is readily
apparent from this figure (red portion of the bars). As the expendi-
ture threshold is set at the 80th quantile, a horizontal line denoting
this threshold between income risk and expenditure risk can be
observed. We notice a distinction between Western European
countries, characterized by lower double risk shares, and Central
and Eastern European (CEE) countries, where double risk shares
are more pronounced. The UK is found to be an outlier in this
respect: while widely considered a Western European country, it
has a significantly larger share of households classified in the dou-
ble risk category than other Western European countries. We spec-
ulate that this apparent anomaly could partially be explained by
the fact that the UK is the birthplace of capitalism, and to this
day is considered closer to the free-state market than mainland
Western European countries, generally regarded to have larger
welfare states. Energy poverty is researched extensively in the
UK, and several government policies aimed at reducing it have
been implemented. This could be because disproportionately more



Fig. 2. Income distribution of the whole dataset (left), and distribution of energy expenditure per household per year in the whole dataset (right).

Fig. 3. Poverty as reported by all households in the dataset.
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households experience energy poverty in the UK than in other
Western European countries. Energy poverty is shown to affect
public health [25], and its prevalence in the UK might be linked
with the high long-term excess winter mortality rates in this coun-
try [26].

In a perfectly representative sample of a country, the income
risk and double risk group combined should add up to 30% as the
income threshold is set between the third and the fourth income
decile of a country. However, this is not always the case in our
dataset, where the sum of the two groups ranges between 15%
for Germany, to 82% for Poland. As we already observed, this is
because the distributions of sampled households are skewed to
the higher and lower income deciles, for Germany and Poland
respectively. This is not deemed problematic to our main research
goal, i.e. the identification of universal energy poverty predictors.It
does, however, limit the conclusions that can be drawn regarding
the prevalence of energy poverty in each of the countries, as this
can also be caused by selection bias. The observed double risk
shares in Fig. 5 are a consequence of two phenomena at play. On
the one hand, we have genuine energy poverty prominence in a
country, resulting in a large number of points in the double risk
category. On the other hand, we have the non-representative sam-
pling of income deciles in countries, resulting in misplaced thresh-
olds and misrepresented risk groups. To what extent each factor
plays a role, differs per country and falls beyond the scope of this
4

research. Consequently, although the data presented in this study
provide a first indication for the prevalence of energy poverty in
these countries, further research with improved data quality and
quantity is necessary to confirm these observations. For compar-
ison, data from previous research conducted by Dalla Longa et al.
[10] in the Netherlands is also reported in Fig. 5 in the right-
most bar of the plot [7]. In that study a similar energy poverty clas-
sification framework was applied. The relatively low and high
shares of Dutch households, falling respectively into the double
risk and no risk categories, lead us to conclude that the energy pov-
erty profile of the Netherlands is close to that of other Western
European countries. The extent to which this comparison is mean-
ingful is, however, limited since the Dutch dataset is very different
from the Enable dataset used in this research: it contains more
data points, continuous numeric answers, and concerns neighbor-
hood averages instead of single households.
3.2. Machine learning models

A CatBoost model is trained to classify households into one of
the four energy poverty risk categories. A household is represented
by seven selected features that can be found in Table 1. These fea-
tures are hypothesized as potential predictors and selected as a
result of extensive data analysis and domain expertise. Some fea-
tures, such as floor area, are categorical but have a distinct ordering



Fig. 4. Energy poverty classification for Ukraine.

Fig. 5. Energy poverty classification distribution for countries in the Enable-EU dataset (the columns for the Netherlands is derived from Dalla Longa et al. [10]).

Table 1
Features used in the model, type, and number of unique values.

name type # unique values

income bracket integer 10
floor area integer 7
household size integer 17
house detachment integer 5
house age integer 9
birth year respondent integer 79
heating strategy categorical 5
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to them, and are represented by an integer. These features are
therefore depicted as type ‘‘integer” and do not require any treat-
ment before being used in a decision tree model. House detach-
5

ment corresponds to the survey question ‘‘Which best describes
your home?” and has four possible answers. The answers range
from ‘‘single-family house detached from any other house” to
‘‘apartment in a building with 6 or more flats,” and are interpreted
as a scale that determines how well insulated the home is by sur-
rounding homes. Multiple country-level studies have hypothesized
that the level of house detachment plays a role in energy poverty
[32,2]. Heating strategy corresponds to a question on what heating
methods households employ. The feature value can be one of 5 dif-
ferent heating strategies described. This is a categorical feature
with no clear ordering, and thus cannot be used directly in the gra-
dient boosting method. It has type ‘‘categorical” and the necessary
preprocessing steps are handled by the CatBoost library. Even
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though income is both used to label and to classify the data, it is
included as a feature to the ML model. Income is easy to obtain
for policy makers and can thus be considered in policy design.
Moreover, this will ensure that the found predictors are not surro-
gates of income, but instead of energy poor households.

