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A B S T R A C T

Bike-sharing systems are a rapidly developing mode of transportation and provide an efficient
alternative to passive, motorized personal mobility. The asymmetric nature of bike demand
causes the need for rebalancing bike stations, which is typically done during nighttime. To
determine the optimal starting inventory level of a station for a given day, a User Dissatisfaction
Function (UDF) models user pickups and returns as non-homogeneous Poisson processes with
piece-wise linear rates. In this paper, we devise a deep generative model directly applicable in
the UDF by introducing a variational Poisson recurrent neural network model (VP-RNN) to forecast
future pickup and return rates. We empirically evaluate our approach against both traditional
and learning-based forecasting methods on real trip travel data from the city of New York,
USA, and show how our model outperforms benchmarks in terms of system efficiency and
demand satisfaction. By explicitly focusing on the combination of decision-making algorithms
with learning-based forecasting methods, we highlight a number of shortcomings in literature.
Crucially, we show how more accurate predictions do not necessarily translate into better inven-
tory decisions. By providing insights into the interplay between forecasts, model assumptions,
and decisions, we point out that forecasts and decision models should be carefully evaluated
and harmonized to optimally control shared mobility systems.

1. Introduction

The value of bike-sharing programs as an urban mobility solution is increasingly recognized by several cities around the world.
They provide a flexible transport solution that easily connects to other modalities, and mitigates traffic congestion and air pollution.
Bike-sharing concepts provide a healthy, cost- and time-efficient alternative to passive, motorized transportation (Sohrabi et al.,
2020). Whereas the first pioneering experiments – such as the White Bikes project in Amsterdam (1965) – were completely
unregulated, successful later implementations depended heavily on IT to prevent vandalism and theft (DeMaio, 2009). More recently,
this IT usage enabled the application of advanced operations research and data science methods to optimize strategic, tactical, and
operational decisions. There are currently over 2000 bike-sharing programs active world-wide, covering almost 10 million bikes,
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a rapid growth compared with 2 million bikes in 2016 and 700,000 bikes in 2013 (Richter, 2018; Meddin et al., 2021). The vast
majority of these projects are station-based and consist of networks of fixed-location stations with physical bike slots (Sohrabi
et al., 2020; Shaheen et al., 2010). One of the major challenges of bike-sharing systems is that trip origins and destinations are
asymmetrically distributed (e.g. reflecting commuting into a downtown in the morning and vice-versa in the evening), making the
overall system imbalanced and sensitive to disturbances. To counteract this, the bikes in such networks are usually rebalanced during
the night, when demand is low. This is called static rebalancing (Laporte et al., 2015; Tian et al., 2020).

The main operational-level decision problems of bike-sharing systems are demand forecasting, inventory decision-making, and
ebalancing. These three problems are typically considered sequentially, with inventory targets being constraints for the rebalancing
routing) problem, and demand forecasts in turn serving as inputs to decide on these inventory targets. The target inventory level
t the beginning of a day results from minimizing the so-called ‘‘user dissatisfaction’’, a penalty cost arising from arriving customers
hat do not find an available bike, and returning customers that do not find an empty slot to return their bike. Theoretical papers on
ike-sharing rebalancing either assume given (ranges of) starting inventory levels or given functions for the cost resulting from these
tarting inventory levels. Empirical applications typically use a so-called User Dissatisfaction Function (UDF) that models pickups
nd returns as non-homogeneous Poisson processes. Such a UDF was first proposed by Raviv and Kolka (2013). The rates of these
rocesses are assumed to be piece-wise constant (e.g. per hour) and typically obtained by taking historical averages of the same day
nd hour (O’Mahony and Shmoys, 2015; Schuijbroek et al., 2017; Freund et al., 2019).

A vast literature stream on demand forecasting for bike-sharing systems has rapidly emerged during the last decade. The topic
ttracts attention as it constitutes an exemplary case where historical demand records together with data on explanatory variables
re abundantly available. Bike-sharing demand is known to be heavily dependent on temporal information (intra- and inter-day),
ut also on the weather (Eren and Uz, 2020), with several machine learning approaches being applied to model these relationships.
owever, the resulting forecasts are typically studied in isolation from inventory decisions, where authors judge the quality of their

orecasts on standard accuracy metrics, such as MAE, (R)MSE, and R2, but not on their eventual performance in the UDF. In this work,
e argue that predictive and prescriptive performance goals should be carefully aligned when designing new predictive models, so to
nderstand the relations between different methods and avoid unconscious overfitting to practically irrelevant forecasting metrics.

The contribution of this paper is threefold. First, we propose a neural architecture capable of modeling the pickups and returns as
oisson processes, thus being directly applicable in the UDF through a predict-then-optimize framework, whereby assumptions of the
ptimization algorithm are effectively encoded within upstream predictive model. Specifically, we propose a deep generative model
hereby we represent the unknown Poisson rates as latent variables and where the time-dependent dynamics are captured by a
ecurrent Neural Network (RNN). Second, we empirically evaluate our model against both traditional and learning-based approaches
n real trip data from the 30 most active stations of New York Citi Bike, and show how our model outperforms benchmarks in
erms of predictive and prescriptive performance. Third, we study existing mismatches between forecasting accuracy and decision
erformance. Specifically, the user dissatisfaction cost corresponding to a certain starting inventory level is a complex function of
ll pickup and return rates during the day and the hourly differences between them, thus creating a misalignment between the
rediction and decision objectives. We propose to measure the error in the daily cumulative difference between pickups and return
ates, and find that this better predicts inventory performance than MAE, MSE, and R2.

The remainder of this paper is structured as follows. We first summarize relevant research directions in Section 2. We then
ntroduce the main theoretical foundations and formally present the proposed approach in Section 3. Section 4 discusses empirical
esults on real world trip data and an extensive comparison with other forecasting methods. Section 5 concludes the paper.

. Literature review

We review the literature that is relevant to our study in three main streams: static rebalancing, inventory modeling, and demand
orecasting. We discuss these streams top-down, indicating how rebalancing problems depends on inventory models, that in turn
epend on demand forecasts. Finally, we touch upon the disconnect between demand forecasts and inventory models for bike-
haring, and its parallels in the wider demand forecasting and inventory control literature. For a recent, general literature review
n bike-sharing problems, we refer to Shui and Szeto (2020).

.1. Static rebalancing

The vast majority of bike-sharing systems are statically rebalanced during nighttime, when demand is low and the impact of
ebalancing is highest (Laporte et al., 2015). As a result, the majority of existing literature focuses on static rebalancing (Tian
t al., 2020). Examples of work on dynamic rebalancing during the day are Angelopoulos et al. (2018), Caggiani et al. (2018),
nd Warrington and Ruchti (2019). Most literature on static rebalancing assumes a given target inventory level for each station as
nput to the system-level routing problem (e.g. Chemla et al., 2013; Dell’Amico et al., 2014; Wang and Szeto, 2021). Erdoğan et al.
2014) define a range of allowable inventory levels for each station, leading to more cost-efficient routing. This approach is also
dopted by Kadri et al. (2016) and Schuijbroek et al. (2017).

Instead of assuming a given set of allowable starting inventory levels in the rebalancing problem, a more integrated approach is
o include a UDF. This function maps the starting inventory level to a penalty cost, taking into account the stochastic transactions
hat occur throughout the day. This approach is used by e.g. Raviv et al. (2013), Szeto et al. (2016), and Ho and Szeto (2017),
2
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2.2. Inventory modeling

In rebalancing models, a number of studies approach the question of how to define either the range of allowable starting inventory
evels, or the UDF. Nair and Miller-Hooks (2011), Nair et al. (2013), and Maggioni et al. (2019) introduce two-sided constraints for
ailed pickups at empty stations and failed returns at full stations. However, they only consider net demand and not the evolution
f pickups and returns throughout the day.

Raviv and Kolka (2013) propose to model pickups and returns as independent, non-homogeneous Poisson processes with piece-
ise constant rates. This approach has subsequently been used by many authors in their applied work. O’Mahony and Shmoys

2015) determine rebalancing decisions, Çelebi et al. (2018) find the best locations for bike-sharing stations, and Freund et al.
2019) determine slot allocations and devise incentives for crowdsourcing rebalancing.

Also in large-scale applications, where inventory levels and routing decisions are taken for multiple stations simultaneously, a
tation-by-station UDF approach is used to determine optimal inventory levels for each station. The system-level decision problem
ay include additional constraints, for example on the total number of available bikes. Several authors report that solving such

ntegrated problems is computationally infeasible for realistically-sized problems. Jian et al. (2016) and Alvarez-Valdes et al. (2016)
pply simulation approximations. Contrarily, Vogel et al. (2014), Frade and Ribeiro (2015), and Datner et al. (2019) assume that
emand for trips between station pairs is deterministic. Schuijbroek et al. (2017) combine the UDF pickup and return model with
he logic of Nair and Miller-Hooks (2011) to find a range of inventory levels that satisfy constraints with respect to the number of
ailed pickups and returns.

