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The classical problem of reachability in simple stochastic games is typically solved by 
value iteration (VI), which produces a sequence of under-approximations of the value 
of the game, but is only guaranteed to converge in the limit. We provide an additional 
converging sequence of over-approximations, based on an analysis of the game graph. 
Together, these two sequences entail the first error bound and hence the first stopping 
criterion for VI on simple stochastic games, indicating when the algorithm can be stopped 
for a given precision. Consequently, VI becomes an anytime algorithm returning the 
approximation of the value and the current error bound. We further use this error bound 
to provide a learning-based asynchronous VI algorithm; it uses simulations and thus often 
avoids exploring the whole game graph, but still yields the same guarantees. Finally, we 
experimentally show that the overhead for computing the additional sequence of over-
approximations often is negligible.
© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A simple stochastic game (SG) [24] is a zero-sum 2.5-player game played on a graph by the two players Maximizer and 
Minimizer, who choose actions in their respective states. Each action is associated with a probability distribution determin-
ing the next state to move to. The objective of Maximizer is to maximize the probability of reaching a given target state; 
the objective of Minimizer is the opposite.

Stochastic games constitute a fundamental problem for several reasons. From the theoretical point of view, the complex-
ity of this problem1 is known to be in UP ∩ coUP [16], but no polynomial-time algorithm is known. Further, several other 
important problems can be reduced to SGs, for instance parity games, mean-payoff games, discounted-payoff games and 
their stochastic extensions [16]. The task of solving SGs is also polynomial-time equivalent to solving perfect information 
Shapley, Everett and Gillette games [1]. Besides, the problem is practically relevant in verification and synthesis. SGs can 
model reactive systems, with players corresponding to the controller of the system and to its environment, where quantified 
uncertainty is explicitly modelled. This is useful in many application domains, ranging from smart energy management [20]
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1 Formally, the problem is to decide, for a given rational p ∈ [0, 1] whether Maximizer has a strategy ensuring probability at least p to reach the target.
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over autonomous urban driving [22] and robot motion planning [49] to self-adaptive systems [14]; for various recent case 
studies, see e.g. [56]. Finally, since Markov decision processes (MDP) [53] are a special case with only one player, SGs can 
serve as abstractions of large MDPs [38].
Solution techniques. There are several classes of algorithms for solving SGs, namely strategy iteration algorithms, quadratic 
programming and value iteration algorithms [25]. Strategy iteration (also known as policy iteration) computes a sequence 
of strategies converging to the optimal one. In each iteration, we fix the strategy of one player and compute the best 
response of the opponent in the resulting one-player game (Markov decision process); this is typically done using linear 
programming. Then the strategy we originally fixed is improved based on the response of the opponent. Since there are 
finitely many strategies and they are monotonically improving, an optimal strategy is found after finitely many iterations. 
Currently, the best known upper bound for the number of iterations is exponential in the size of the SG.

Quadratic programming encodes the SG into a single polynomially sized quadratic program. The constraints of the program 
mimic the structure of the SG and the objective function ensures that the unique solution is the one where both players 
behave optimally. Both strategy iteration and quadratic programming produce an exact solution.

In contrast, value iteration (VI) is an approximative method that only converges in the limit. It computes a sequence of 
value-vectors that approximates the true values from below, but may never reach them in finite time. Still, there is a way to 
obtain the exact values: after O(γ 2) iterations of the algorithm, where γ is a number exponential in the size of the SG, we 
can round the approximation to the precise result [18]. However, as the required number of iterations is always exponential 
and the algorithm gives no guarantee before it finishes, this approach is infeasible even for small SGs. It would be useful to 
be able to stop the VI algorithm early, after a required precision is reached.

Theoretically, the best known upper bound of the runtime of all three classes of algorithms is exponential in the size 
of the SG. Practically, VI currently is the preferred solution. For instance, the most used probabilistic model checkers Storm 
[28] and PRISM [44], as well as PRISM’s branch PRISM-Games [43] use VI for MDPs and SGs as the default option; in the 
case of PRISM-games, VI is the only option. As the exponential number of iterations that is necessary to obtain a guarantee 
is impractical, PRISM-games stops when the difference between the two most recent approximations is low, and thus may 
return arbitrarily imprecise results [33].