Initially, the data is split in two datasets, a training and a test
set. The test set is used exclusively to evaluate a model trained
using the training set, on data the model has not seen before. In
accordance to general Machine Learning best practices, the test
set consists of 20% of the sample where each set has the same label
distribution [1]. Subsequently, the training set is itself split into a
training and a validation set in order to validate the performance
of our model during training time. Here an 80/20 split was used
as well. Additional details on the training, validation and test sets
are provided in van Hove [23]. In Fig. 6 a confusion matrix is used
to visualize the performance of our model, for the validation set
(left panel) and the test set (right panel). A confusion matrix tabu-
lates the labels as predicted by the model versus the true labels. In
this figure, we have normalized all rows to sum to 100%. Values on
the diagonal of a confusion matrix are known as the true positive
rates: a model able to correctly identify all instances would result
in 100% true positive rates for all categories. A model randomly
assigning labels, i.e. random guessing, would result in a score of
25% in all cells of the confusion matrix. Given our classification
framework (Fig. 1), using income as the only feature would allow
a model to learn the income threshold and split the task into two
binary classification tasks, i.e. discerning between double risk
and income risk for datapoints below the income threshold, and
distinguishing expenditure risk from no risk for datapoints above
the income threshold. After this split, the performance would dete-
riorate to almost random guessing (50% diagonal).

The performance of such a one-feature model can be improved
on by including the other features introduced in Table 1. Our
resulting model performs much better than a 50% diagonal in the
confusion matrix, yielding true positive rates between 60% and
74% on the test set. Similar scores were achieved on the validation
set, indicating that the model is not just memorizing the training
data - known as overfitting - but that the performance generalizes
well to unseen data. The true positive rates vary per category. Com-
pared to a similar study of the Netherlands, where diagonals scores
ranging between 73% and 82% were achieved [10], the results
achieved in this study are worse.
Fig. 6. Confusion matrix of the final model, on
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3.3. Explainable Artificial Intelligence analysis

Having successfully built an ML model to classify energy pov-
erty risk in a diverse group of European countries, we can now
assess to what extent the various features included in the model
influence its outcome. In other words, we attempt to open the
black box that is the ML model and gain insight into its inner work-
ings [34]. In order to accomplish this we introduce twomeasures of
feature importance: The permutation importance and the mean
absolute SHapley Additive exPlanation (SHAP) value. The values
of these two metrics for all seven features in our model are plotted
in Fig. 7. For both methods, the feature importance values are nor-
malized, such that the highest value equals 100 and the rest of the
values are given relative to that one. As income bracket is clearly
the most important feature for both methods, the x-axis is broken
to allow easy comparison of the importance score of the other fea-
tures. Permutation importance assigns an importance score to a
feature based on the effect of shuffling its values on the model per-
formance [5]. For each feature, the data are permuted several
times, each time yielding a (slightly) different score. The resulting
deviation between runs is depicted by the error bars in the plot.
SHAP values have a strong mathematical foundation in cooperative
game theory [28]. For a single datapoint, each feature’s contribu-
tion to the final prediction of the model is computed as if it were
a coalition game in which each feature would get a ‘‘payout”. This
is done for each individual datapoint in the unseen test set. The
mean absolute value of all contributions is used to attribute each
feature an importance score. No error bars are obtained with this
metric.

Both feature importance measures identify income bracket,
floor area, and household size as the main drivers of our model.
The features house age and birth year respondent are assigned
the two lowest importance values in both metrics. For permutation
importance, the error bars span from negative to positive values.
This implies that these are not good predictors for the model and
thus can be disregarded as such. This is confirmed by the findings
of the mean absolute SHAP values, that also indicate they are of lit-
tle importance, although not as overtly as with permutation
importance. With respect to heating strategy and house detach-
ment, the results are inconclusive at this stage. Mean absolute
SHAP value assigns heating strategy a slightly higher importance
than house detachment. However, permutation importance results
the validation (left) and test (right) set.



Fig. 7. Permutation and mean absolute SHAP value feature importance of the seven features in our model plotted with a broken x-axis.

Fig. 8. Partial dependence plots for the seven features of our model.
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rank heating strategy as having no impact on the model perfor-
mance with error bars running from negative to positive values:
further research is required to resolve this divergence.