Almost all authors that empirically apply the UDF use some form of historical averaging to estimate the pickup and return
ates. Raviv and Kolka (2013) use time intervals of 1, 5 and 30 min. Alvarez-Valdes et al. (2016) and Çelebi et al. (2018)
se an hourly interval, whereas Schuijbroek et al. (2017) and Jian et al. (2016) define the time interval as 15 and 30 min,
espectively. O’Mahony and Shmoys (2015) and Freund et al. (2019) use 20-min intervals.

In line with the reviewed literature, we also use the UDF approach as originally proposed by Raviv and Kolka (2013) to determine
arget inventory levels. We deem comparing single target inventory levels more illustrative than comparing ranges of inventory levels
nd their implied service levels. Nevertheless, we remark that the procedure can be applied analogously to a service-based model
uch as that of Schuijbroek et al. (2017).

.3. Demand forecasting

Whereas empirical contributions to bike-sharing rebalancing and inventory decision making mainly use simple historical
veraging to estimate the pickup and return rates, there exists a vast literature on bike-sharing demand forecasting. Attempts are
ade to derive explanatory power from exogenous variables, such as weather and temporal information, using both classical and
achine learning prediction techniques.

Rixey (2013) uses multivariate regression with data gathered from multiple bike-sharing systems, identifying a number of
ariables that have statistically significant correlations with station-level demand. More recently, the focus has shifted to machine
earning approaches. System-level demand is forecasted by Xu et al. (2018) using long short-term memory neural networks, and
y Guo et al. (2019) using graph neural networks.

More closely resembling the rebalancing decisions that are to be made, several authors have also applied machine learning to
orecast station-level demand. Wang and Kim (2018) and Chen et al. (2020) employ RNNs, Lin et al. (2018) propose graph neural
etworks, and Sohrabi et al. (2020) use a generalized extreme value model. Fournier et al. (2017) use a sinusoidal model to deal with
easonalities. Random forests have been adopted by Yang et al. (2016), Du et al. (2019), and Sathishkumar and Cho (2020). Gammelli
t al. (2020a,b) employ probabilistic techniques to estimate true demand using Tobit regression combined with Gaussian processes
o mitigate the bias caused by censored demand observations, in both single and multi-output settings. In the presence of demand
ensoring, Negahban (2019) estimates real demand with a combination of simulation and bootstrapping, whereas Albiński et al.
2018) present a data-driven approach to estimate achieved service levels. Boufidis et al. (2020) compare various machine learning
odels in predicting station-level hourly pickups and returns. Zhang et al. (2021) iteratively update demand forecasts using a neural
etwork and optimize a static rebalancing problem, but also separate both tasks.

Whereas several above-mentioned authors do focus on predicting station-level pickups and returns, they solely judge their
orecasts using traditional loss measures for separate pickup and return demands. It is not explored how (pickup and return) demand
orecasts perform if they are used to optimize stations’ starting inventory levels. This existing disconnect between prediction and
ptimization has been addressed in general terms by Elmachtoub and Grigas (2021). Particularly, the lacking interface between
emand forecasting and inventory control has been pointed out by Tratar (2010), Prak et al. (2017), and Kourentzes et al. (2020).
yntetos et al. (2010) state that the orders of magnitude of forecasting accuracy and inventory performance may differ wildly. Babai
t al. (2014) find that positively biased forecasts can actually be beneficial if the demand distribution is misspecified.

In the field of bike-sharing, where (forecasts of) pickups and returns together determine the inventory trajectory of a station,
he interface between predictive and prescriptive performance remains unstudied, despite the abundance of forecasting methods
pplied. This paper sheds light on how predictions affect decisions and, ultimately, system performance.
3
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Fig. 1. An illustration of the framework determining the proposed inventory decision strategy. Given historical observations of pickup (x𝜇) and return (x𝜆)
processes, the VP-RNN computes predictions (𝜇̂𝑡 and 𝜆̂𝑡). With these, we estimate and minimize the UDF to find the optimal daily starting inventory level (𝑠).

2.4. Recurrent latent variable models

In recent years, strong evidence has been gathered in favor of combinations bringing together the representative power of RNNs
with the consistent handling of uncertainties given by probabilistic approaches, such as in Fabius and van Amersfoort (2015), Chung
et al. (2016), Krishnan et al. (2016), Rangapuram et al. (2018), Ahmadi and Tani (2019), Salinas et al. (2020). The core concept
underlying recent developments is the idea that, in current RNNs, the only source of variability is found in the conditional emission
distribution (i.e. typically a unimodal distribution or a mixture of unimodal distributions), making these models inappropriate when
modeling highly structured data.

One line of research particularly relevant for our work focuses on the definition of recurrent latent variable models for time-series
forecasting. Despite the common probabilistic interpretation, existing approaches broadly differ on the way in which these handle
uncertainty over the observed data. For example, the architectures introduced by Rangapuram et al. (2018) and Salinas et al. (2020)
can both adapt to different likelihood functions. However, in order to enable for a tractable (and exact) maximization of the marginal
likelihood at training time, these models involve the computation of point estimates of either likelihood function parameters (Salinas
et al., 2020), or a linear state space model (Rangapuram et al., 2018). As we further elaborate in successive sections of this paper,
a core element of this work is represented by the estimation of a full posterior distribution over likelihood parameters.

On a different, but related line of research, Fabius and van Amersfoort (2015), Chung et al. (2016), Ahmadi and Tani
(2019) combine deterministic and stochastic (i.e., latent) variables in the definition of recurrent neural architectures. What unites
these approaches is the idea that, through potentially high-dimensional latent variables, recurrent models can effectively handle
multi-modality in the output distribution. On the other hand, in our work latent variables are not intended to be potentially high-
dimensional vectors for modeling of multi-modality (as in the majority of VAE-based literature), but rather, as a way to encode
epistemic uncertainty over the unknown, 1-dimensional Poisson rate parameter.

Fundamentally, the modeling choices outlined in this work (e.g. neural architectures, choice of likelihood function, dimension-
ality and support of latent variables, etc.) are strictly motivated by the assumptions characterizing the downstream decision-making
routines, in an attempt to align predictive and prescriptive goals as much as possible.

3. Methodology

In this section, we introduce a framework1 for inventory decision-making in bike-sharing systems. As illustrated in Fig. 1, this
framework consists of a novel probabilistic neural architecture to estimate future pickup and return rates. These estimates are then
used in a single-station inventory optimization model which defines pickups and returns as independent, non-homogeneous Poisson
processes, and calculates the expected penalty due to failed pickups and returns as a function (the UDF) of the starting inventory
level. Lastly, we decide on the optimal inventory level by minimizing the UDF. Either the UDF or its resulting target inventory levels
can be used for solving system-level rebalancing problems as well. However, as reviewed in Section 2, the rebalancing problem
imposes additional complexity caused by system-level constraints (e.g. the total number of available bikes), which may distract
from our core subject of study: predictive and prescriptive performance of bike-sharing demand forecasting methods. Therefore,
we zoom in on the connection between the quality of station-level demand predictions and the resulting (station-level) inventory
prescriptions.

In this section, we introduce the theoretical fundamentals of our proposed approach. Specifically, we will first review an inventory
model that utilizes the predicted pickup and return rates to determine a station’s target inventory level at the beginning of a day
(Section 3.1). We then outline the proposed VP-RNN (Section 3.2) by first reviewing the theory and notation describing latent
variable models, recurrent neural networks and approximate inference (Sections 3.2.1–3.2.3), on which we will build to introduce
the proposed generative model (Section 3.2.4).

1 Code available at: https://github.com/DanieleGammelli/variational-Poisson-rnn.
4
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3.1. Inventory decision model

In this section, we present an inventory model that uses the predicted pickup and return rates to determine a single station’s target
nventory level at the beginning of a day. The inventory model uses the User Dissatisfaction Function (UDF) proposed in Raviv and
olka (2013). A bike station is modeled as a double-ended 𝑀𝑡∕𝑀𝑡∕1∕𝐶 queuing system, with the number of customers in the queue
epresenting the number of bikes in the station. The customer inter-arrival times (for bike returns) and service times (i.e., inter-
rrival times for bike pickups) are assumed to be exponentially distributed with time-dependent rates 𝜆𝑡 and 𝜇𝑡, respectively. Similar

to Raviv and Kolka (2013), we assume that these rates are piece-wise constant. The capacity of the system 𝐶 represents the capacity
of the bike station, i.e., the total number of docks in the station.

We consider a static rebalancing problem where bikes are rebalanced overnight. Our goal is to determine the target inventory
level for rebalancing operations in order to minimize the number of unsatisfied users for both bike pickup and return during the
day. According to Raviv and Kolka (2013), the procedure of determining the target inventory level with predicted pickup rates 𝜇̂𝑡
and return rates 𝜆̂𝑡 can be divided into two steps as follows.