VI was preferred in these model checkers, because evaluating many large linear programs respectively a very large 
quadratic program was expected to be slow, similar to the special case of MDPs [40]. However, a recent extensive compari-
son of these algorithms [42] showed that in fact both strategy iteration and value iteration can perform similarly well. Also, 
there exists cases where either of the two algorithms outperforms the other, depending on the structure of the given SG.

An advantage of strategy iteration and quadratic programming is that they can possibly produce a guaranteed result in 
less than exponential time, while VI only converges in the limit and always has to run for an exponential number of steps 
in order to obtain a precise result. We address this by complementing the VI algorithm with error bounds, allowing us to 
stop the computation early when a required precision is reached. Thus we can leverage VI’s ability to typically produce good 
results fast while also giving guarantees on the precision.
Value iteration with guarantees. In the special case of MDPs, in order to obtain bounds on the imprecision of the result, 
one can employ a bounded variant of VI [51,11] (also called interval iteration [33]). Here one computes not only an under-
approximation, but also an over-approximation of the actual value. On the one hand, iterative computation of the least 
fixpoint of Bellman equations yields an under-approximating sequence converging to the value. On the other hand, iterative 
computation of the greatest fixpoint yields an over-approximation, which, however, does not converge to the value, because 
the least and greatest fixpoint do not coincide. Moreover, it often results in the trivial bound of 1. A solution suggested for 
MDPs [11,33] is to modify the underlying graph, namely to collapse end components. In the resulting MDP there is only one 
fixpoint, thus the least and greatest fixpoint coincide and both approximating sequences converge to the actual value. In 
contrast, for general SGs no value iteration based procedure is known which approximates the least fixpoint from above. In 
this paper we provide such an algorithm. Together with standard value iteration from below, this yields a stopping criterion 
to interrupt execution of VI at a given precision. We show that the pre-processing approach of collapsing is not applicable 
in general and provide a solution on the original graph. We also characterize SGs where the fixpoints coincide and naive VI 
converges from above. The main technical challenge is that states in an end component in SGs can have different values, in 
contrast to the case of MDPs.
Practical efficiency using guarantees. We further utilize the obtained guarantees to practically improve our algorithm. Sim-
ilar to the MDP case [11], the quantification of the error allows for ignoring parts of the state space, and thus a speed 
up without jeopardizing the correctness of the result. Indeed, we provide a technique where some states are not explored 
and processed at all, but their potential effect is still taken into account. It relies on learning algorithms with simulations; 
these are guided by the quantification of the error, using the information to decide which state to explore and analyse next. 
While for MDPs this idea has already demonstrated speed ups in orders of magnitude [11,3], this paper provides the first 
technique of this kind for SGs.
Our contribution. We can summarize our contribution as follows.
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J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886
• We introduce a VI algorithm for under- and over-approximation sequences, both of which converge to the value of 
the game. Thus we present the first practical stopping criterion for VI on SGs, yielding an anytime algorithm2 with 
guaranteed precision. We also characterize when a simpler solution is sufficient.

• We provide a learning-based algorithm, which preserves the guarantees, and which additionally is more efficient in 
some cases since it avoids exploring the whole state space.

• We evaluate the running times of the algorithms experimentally, concluding that obtaining guarantees requires an 
overhead that is either negligible or mitigated by the learning-based approach.

Related work. The works closest to ours are the following. As mentioned above, [11,33] describe the solution to the special 
case of MDPs. While [11] also provides a learning-based algorithm, [33] discusses the convergence rate and the exact 
solution. The basic algorithm of [33] is implemented in PRISM [8] and the learning approach of [11] in Storm [28]. The 
extension for SGs where the interleaving of players is severely limited (every end component belongs to one player only) is 
discussed in [58].

