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a b s t r a c t

In this paper, we develop a compositional scheme for the construction of continu-
ous abstractions for networks of infinitely many discrete-time switched systems. In
particular, the constructed abstractions are themselves also continuous-space systems
with potentially lower dimensions, which can be used as replacements of the original
(also known as concrete) systems in the controller design process. Having designed a
controller for the abstract system, it is refined to a more detailed one for the concrete
system. We use the notion of so-called simulation functions to quantify the mismatch
between the original system and its approximation. Each subsystem in the concrete
network and its corresponding one in the abstract network are related through a
notion of local simulation functions. We show that if the local simulation functions
satisfy a spectral small-gain condition, then the aggregation of the individual simulation
functions provides an overall simulation function quantifying the error between the
overall abstract network and the concrete one. In addition, we show that our method-
ology results in a scale-free compositional approach for any finite-but-arbitrarily large
networks obtained from truncation of an infinite network. We provide a systematic
approach to construct local abstractions and simulation functions for networks of linear
switched systems. In this case, the conditions are expressed in terms of linear matrix
inequalities that can be efficiently computed. We illustrate the effectiveness of our
approach through an application to AC islanded microgrids.
© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Recent technological advances in sensing, computation, and data management have enabled us to develop smart
etworked systems providing more autonomy and flexibility. Smart grids, swarm robotics, connected automated vehicles
nd smart manufacturing are just a few examples of such emerging smart networked systems, in which a large number of
ispersed agents interact and communicate with each other to achieve a common objective. The size and the structure of
uch networks can be arbitrarily large, time-varying or even unknown, and agents can be constantly plugged into and out
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from the network. Emerging control networks necessitate also sophisticated control objectives, which go beyond standard
oals pursued in classical control theory. For instance, a sophisticated objective is to control connected autonomous
ehicles merging at a traffic intersection while ensuring safety and fuel economy constraints.
The complexity of control objectives, the large number of participating agents, as well as safety concerns call for

utomated and provably correct techniques to verify or synthesize controllers for the emerging applications of control
ystems. A promising methodology to address the above issues is achieved by a careful integration of concepts from control
heory (e.g. Lyapunov methods and small-gain theory) and those of computer science (e.g. formal methods and assume-
uarantee rules) [1,2]. Discrete abstractions (a.k.a. symbolic models) is one particular technique to provide automated
ynthesis of correct-by-design controllers for concrete systems. In this approach, controller synthesis problems can be
lgorithmically solved over finite abstractions of concrete systems by resorting to automata-theoretic approaches [3].
hen, the constructed controllers can be refined back to the original systems based on some behavioral relations between
riginal systems and their finite abstractions such as approximate alternating simulation relations [4] or feedback
efinement relations [5].

The computational complexity of constructing finite abstractions of the concrete systems makes the practical applica-
ility of these methods considerably challenging. Hence, applying such approaches to large-scale systems is not feasible
t all. An appropriate technique to overcome this challenge is to introduce a pre-processing step by constructing so-called
ontinuous abstractions. In that way, a continuous-space system, but possibly with a lower dimension, is obtained as a
substitute of the concrete system [6–9]. We note that the applicability of continuous abstractions is not limited to the
ontext of symbolic controllers. In fact, they can be used in other hierarchical control approaches in the lower layers,
here a simplified model of the system is used for controller design purposes.
For large-scale networks, it is often more useful to maintain the structure (i.e. topology) of the network while

bstractions are constructed. In that way, corresponding to each participating subsystem of the network, a continuous
bstraction is constructed individually. Therefore, the complexity of synthesizing continuous abstractions of large-scale
ystems is managed in an efficient way. The methodology by which an abstraction for the overall network is achieved via
he interconnection of the individual abstractions is called a compositional approach [10–12]. In order to guarantee that
he aggregation of the individual abstractions provides an abstraction for the overall network, the interaction between
ubsystems should be weak enough, which can be technically described by a small-gain condition [10–15].
Small-gain type conditions are intrinsically dependent on the size of the network. Hence, one can show that the

atisfaction of compositionality conditions dramatically degrades as the number of subsystems increases and may not be
alid anymore, see [11, Remark 6.1]. Inspired by recent advances in the literature on the stability analysis of dynamical
etworks, e.g. [16–21], we address the scalability issue using an over-approximation of a finite-but-large network with a
etwork composed of infinitely many subsystems. We call such an aggregated system an infinite network. This treatment
eads to an infinite-dimensional system and calls for a more rigorous and detailed setting. It is widely accepted that an
nfinite network captures the essence of its corresponding finite network; see e.g. a vehicle platooning application in [22].

We adapt the notion of simulation functions [6] to the case of infinite-dimensional switched systems. The existence
f a simulation function ensures that the error between the output trajectory of the abstract system and that of the
oncrete system is bounded in a certain sense (cf. Definition 3). By exploiting a compositionality approach, we assign an
ndividual simulation function to each subsystem and construct the corresponding local abstraction accordingly. Then we
ggregate them to construct an abstraction for the overall network. We show that if a certain small-gain condition, recently
eveloped in [17], is satisfied, then the aggregation yields a continuous abstraction for the overall concrete network.
articularly, for linear networks, our conditions are expressed in terms of linear matrix inequalities, where we explicitly
onstruct the individual abstractions as well as the controller refinement formulation.
Motivated by the scale-dependency issue in the classic compositionality methods, in this paper, a scale-free com-

ositional approach for the construction of continuous abstractions for arbitrarily large-scale networks of discrete-time
witched systems is provided. We elucidate the scale-free property of our approach by truncating the infinite network to a
inite-but-arbitrary large network and show that the compositional abstraction results are preserved under any truncation.
o the best of our knowledge, our work is the first one providing a scale-free compositional approach for construction of
ontinuous abstractions. In addition to the scalability issue, in a large number of applications, the structure of the network
s time-varying in the sense that the communication links between subsystems change over time. In power networks, for
nstance, there exist line switches and the agents are constantly plugged into and out. This calls for considering switched
ynamics describing the time dependency of the network structure. Our setting, therefore, considers an infinite network
f switched systems. To validate the effectiveness of our approach, we apply our results to AC microgrids operating in an
slanded mode. In particular, we show through simulations that the behavior of the network remains independent of the
ize of the network, while the network size dramatically increases.
This paper expands on the conference paper [23], where uniformity conditions with respect to the switching modes

ere made. The present work provides a completely non-uniform structure for the simulation functions with respect
o the switching signals in the network. Moreover, the scale-free property of the result is established, which leads to
onstructing compositional abstractions for any finite-but-arbitrarily large network. Therefore, the current setting allows
s to consider more general and realistic scenarios, including the new AC microgrid case study.
The rest of the paper is organized as follows. Section 2 provides the system description. In Section 3, we first introduce

he notion of simulation functions for switched systems, and then show the importance of the existence of such functions
2
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in the construction of abstractions. Section 4 contains the main result of the paper, that is the compositional construction
of continuous abstractions via small-gain theory. In Section 5, we focus on linear systems and provide easier-to-check
conditions for the construction of continuous abstractions. In Section 6, we apply our results to a network of AC islanded
microgrids.