1. Calculate the transient probability 𝑝(𝑠, 𝛿, 𝑡) ≡ Pr(𝑆(𝑡) = 𝛿 |𝑆(0) = 𝑠), which is the probability of the station being at
inventory level 𝛿 ∈ {0,… , 𝐶} at time 𝑡 ≥ 0 given that its starting inventory at time 0 was 𝑠. In a non-stationary queue, the
transient probabilities are solutions to the Kolmogorov forward Eq. (1), which can be solved efficiently using the fourth-order
Runge–Kutta method (Ross, 2014).

𝑝̇(𝑠, 0, 𝑡) = 𝜇̂𝑡 ⋅ 𝑝(𝑠, 1, 𝑡) − 𝜆̂𝑡 ⋅ 𝑝(𝑠, 0, 𝑡)

𝑝̇(𝑠, 𝜎, 𝑡) = 𝜇̂𝑡 ⋅ 𝑝(𝑠, 𝜎 + 1, 𝑡) + 𝜆̂𝑡 ⋅ 𝑝(𝑠, 𝜎 − 1, 𝑡) − (𝜇̂𝑡 + 𝜆̂𝑡) ⋅ 𝑝(𝑠, 𝜎, 𝑡) 𝜎 = 1,… , 𝐶 − 1 (1)
𝑝̇(𝑠, 𝐶, 𝑡) = 𝜆̂𝑡 ⋅ 𝑝(𝑠, 𝐶 − 1, 𝑡) − 𝜇̂𝑡 ⋅ 𝑝(𝑠, 𝐶, 𝑡)

2. Calculate the expected penalty (UDF) due to failed pickups and returns over the observation period [0, 𝑇 ] for all possible
starting inventories 𝑠 ∈ {0,… , 𝐶}. The optimal starting inventory 𝑠∗ minimizes the UDF as shown in (2).

𝑈𝐷𝐹 (𝑠) = ∫

𝑇

0
𝑙𝑝 ⋅ 𝜇̂𝑡𝑝(𝑠, 0, 𝑡) + 𝑙𝑟 ⋅ 𝜆̂𝑡𝑝(𝑠, 𝐶, 𝑡) d𝑡

𝑠∗ = arg min
𝑠

𝑈𝐷𝐹 (𝑠) (2)

Here, 𝑙𝑝 and 𝑙𝑟 denote the unit penalty for each lost pickup and lost return, respectively. The first term in the integral represents
the expected user dissatisfaction accumulated when the station is empty, and the second term represents the expected user
dissatisfaction accumulated when the station is full.

3.2. Variational Poisson RNN

In this section, we first review and summarize key concepts on latent variable models (Section 3.2.1), approximate inference
(Section 3.2.2), and recurrent neural networks (Section 3.2.3). We then build on these concepts to introduce the neural architecture
for the proposed VP-RNN (Section 3.2.4). Specifically, through Sections 3.2.1–3.2.3, we aim to give a high-level overview of the
key methodological concepts used in this work. Because of this, we choose to keep the narration fairly general and non-application
specific. In Section 3.2.4, we then concretely bring these concepts together in the neural architecture defined by the proposed VP-
RNN: (i) we encode model uncertainty over the unknown Poisson rates though latent variables (Section 3.2.1), (ii) we approximate
the unknown posterior over the latent variables through variational inference (Section 3.2.2), and (iii) we model the time-dependent
dynamics of bike-sharing demand through RNNs (Section 3.2.3).

3.2.1. Latent variable models (LVMs)
One of the central problems in the statistical sciences and machine learning is that of density estimation, i.e., the construction

of a model of a probability distribution 𝑝(x) given a finite sample of 𝑁 data points  ∶ {x1,… , x𝑁} drawn from that distribution.
A traditional approach to the problem of density estimation involves a parametric model 𝑝𝜃(x), in which a specific form for the
density is proposed which contains a set of learnable parameters 𝜃. The parametric model of interest will be a Poisson distribution
given by

𝑝𝜃(x) = Pois(x |𝝀), (3)

where 𝜃 ∶ {𝝀} is the set of learnable parameters containing the rate of the Poisson distribution. Learning, or parameter estimation,
is then achieved by maximizing the (log) likelihood of the observed dataset as a function of the parameters, where it is assumed
that the data points x𝑖 are drawn independently from 𝑝(x).

Of particular interest for this paper is the concept of latent variables. Specifically, rather than modeling 𝑝(x) directly, we introduce
a set of unobserved latent variables z by expressing a model for the joint probability distribution 𝑝(x, z). In practice, this is done by
defining the joint probability as a product of two densities: the prior distribution 𝑝(z) and the likelihood 𝑝(x | z) (sometimes referred
to as the sampling or data distribution), 𝑝(x, z) = 𝑝(x | z)𝑝(z). In this context, parameter estimation, or inference, is achieved by using
Bayes’ rule, yielding the following posterior density:

𝑝(z | x) = 𝑝(x, z)
𝑝(x) =

𝑝(x | z)𝑝(z)
𝑝(x) , (4)

here 𝑝(x) = ∫ 𝑝(x | z)𝑝(z)𝑑z, and the integral is over all possible values of z (or 𝑝(x) = ∑

𝑝(x | z)𝑝(z) in case of discrete z).
5
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3.2.2. Approximate inference in LVMs
The posterior distribution in (4) compactly represents our beliefs about the latent variables after having observed the data ,

and is a key component for probabilistic reasoning in LVMs. In many cases of practical interest however, the posterior is intractable.
Specifically, this intractability often derives from the lack of an analytical solution for the integral appearing in the denominator of
(4). To address this intractability, we focus on deterministic techniques such as variational inference (VI) (Jordan et al., 1999; Blei
t al., 2017; Zhang et al., 2018). At a high-level, in VI we use ideas from the calculus of variations to find a parametric approximation
(z) that minimizes a measure of dissimilarity between 𝑞(z) and the true, intractable posterior 𝑝(z | x). Out of the many different
ays to measure dissimilarity between two distributions, variational inference uses the Kullback–Leibler (KL) divergence. That is, we
re interested in minimizing the following divergence between the variational (or approximate) distribution 𝑞(z) and the posterior
istribution 𝑝(z | x), defined as:

KL [𝑞(z) ∥ 𝑝(z | x)] = −E𝑞(z)

[

log
𝑝(z | x)
𝑞(z)

]

, (5)

where E𝑞(z) denotes an expectation over 𝑞(z). In order to define a tractable objective for our inference problem (i.e., one where
he intractable posterior 𝑝(z | x) does not appear in the formulation), we can rewrite (5) using (4) (as well as the properties of the

logarithm) as

KL [𝑞(z) ∥ 𝑝(z | x)] = −E𝑞(z)

[

log
𝑝(x, z)
𝑞(z) − log 𝑝(x)

]

(6)

= −E𝑞(z)

[

log
𝑝(x, z)
𝑞(z)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(𝑞)

+ log 𝑝(x), (7)

where the marginal log-likelihood log 𝑝(x) can be taken out of the expectation because of its independence from z. The quantity
(𝑞) is know as Evidence Lower Bound (ELBO) and represents a lower bound on the marginal log-likelihood, or evidence, log 𝑝(x),
i.e. log 𝑝(x) ≥ (𝑞) for all 𝑞(z). Concretely, this reformulation gives us a way to minimize the KL [𝑞(z) ∥ 𝑝(z | x)] by maximizing the
ELBO with respect to the distribution 𝑞(z), and therefore find the variational distribution best approximating the unknown posterior.
In other words, the closer the ELBO is to the marginal log-likelihood, the closer (in KL sense) the variational approximation will be
to the posterior distribution. Thus, variational methods allow us to reduce an inference problem into an optimization problem.

In practice, the variational distribution 𝑞(z) is often restricted to a known parametric family for which the ELBO is tractable or
simple to approximate, such as a Gaussian distribution. Thus, the maximization of the ELBO refers to a maximization with respect to
the parameters 𝜙 of the variational distribution 𝑞𝜙 (e.g. 𝑞𝜙(z) =  (z ∣ 𝜙), where 𝜙 = {𝝁,𝜮} in the case of a Gaussian approximation).

In traditional variational inference, we learn a distinct set of parameters 𝜙𝑖 for each data point {x𝑖}𝑁𝑖=1, which can be problematic
when facing large, high-dimensional datasets. To avoid the linear growth in parameters with the number of data points, amortized
inference offers a viable alternative. Specifically, rather than defining a set of parameters 𝜙𝑖 for each data point, amortized inference
shares a unique set of parameters 𝜙 across all data points — thus, amortizing the cost of variational inference. As in the case of
Variational Autoencoders (VAE) (Kingma and Welling, 2014; Rezende et al., 2014), we define an inference network, also known
as encoder, that allows us to compute the parameters of the posterior approximation for any given data point. Specifically, in the
case of a (diagonal) Gaussian variational approximation, we define an inference network with output characterizing the mean and
variance vectors as:

𝑞𝜙(z𝑖 | x) =  (z𝑖 |𝝁𝑖,𝝈2
𝑖 𝐼), (8)

[𝝁𝑖,𝝈2
𝑖 ] = 𝑓𝜙(x𝑖),

where 𝑓𝜙 can be any parametric function such as a deep neural network, and 𝐼 is the identity matrix.