Further, in the area of probabilistic planning, bounded real-time dynamic programming [51] is related to our learning-
based approach. However, it is limited to the setting of stopping MDPs where the target sink or the non-target sink is 
reached almost surely under any strategy.

For stopping SGs, the error of value iteration can be bounded without computing an additional over-approximation. [25, 
Section 3] describes how to transform an arbitrary SG to a polynomially larger stopping SG such that the original value can 
be inferred. In essence, the construction adds a transition to every action that reaches a sink state with very low probability 
γ ; this is the same as computing the discounted reachability with discount factor γ . However, this approach is impractical, 
because the convergence rate of value iteration depends on the lowest occurring probability in the SG. Further, in order to 
be able to infer the original value, γ has to be chosen smaller than standard machine precision already for an SG with 27 
states [42, Section 4.1.4]. Our algorithm works for general SGs, not only for stopping ones, without increasing the size of the 
game or introducing very low probabilities.

The idea of strategy iteration was suggested in [35], for the class of irreducible concurrent SGs. In [60], the authors 
provide a strategy iteration algorithm for turn-based SGs with average reward objectives. The algorithm relies on the linear 
program formulation from [36] that solves the one-player game (Markov decision process) after fixing one strategy. The 
algorithm is also described in the textbook [32, Chapter 6.3]. Note that reachability objectives can be encoded as average 
reward objectives. The formulation of strategy iteration explicitly for simple stochastic games was given in [25], together 
with a randomized version. For a description of further developments and a practical comparison of all three algorithm 
classes (value iteration, strategy iteration and quadratic programming), see the recent work [42].

The tools implementing the standard SI and/or VI algorithms for SGs are PRISM-games [43], GAVS+ [23] and GIST [19]. 
GAVS+ is however not maintained anymore, and more for educational purposes. GIST considers ω-regular objectives, but 
performs only qualitative analysis. For MDPs (games with a single player), the recent friendly competition QComp [34] gives 
an overview of the existing tools.

Apart from fundamental algorithms to solve SGs, there are various practically efficient heuristics that, however, provide 
none or weak guarantees, often based on some form of learning [10,50,61,57,2,12]. For MDPs, the first probably approx-
imately correct (PAC [59]) algorithm was given in [55]. This result has been further extended [11] to MDP settings more 
relevant for verification: firstly, [11] considers non-discounted unbounded horizon, such as the reachability objective. Sec-
ondly, it treats not only the case when the transition probabilities are unknown, but also when they are given.

In terms of complexity, [9] recently proved that deciding whether an action in an MDP is optimal for the n-step bounded 
reachability is EXPTIME-complete. This means that the worst case running time for VI on SGs is exponential, since VI 
computes the n-step bounded reachability for all states and since SGs are an extension of MDPs. The runtime is not larger 
than exponential, as [18] proved that VI can always compute the precise value in an exponential number of steps.

Finally, the concept of simple end component that is introduced in this paper is similar to tangles in parity games [29]. 
Both concepts describe a strongly connected sub-graph in which one of the players can surely win, which forces the other 
player to leave this sub-graph.

This article is the extended version of the paper presented at CAV 2018 [39]. We added more examples, an in-depth 
description of the learning-based algorithm as well as more on the implementation of both our algorithms and more ex-
perimental results. Also, we provide the full technical proofs, including many instructive details in the proofs of Theorem 1
and 2, as well as the new Theorem 3 about the learning-based algorithm. In particular, we extracted Lemma 2, a statement 
relating the existence of exiting actions to the existence of end components. Further, we clarified the case distinction in 
the proof of Theorem 1 and show in Fig. 4 the many ways in which a simple end component can affect the values of 
other states. Furthermore, in Lemma 6, we provide a detailed lattice-theoretic argument about the convergence of the upper 
bound to a fixpoint; this includes a surprising complication which is elaborated on in Remark 2. Moreover, we fixed an error 
in the statement and proof of Lemma 1, cf. Footnote 9. Finally, we give—to the best of our knowledge for the first time—a 
formal description of how to obtain optimal strategies from value vectors, see Appendix A.