2. Preliminaries and system description

2.1. Notation

We write N0(N) for the set of nonnegative (positive) integers. For vector norms on finite-dimensional vector spaces, we
write | · |. By ℓp, p ∈ [1,∞), we denote the Banach space of all real sequences x = (xi)i∈N with finite ℓp-norm |x|p < ∞,
where |x|p = (

∑
∞

i=1 |xi|p)1/p for p < ∞. If X is a Banach space, we write r(T ) for the spectral radius of a bounded linear
perator T : X → X . The identity function is denoted by id. Throughout this work, we will consider K and K∞ comparison
unctions; see [24, Chapter 4.4] for definitions.

We consider discrete-time switched subsystems Σi, defined below. The arbitrary switching signals are defined as
i : N0 → Si for each subsystem Σi, i ∈ N, and Si = {1, 2, . . . , ri} is a finite index set with ri ∈ N. The set of such
witching signals are denoted by Si.

.2. Infinite networks

First, we define discrete-time switched subsystems which are interconnected to form an infinite network consisting
f countably infinite number of control subsystems.

efinition 1. A discrete-time switched system Σi, i ∈ N, is defined by the tuple

Σi = (Xi,Wi,Ui,Ui,Yi, hi,si , fi,si , Si), (1)

where Xi ⊆ Rni , Wi ⊆ RNi , Ui ⊆ Rmi , and Yi ⊆ Rqi are the state set, internal input set, external input set, and output set,
respectively. Moreover, Ni :=

∑
j nj, where j corresponds to subsystems Σj influencing Σi. We use symbol Ui to denote

the set of functions ui : N0 → Ui. Functions fi,si : Xi × Wi × Ui → Xi are the transition functions for si ∈ Si. Moreover,
hi,si : Xi → Yi are the output maps.

The discrete-time switched subsystems Σi, i ∈ N, are represented by the difference equation of the form

Σi :

{
xi(k + 1) = fi,σi(k)(xi(k),wi(k),ui(k)),
yi(k) = hi,σi(k)(xi(k)),

(2)

where xi : N0 → Xi, wi : N0 → Wi, ui : N0 → Ui, and yi : N0 → Yi are the state signal, internal input signal, external
input signal, and output signal, respectively.

The finite set I ini,σi(k) ⊂ N\{i} collects mode-dependent in-neighbors of Σi, i.e. systems Σj, j ∈ I ini,σi(k), directly influencing
Σi. On the other hand, the finite set Iouti,σi(k)

⊂ N, collects mode-dependent out-neighbors of Σi, i.e. Σj, j ∈ Iouti,σi(k)
, influenced

by Σi. Note that we assume i /∈ I ini,σi(k) ∪ Iouti,σi(k)
, ∀i ∈ N. The input–output structure of each subsystem Σi, i ∈ N, is given by

wi(k) =
(
wij(k)

)
j∈I ini,σi(k)

∈ Wi :=

∏
j∈(I ini,σi(k)

)

Wij, (3a)

yi(k) =
(
yij(k)

)
j∈(i∪Iouti,σi(k)

) ∈ Yi :=

∏
j∈(i∪Iouti,σi(k)

)

Yij, (3b)

hi,σi(k)(xi(k)) =
(
hij,σi(k)(xi(k))

)
j∈(i∪Iouti,σi(k)

) , (3c)

wherewi(k) ∈ Wi ⊆ RNi , Ni :=
∑

j∈I ini,σi(k)
nj, denotes the internal inputs describing the interconnections among subsystems.

The outputs yij(k), j ∈ Iouti,σi(k)
, are considered as internal outputs which are used to construct interconnections between

subsystems, whereas yii(k) ∈ Yii are denoted as external outputs. Note that wi(k) and yi(k) are partitioned into sub-vectors
and we interconnect all the subsystems Σi through the interconnection constraints given by wij(k) = yji(k) for all i ∈ N
and for all j ∈ I ini,σi(k).

To model the state (resp. input) space of the overall network, we introduce a Banach space of sequences x = (xi)i∈N
(resp. u = (ui)i∈N). The most natural choice is the ℓp-space, precisely, defined as follows: we first fix a norm on each
Xi ⊆ Rni (that might not only depend on the dimension ni but also on the index i). For brevity, we omit the index in our
notation and simply write | · | for each of these norms. Then, for every p ∈ [1,∞), we put

ℓp(N, (ni)) :=

{
x = (xi)i∈N : xi ∈ Xi,

∑
i∈N

|xi|p < ∞

}
,

∑ p 1/p
and equip this space with the norm |x|p := ( i∈N |xi| ) . Now, we provide a formal definition of the infinite network.

3



M. Sharifi, A. Swikir, N. Noroozi et al. Nonlinear Analysis: Hybrid Systems 44 (2022) 101173

d
c

a
t

F

c

P
d
γ

w

Definition 2. Consider subsystems Σi = (Xi,Wi,Ui,Ui,Yi, hi,si , fi,si , Si), i ∈ N, with the input–output structure as in (3).
A discrete-time infinite network Σ is defined by the tuple Σ = (X,U,U,Y, hs, fs, S), where X = ℓp(N, (ni)) ⊂

∏
i∈N Xi

with a fixed p ∈ [0,∞) and U = ℓq(N, (ni)) ⊂
∏

i∈N Ui with a fixed q ∈ [0,∞). The space of admissible external input
functions u is defined by U :=

{
u : N0 → U

}
. Moreover, hs(x) = (hii,si (xi))i∈N, s ∈ S, S =

∏
i∈N Si denotes the output

function, where hs : X → Y, Y ⊂
∏

i∈N Yii. In addition, we restrict fs(x, u) = (fi,si (xi, wi, ui))i∈N to fs : X × U → X.

In that way, the interconnection of subsystems Σi, i ∈ N, is described by

Σ :

{
x(k + 1) = fσ (k)(x(k),u(k)),
y(k) = hσ (k)(x(k)),

(4)

where x(k)=(xi(k))i∈N, u(k)=(ui(k))i∈N, y(k) = (yii(k))i∈N, σ (k)=(σi(k))i∈N, fσ (k)(x(k),u(k)) =
(
fi,σi(k)(xi(k),wi(k),ui(k))

)
i∈N,

and hσ (k)(x(k)) :=
(
hii,σi(k)(xi(k))

)
i∈N. We call the overall system (4) an infinite network and denote the corresponding

solutions (resp. output trajectory) by x(k, x, σ ,u) (resp. y(k, x, σ ,u)) for any k ∈ N0, any initial value x ∈ X, any switching
signal σ : N0 → S , S := {σ : N0 → S}, and any control input u ∈ U .

We refer to system (4) as the concrete system, which is often hard to control or analyze. To simplify the controller
design process, we, instead, use a simpler and less precise system called an abstract system.

3. Abstractions for discrete-time switched systems

In this section, we introduce a notion of simulation functions for discrete-time switched systems. A simulation function
quantifies a relation between the concrete system and its abstraction in the sense that the mismatch between their output
trajectories remains bounded (cf. Proposition 4). A simulation function is formally defined as follows.