3.2.3. Recurrent neural networks
We summarize the usage of recurrent neural networks (RNNs) for sequential data modeling. RNNs are widely used to model

variable-length sequences 𝐱 = (𝐱1, 𝐱2,… , 𝐱𝑇 ), possibly influenced by external covariates 𝐮 = (𝐮1,𝐮2,… ,𝐮𝑇 ). The core assumption
underlying these models is that all observations 𝐱1∶𝑡 up to time 𝑡 can be summarized by a learned deterministic representation 𝐡𝑡.
At any timestep 𝑡, an RNN recursively updates its hidden state 𝐡𝑡 ∈ R𝑝 by computing:

𝐡𝑡 = 𝑓𝜃h (𝐮𝑡,𝐡𝑡−1), (9)

where 𝑓 is a deterministic non-linear transition function parametrized by 𝜃h, such as an Long Short-Term Memory (LSTM) cell or
a Gated Recurrent Unit (GRU). The sequence is then modeled by defining a factorization of the joint probability distribution as the
following product of conditional probabilities:

𝑝(𝐱1, 𝐱2,… 𝐱𝑇 ) =
𝑇
∏

𝑡=1
𝑝(𝐱𝑡|𝐱<𝑡)

𝑝(𝐱𝑡|𝐱<𝑡) = 𝑔𝜃x (𝐡𝑡), (10)
6

where 𝑔 is typically a non-linear function with parameters 𝜃x.
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Fig. 2. Graphical representation of the generative model 𝑝𝜃 (left) and inference network 𝑞𝜙 (right) characterizing the proposed VP-RNN. Shaded nodes represent
observed variables, while non-shaded nodes represent either deterministic (diamond-shaped) or latent (circle-shaped) variables.

3.2.4. VP-RNN neural architecture
In this section, we define the generative model 𝑝𝜃 and inference network 𝑞𝜙 characterizing the proposed Variational Poisson

RNN (VP-RNN) for the purpose of pickup and return demand modeling. A schematic illustration of the VP-RNN is shown in Fig. 2.
Generative model: We assume data 𝐗 = (𝐱1, 𝐱2,… , 𝐱𝑇 ) to represent a sequence of realizations of a Poisson process over the pickup
(or, the return) process. That is, we recognize that our data is represented by count variables taking values 𝐱𝑡 ∈ N ∪ {0} that we
wish to model using a Poisson process specified by an appropriate rate parameter 𝜆𝑡. For simplicity, we will always refer to a
generic rate parameter 𝝀𝑡 when describing the proposed VP-RNN. However, it is important to underline how 𝝀𝑡 can represent any
arbitrary Poisson rate in the context of bike-sharing demand prediction, such as independent pickup and return rates 𝜇𝑡, 𝜆𝑡, or even
a 2-dimensional rate 𝝀𝑡 = [𝜇𝑡, 𝜆𝑡], jointly modeling the pickup and return processes. We represent the rate 𝝀𝑡 as a latent variable
whose time-dependent dynamics are modeled through an RNN. Specifically, the VP-RNN defines the following factorization of the
joint probability distribution:

𝑝(x1∶𝑇 ,𝝀1∶𝑇 ,h
𝑝
1∶𝑇 |u1∶𝑇 ,h

𝑝
0) =

𝑇
∏

𝑡=1
𝑝(x𝑡 |𝝀𝑡) 𝑝𝜃𝜆 (𝝀𝑡 |h

𝑝
𝑡 ) 𝑝𝜃h (h

𝑝
𝑡 |h

𝑝
𝑡−1,u𝑡), (11)

𝑝(x𝑡 |𝝀𝑡) = Pois(x𝑡 |𝝀𝑡)

𝑝𝜃𝜆 (𝝀𝑡 |h
𝑝
𝑡 ) = 

(

𝝀𝑡 |𝝁0,𝑡diag(𝝈2
0,𝑡)

)

,with [𝝁0,𝑡,𝝈0,𝑡] = 𝑓𝜃𝜆 (h
𝑝
𝑡 ),

where 𝝁0,𝑡 and 𝝈0,𝑡 represent the parameters of the conditional prior distribution over the latent variable 𝝀𝑡 and where we assume
𝑝𝜃h (h

𝑝
𝑡 ∣ h𝑝𝑡−1,u𝑡) = 𝛿(h𝑝𝑡 − h̃), i.e. h𝑝𝑡 follows a delta distribution centered in h̃𝑡 = 𝑓𝜃h (h

𝑝
𝑡−1,u𝑡), such that the RNN hidden state (at

time 𝑡) is itself a function of the hidden state at the previous time-step, and external data u𝑡. In our implementation, 𝑓𝜃𝜆 and 𝑓𝜃h
are respectively a feed-forward neural network and a GRU cell with parameters 𝜃𝜆 and 𝜃h. At its core, the VP-RNN exploits the
representational power of RNNs to capture potentially complex long-term dependencies in the temporal evolution of demand. It
then leverages the learned representation h𝑝𝑡 as conditioning variable for the conditional prior distribution over the Poisson rate
variable 𝝀𝑡.
Inference: The variational approximation defining the VP-RNN directly follows the generative model’s factorization as follows:

𝑞𝜙(𝝀1∶𝑇 | x1∶𝑇 ) =
𝑇
∏

𝑡=1
𝑞𝜙(𝝀𝑡 | x𝑡,h

𝑞
𝑡 ,u𝑡), (12)

𝑞𝜙(𝝀𝑡 | x𝑡,h
𝑞
𝑡 ,u𝑡) = 𝑞𝜙𝜆 (𝝀𝑡 |h

𝑞
𝑡 ) 𝑞𝜙h (h

𝑞
𝑡 |h

𝑞
𝑡−1,u𝑡),

𝑞𝜙𝜆 (𝝀𝑡 |h
𝑞
𝑡 ) = 

(

𝝀𝑡 |𝝁𝜆,𝑡, diag(𝝈2
𝜆,𝑡)

)

,with [𝝁𝜆,𝑡,𝝈𝜆,𝑡] = 𝑓𝜙𝜆 (h
𝑞
𝑡 ),

where 𝑞𝜙h (h
𝑞
𝑡 ∣ h𝑞𝑡−1,u𝑡) follows a delta distribution centered in h̃𝑞𝑡 = 𝑓𝜙h (h

𝑞
𝑡−1,u𝑡). Concretely, 𝑓𝜙𝜆 and 𝑓𝜙h together describe the

encoder network defining the parameters 𝝁𝜆,𝑡 and 𝝈𝜆,𝑡 of the approximate posterior distribution. In our implementation, 𝑓𝜙𝜆 and 𝑓𝜙h
are respectively a feed-forward neural network and an LSTM cell with parameters 𝜙𝜆 and 𝜙h. By explicitly resembling the model’s
factorization, the inference network defined in (12) also exhibits an implicit dependence on the entire history of x1∶𝑡 and u1∶𝑡
through h𝑞𝑡 . This implicit dependency on all information from the past can be considered as resembling a filtering approach from
the state-space model literature (Durbin and Koopman, 2001). Denoting 𝜃 and 𝜙 as the set of model and variational parameters
respectively, variational inference offers a scheme for jointly optimizing parameters 𝜃, 𝜙 and computing an approximation to the
7
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posterior distribution by maximizing the following step-wise evidence lower bound2 (i.e. ELBO) through gradient ascent:

(𝜃, 𝜙) = E𝑞𝜙(𝝀1∶𝑇 | x1∶𝑇 )

[ 𝑇
∑

𝑡=1
log 𝑝𝜃(x𝑡 |𝝀𝑡) + log 𝑝𝜃(h

𝑝
𝑡 |h

𝑝
𝑡−1,u𝑡)

]

(13)

−
𝑇
∑

𝑡=1
KL

(

𝑞𝜙(𝝀𝑡 |h
𝑞
𝑡 , x𝑡,u𝑡) ∣∣ 𝑝𝜃(𝝀𝑡 |h

𝑝
𝑡 )
)

.

The learning (i.e., inference) problem can thus be re-written as the resulting (unconstrained) optimization problem:

arg min
𝜃,𝜙

(𝜃, 𝜙).

From a mathematical perspective, (𝜃, 𝜙) is a differentiable function, where the expectation is approximated through Monte Carlo
sampling techniques, and is thus amenable for (stochastic) gradient-based optimization. Denoting with 𝛩 = {𝜃, 𝜙} the set of both
model and variational parameters, we can compute the gradient of the loss function ∇𝛩(𝜃, 𝜙) through back-propagation and
iteratively update the values of the parameters in the direction of the gradient, via the following update rule:

𝛩 ← 𝛩 + 𝛼∇𝛩(𝜃, 𝜙),

where 𝛼 is a pre-determined step-size.