2 An algorithm which can be stopped at any time in the computation, returning an estimate and its precision.
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Fig. 1. An example of an SG with S = {p, q, 1, 0}, S
�

= {q, 1}, S© = {p, 0}, the initial state p and the set of actions A = {a, b, c, d, e}; Av(p) = {a} with 
δ(p, a)(q) = 1; Av(q) = {b, c} with δ(q, b)(p) = 1 and δ(q, c)(q) = δ(q, c)(1) = δ(q, c)(0) = 1

3 . For actions with only one successor, we do not depict the 
transition probability 1.

Several works have extended the original paper [39] already: the ideas have been lifted to a setting with limited infor-
mation [6], with multiple objectives [4] and to concurrent stochastic games [30]. There also is an improved version of the 
algorithm based on global propagation of the over-approximation [52].
Organization of the paper. Section 2 introduces the basic notions and revises value iteration. Section 3 explains the idea of 
our approach on an example. Section 4 first characterizes the sub-graphs of the game which cause the non-convergence. 
Then it introduces the concept of simple end components and finally shows how to have a converging algorithm using a 
special treatment of these components. Section 5 describes the learning-based algorithm, Section 6 discusses experimental 
results and Section 7 concludes.

2. Preliminaries

2.1. Stochastic games

A probability distribution on a finite set X is a mapping δ : X → [0, 1], such that 
∑

x∈X δ(x) = 1. The set of all probability 
distributions on X is denoted by D(X). We now define stochastic games, which are often referred to simple stochastic 
games or turn-based stochastic two-player games with a reachability objective. As opposed to the notation of e.g. [24], we 
do not have special stochastic nodes, but rather a probabilistic transition function.

Definition 1 (SG). A stochastic game (SG) is a tuple (S, S�, S©, s0, A, Av, δ) where S is a finite set of states partitioned3 into 
the sets S� and S© of states of the player Maximizer and Minimizer4 respectively, s0 ∈ S is the initial state, A is a finite set 
of actions, Av : S → 2A assigns to every state a set of available actions, and δ : S ×A →D

(
S
)

is a transition function that given 
a state s and an action a ∈ Av(s) yields a probability distribution over successor states.

A Markov decision process (MDP) is a special case of an SG where S© = ∅, and a Markov chain (MC) is a special case of an 
MDP, where for all s ∈ S : ∣∣Av(s)

∣∣ = 1.

We assume that SGs are non-blocking, so for all states s we have Av(s) �= ∅. For a state s and an available action 
a ∈ Av(s), we denote the set of successors by Post(s, a) := {s′ | δ(s, a, s′) > 0}. Finally, for any set of states T ⊆ S , we use 
T� and T© to denote the states in T that belong to Maximizer and Minimizer, whose states are drawn in the figures as �
and ©, respectively.

Since we consider the reachability objective, in addition to an SG we require a set of target states F ⊆ S . As it is irrelevant 
what happens after reaching a target state, we assume that all of them are absorbing, i.e. they only have one action that is 
a self-loop with probability 1.

An example of an SG is given in Fig. 1.

2.2. Semantics: paths and strategies

The semantics of SGs is given in the usual way, see e.g. [25], by means of strategies, the induced Markov chain and the 
respective probability space, as follows. An infinite path ρ is an infinite sequence ρ = s0a0s1a1 · · · ∈ (S × A)ω , such that for 
every i ∈N , ai ∈ Av(si) and si+1 ∈ Post(si, ai). Finite paths are defined analogously as elements of (S × A)∗ × S .

As this paper deals with the reachability objective, we can restrict our attention to memoryless strategies, which are 
optimal for this objective [24]. A strategy of Maximizer, respectively Minimizer, is a function σ : S� → D

(
A
)
, respectively 

S© → D
(
A
)
, such that σ(s) ∈ D

(
Av(s)

)
for all s . We call a strategy deterministic if it maps to Dirac distributions only, i.e. 

if it plays a single action surely. Although deterministic strategies suffice, we still allow randomizing strategies, because 
they are needed for the learning-based algorithm later on. A pair (σ , τ ) of strategies of Maximizer and Minimizer induces 
a Markov chain Gσ ,τ where the transition probabilities are defined as δ(s, s′) = ∑

a∈Av(s) σ (s, a) · δ(s, a, s′) for states of 
Maximizer and analogously for states of Minimizer, with σ replaced by τ . The Markov chain induces a unique probability 
distribution Pσ ,τ

s,G over measurable sets of infinite paths [7, Ch. 10].