Definition 3. Consider two systems Σ = (X,U,U,Y, hs, fs, S) and Σ̂ = (X̂, Û, Û, Ŷ, ĥs, f̂s, S) with the same output space
imensions. Let p, q ∈ [1,∞) be given. Let Vs : X × X̂ → R+, s ∈ S, be a family of functions. Assume that there exist
onstants α, b > 0 such that for all s ∈ S, all x ∈ X and all x̂ ∈ X̂,

α

⏐⏐⏐hs(x) − ĥs(x̂)
⏐⏐⏐b
p

≤ Vs(x, x̂), (5)

nd there exist a function ρext ∈ K and a constant 0 < λ < 1, such that for all s′, s ∈ S and all x ∈ X, x̂ ∈ X̂ and û ∈ Û,
here exists u ∈ U so that we have

Vs′ (fs(x, u), f̂s(x̂, û)) − Vs(x, x̂)
≤ −λVs(x, x̂) + ρext(|û|q).

(6)

unctions Vs satisfying (5) and (6) are called simulation functions from Σ̂ to Σ and Σ̂ is called an abstraction of Σ .

Now we show that the existence of a simulation function ensures that the output trajectories of the abstract and
oncrete systems remain within a bounded distance from each other.

roposition 4. Consider systems Σ = (X,U,U,Y, hs, fs, S) and Σ̂ = (X̂, Û, Û, Ŷ, ĥs, f̂s, S) with the same output space
imensions. Let a set of simulation functions Vs, s ∈ S, from Σ̂ to Σ and p, q ∈ [1,∞) be given. Then there exist a function
ext ∈ K and positive constants ϑ and β < 1, such that for any σ ∈ S , x ∈ X, x̂ ∈ X̂, û ∈ Û , k ∈ N0, there exists u ∈ U so that
e have⏐⏐y(k, x, σ ,u) − ŷ(k, x̂, σ , û)

⏐⏐
p

≤ ϑβk(Vσ (0)(x, x̂))
1
b + γext(|û|q,∞), (7)

where |û|q,∞ := supk∈N0
|û(k)|q and b as in (5).

Proof. Pick any x ∈ X, x̂ ∈ X̂, an input û ∈ Û , and σ ∈ S and let c := ρext(|û|q,∞) and z(k) := Vσ (k)(x(k, x, σ ,u)). Then,
from (6) we have

z(k + 1) − z(k)
= Vσ (k+1)(x(k + 1, x, σ ,u), x̂(k + 1, x̂, σ , û))
− Vσ (k)(x(k, x, σ ,u), x̂(k, x̂, σ , û))

= Vσ (k+1)(fσ (k)(x(k, x, σ ,u)), f̂σ (k)(x̂(k, x̂, σ , û)))
− Vσ (k)(x(k, x, σ ,u), x̂(k, x̂, σ , û))
≤ −λVσ (k)(x(k, x, σ ,u), x̂(k, x̂, σ , û)) + c = −λz(k) + c,
4
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for all k ∈ N0. By incorporating standard comparison arguments, one can obtain

z(k) ≤ (1 − λ)kz(0) +

k−1∑
i=0

(1 − λ)ic, (8)

for all k ∈ N0. In other words, we obtain

Vσ (k)(x(k, x, σ ,u), x̂(k, x̂, σ , û))

≤ (1 − λ)kVσ (0)(x, x̂) +

k−1∑
i=0

(1 − λ)iρext(|û|q,∞). (9)

It follows from (5) and (9) that

α
⏐⏐y(k, x, σ ,u) − ŷ(k, x̂, σ , û)

⏐⏐b
p

≤ (1 − λ)kVσ (0)(x, x̂) +

k−1∑
i=0

(1 − λ)iρext(|û|q,∞),

for all k ∈ N0. From a1 + a2 ≤ max{2a1, 2a2} with a1, a2 ≥ 0, we get⏐⏐y(k, x, σ ,u) − ŷ(k, x̂, σ , û)
⏐⏐
p

≤ ϑβk(Vσ (0)(x, x̂))
1
b + γext(|û|q,∞),

for all k ∈ N0, with ϑ = (2 1
α
)
1
b , β = (1 − λ)

1
b , γext(·) = (2

∑k−1
i=0 (1−λ)iρext(·)

α
)
1
b . This completes the proof. □

Remark 5. Suppose that we are given an interface function ν, which maps every x, x̂, û, and s to an input u = ν(x, x̂, û, s)
o that (6) is satisfied. Then, the input u that realizes (7) is readily given by u(k) = ν(x(k), x̂(k), û(k), σ (k)); see [25,
heorem 1].

Due to the size of the systems, a simulation function from Σ̂ to Σ is quite hard to be directly computed. To address
his complexity, we follow a compositional approach and define local simulation functions for each finite-dimensional
ubsystem (cf. Definition 6). This enables us to verify (5) and (6) in a bottom-up way. The next section develops this
trategy with the use of small-gain theory for infinite networks.

. Compositional construction of abstractions and simulation functions

In the following, we provide a method for compositional construction of simulation functions between the infinite net-
orksΣ and Σ̂ . We assume that each subsystemΣi = (Xi,Wi,Ui,Ui,Yi, hi,si , fi,si , Si) and Σ̂i = (X̂i, Ŵi, Ûi, Ûi, Ŷi, ĥi,si , f̂i,si ,

i) admits a local simulation function as defined below.

efinition 6. Consider subsystems Σi = (Xi,Wi,Ui,Ui,Yi, hi,si , fi,si , Si) and Σ̂i = (X̂i, Ŵi, Ûi, Ûi, Ŷi, ĥi,si , f̂i,si , Si), i ∈ N. Let
p, q ∈ [1,∞) be given. Assume that there exist functions Vi,si : Xi × X̂i → R+, si ∈ Si, satisfying the following properties

• There are constants αi > 0 so that for all xi ∈ Xi and all x̂i ∈ X̂i

αi

⏐⏐⏐hi,si (xi) − ĥi,si (x̂i)
⏐⏐⏐p ≤ Vi,si (xi, x̂i). (10)

• There are positive constants λi < 1, ρi,int, ρi,ext such that for all s′i, si ∈ Si, all xi ∈ Xi, all x̂i ∈ X̂i, all ûi ∈ Ûi, there
exists ui ∈ Ui so that the following holds for all wi ∈ Wi and all ŵi ∈ Ŵi

Vi,s′i

(
fi,si (xi, wi, ui), f̂i,si (x̂i, ŵi, ûi)

)
−Vi,si

(
xi, x̂i

)
≤ −λiVi,si (xi, x̂i)

+ρi,int
⏐⏐wi − ŵi

⏐⏐p + ρi,ext|ûi|
q
.

(11)

Then functions Vi,si are called local simulation functions from Σ̂i to Σi and Σ̂i are called abstractions of Σi for each
i ∈ N.

Remark 7. In view of inequality (11), we only consider linear external gains ρi,ext for each subsystemΣi, while Definition 3
allows for a nonlinear one (ρext ) for the infinite network Σ . This restriction is due to the choice of the input space of the
overall network as well as the use of a sum formulation of small-gain theorems. We construct the overall external gain
function ρext(|û|q) from a summation over all individual external gains ρi,ext|ûi|

q (see the chain of inequality (17) below).
In that way, the well-definedness of the resulting external gain function is guaranteed by the fact that û belongs to ℓq
5
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space. To show this, we assume that the external gain functions are linear. This condition clearly is not needed for finite
networks (e.g. those in [10]).

Assume that each Σi admits an abstraction Σ̂i, ∀i ∈ N, given as in Definition 6. We establish a compositional approach
for the construction of continuous abstractions of infinite networks (4) by aggregating individual continuous abstractions
Σ̂i. To do so, we need interaction between subsystems to be sufficiently weak, which is quantitatively described by a
small-gain condition, see Assumption 10 below.