4. Empirical results

In this section, we demonstrate the performance of our proposed approach. Specifically, the goal is to answer the following
questions: (1) Can we learn to reliably predict future pickup and return rates? (2) Does predictive performance align with decision-
making performance? (3) In case of a misalignment, what aspects should be taken into consideration when working on frameworks
combining prediction and decision-making? To answer these questions, we first analyze the performance of the proposed VP-RNN
in predicting pickup and return processes of bike-sharing demand compared with other learning-based approaches (Section 4.1). We
then explicitly evaluate the predictions when used for inventory management tasks both quantitatively (Section 4.2) and qualitatively
(Section 4.3).

We use a real-world dataset from New York Citi Bike (Citi Bike, 2021). Citi Bike operates a station-based system, whereby the
user of the service is not free to pick up or drop off a bike in any location, but is restricted to a certain number of physical stations
around New York. Our objective is to model the temporal evolution of station-level pickup and return demand in the bike-sharing
system and use this understanding to decide on effective starting inventory levels.

In all our experiments, we use data from the 30 most active stations in the Citi Bike’s system from 1 January 2018 until 31
December 2018. The concept of activity is defined as the average sum of daily pickups and returns in each station. The 30 most
active stations together cover approximately 25% of all rides in Citi Bike’s system. As of December 2018, the system consisted of
approximately 11,500 bikes, with 147,090 total annual memberships and an average demand in December 2018 of 41,172 rides
per day. The stations which we consider in this work are representative of a number of different demand patterns, such as morning
pickup (return) peaks and evening return (pickup) peaks in e.g., residential (business) areas, as well as more balanced situations.

The data consists of individual records of users renting and returning bikes, which we aggregate to three distinct temporal
aggregation levels: 15-, 30- and 60-min intervals. Once aggregated, the data at our disposal is characterized by the time series of
station-level pickups and returns, which we aim to predict one-day ahead at the start of every new day, to reflect the decision that
is to be made. For all stations, we split the 12 months of data into train, validation and test sets using a ratio of 9/1/2 months,
which we use respectively for training, model selection and early stopping, and the final evaluation of the implemented models.

For all models, we consider additional external explanatory variables to encode both meteorological and temporal information.
Specifically, our features are characterized by the following sources of information: (i) temperature [◦C], (ii) probability of rain
∈ [0, 1], (iii) Day-of-Week (DoW), (iv) Time-of-Day (ToD), where we express both (iii) and (iv) as one-hot-encoded vectors. We use
hourly weather measurements as recorded by the National Climatic Data Center (Rossow et al., 2016). In case of smaller temporal
aggregation (15- and 30-min intervals), we assume the weather measurements to remain constant throughout the hour.

4.1. Predictive results

In this section, we analyze the performance of the proposed model on the task of pickup and return bike-sharing demand
prediction. We compare the performance of the proposed VP-RNN with other learning-based approaches that are often used in
empirical bike-sharing literature. We further place this comparison in the context of an ablation study to better analyze the
contribution of each individual component of the VP-RNN. Concretely, we compare the performance of the following models:

1. Historical Average (HA): given a temporal aggregation (e.g. 60-min), the historical average for every combination of
day-of-week and time-of-day (e.g. Monday 8 am) is calculated.

2 A complete derivation is provided in Appendix.
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Table 1
Test prediction performance. We report average (std. dev.) performance over all stations considered.

Models Pickup Return

RMSE MAE 𝑅2 RMSE MAE 𝑅2

60 min

Historical Average 6.76 (2.40) 4.19 (1.07) 0.23 (0.33) 6.65 (2.08) 4.17 (0.99) 0.29 (0.31)
Moving Average 5.77 (2.00) 3.45 (0.80) 0.47 (0.07) 5.80 (1.86) 3.47 (0.75) 0.50 (0.07)
Linear Regression 6.67 (2.39) 4.46 (1.35) 0.25 (0.33) 6.67 (2.20) 4.50 (1.25) 0.29 (0.31)
Gaussian-RNN 5.03 (1.91) 3.11 (0.81) 0.61 (0.08) 5.08 (1.88) 3.09 (0.71) 0.62 (0.08)
Poisson-RNN 4.25 (1.15) 2.65 (0.55) 0.70 (0.05) 4.28 (1.15) 2.67 (0.51) 0.71 (0.07)
Variational Poisson-RNN 3.91 (0.99) 2.47 (0.46) 0.74 (0.06) 3.92 (0.93) 2.49 (0.49) 0.75 (0.07)
Multi-Output VP-RNN 3.77 (0.96) 2.39 (0.46) 0.76 (0.06) 3.71 (0.82) 2.36 (0.41) 0.78 (0.06)

30 min

Historical Average 3.61 (1.14) 2.28 (0.49) 0.25 (0.24) 3.57 (1) 2.29 (0.46) 0.3 (0.24)
Moving Average 3.28 (1.01) 2.04 (0.42) 0.4 (0.07) 3.3 (0.94) 2.05 (0.4) 0.43 (0.08)
Linear Regression 3.7 (1.19) 2.5 (0.67) 0.21 (0.28) 3.72 (1.13) 2.52 (0.63) 0.25 (0.26)
Gaussian-RNN 2.73 (0.72) 1.71 (0.29) 0.59 (0.07) 2.78 (0.81) 1.74 (0.30) 0.60 (0.07)
Poisson-RNN 2.53 (0.53) 1.61 (0.25) 0.63 (0.08) 2.53 (0.47) 1.61 (0.24) 0.64 (0.09)
Variational Poisson-RNN 2.39 (0.43) 1.55 (0.22) 0.66 (0.09) 2.41 (0.42) 1.56 (0.22) 0.67 (0.09)
Multi-Output VP-RNN 2.32 (0.42) 1.5 (0.21) 0.68 (0.09) 2.33 (0.4) 1.51 (0.21) 0.7 (0.08)

15 min

Historical Average 2.07 (0.56) 1.35 (0.25) 0.21 (0.20) 2.05 (0.50) 1.35 (0.24) 0.25 (0.20)
Moving Average 1.94 (0.50) 1.24 (0.23) 0.32 (0.07) 1.95 (0.47) 1.25 (0.22) 0.34 (0.09)
Linear Regression 2.11 (0.59) 1.44 (0.33) 0.18 (0.23) 2.12 (0.56) 1.45 (0.32) 0.21 (0.22)
Gaussian-RNN 1.65 (0.28) 1.06 (0.15) 0.50 (0.09) 1.70 (0.36) 1.09 (0.16) 0.50 (0.08)
Poisson-RNN 1.59 (0.28) 1.03 (0.15) 0.52 (0.10) 1.59 (0.26) 1.03 (0.15) 0.54 (0.11)
Variational Poisson-RNN 1.55 (0.25) 1.02 (0.13) 0.54 (0.11) 1.56 (0.23) 1.03 (0.13) 0.56 (0.11)
Multi-Output VP-RNN 1.53 (0.25) 1.00 (0.13) 0.55 (0.10) 1.53 (0.23) 1.01 (0.14) 0.57 (0.10)

2. Moving Average (MA): functionally equivalent to HA, with the only difference that the average is computed using only the
last month of data in a rolling window.

3. Linear Regression (LR): parametrizes the dependency of the number of pickups/returns x𝑡 on explanatory features u𝑡 through
a linear relationship, estimated by ordinary least squares.

4. Gaussian RNN (G-RNN): inspired by Chen et al. (2020), the model is characterized by a recurrent neural network based on
gated recurrent units (GRU) and trained using a Gaussian likelihood, or equivalently, a Mean Squared Error (MSE) loss.

5. Poisson RNN (P-RNN): variation on the proposed VP-RNN not including an explicit latent variable over the Poisson rate 𝝀𝑡.
In line with Section 3, the P-RNN defines the following factorization of the joint distribution:

𝑝(x1∶𝑇 ,𝝀1∶𝑇 ,h
𝑝
1∶𝑇 |u1∶𝑇 ,h

𝑝
0) =

𝑇
∏

𝑡=1
𝑝(x𝑡 |𝝀𝑡) 𝑝𝜃𝜆 (𝝀𝑡 |h

𝑝
𝑡 ) 𝑝𝜃h (h

𝑝
𝑡 |h

𝑝
𝑡−1,u𝑡), (14)

𝑝(x𝑡 |𝝀𝑡) = Pois(x𝑡 |𝝀𝑡),with 𝝀𝑡 = 𝑓𝜃𝜆 (h
𝑝
𝑡 ).

Given the absence of latent variables, the P-RNN allows for exact maximum likelihood estimation of the parameters. For all
stations considered, in our implementation 𝑝𝜃ℎ is a GRU with 128 hidden units, and 𝑝𝜃𝜆 is a 2-layer MLP with 128 hidden
units per hidden layer.