3 I.e., S
�

⊆ S , S© ⊆ S , S
�

∪ S© = S , and S
�

∩ S© = ∅.
4 The names are chosen, because Maximizer maximizes the probability of reaching a given target state, and Minimizer minimizes it.
4
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We write �F = {ρ | ρ = s0a0s1a1 · · · ∈ (S × A)ω ∧ ∃i ∈ N. si ∈ F} to denote the (measurable) set of all paths which 
eventually reach the target states F .

For each s ∈ S , we define the value in s as

VG(s) := sup
σ

inf
τ
Pσ ,τ

s,G (�F) = inf
τ

sup
σ

Pσ ,τ
s,G (�F),

where the equality follows from [24]. We omit the G in the subscript when it is clear from context.
To compute the value, we need take special care of end components (ECs). Intuitively, an EC is a subset of states of the 

SG, where the game can remain forever; i.e. given certain strategies of both players, there is no positive probability to exit 
the EC to some other state. An EC corresponds to a bottom strongly connected component in a Markov chain induced by 
some pair of strategies.

To define ECs formally, we first introduce the following notation. Given a set of states T ⊆ S and a state s ∈ T , we say 
that (s, a) exits T if we have s ∈ T , a ∈ Av(s) and Post(s, a) � T .

Definition 2 (EC). A non-empty set T ⊆ S of states is an end component (EC) if there is a non-empty set B ⊆ ⋃
s∈T Av(s) of 

actions such that

1. for each s ∈ T , a ∈ B ∩ Av(s) we do not have (s, a) exits T ,
2. for each s, s′ ∈ T there is a finite path w = sa0 . . .ans′ ∈ (T × B)∗ × T , i.e. the path stays inside T and only uses actions 

in B .

An end component T is a maximal end component (MEC) if there is no other end component T ′ such that T ⊆ T ′ . Note 
that the MECs of an SG are equivalent to the MECs in an MDP with both players unified,5 as the definition only depends on 
the existence of the actions. Thus the set of MECs of an SG G , denoted by MEC(G), can be computed in polynomial time 
using the standard algorithm for MDPs, e.g. [17].

2.3. (Bounded) value iteration

Let Z be the set of states that cannot reach any state in F (called Z , because they have value zero). It can be computed, 
for example, by a reverse breadth-first-search from all states in F .

The value function V satisfies the following system of equations, referred to as the Bellman equations:

V(s) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if s ∈ F

0 if s ∈ Z
maxa∈Av(s) V(s,a) if s ∈ S�
mina∈Av(s) V(s,a) if s ∈ S©

(1)

where6

V(s,a) :=
∑
s′∈S

δ(s,a, s′) · V(s′) (2)

Moreover, V is the least solution to the Bellman equations, see e.g. [18]. To compute the value of V for all states in an 
SG, one can thus utilize the iterative approximation method value iteration (VI) as follows: we start with a lower bound 
function L0 : S → [0, 1] such that L0(s) = 1 for target states s ∈ F and for all other states s ∈ S \ F , we have L0(s) = 0. Then 
we repetitively apply Bellman updates according to Equations (3) and (4)

Ln(s,a) :=
∑
s′∈S

δ(s,a, s′) · Ln−1(s
′) (3)

Ln(s) :=
{

maxa∈Av(s) Ln(s,a) if s ∈ S�
mina∈Av(s) Ln(s,a) if s ∈ S©

(4)

until convergence. Note that convergence may happen only in the limit even for such a simple game (even an MDP) as in 
Fig. 2 on the left. The sequence is continuous and monotonic, because all involved operations – summation and multiplica-
tion – are continuous and monotonic. Moreover, at all times it is a lower bound on V, i.e. Li(s) ≤ V(s) for all s ∈ S , and the 
least fixpoint satisfies L∗ := limn→∞ Ln = V, see e.g. [18].