To employ the small-gain theorem, the following conditions are required. The first one makes uniformity conditions
on the constants given by Definition 6.

Assumption 8. There are constants α, λ, ρext > 0 so that for all i ∈ N, we have α ≤ αi, λ ≤ λi, ρi,ext ≤ ρext.

We collect the coefficients from (10) and (11) to define

γij :=

{
ρi,intN̄i

1
αj
, j ∈ I ini,si ,

0, j /∈ I ini,si ,
(12)

where N̄i denotes the cardinality of the set I ini,si .
We additionally introduce the following matrices.

Λ := diag(λ1, λ2, λ3, . . .), Γ := (γij)i,j∈N. (13)

Now, we define the following matrix by which we express our small-gain condition

Ψ := Λ−1Γ := (ψij)i,j∈N, ψij = γij/λi. (14)

We also make an assumption on the boundedness of the operator Γ .

Assumption 9. The operator Γ = (γij)i,j∈N satisfies supj∈N
∑

∞

i=1 γij < ∞.

Note that Assumption 9 always holds if each subsystem is interconnected to finitely many subsystems and no global
communication is used.

The following spectral radius condition provides a quantitative bound on the strength of couplings between the
ubsystems. This is, in fact, the small-gain condition that is required to guarantee that the aggregation of Σ̂i gives a
ontinuous abstraction for network Σ .

ssumption 10. The spectral radius r(Ψ ) < 1.

The following theorem gives the main result of the paper, which is a compositional approach to construct the
abstractions of infinite interconnected switched control systems and their corresponding simulation functions.

Theorem 11. Consider infinite networks Σ = (X,U,U,Y, hs, fs, S) and Σ̂ = (X̂, Û, Û, Ŷ, ĥs, f̂s, S). Let p, q ∈ [1,∞) be
iven. Let local simulation functions Vi,si : Xi × X̂i → R+, si ∈ Si, satisfy Assumptions 8–10. Then there exists a vector
= (µi)i∈N ∈ ℓ∞ satisfying µ ≤ µi ≤ µ with constants µ,µ > 0 such that the following is satisfied

[µ⊤(−Λ+ Γ )]i
µi

≤ −λ∞, ∀i ∈ N, (15)

or a constant λ∞ ∈ (0, 1). Moreover, the following family of functions Vs : X × X̂ → R+, s ∈ S, with S =
∏

i∈N Si,

Vs(x, x̂) =

∞∑
i=1

µiVi,si (xi, x̂i), Vs : X × X̂ → R+, (16)

re simulation functions from Σ̂ to Σ with b = p, α = µα as in (5) and λ = λ∞ and ρext : t ↦→ µ ρexttq as in (6).

Proof. From [17, Lemma V.10], Assumption 10 (i.e. r(Ψ ) < 1) implies that there exists a vector µ = (µi)i∈N ∈ ℓ∞

atisfying µ ≤ µi ≤ µ such that (15) holds.
Now we show that V in (16) satisfies (5) with α = µα. For any s ∈ S, si ∈ Si, x ∈ X and x̂ ∈ X̂ and taking b = p, it

ollows from (10) and Assumption 8 that
∞∑
i=1

µiVi,si (xi, x̂i) ≥

∞∑
i=1

µiαi|hi,si (xi) − ĥi,si (x̂i)|
p

≥ µα

∞∑
i=1

|hii,si (xi) − ĥii,si (x̂i)|
p

ˆ
p

≥ µα|hs(x) − hs(x̂)|p.

6
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R
c
f

Next we show the inequality (6) holds as well. Considering (11) and (16), we obtain the chain of inequality in (17) for all
s′i, si ∈ Si, sj ∈ Sj, s′, s ∈ S, i ∈ N.

Vs′

(
fs(x, u), f̂s(x̂, û)

)
− Vs(x, x̂) =

∞∑
i=1

µi

[
Vi,s′i

(
fi,si (xi, wi, ui), f̂i,si (x̂i, ŵi, ûi)

)
− Vi,si (xi, x̂i)

]
≤

∞∑
i=1

µi(−λiVi,si (xi, x̂i) + ρi,int
⏐⏐wi − ŵi

⏐⏐p + ρi,ext|ûi|
q)

≤

∞∑
i=1

µi(−λiVi,si (xi, x̂i) +

∑
j∈I ini,si

ρi,intN̄i
⏐⏐wij − ŵij

⏐⏐p + ρi,ext|ûi|
q)

≤

∞∑
i=1

µi(−λiVi,si (xi, x̂i) +

∑
j∈I ini,si

ρi,intN̄i

⏐⏐⏐hj,sj (xj) − ĥj,sj (x̂j)
⏐⏐⏐p + ρi,ext|ûi|

q)

≤

∞∑
i=1

µi(−λiVi,si (xi, x̂i) +

∑
j∈I ini,si

ρi,intN̄i
1
αj

Vj,sj (xj, x̂j) + ρi,ext|ûi|
q)

(12)
≤

∞∑
i=1

µi

⎛⎜⎝−λiVi,si (xi, x̂i) +

∑
j∈I ini,si

γijVj,sj (xj, x̂j) + ρi,ext|ûi|
q

⎞⎟⎠ .

(17)

Letting Vsvec (x, x̂) :=
(
Vi,si (xi, x̂i)

)
i∈N and using (17) and (15), we have that

Vs′ (fs(x, u), f̂s(x̂, û)) − Vs(x, x̂)

≤

[
µ⊤(−Λ+ Γ )Vsvec (x, x̂) +

∞∑
i=1

µiρi,ext|ûi|
q
]

≤ −λ∞Vs(x, x̂) + ρext(|û|q),

where ρext(t) = µ ρexttq for all t ≥ 0. □

emark 12. The significance of Assumptions 8 and 9 in Theorem 11 has been discussed in [17]. Specifically, the small-gain
ondition r(Ψ ) < 1 is tight and cannot be relaxed. This condition, however, has to be checked globally. In view of Gelfand’s
ormula, the spectral small-gain condition is equivalent to the existence of k ∈ N such that ∥Ψ k

∥ < 1. For networks with
some special structure, e.g. (quasi) spatially invariant systems [17], one can easily check Assumption 10 with the use of
Gelfand’s formula. Thanks to the (quasi) periodicity in the network structure, the small-gain can be checked based on the
information of a finite number of subsystems; see Section 6 for more details.

Remark 13. Note that the computational complexity of constructing individual abstractions increases linearly with the
number of switching modes. Hence, our approach could become infeasible in the presence of infinitely many different
network topologies. Thus, we only allow finitely many switching modes for each subsystem in this work.

4.1. From infinite to finite networks

The main purpose of dealing with infinite networks is to develop scale-free tools for the analysis and design of finite,
but arbitrarily large networks. In this section we truncate the infinite network Σ and keep only the first n subsystems
of the network. Roughly speaking, we show that if conditions required by Theorem 11 hold, then for any truncation of
infinite network Σ and accordingly that of Σ̂ , the same conclusion as in Theorem 11 is obtained for truncated networks.