6. Variational Poisson RNN (VP-RNN): the model as described in Section 3.2.4. Similarly to P-RNN, in our implementation 𝑝𝜃ℎ
is a GRU with 128 hidden units, and 𝑝𝜃𝜆 is a 2-layer MLP with 128 hidden units per hidden layer. However, the VP-RNN
defines a Gaussian distribution over 𝜆, opposed to a single point-estimate as in P-RNN. The inference network mirrors the
implementation of the generative model where 𝑞𝜃ℎ is a GRU with 128 hidden units, and 𝑞𝜃𝜆 is a 2-layer MLP with 128 hidden
units per hidden layer.

7. Multi-Output Variational Poisson RNN (MOVP-RNN): multi-output extension to the proposed VP-RNN. Specifically, this
formulation allows to jointly model pickup and return processes by defining a multivariate regression variable x𝑡 = [𝑥𝜇,𝑡, 𝑥𝜆,𝑡],
where 𝑥𝜇,𝑡 and 𝑥𝜆,𝑡 represent pickup and return counts, respectively. By doing so, MOVP-RNN can potentially leverage
correlations between the pickup and return temporal patterns. Our MOVP-RNN implementation uses the same number of
model parameters as our VP-RNN.

Table 1 shows the predictive performance of the implemented models based on three commonly-used measures: Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE) and the coefficient of determination (𝑅2). We now concentrate on the results
for the 60-min aggregation, as presented in Table 1, because they are representative also of the results for the other two temporal
aggregations. Unsurprisingly, results show how RNN-based approaches have a clear advantage when compared to the classical
benchmarks that are typically used in empirical bike-sharing literature.

Table 1 further highlights the contributions of each individual component of our proposed model. First, results show how the
MOVP-RNN is able to exploit its additional flexibility in modeling correlations between the pickup and return processes, obtaining
better performance compared to its single-output variant (VP-RNN) across all metrics. Secondly, by comparing between Gaussian
and Poisson-based approaches, results in Table 1 empirically highlight the importance of encoding within predictive models the right
9
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Fig. 3. A graphical representation of model prediction for 20 consecutive test days in station 504 of the Citi Bike system. The plot compares VP-RNN (blue,
dashed curve), P-RNN (orange, dotted curve) against true realizations of bike return counts (green, continuous curve). The blue shaded area represents the 95%
interval under the posterior predictive distribution over the return Poisson rate parameter. The plot shows how VP-RNN is able to obtain higher log-likelihood
values by averaging over multiple possible rates that could have generated the data. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Table 2
Average test log-likelihood across stations. For the non-deterministic
model (VP-RNN) the approximation of the marginal log-likelihood is
indicated with the ≈ sign.
Models Pickup Return

Poisson-RNN (P-RNN) 3666 4012
Variational Poisson-RNN (VP-RNN) ≈ 3896 4210

Moreover, Table 1 also highlights the gains in defining explicit latent variables over the rate parameter, thus allowing for a structured
treatment of uncertainty and ultimately leading to more accurate predictions.

To further illustrate the potential advantages of explicitly modeling the rate as a latent variable, in Table 2 we compare the VP-
RNN with its deterministic counterpart P-RNN. Specifically, results show the test log-likelihood averaged over all stations of interest
for the 60-min aggregation. We report exact log-likelihoods for P-RNN, while in the case of VP-RNN, we report the importance
sampling approximation to the marginal log-likelihood using 30 samples, as in Rezende et al. (2014). For both pickup and return
processes, we see how the combination of RNNs with latent variable models allows the VP-RNN to better estimate the demand
process, obtaining higher log-likelihood values on held-out data.

Crucially, by explicitly allowing for the presence of latent variables, the VP-RNN is able to express its uncertainty over the rate
parameter of the demand Poisson process by computing a full posterior distribution. As qualitatively highlighted in Fig. 3, the
VP-RNN predicts a full distribution over future demand rates possibly generating the observed data, whereas, by construction, the
P-RNN only defines a point estimate for future rates.

4.2. Prescriptive results

In this section, we focus on evaluating the inventory performance of different predictive models. Specifically, we count the
number of shortages (of pickups and returns) during the next day based on actual demand data (i.e., the sequence consists of actual
pickup and return events), assuming the initial bike inventory level prescribed by the UDF (see Section 3.1) obtained using the
computed pickup and return forecasts.

We compare our solutions to a model which receives perfect information about future demand patterns. Specifically, we use
the UDF with perfect information about future rates 𝜇̂𝑡, 𝜆̂𝑡. Therefore, this approach serves as an oracle that provides prescriptive
performance in the limit of perfect forecasting accuracy for any algorithm within the same inventory decision model.

We present two performance indicators: (i) Cost : the average total penalty per day due to the unsatisfied customers for pickups
and returns. Formally:

Cost = 𝑙𝑝 × number of failed pickups + 𝑙𝑟 × number of failed returns

Initially, we set the unit penalty for each lost pickup and lost return to one (𝑙𝑝 = 𝑙𝑟 = 1). Later we test the inventory performance
with different parameter settings in Section 4.4. (ii) Relative percentage difference (RPD) from oracle performance. Formally:

RPD =
𝑐𝑖 − 𝑐𝑜𝑟𝑎𝑐𝑙𝑒
𝑐𝑜𝑟𝑎𝑐𝑙𝑒

,

where 𝑐𝑜𝑟𝑎𝑐𝑙𝑒, 𝑐𝑖 represent the costs obtained respectively by the oracle model and model 𝑖 ∈ {HA, MA, LR, G-RNN, P-RNN, VP-RNN,
MOVP-RNN}. Results in Table 3 show that the forecasts generated by VP-RNN lead to the best decisions. Specifically, inventory
decisions based on VP-RNN predictions are able to decrease costs at least 40% closer to oracle performance when compared to
10
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Table 3
Test prescriptive performance for inventory management tasks averaged over all stations of interest.
Aggregation Measure HA MA LR G-RNN P-RNN VP-RNN MOVP-RNN Oracle

60 min Cost 10.14 10.01 10.88 11.93 9.95 9.37 10.21 8.18
RPD 24.1% 22.5% 33.1% 45.9% 21.7% 14.6% 24.9% –

30 min Cost 10.13 10.01 10.88 9.52 9.56 8.91 10.25 8.18
RPD 23.9% 22.4% 33.1% 16.4% 16.8% 8.9% 25.3% –

15 min Cost 10.13 10.00 10.88 9.38 9.17 8.76 10.20 8.19
RPD 23.7% 22.1% 32.8% 14.6% 11.9% 7.0% 24.5% –

Table 4
Performance statistics for the predictions shown in Fig. 4. Results compare VP-RNN and MOVP-RNN on both prediction and
decision performance.

Prediction Decision

Pickup Return Inventory Cost

RMSE MAE 𝑅2 RMSE MAE 𝑅2

VP-RNN 5.35 3.53 0.76 6.02 3.92 0.69 11 13.72
MOVP-RNN 3.04 2.09 0.92 4.94 3.43 0.79 32 29.49

Fig. 4. A graphical representation of pickup (left) and return (right) predictions for one test day in station 3641 of the Citi Bike system. The plot shows how
the two models reach different types of over/under-estimation patterns, where the arrows highlight the different biases during key moments of the day (e.g. the
afternoon demand peak).

traditional HA, MA and LR performance and at least 10% when compared to VP-RNN’s deterministic counterpart P-RNN. Results
also highlight how predictive models which assume Poisson distributed demand (especially P-RNN and VP-RNN) benefit significantly
from using smaller temporal discretizations. This is in line with the finding of Raviv and Kolka (2013) that finer time discretizations
yield a better fit of the non-homogeneous Poisson process to the pickup and return time series. Contrarily, classical models that do
not use the Poisson property do not show a significant improvement when time intervals are chosen smaller.

Notably, our evaluation highlights a fundamental misalignment between prediction and decision performance.
Table 1 shows that MOVP-RNN obtains the best prediction performance across all stations and test days, and using either RMSE,

MAE, or 𝑅2. However, when evaluated in the context of decision performance, the predictions of MOVP-RNN lead to costs close to
those achieved by HA, MA and LR.

Fig. 4 and Table 4 show a representative example where this misalignment is particularly evident. Fig. 4 compares pickup and
return predictions belonging to VP-RNN and MOVP-RNN against real pickup and return observations on a single held-out test day,
and Table 4 presents both prediction and decision performance for the same day. In Fig. 4, we can observe how the two models
have different error patterns, with the VP-RNN underestimating pickups and returns in a similar way, opposed to the MOVP-RNN
which is approximately unbiased for the pickups but underestimates the return process. From a purely predictive point of view, it
is clear that MOVP-RNN represents a better model (Table 4). However, once the generated predictions are used in the UDF, the
relative performance between the two models is reversed.