A way to assess how a feature value affects the model output is
by using Partial Dependence Plots (PDPs). Friedmann proposed
PDPs as a comprehensive summary of the model dependence in
his paper introducing gradient boosting [17]. The PDPs for each
of the risk classes and each of the features are plotted in Fig. 8. It
shows the partial dependence between the model’s output for
every energy poverty risk group and every single feature of the
model, averaging over all other features. The y-axis depicts the par-
tial probability of the category values on the x-axis. A straight line
suggests that the feature has no influence on the model’s predic-
tion. A very volatile line, i.e. a line for which y values change signif-
icantly when x values move from one category to the next, suggests
that the feature has a big impact on the model outcome. This is the
case, for example, for the lines in the income bracket panel (top
left) in Fig. 8. The shared y-axis enables a simple comparison of
the volatilities of the partial dependencies. PDPs, while providing
some valuable insights, do not give a complete explanation of
how the features affect the model’s output because interactions
between features are averaged out to get this 2-dimensional
visualization.

The PDP for income confirms what can also be observed in the
confusion matrices. Based on income bracket, the model correctly
reduces the multiclass classification task to two binary ones: if
the income is below the income threshold, probabilities for the
no risk and expenditure risk categories drop to zero. If the income
is above the threshold the inverse is true, and the probabilities of
income risk and double risk drop to zero. In the other plots we
can distinguish two pairs of classes with similar profiles. For each
risk class pair, one exceeds the expenditure thresholds and can be
considered the higher risk class of the two. The plots indicate that a
larger house floor area increases the likelihood of a household
being classified in the higher risk category corresponding to its
income. The PDP for the feature household size shows a similar
profile, where a larger household shows increased probabilities
of being at risk. The PDPs of house age and birth year respondent
are almost flat lines, confirming our results that did not regard
them as predictors. House detachment and heating strategy - for
which the feature importance results are inconclusive - show some
volatility, again indicating that these might have some predictive
power, but require further research to be established as predictors.
Fig. 9. Decision plot of a single sample in the tes
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In order to provide additional insight in the internal workings of
our ML model, we introduce the notion of a decision plot. A deci-
sion plot [29] exploits the additive nature of the feature contribu-
tion assigned by SHAP values by providing an effective visual
summary. A visualization for a single household from the test set
can be seen in Fig. 9. The y-axis has the features followed by the
feature value in brackets. The effect of the feature is depicted
between the two adjacent horizontal lines. The values on the x-
axis correspond to the model output, these values are transformed
by the model to probabilities, which are depicted in brackets in the
legend. The dashed line is the eventual classification done by the
model. This plot depicts how a large household living in a large
home, detached from other houses, living of an income in the fifth
decile, is correctly classified as being in the expenditure risk group.
The split of the task into two binary classification tasks can clearly
be observed (red and yellow versus green and orange lines). The
little impact the features heating strategy, birth year respondent,
and house age have on the prediction is also apparent. By analyzing
these plots, one could in principle differentiate several characteris-
tic decision paths corresponding to certain types of households
that are more prone to be in energy poverty. We believe this could
prove to be beneficial for policy design in the future. In order to
properly carry out this type of analysis, however, one would need
a larger and more consistent dataset than the one our current
model is based upon.
4. Conclusion and discussion

We have successfully applied ML to find features that have
demonstrated their predictive power in a heterogeneous dataset
comprised of 11 countries, representative of the European conti-
nent. The resulting model is better at classifying households cate-
gorized as being at risk of energy poverty than a theoretical model
with only income as an input. However, it does not attain the same
level of accuracy as a gradient boosting model achieved in a similar
study that addressed one single country, i.e. the Netherlands [10].
This leads us to hypothesize the presence of two types of predictors
for energy poverty in Europe. Universal predictors are drivers valid
across a varied set of countries, e.g. for the whole of Europe.
Besides these, there are also predictors concerned with the local
specificities of a country (or region), which we call contextual pre-
dictors. Among the drivers considered in this study, examples of
t dataset. The feature values are in brackets.
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universal predictors are income – low income households have a
higher chance of incurring energy poverty – and floor area – energy
consumption is generally higher in larger dwellings. An example of
a contextual predictor is house age, given that the correlation
between building quality and age is country-dependent. Universal
predictors can serve as a starting point for European countries to
establish an overarching framework to assess energy poverty.
These can then be complemented in individual countries (or
regions) by contextual predictors, thus adequately assessing the
prominence of energy poverty at (sub)national level. This concept
of having a national definition of energy poverty that is comple-
mentary to a common European definition has been proposed by
other studies in the literature [40], our research supplies empirical
support to this notion.

Our energy poverty classification framework is essentially a
Low Income High Costs (LIHC) scheme. An analogous framework
is currently used in the UK for energy poverty monitoring. Many
other quantitative and qualitative frameworks have been proposed
in the literature and applied in practice. Some well-known exam-
ples are the 10% quote – which classifies as energy poor all house-
holds whose energy expenditure is above 10% of their income –
and the 2 M scheme – which selects households that spend more
than twice the national median on their energy bills. All existing
frameworks have their particular advantages and drawbacks, and
the quest for adequate energy poverty indicators and metrics
remains a very active field of research. For our study we chose a
quantitative framework that is currently employed in practice,
and that is suited to the available data and that lends itself to be
analyzed with a ML classifier.