5 Intuitively, this is also why it does not suffice to consider MECs in an SG, and we need to introduce the stronger notion of simple end component.
6 Throughout the paper, for any function f : S → [0, 1] we overload the notation and also write f (s, a) meaning ∑s′∈S δ(s, a, s′) · f (s′).
5
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Algorithm 1 Bounded value iteration algorithm.
1: procedure BVI(precision ε > 0)
2: for s ∈ S do # Initialization
3: L() (s) = 0 # Lower bound
4: U(s) = 1 # Upper bound

5: for s ∈ F do L(s) = 1 # Value of targets is determined a priori
6: for s ∈ Z do U(s) = 0 # Value of sinks is determined a priori

7: repeat
8: UPDATE(L, U) # Bellman updates or their modification
9: until U(s0) − L(s0) < ε # Guaranteed error bound

s t

1

0

a

b

c
1
3

1
3

1
3

e

d

{s, t}

1

0

c
1
3

1
3

1
3

e

d

i Li({s, t}) Gi({s, t})
0 0 1
1 1

3
2
3

2 4
9

5
9

3 13
27

14
27

Fig. 2. Left: an MDP (as special case of SGs) where BVI does not converge due to the grayed EC. Middle: the same MDP where the EC is collapsed, making 
BVI converge. Right: the approximations illustrating the convergence of the MDP in the middle.

We achieve our goal when L(s0) is ε-close to the value V(s0). Then we have an ε-approximation of the value of the SG 
V(s0) and can extract a corresponding pair of ε-optimal strategies for both players, i.e. strategies σ , τ such that Pσ ,τ

s0
(�F)

is ε-close to V(s0). To the best of our knowledge, no explicit description of how to obtain strategies from a vector of (an 
ε-approximation of the) values exists, thus we provide it in Appendix A.

Unfortunately, there is no known stopping criterion which estimates how close the current under-approximation is to 
the value. The current tools stop when the difference between two successive approximations is smaller than a certain 
threshold, which can lead to arbitrarily wrong results [33].

For the special case of MDPs, it has been suggested to also compute the greatest fixpoint [51] and thus an upper bound 
as follows. The function G : S → [0, 1] is initialized for all states s ∈ S as G0(s) := 1 except for states s ∈Z with no path to 
a target where G0(s) := 0. Then we repetitively apply updates (3) and (4), where L is replaced by G. The resulting sequence 
Gn again is monotonic and continuous, and moreover provides an upper bound on V. The greatest fixpoint G∗ := limn Gn is 
the greatest solution to the Bellman equations on [0, 1]S . This approach is called bounded value iteration (BVI) (or bounded 
real-time dynamic programming (BRTDP) [51,11] or interval iteration [33]).

If L∗ = G∗ then they are both equal to V and we say that BVI converges. BVI is guaranteed to converge in MDPs if the 
only ECs are trivial, i.e. the self-loops of target states in F or ECs with no path to a target in Z . Otherwise, if there are 
non-trivial ECs, BVI does not converge. For MDPs, the authors of [11,33] independently introduced the solution to “collapse” 
all ECs, i.e. merge all states of an EC into one and preserve only the actions exiting the EC. Computing the greatest fixpoint 
on the modified MDP results in another sequence Ui of upper bounds on V, converging to U∗ := limn Un , and it holds that 
U∗ = V and BVI converges. The next section illustrates the difficulty and the solution through collapsing on an example.

Collapsing can be extended to SGs, but it does not solve the problem for arbitrary SGs. This is also illustrated in an 
example in the next section. In certain cases, it can still be used as a heuristic to speed up the algorithm, see Section 6.2.