Consider the first n ∈ N subsystems of Σ and denote the truncated system by Σ ⟨n⟩
= (X⟨n⟩,Xl,U⟨n⟩,U ⟨n⟩,Y⟨n⟩, h⟨n⟩

s⟨n⟩ ,

f ⟨n⟩
s⟨n⟩ , S

⟨n⟩) whose dynamics is described by

Σ ⟨n⟩
:

{
x⟨n⟩(k + 1) =f ⟨n⟩

σ ⟨n⟩(k)(x
⟨n⟩(k), x̃(k),u⟨n⟩(k)),

y⟨n⟩(k) = h⟨n⟩
σ ⟨n⟩(k)(x

⟨n⟩(k)),
(18)

where x⟨n⟩(k)= (xi(k))1≤i≤n are elements of X⟨n⟩
⊆ RN , N :=

∑n
i=1 ni, u⟨n⟩(k)= (ui(k))1≤i≤n are elements of U⟨n⟩

⊆ RM

and M :=
∑n

i=1 mi. Moreover, we denote by I in
⟨n⟩

σ ⟨n⟩(k) =
⋃n

i=1 I
in
i,σi(k)

\ {1, . . . , n}, the finite set of neighbors of the first n
subsystems. Then, x̃(k) = (xj(k))j∈I in⟨n⟩

σ ⟨n⟩(k)

∈ Xl
⊆ RL, L :=

∑
j∈I in

⟨n⟩
σ ⟨n⟩(k)

nj, is considered as the additional input vector. Note

that we do not neglect subsystems Σ , i > n, instead we consider them as additional external inputs x̃(k) to the network
i

7



M. Sharifi, A. Swikir, N. Noroozi et al. Nonlinear Analysis: Hybrid Systems 44 (2022) 101173

u

5

s

a

A

Σ ⟨n⟩. Clearly, the case in which subsystems Σi, i > n, are entirely removed from the network is covered by our setting
by taking x̃ ≡ 0. We denote the set of input functions of the truncated network as U ⟨n⟩ and the output maps are viewed
as h⟨n⟩

s⟨n⟩ : X⟨n⟩
→ Y⟨n⟩ with S⟨n⟩

=
∏

1≤i≤n Si. Moreover, functions f ⟨n⟩
s⟨n⟩ : X⟨n⟩

× Xl
× U⟨n⟩

→ X⟨n⟩ are defined accordingly.
In the following, we construct the compositional construction of abstractions for the network Σ ⟨n⟩ under the

assumption of Theorem 11.

Theorem 14. Consider the truncated networks Σ ⟨n⟩
= (X⟨n⟩,Xl,U⟨n⟩,U ⟨n⟩,Y⟨n⟩, h⟨n⟩

s⟨n⟩ , f
⟨n⟩
s⟨n⟩ , S

⟨n⟩) and Σ̂ ⟨n⟩
= (X̂⟨n⟩, X̂l,

Û⟨n⟩, Û ⟨n⟩, Ŷ⟨n⟩, ĥ⟨n⟩
s⟨n⟩ , f̂

⟨n⟩
s⟨n⟩ , S

⟨n⟩). Let p, q ∈ [1,∞) be given. Consider local simulation functions Vi,si : Xi × X̂i → R+, si ∈ Si, and
suppose that Assumptions 8–10 hold. Assume that there exists a vector µ = (µi)i∈N ∈ ℓ∞, µ ≤ µi ≤ µ, with some constants
µ,µ > 0 satisfying (15). Then, the family of functions Vs⟨n⟩ : X⟨n⟩

× X̂⟨n⟩
→ R+, s⟨n⟩ ∈ S⟨n⟩, where

Vs⟨n⟩ (x
⟨n⟩, x̂⟨n⟩)=

n∑
i=1

µiVi,si (xi, x̂i),

are simulation functions from Σ̂ ⟨n⟩ to Σ ⟨n⟩ with b = p, α = µα as in (5) and satisfy the following

Vs⟨n⟩′ (f
⟨n⟩
s⟨n⟩ (x

⟨n⟩, x̃, u⟨n⟩), f̂ ⟨n⟩
s⟨n⟩ (x̂

⟨n⟩, ˆ̃x, û⟨n⟩))
−Vs⟨n⟩ (x⟨n⟩, x̂⟨n⟩)
≤ −λVs⟨n⟩ (x⟨n⟩, x̂⟨n⟩) + ρext(|û⟨n⟩

|q) + ρext(|ˆ̃x⟨n⟩
|q),

(19)

for all s⟨n⟩
′

, s⟨n⟩ ∈ S⟨n⟩, where λ = λ∞ and ρext : t ↦→ µ ρexttq.

Proof. By following similar arguments as in Theorem 11, one can obtain
n∑

i=1

µiVi,si (xi, x̂i) ≥

n∑
i=1

µiαi|hi,si (xi) − ĥi,si (x̂i)|
p

≥ µα

n∑
i=1

|hii,si (xi) − ĥii,si (x̂i)|
p

≥ µα|h⟨n⟩
s⟨n⟩ (x

⟨n⟩) − ĥ⟨n⟩
s⟨n⟩ (x̂

⟨n⟩)|
p

p
.

Moreover, by letting Vs⟨n⟩vec
(x⟨n⟩, x̂⟨n⟩) :=

(
Vi,si (xi, x̂i)

)
1≤i≤n, using the chain of inequalities in (17) for all s′i, si ∈ Si, sj ∈ Sj,

s⟨n⟩
′

, s⟨n⟩ ∈ S⟨n⟩, 1 ≤ i ≤ n, and (15), we have

Vs⟨n⟩′ (f
⟨n⟩
s⟨n⟩ (x

⟨n⟩, x̃, u⟨n⟩), f̂ ⟨n⟩
s⟨n⟩ (x̂

⟨n⟩, ˆ̃x, û⟨n⟩))

− Vs⟨n⟩ (x
⟨n⟩, x̂⟨n⟩) ≤{[

µ⊤(−Λ+ Γ )
]
1≤i≤n

Vs⟨n⟩vec
(x, x̂) +

n∑
i=1

µiρi,ext|ˆ̃xi|
q

+

n∑
i=1

µiρi,ext|ûi|
q
}

≤ −λ∞Vs⟨n⟩ (x
⟨n⟩, x̂⟨n⟩) + µ ρext|

ˆ̃x⟨n⟩
|
q
q

+ µ ρext|û
⟨n⟩

|
q
q. □

As can be seen from Theorem 14, the decay rate λ∞ as well as the gain function due to external input û are preserved
nder truncation. Thus, the indices of the proposed compositional method are independent of the network size.

. Construction of abstractions for linear systems

In this section, we explicitly construct local abstractions and corresponding simulation functions for linear switched
ubsystems.
We make the following assumption on the simulation functions, which is an incremental version of a similar

ssumption used to achieve the input-to-state stability of switched systems under constrained switching conditions [26].

ssumption 15. There exist uniformly bounded constants τi ≥ 1, i ∈ N, such that for all xi ∈ Xi, all x̂i ∈ X̂i and every
si, s′i ∈ Si

V (x , x̂ ) ≤ τ V ′ (x , x̂ ).
i,si i i i i,si i i

8
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Consider the following class of linear switched subsystems

Σi :

{xi(k + 1) = Ai,σi(k)xi(k) + Di,σi(k)wi(k)
+Bi,σi(k)ui(k),

yi(k) = Ci,σi(k)xi(k),
(20)

where σi ∈ Si, Ai,σi(k) ∈ Rni×ni , Bi,σi(k) ∈ Rni×mi , Ci,σi(k) ∈ Rqi×ni and Di,σi(k) ∈ Rni×pi , for i ∈ N.
Choose X = ℓ2(N, (ni)) and U = ℓ2(N, (mi)) for the overall infinite network. By slight abuse of notation, we use the

tuple Σi = (Ai,si , Bi,si , Ci,si ,Di,si ) to refer to switched subsystem with transition and output functions of the form (20) with
the specified matrices dimensions.