The features income, floor area, and household size are all found
to be of significant importance to our energy poverty risk classifier.
Our results suggest these three features as universal predictors on
the European continent. While our results are inconclusive with
regards to the features house detachment and heating strategy,
the features house age and birth year of respondent have been
found to be insignificant on a supranational scale. House age has
previously been found to be an indicator of energy poverty [22].
We assign this apparent discrepancy to the heterogeneous nature
of the dataset used. As was established by Galev et al. [19], house
age cannot be considered a proxy for insulation on a supranational
level. Nonetheless, it likely acts as a contextual predictor. One can
in principle hypothesize – and find evidence for – the existence
other energy poverty drivers, in addition to those considered in
our study. These include, for example, energy prices, dwelling
energy efficiency, ownership status, number of unemployed per-
sons in households. Our choice is based on (i) drivers that were
readily available in the present dataset, (ii) drivers that are
expected to be easily found or measured for future application of
our method, and (iii) drivers that were already identified as possi-
ble energy poverty predictors in previous studies.

The results reported in this paper should be considered in the
light of certain limitations. Absolute energy expenditure is used
to classify households into an energy poverty risk group, as the
dataset does not allow for easy conversion to relative energy
expenditure. As a result, some households might be misclassified
as energy poor. Furthermore, households that severely under-
consume (a phenomenon also known as hidden energy poverty)
are missed by this framework; this atypical form of energy poverty
is an open research question and beyond the scope of this research.
Future research could use an improved EP classification framework
and attempt to recreate the findings of this paper. Furthermore,
this research limits its focus to socio-economic indicators of energy
poverty. An interesting research direction would be one where spa-
tial features, such as nightlights or surface temperature, are consid-
9

ered as this has been found to affect energy consumption [30]. The
arbitrariness of choosing the 80th quantile of the absolute energy
expenditure as a threshold is a reflection of the practical problem
of finding adequate boundaries to define energy poverty for policy
purposes. Alternative threshold choices would lead to selecting dif-
ferent slices of the population, i.e. different socio-economic groups.
Only by studying these in detail and validating the results with
interviews and surveys can one hope to gain a more objective view
on what an adequate set of energy poverty thresholds may be.

The limited size of the Enable database might have caused our
model to underfit, resulting in a classifier too simple to capture
the full complexity of the modeling task. As noted, the Enable
dataset also suffers from selection bias with respect to the income
deciles. While this was not deemed to significantly affect our
results, more homogeneity across income distributions would be
desirable in order to achieve EU-wide models that are also repre-
sentative at national level, i.e. to capture the full predictive power
of universal energy poverty drivers. The lack of high-quality data
regarding energy poverty has long been recognized in the field
[31,37,39,2,20,24], and several initiatives have been launched to
attempt to make progress in this respect, e.g. the Energy Poverty
Observatory (EPOV) was founded with (among others) the goal
to improve and harmonize data collection [14]. Based on our find-
ings, we endorse this type of initiatives and we recommend that
additional efforts to collect and make available consistent high-
quality datasets both at national and at EU level are pursued.
Future research might apply the approach introduced in this paper
to such high-quality datasets to effectively train and analyze more
sophisticated ML models. We argue that ML methods can be used
as an efficient means to examine and evaluate different energy-
poverty metrics, and highlight non-obvious and complex correla-
tions between different drivers.

To stimulate the energy transition to a more sustainable energy
supply, some sort of carbon taxation is imposed in many states in
the EU and US. Moreover, as part of the European Green Deal, the
EU is launching the Just Transition Fund to enable regions to
address the impacts of the energy transition [15]. Spending the
aforementioned funds on energy R&D and technology innovation
is a commonly heard suggestion. Another suggestion is to use
those revenues to assist people in meeting energy poverty chal-
lenges, which may be exacerbated due to stringent climate change
mitigation measures. One question raised is how to determine
which people will deserve and receive assistance, and which do
not. The approach proposed in this paper, or an improved version
thereof, can help in determining who may be in dire straits when
it comes to affording basic energy services, and ultimately help
to identify appropriate types of assistance for different groups of
energy poor households. Provided the availability of large repre-
sentative high-quality datasets, XAI methods could be instrumen-
tal in efforts to distribute greenhouse gas taxes revenues through
policy, if the targets include the alleviation of (energy) poverty
and establishment of equity among consumers of energy services.
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Appendix

Figs. A1 and A2 present the distributions of, respectively, energy
expenditure and income from the Enable-EU dataset.



Fig. A1. Absolute (top), and approximate relative energy expenditure (bottom) for all countries in the data set.
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Fig. A2. Income distributions of respondents per country.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.enbuild.2022.112064.
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