The reason behind this misalignment lies in the nature of the decision-making problem at hand. Specifically, when considering
the task of selecting the best starting inventory, the optimal decision is fundamentally influenced by the cumulative difference
between pickups and returns, rather than only their separate evolution over the day. For example, in Fig. 4, by underestimating
only the return rate, MOVP-RNN wrongly predicts a higher cumulative net demand (i.e., it predicts the correct number of pickups,
but a lower number of returns), ultimately selecting higher starting inventories, and in practice leading to higher overall costs. On
the other hand, by having similar biases between pickup and return predictions, the VP-RNN will have a better estimate of the
optimal starting inventory level, thus describing a situation where prediction errors in the same direction might (partially) cancel
out when evaluated on decision performance.
11
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Fig. 5. Graphical representation of hourly pickup rates 𝜇𝑡 and return rates 𝜆𝑡 for one test day of station 168 of the Citi Bike system, on which we base our
synthetic experiment.

Crucially, current research fails to acknowledge these interactions between prediction and decision-making tasks, and rather
focuses on either prediction or decision performance in isolation. Motivated by this, we argue that having a deep understanding of
how properties of the predictions can effect downstream decision-making processes is of fundamental importance. Therefore, we
further explore this phenomenon in the remainder of this section.

4.3. Qualitative analysis on the prediction–decision misalignment

To analyze the reason for the misalignment between predictive and prescriptive performance, we design a synthetic experiment.
The goal of the experiment is to show how the bias of the prediction affects inventory decision making. We consider two types of
bias: the same-side bias, i.e. when pickups and returns are both either over-estimated or under-estimated, and the opposite-side bias,
i.e. when pickup and return estimates are biased in opposite directions. In what follows, we examine the impact of these different
biasing patterns on the inventory decisions computed according to the model presented in Section 3.1.

For exposition purposes, we select the demand pattern observed in station 168 on November 13, 2018. We choose a 60-min
aggregation time interval, and assume that we have perfect information about pickup and return patterns for that day. The observed
counts of pickup and return arrivals within each hour 𝑡 are regarded as pickup rate 𝜇𝑡 and return rate 𝜆𝑡, respectively. Fig. 5 shows
the demand pattern of the selected instance, represented as pickup rate 𝜇𝑡 and return rate 𝜆𝑡, 𝑡 ∈ [0, 23]. Given the information about
the true count demand rates, the oracle starting inventory is then calculated according to (1)–(2).

To assess the impact of different bias patterns, we select bias levels 𝛿 in the interval [0, 25] in increments of 0.5. For each 𝛿 and
each 𝑡, we generate the same-side biased pickup rate 𝜇𝑡 = 𝜇𝑡 + 𝛿 and return rate 𝜆𝑡 = 𝜆𝑡 + 𝛿. On the other hand, for the opposite-side
bias, the pickup rate is over-estimated while the return rate is under-estimated by 𝛿, or vise versa. Specifically, the first opposite-
side biased pickup rate and return rate are calculated as 𝜇̂𝑡 = 𝜇𝑡 + 𝛿 and 𝜆̂𝑡 = max(𝜆𝑡 − 𝛿, 0). Note that in the case of downward
biases, we truncate the resulting prediction at 0 to retain feasible estimates for the rates. Positive estimates are typically guaranteed
by any prediction method. The second opposite-side biased pickup rate and return rate are calculated as 𝜇̂𝑡 = max(𝜇𝑡 − 𝛿, 0) and
𝜆̂𝑡 = 𝜆𝑡 + 𝛿, respectively. Finally, we calculate inventory decisions for all biased demand rates according to (1)–(2). Fig. 6 illustrates
the relationship between inventory decisions and bias level 𝛿, and the performance of decisions under bias level 𝛿.

In Fig. 6, the inventory decision gradually deviates from the oracle decision as 𝛿 increases. Under the opposite-side bias 2, where
pickup rates are under-estimated and return rates are over-estimated, the inventory decision quickly converges to the lower bound
0. Under the opposite-side bias 1, where pickups are over-estimated and returns are under-estimated, the inventory decision deviates
rapidly towards the upper bound of station capacity. On the other hand, the inventory decision computed under the same-side bias is
always very close to the oracle decision, even if the bias level 𝛿 is very large. Plot (b) shows that the resulting cost for any same-side
bias smaller than 22 is 0, indicating that there are still no dissatisfied customers, despite the slightly different decision. Also for larger
biases the cost only increases to 1. Contrarily, a small over-estimation of 2 units of pickups together with under-estimated returns
already leads to 30 dissatisfied customers, a cost that is not caused by any same-side bias level in our experiment. Concluding,
pickup and return rates with a very large bias on the same side still yield much better inventory decisions than those with a small
bias on opposite sides.

4.4. Cumulative Error metric

The qualitative analysis highlights that improved forecasting accuracy on pickup and return rates individually, does not
necessarily lead to better inventory decisions. Specifically, the inventory decision model is based on a complex function of all
pickup and return rates during the day and the difference between them, which creates a misalignment between prediction and
decision objectives. To deal with this misalignment, we introduce a new metric to measure forecast quality, the Cumulative Error
(CE) of net demand during a day. We formally define CE as follows:

CE =
|

|

|

|

𝑇
∑

[(𝜇𝑡 − 𝜆𝑡) − (𝜇𝑡 − 𝜆𝑡)]
|

|

|

|

(15)
12

|

|

𝑡=0 |

|
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Fig. 6. Impact of different bias patterns on inventory decisions as a function of bias level 𝛿. Plot (a) compares inventory decisions under bias predictions against
the oracle inventory decision (red dot) under predictions with perfect information (𝛿 = 0). To get the same deviation from the oracle inventory decision, the
same-side bias can sustain a 95% increase in forecasting error compared with the opposite-side bias. Plot (b) evaluates the performance of the decisions using
the cost of lost sales.

Table 5
Average CE over all test days and all 30 stations.
Aggregation HA MA LR G-RNN P-RNN VP-RNN MOVP-RNN

60 min 12.01 11.54 12.23 24.25 15.10 11.50 12.82
30 min 11.93 11.54 12.23 14.59 11.89 7.29 11.72
15 min 11.93 11.54 12.23 11.63 11.16 6.19 10.95

In (15), 𝜇𝑡 − 𝜆𝑡 represents the difference between the true pickup and return rates (i.e., the actual mean of net demand) within
time interval 𝑡, while 𝜇𝑡 − 𝜆𝑡 represents the difference between the predicted pickup and return rates (i.e., predicted net demand)
within time interval 𝑡.

Table 5 shows the average CE over all test days and stations. When evaluated on CE, VP-RNN clearly outperforms all the other
models, which is consistent with the prescriptive performance shown in Table 3. Even though its predictions of pickup and return
rates are separately not the most accurate, VP-RNN still makes the best prescriptive decision. This finding indicates that, compared
with the traditional measures like MAE, RMSE and 𝑅2, CE yields a measure of prediction quality that is better aligned with the
eventual decision performance. In the remainder of this section, we analyze the effectiveness of CE as a measure of predictive bias,
its correlation to prescriptive performance, and its sensitivity to problem parameters.

4.4.1. CE to quantify the effect of prediction bias
Given the newly introduced CE metric, we further quantify the intuitions built in Section 4.2 (Fig. 4) on an aggregated station

and system level, opposed to a single representative example. Specifically, we use the definition of CE to quantify prediction bias. In
order to have a valid comparison of bias values across different days and stations (possibly characterized by varying magnitudes),

Fig. 7. Test percentage daily bias of MOVP-RNN and VP-RNN for Station 3641.
13
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Table 6
Pearson correlation coefficients between the Cost and different measures
of predictions. The results are averaged over all stations of interest.
Measures 60 min 30 min 15 min

CE 0.51 0.62 0.70

Pickup
MAE 0.21 0.20 0.18
RMSE 0.37 0.38 0.38
R2 0.08 0.12 0.21

Return
MAE 0.22 0.22 0.19
RMSE 0.42 0.44 0.43
R2 0.15 0.21 0.31

Fig. 8. Scatter plots showing the correlation between CE and cost under the 60- (left), 30- (middle), and 15-min (right) aggregations. The Pearson correlation
coefficients are 0.51, 0.62 and 0.70 for the 60-, 30- and 15-min aggregations, respectively.

we normalize CE by the total number of daily pickups, as follows:
|

|

|

∑𝑇
𝑡=0[(𝜇𝑡 − 𝜆𝑡) − (𝜇𝑡 − 𝜆𝑡)]

|

|

|

∑𝑇
𝑡=0 𝜇𝑡

.

In Fig. 7, we report the boxplot of the resulting percentage bias computed for the entire test set on Station 3641 (the same used for
the representative example).

Results highlight a clear tendency of the VP-RNN to be more concentrated towards smaller bias numbers, confirming the intuition
of Fig. 4 over the entire test set for this station. Appendix B extends these results to all stations under study.