Assume that there exist a family of matrices Ki,si , positive definite matrices Mi,si , real numbers ϵi > 0, and 0 < κi < 1
such that the following matrix inequalities hold for all si ∈ Si, i ∈ N

C⊤

i,siCi,si ⪯ Mi,si , (21a)

(1 +
1
ϵi

+ ϵi)(Ai,si + Bi,siKi,si )
⊤Mi,si (Ai,si + Bi,siKi,si )

⪯ κiMi,si . (21b)

Remark 16. Given κi and ϵi, inequality (21b) is not jointly convex on the decision variables Mi,si and Ki,si . Then,
this inequality is not amenable to existing semidefinite tools for linear matrix inequalities (LMI). By using the Schur
complement lemma, (21b) could be transformed to the following LMI over decision variables Qi,si and Zi,si :[

−κiQi,si Qi,siA
⊤

i,si
+ Z⊤

i,si
B⊤

i,si
Ai,siQi,si + Bi,siZi,si −(1 +

1
ϵi

+ ϵi)Qi,si

]
⪯ 0,

Qi,si ≻ 0,

where Qi,si = M−1
i,si

and Zi,si = Ki,siQi,si , i ∈ N.

Consider the simulation function candidates Vi,si : Rni × Rn̂i → R+, si ∈ Si, i ∈ N, as

Vi,si (xi, x̂i) = (xi − Pi,si x̂i)
⊤Mi,si (xi − Pi,si x̂i). (22)

The control inputs of the concrete subsystems are given by the interface functions νi as follows.

ui = νi(xi, x̂i, ûi, ŵi, si) (23)
=Ki,si (xi − Pi,si x̂i) + Qi,si x̂i + Ri,si ûi + Ti,siŵi,

where Pi,si , i ∈ N, are some matrices of appropriate dimensions. Assume that the following inequalities hold for some
matrices of appropriate dimensions Qi,si , Ti,si .

Ai,siPi,si = Pi,si Âi,si − Bi,siQi,si , (24a)

Di,si = Pi,si D̂i,si − Bi,siTi,si , (24b)

Ci,siPi,si = Ĉi,si . (24c)

Next theorem shows that functions Vi,si , si ∈ Si, defined in (22), are simulation functions from Σ̂i to Σi.

Theorem 17. Consider systems Σi = (Ai,si , Bi,si , Ci,si ,Di,si ) and Σ̂i = (Âi,si , B̂i,si , Ĉi,si , D̂i,si ) for i ∈ N. Suppose that for all si ∈ Si,
there exist appropriate matrices Mi,si , Pi,si , Ki,si , Qi,si and Ti,si satisfying (21) and (24). Moreover, assume that τiκi < 1. Then,
functions in (22) are simulation functions from Σ̂i to Σi with concrete inputs given by (23).

Proof. According to (24c), we have

|Ci,sixi−Ĉi,si x̂i| =(
(xi−Pi,si Ĉi,si )

⊤C⊤

i,siCi,si (xi−Pi,si Ĉi,si )
) 1

2 .

Using (21a), it is clear that |Ci,sixi − Ĉi,si x̂i|
2

≤ Vi,si (xi, x̂i) holds for all xi ∈ Xi, x̂i ∈ X̂i. Then, (10) is satisfied with
αi = 1, i ∈ N, p = 2.
Now, we proceed to show that (11) is satisfied, too.
9
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S

Using Assumption 15, one gets the following inequality for all switchings s′i, si ∈ Si

Vi,s′i

(
fi,si (xi, wi, ui), f̂i,si (x̂i, ŵi, ûi)

)
≤

τiVi,si

(
fi,si (xi, wi, ui), f̂i,si (x̂i, ŵi, ûi)

)
. (25)

Using the system dynamics (20) and the candidate simulation function in (22), the inequality (25) can be written as

Vi,s′i

(
fi,si (xi, wi, ui), f̂i,si (x̂i, ŵi, ûi)

)
≤

τi[Ai,sixi + Bi,siui + Di,siwi

− Pi,si (Âi,si x̂i + B̂i,si ûi + D̂i,siŵi)]⊤Mi,si

× [Ai,sixi + Bi,siui + Di,siwi

− Pi,si (Âi,si x̂i + B̂i,si ûi + D̂i,siŵi)]. (26)

ubstituting ui from (23) and employing (24a) to (24b) yield

Vi,s′i

(
fi,si (xi, wi, ui), f̂i,si (x̂i, ŵi, ûi)

)
≤

τi[(Ai,si + Bi,siKi,si )(xi − Pi,si x̂i) + Di,si (wi − ŵi)

+ (Bi,siRi,si − Pi,si B̂i,si )ûi]
⊤Mi,si

× [(Ai,si + Bi,siKi,si )(xi − Pi,si x̂i) + Di,si (wi − ŵi)

+ (Bi,siRi,si − Pi,si B̂i,si )ûi].

Applying Young’s inequality as ab ≤
ϵ
2a

2
+

1
2ϵ b

2 for any a, b ≥ 0 and any ϵ > 0, we have (27).

Vi,s′i

(
fi,si (xi, wi, ui), f̂i,si (x̂i, ŵi, ûi)

)
≤ τi

(
(xi − Pi,si x̂i)

⊤
[(Ai,si + Bi,siKi,si )

⊤Mi,si (Ai,si + Bi,siKi,si )](xi − Pi,si x̂i)

+ [2(xi − Pi,si x̂i)
⊤(Ai,si + Bi,siKi,si )

⊤
]Mi,si [Di,si (wi − ŵi)]

+ [2(xi − Pi,si x̂i)
⊤(Ai,si + Bi,siKi,si )

⊤
]Mi,si [(Bi,siRi,si − Pi,si B̂i,si )ûi]

+ [2(wi − ŵi)⊤Di,si
⊤
]Mi,si [(Bi,siRi,si − Pi,si B̂i,si )ûi]

+ |
√
Mi,siDi,si (wi − ŵi)|

2
+ |

√
Mi,si (Bi,siRi,si − Pi,si B̂i,si )ûi|

2
)

≤ τi

(
(xi − Pi,si x̂i)

⊤
[(Ai,si + Bi,siKi,si )

⊤Mi,si (Ai,si + Bi,siKi,si )](xi − Pi,si x̂i)

+ ϵi(xi − Pi,si x̂i)
⊤
[(Ai,si + Bi,siKi,si )

⊤Mi,si (Ai,si + Bi,siKi,si )](xi − Pi,si x̂i) +
1
ϵi

|
√
Mi,siDi,si (wi − ŵi)|

2

+
1
ϵi
(xi − Pi,si x̂i)

⊤
[(Ai,si + Bi,siKi,si )

⊤Mi,si (Ai,si + Bi,siKi,si )](xi − Pi,si x̂i)

+ ϵi|
√
Mi,si (Bi,siRi,si − Pi,si B̂i,si )ûi|

2
+

1
ϵi

|
√
Mi,si (Bi,siRi,si − Pi,si B̂i,si )ûi|

2
+ ϵi|

√
Mi,siDi,si (wi − ŵi)|

2
)
. (27)

By employing (21b), one has

Vi,s′i

(
fi,si (xi, wi, ui), f̂i,si (x̂i, ŵi, ûi)

)
≤

τi

(
κiVi,si (xi, x̂i)

+ (1 +
1
ϵi

+ ϵi)|
√
Mi,siDi,si |

2
|wi − ŵi|

2

+ (1 +
1
ϵi

+ ϵi)
⏐⏐⏐√Mi,si (Bi,siRi,si − Pi,si B̂i,si )

⏐⏐⏐2|ûi|
2
)
.

Since τiκi < 1 by assumption, one can define κ̂i = 1 − τiκi, and rewrite the previous inequality as follows

V ′

(
f (x , w , u ), f̂ (x̂ , ŵ , û )

)
− V (x , x̂ ) ≤
i,si i,si i i i i,si i i i i,si i i

10
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6

(
m
m
t
p

u
t
t
i

− κ̂iVi,si (xi, x̂i)

+ τi(1 +
1
ϵi

+ ϵi)|
√
Mi,siDi,si |

2
|wi − ŵi|

2

+ τi(1 +
1
ϵi

+ ϵi)
⏐⏐⏐√Mi,si (Bi,siRi,si − Pi,si B̂i,si )

⏐⏐⏐2|ûi|
2
.

Thus, (11) holds with p = q = 2, λi = κ̂i, ρi,ext = τi(1 +
1
ϵi

+ ϵi)maxsi{|
√
Mi,si (Bi,siRi,si − Pi,si B̂i,si )|

2
} and ρi,int =

τi(1 +
1
ϵi

+ ϵi)maxsi{|
√
Mi,siDi,si |

2
}.

Therefore, the candidate functions in (22) are simulation functions from Σ̂i to Σi, for all i ∈ N. □

. Example

To verify the effectiveness of our results, we apply them to a voltage regulation problem in AC islanded microgrids.
Islanded microgrids are self-sufficient small-scale power grids composed of several Distributed Generation Units

DGUs). They are designed to operate safely and reliably in the absence of connection to the main grid [27]. When the
icrogrids are working in connected mode, voltage and frequency are set by the main grid. However, in the islanded
ode, they must be controlled by DGUs. Therefore, their connection should be robust against line faults or variations in

he topology of DGUs’ connections. Treating time-varying communication topologies is beneficial to evaluate the system
erformance in the presence of the line switches or plug-and-play operations.
We consider a switched AC islanded microgrid network modeled by an interconnection of fourth-order DGUs as

nderlying subsystems. In particular, we consider two circular topologies as shown in Figs. 1 and 2 and assume that
he network topology switches between these two configurations at certain times. Let σi(k) be the switching signal which
akes values in the set {1, 2}, where σi(k) = 1 corresponds to the topology shown in Fig. 1 and σi(k) = 2 pertains to that
n Fig. 2.

The discrete-time dynamics of each DGU in the microgrid with sampling time ts is described by (28), adapted from [27].

Σi :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣
Vi,d(k + 1)
Vi,q(k + 1)
Iti,d(k + 1)
Iti,q(k + 1)
νi,d(k + 1)
νi,q(k + 1)

⎤⎥⎥⎥⎥⎥⎦
  

=:xi(k+1)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
ts
Cti
(
∑

j∈I ini,σi(k)

Rij
Z2ij
) + 1 tsω0 −

ts
Cti
(
∑

j∈I ini,σi(k)

Xij
Z2ij
) tski

Cti
0 0 0

−tsω0 +
ts
Cti
(
∑

j∈I ini,σi(k)

Xij
Z2ij
) −

ts
Cti
(
∑

j∈I ini,σi(k)

Rij
Z2ij
) + 1 0 tski

Cti
0 0

−
tski
Lti

0 −
tsRti
Lti

+ 1 tsω0 0 0
0 −

tski
Lti

−tsω0 −
tsRti
Lti

+ 1 0 0
−ts 0 0 0 1 0
0 −ts 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
  

=:Ai,σi(k)

×

⎡⎢⎢⎢⎢⎢⎣
Vi,d(k)
Vi,q(k)
Iti,d(k)
Iti,q(k)
νi,d(k)
νi,q(k)

⎤⎥⎥⎥⎥⎥⎦
  

=:xi(k)

+
ts
Cti

∑
j∈I ini,σi(k)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Rij
Z2ij

Xij
Z2ij

−
Xij
Z2ij

Rij
Z2ij

0 0
0 0
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
  

=:Di,σi(k)

[
Vj,d(k)
Vj,q(k)

]
  

=:wi(k)

+

⎡⎢⎢⎢⎢⎢⎣
−

1
Cti

0 0 0
0 −

1
Cti

0 0
0 0 0 0
0 0 0 0
0 0 ts 0
0 0 0 ts

⎤⎥⎥⎥⎥⎥⎦
  

=:Hi

⎡⎢⎣ ILi,d
ILi,q

yi,d,ref
yi,q,ref

⎤⎥⎦
  

=:di

+

⎡⎢⎢⎢⎢⎢⎣
0 0
0 0
ts
Lti

0
0 ts

Lti
0 0
0 0

⎤⎥⎥⎥⎥⎥⎦
  

=:Bi

ui(k),

yi(k) =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
  

=:Ci

⎡⎢⎢⎢⎢⎢⎣
Vi,d(k)
Vi,q(k)
Iti,d(k)
Iti,q(k)
νi,d(k)
νi,q(k)

⎤⎥⎥⎥⎥⎥⎦ .

(28)
11
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Fig. 1. The interconnected system Σ for si = 1.

Fig. 2. The interconnected system Σ for si = 2.

In (28), Vi,d (resp. Vi,q) are the d (resp. q) components of the load voltage. Similarly, Iti,d (resp. Iti,q) denote the d
(resp. q) components of the current of DGU Σi. In addition, the integrators νi,d, νi,q are added for disturbance rejection
reasons [27]. The control inputs (the voltage of corresponding voltage source converter (VSC)) and outputs are denoted
by ui(k) =

[
Vti,d(k),Vti,q(k)

]⊤ and yi(k) =
[
Vi,d(k),Vi,q(k)

]⊤, respectively. Furthermore, Di,σi(k)wi(k) models the coupling of
DGU Σi with its neighbors Σj, j ∈ I ini,σi(k), corresponding to each switching mode. In addition, Hidi represents the collection
of load currents ILi,d and ILi,q which are considered as constant exogenous inputs acting as a disturbance and tracking
references yi,ref =

[
yi,d,ref , yi,q,ref

]⊤.
The parameters Rti, Lti are the resistance and inductance, respectively, corresponding to DGU Σi and Rij, Lij are those

of the line between DGU Σi and DGU Σj which are connected through a three-phase line. In addition, Xij = ω0Lij and
Zij = |Rij + jXij| with the rotation speed ω0. Moreover, ki is the transformer ratio which connects DGU Σi to the remainder
of the network. The other transformer parameters are included in Rti and Lti. A shunt capacitance Cti is used for attenuating
the impact of high-frequency harmonics of the load voltage.

The interconnection structure switches between two circular topologies shown in Figs. 1 and 2. In these topologies,
each subsystemΣi is fed by subsystemsΣi−1 for σi(k) = 1 (I ini,1 = {i−1}) andΣi+1 for σi(k) = 2 (I ini,2 = {i+1}), respectively.