4.4.2. Correlation between CE and prescriptive performance
In this section, we test the relationship between CE-performance and the costs of the decisions for all prediction models and

stations. In Fig. 8, the three scatter plots correspond to the 60-, 30- and 15-min aggregations, respectively. The Pearson correlation
coefficients are all above 0.5, which indicates a notable positive correlation between CE and cost. As the aggregation time shortens,
results highlight how the correlation between CE and cost becomes stronger.

For comparison, we calculate the Pearson correlation coefficients between Cost and different measures of predictions, including
MAE, RMSE, and 𝑅2. The results in Table 6 show that under all problem settings, CE has stronger correlations with Cost than the
other measures. This indicates its superior prediction quality regarding the decision performance.

4.4.3. Sensitivity of CE to hyper-parameters
The unit penalties for each lost pickup and lost return – in particular their ratio 𝑙𝑝∕𝑙𝑟 – are important inputs for the UDF inventory

model. On the other hand, the CE measure does not use these parameters. Therefore, we test its robustness against different settings
of the ratio. So far, we assumed that 𝑙𝑝 = 𝑙𝑟 = 1. Here we consider two different settings of 𝑙𝑝∕𝑙𝑟: 1.5∕0.5 and 0.5∕1.5. These different
parameter settings are fed as input to the UDF model in order to obtain different inventory decisions under the 15-min aggregation.
Table 7 shows the average decision performance over all the 30 stations under different parameter settings.

Table 7 shows that the change in the values of these parameters does not change the optimal solution, but only scales its
value. A higher ratio of 𝑙𝑝∕𝑙𝑟 leads to overall smaller costs compared with the lower ratio of 𝑙𝑝∕𝑙𝑟. However, the comparison results
between different models remain in the same order. Particularly, VP-RNN, which attains the lowest value of the CE measure (see
Table 5), remains the best-performing method. Thus, although the CE measure does not depend on the hyper-parameters, its selected
method performs best also under variations of these hyper-parameters. This indicates a certain robustness of CE to variations of the
hyper-parameters in selecting the best-performing method.
14
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Table 7
Test decision performance under different hyper-parameters. 𝑙𝑝 and 𝑙𝑟 denote the unit cost of unsatisfied pickup and return, respectively. The
results are averaged over all stations of interest.
Parameters Measure HA MA LR G-RNN P-RNN VP-RNN MOVP-RNN Oracle

𝑙𝑝 = 1.5, 𝑙𝑟 = 0.5
Cost 9.17 9.06 9.86 8.46 8.35 8.04 9.12 7.56
RPD 21.3% 19.9% 30.4% 11.9% 10.4% 6.4% 20.7% –

𝑙𝑝 = 0.5, 𝑙𝑟 = 1.5
Cost 10.43 10.31 10.92 9.86 9.62 9.41 10.43 8.95
RPD 16.4% 15.1% 21.9% 10.2% 7.5% 5.0% 16.4% –

5. Conclusion

Taking effective operational-level decisions in real-world bike-sharing systems unavoidably entails a combination of demand
orecasting and inventory decision-making. Whereas both have separately received considerable attention, their interface has been
eft largely unaddressed. Bike pickups and returns jointly determine the inventory dynamics of a bike-sharing station. Therefore, a
lassical forecast accuracy evaluation of both streams separately is not perfectly indicative for the quality of the resulting inventory
ecision. This paper illuminates this mismatch by considering a UDF to determine daily starting inventory levels in combination
ith various forecasting methods for the pickup and return rates. Among these are variations of a novel, deep generative model

hat represents pickup and return rates as latent variables, as well as several classical and learning-based benchmarks.
We show that the proposed method outperforms the benchmarks in terms of both forecast accuracy and the service quality of the

esulting inventory decisions. Explicitly using a Poisson likelihood at prediction time and modeling the pickup and return rates as
atent variables yields a better distributional fit and higher forecast accuracy on the 2018 Citi Bike dataset than classical methods,
s evaluated using RMSE, MAE, and 𝑅2. However, whereas these three measures agree on the model variant with the highest
rediction accuracy (the MOVP-RNN), another variant of our approach (the VP-RNN) gives the best inventory decisions in terms of
ustomer service quality. Classical measures of forecast accuracy, when used separately on pickup and return predictions, are not
ully indicative of prescriptive (decision) accuracy. Our experiments show that conforming signs of the errors in pickups and returns
uring the day can to a large extent cancel out the consequences of their magnitudes. Therefore, we propose a different accuracy
easure, the Cumulative Error of net demand, and show that the ranking of forecasting methods based on this measure is in line
ith their ranking based on inventory performance. We furthermore show – in line with theoretical literature on non-homogeneous
oisson models for user dissatisfaction – that our approach can additionally benefit from narrowing down the prediction interval to
0 or 15 min, whereas classical benchmarks cannot.

In the context of bike-sharing, this paper builds an intuition for what predictive properties are relevant for taking effective
nventory decisions. We highlight that (1) using simple averages, or even a linear regression, to estimate pickup and return rates
eads to poor empirical decision performance, (2) learning-based approaches that exploit the Poisson likelihood in combination with
latent variable model for the rates lead to better decisions, but (3) it is crucial that predictive accuracy is measured in a way that

ligns with the eventual inventory decision. That is, the joint effect of pickups and returns, their forecasts and biases should be taken
nto account. This paper proposes an accuracy measure that accomplishes this in the often-encountered case of static rebalancing.

Future research should proceed on the interface of demand prediction and decision making for shared mobility. In the context of
tation-based bike-sharing, directly embedding decision-performance incentives within deep learning architectures would enable
nd-to-end learning of ‘‘decision-aware predictors’’. Integrating forecasting and decision-making further by means of imitation
earning or data-driven optimization provides a different approach. Applying the proposed accuracy measure to other objectives,
uch as dynamic rebalancing, may lead to new insights in the forecasting methods’ performances. In this paper, we took the daily
tarting inventory levels of individual stations as decisions to directly link station-level forecasting accuracy to decision performance.

natural extension is to consider joint, system-wide forecasting and rebalancing. This yields additional opportunities, such as that
f exploiting spatial dependencies in demand patterns. Efficiently exploiting decision performance in system-level forecasting of
emand patterns, auto- and cross-sectional correlations, remains an open challenge. Possible extensions to free-floating or hybrid
ystems would open a plethora of new application areas, such as cars, scooters, and urban air mobility.
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Appendix A. Elbo derivation of (13)

We hereby report the derivation of the evidence lower bound used for inference in the VP-RNN:

log 𝑝𝜃(𝐱1∶𝑇 ) = log∫ 𝑝𝜃(x1∶𝑇 ,𝝀1∶𝑇 ,h1∶𝑇 )d𝜆 dh

= log∫
𝑞𝜙(𝝀1∶𝑇 | x1∶𝑇 )
𝑞𝜙(𝝀1∶𝑇 | x1∶𝑇 )

𝑝𝜃(x1∶𝑇 ,𝝀1∶𝑇 ,h
𝑝
1∶𝑇 )d𝜆 dh

= logE𝑞𝜙(𝝀1∶𝑇 | x1∶𝑇 )

[ 𝑇
∏

𝑡=1

𝑝𝜃(x𝑡 |𝝀𝑡)𝑝𝜃(𝝀𝑡 |h
𝑝
𝑡 )𝑝𝜃(h

𝑝
𝑡 |h

𝑝
𝑡−1,𝐮𝑡)

𝑞𝜙(𝝀𝑡 |h
𝑞
𝑡 , x𝑡,u𝑡)

]

≥ E𝑞𝜙(𝝀1∶𝑇 | x1∶𝑇 )

[ 𝑇
∑

𝑡=1
log 𝑝𝜃(x𝑡 |𝝀𝑡) + log 𝑝𝜃(h

𝑝
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𝑝
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= E𝑞𝜙(𝝀1∶𝑇 | x1∶𝑇 )

[ 𝑇
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𝑡=1
log 𝑝𝜃(x𝑡 |𝝀𝑡) + log 𝑝𝜃(h

𝑝
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−
𝑇
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𝑞
𝑡 , x𝑡,u𝑡) ∣∣ 𝑝𝜃(𝝀𝑡 |h

𝑝
𝑡 )
)

Appendix B. System-level bias performance

This appendix extends the analysis of Fig. 4 to all stations in our dataset. Specifically, each plot represents the boxplot of the CE
obtained over all days in the test set, for every station in the system. As for the individual case of Station 3641, results show that

Fig. B.9. Test percentage daily bias of MOVP-RNN and VP-RNN for all stations.
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VP-RNN is clearly characterized by a smaller bias in the estimate of the pickup and return process when compared to MOVP-RNN in
more than 75% of the stations considered. Because of this, results in Fig. B.9 strongly support our claim that bias on the cumulative
difference of pickup and return demand is highly correlated with downstream decision performance.
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