We denote Σ as the augmented infinite network consisting of infinite subsystems Σi. To construct an overall
abstraction for Σ , we construct abstractions of subsystems Σi, i ∈ N, with dimensions n̂i for both si = 1, 2. Necessary
and sufficient conditions on the geometrical properties of the involved matrices Pi,si , Di,si , Ai,si , Bi,si in (24) are provided
in [10, Sec. 4.3], which determine the lowest possible state dimension for Σ̂i, i ∈ N, as n̂i = 3.

Nowwe compute the abstraction matrices satisfying (24). Considering (24a) and (24b) and taking D̂i,si = ts

[
1 0 1
0 1 0

]⊤

and Ti,si = 0, we get

Pi,si =
1

2Cti

∑
j∈Ii,si

⎡⎢⎢⎣
0 0 0 0 1 1
Xij
Z2ij

Rij
Z2ij

0 0 0 0

Rij
Z2ij

−
Xij
Z2ij

0 0 −1 −1

⎤⎥⎥⎦
⊤

,

Qi,si =
tski
2Cti

∑
j∈Ii,si

⎡⎢⎣0 −Xij
Z2ij

−Rij
Z2ij

0 −Rij
Z2ij

Xij
Z2ij

⎤⎥⎦ , si = 1, 2.

Furthermore, Âi,si is obtained by solving n̂i × n̂i equations provided that matrix
∑

j∈Ni,si

⎡⎢⎣
Rij
Z2ij

−Xij
Z2ij

Xij
2

Rij
2

⎤⎥⎦ is invertible.

Zij Zij

12
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p
ρ
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T
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Fig. 3. The error norm between the output trajectories of Σ and Σ̂ in per unit system.

In addition, Ĉi,si =
1

2Cti

∑
j∈Ni,si

⎡⎢⎣0 Xij
Z2ij

Rij
Z2ij

0 Rij
Z2ij

−
Xij
Z2ij

⎤⎥⎦. By considering the computed matrices Âi,si and taking B̂i,si = In̂i , we

choose appropriate matrices K̂i,si for local controllers ûi = −K̂i,si x̂i, which stabilize abstract subsystems Σ̂i at the origin.
We also choose Ri,si = (B⊤

i,si
Mi,siBi,si )

−1B⊤

i,si
Mi,siPi,si B̂i,si to minimize ρi,ext as suggested in [6].

We illustrate the scale-free property of our approach with respect to the size of network via simulations. Following
Theorem 14, we consider three truncated networks of microgrids shown in Figs. 1 and 2, respectively, consisting of 102,
103 and 104 subsystems. The parameters are set as Rti = 1.5 m�, Lti = 300 µH, Cti = 460 µF, ki = 1 for all subsystems Σi.
Additionally, we choose Rij = 1 m�, Lij = 10 mH for all subsystems Σi,Σj with si = 1 and Rij = 1.2 m�, Lij = 8 mH for
all subsystems Σi,Σj with si = 2. The microgrids frequency and the sampling time are set as f0 = 60 Hz and ts = 10−4 s,
respectively. The switchings between si = 1 and si = 2 occur at time steps k = 4n, n ∈ N. We choose κi = 0.01
and take matrices Ki,si such that the eigenvalues of pairs (Ai,si , Bi,si ) in closed loop are [0.3; 0.15; 0.6; 0.2; 0.4; 0.5] for

both si = 1, 2. Then, we compute Mi,si =

⎡⎢⎢⎢⎢⎢⎣
12.291 −0.473 11.082 −1.081 7.809 −1.665

∗ 23.041 0.535 17.258 1.780 −0.585
∗ ∗ 37.993 26.610 −0.607 −0.458
∗ ∗ ∗ 47.840 0.536 −0.358
∗ ∗ ∗ ∗ 20.913 2.330
∗ ∗ ∗ ∗ ∗ 23.559

⎤⎥⎥⎥⎥⎥⎦, si = 1, and

Mi,si =

⎡⎢⎢⎢⎢⎢⎣
13.013 −0.801 10.235 −2.132 6.296 −1.819

∗ 25.612 0.669 15.228 1.171 −1.091
∗ ∗ 38.619 24.581 −1.167 −0.915
∗ ∗ ∗ 49.145 0.251 −0.958
∗ ∗ ∗ ∗ 22.323 3.244
∗ ∗ ∗ ∗ ∗ 25.158

⎤⎥⎥⎥⎥⎥⎦, si = 2, satisfying (21).

With the choice of (22) for Vi,si , we get τi ≤ max{
λmax(Mi,si )
λmin(Mi,si )

} for si = 1, 2. Thus, 1 ≤ τi ≤ 67.61. Therefore, the
arameters in Definition 6 satisfying Assumption 8 are as αi = 1, λi = κ̂i ∈ [0.3239, 0.99], ϵi = 1, ρi,int ≤ 0.321, and
i,ext ≤ 512.312. Recalling the circular interconnection topologies, each subsystem is directly fed by one other subsystem
t each time instant. Thus, (12) gives γij = τi(1 + ϵi +

1
ϵi
)maxsi{|

√
Mi,siDi,si |

2
}N̄i

1
αj

for j ∈ I ini.si and γij = 0 for j /∈ I ini.si . Then,
we get

r(Ψ ) < sup
j∈N

∞∑
i=1

ψij < (1 + ϵi +
1
ϵi
)max

si
{|
√
Mi,siDi,si |

2
}
τi

κ̂i

≤ 0.991,

which implies the satisfaction of Assumption 10 on the spectral radius condition. Therefore, all the hypotheses of
Theorem 11 are satisfied.

The norm of the overall error between the output trajectories of the abstract and concrete systems for three different
izes of networks are shown in Figs. 3. From the choice of û and stabilizability of Σ̂ at the origin, limk→∞ |û(k)|2 → 0.
his together with (7) implies that the mismatch between output trajectories converges to zero, illustrated by Fig. 3.
he reference signals of DGUs are set as yi,ref = [0.8, 0.2]⊤, i ∈ N. The closed-loop output trajectories of the concrete

subsystems in a set-point tracking scenario are depicted by Fig. 4 in per unit system. From Fig. 4, one can see that the
overall behavior of the network remains almost identical, though the network size grows dramatically. This admits that
performances indices are independent of the network size.
13
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Fig. 4. The external outputs Vi,d, Vi,q in per unit system.

7. Conclusions

We proposed a compositional approach for the construction of continuous abstractions for infinite networks of
switched discrete-time systems. To do this, we extended the notion of simulation functions to infinite-dimensional
systems (networks of infinitely many finite-dimensional switched systems). Following the compositionality approach, we
assigned to each subsystem an individual simulation function and constructed its local abstraction accordingly. Finally,
we composed local abstractions to provide an abstraction of the overall network. We showed that the aggregation yields
a continuous abstraction of the overall concrete network if a small-gain condition, expressed in terms of a spectral
radius criterion, is satisfied. We also established that our result leads to scale-free compositional method for any finite-
but-arbitrarily large networks. For linear systems, our conditions for constructing local abstractions boil down to linear
matrix inequalities which can be computed efficiently. We applied our results to AC islanded microgrids under switched
topologies and showed the scale-freeness of our proposed approach.
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