In summary, all versions of BVI discussed so far and later on in the paper follow the pattern of Algorithm 1. In the naive 
version, UPDATE just performs the Bellman update on L and U according to Equations (3) and (4). For a general MDP, U
does not converge to V, but to G∗ , and thus the termination criterion may never be met if G∗(s0) − V(s0) > 0. If the ECs are 
collapsed in pre-processing then U converges to V. For the general case of SGs, the collapsing approach fails and this paper 
provides another version of BVI where U converges to V, based on a more detailed structural analysis of the game.

3. Example: why over-approximations do not converge

In this section, we illustrate why naive BVI does not converge on SGs and sketch our solution on a few examples. We 
face two problems: (i) states in ECs promise overly high values, even in MDPs. (ii) ECs in SGs do not belong to a single 
player and thus states in them can have different values.

We always denote by G the sequence converging to the greatest solution of the Bellman equations (monotonically from 
above), while we use U for any sequence over-approximating V that one or another BVI algorithm suggests.
(i) We illustrate the issue that arises already for the special case of MDPs. Consider the MDP of Fig. 2 on the left. Although 
V(s) = V(t) = 0.5, we have Gi(s) = Gi(t) = 1 for all i. Indeed, the upper bound for t is always updated as the maximum of 
G (t, c) and G (t, b). Although G (t, c) decreases over time, G (t, b) remains the same, namely equal to G (s), which in turn 
i i i i i
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Fig. 3. Collapsing ECs in SGs may lead to incorrect results. The Greek letters on the leaving arrows denote the values of the exiting actions. Left figure: an 
example of an EC that can be collapsed in different ways depending on the relationship of α and β . Right three figures: correct collapsing in the different 
cases. In contrast to MDPs, some actions of the EC exiting the collapsed part have to be removed.

remains equal to Gi(s, a) = Gi(t). This cyclic dependency lets both s and t remain in an illusion that the value of the other 
one is 1.

The solution for MDPs is to remove this cyclic dependency by collapsing all MECs into singletons and removing the 
resulting purely self-looping actions. The middle of Fig. 2 shows the MDP after collapsing the EC {s, t}. This turns the MDP 
into a stopping one, where the states in F or Z are reached with probability 1 under any strategy. In such MDPs, there is a 
unique solution to the Bellman equations. Therefore, the greatest fixpoint is equal to the least one and thus to V.
(ii) We illustrate the issues that additionally arise for general SGs. It turns out that the collapsing approach can be extended 
only to games where all states of each EC belong to one player only [58]. In this case, both Maximizer’s and Minimizer’s 
ECs are collapsed the same way as in MDPs.

However, when both players are present in an EC, then collapsing may not solve the issue. Consider the SG of Fig. 3. 
Here α and β represent the values of the respective actions.7 There are three cases.

• First, let α < β . If the bounds converge to these values we eventually observe Gi(q, e) < Li(r, f ) and learn the induced 
inequality. Since p is a Minimizer’s state it will never pick the action leading to the greater value of β . Therefore, we 
can safely merge p and q, and remove the action leading to r, as shown in the second sub-figure

• Second, if α > β , p and r can be merged in an analogous way, as shown in the third sub-figure
• Third, if α = β , both previous solutions as well as collapsing all three states as in the fourth sub-figure is possible. 

However, since the approximations may only converge to α and β in the limit, we may not know in finite time which 
of these cases applies and thus cannot decide for any of the collapses.

Sketching the solution. Consequently, the approach of collapsing is not applicable in general. In order to ensure BVI conver-
gence, we suggest a different method, which we call deflating. It does not involve changing the state space, but rather de-
creasing the upper bound Ui to the least value that is currently provable (and thus still correct). To this end, we analyse the 
exiting actions, i.e. actions with successors outside of the EC, for the following reason: if the play stays in the EC forever, the 
target is never reached and Minimizer wins. Therefore, Maximizer has to pick some exiting action to avoid staying in the EC.

For the EC with the states s and t in Fig. 2, the only exiting action is c. In this example, since c is the only exiting action, 
Ui(t, c) is the highest possible upper bound that the EC can achieve. Thus, by decreasing the upper bound of all states in 
the EC to that number, we still have a safe upper bound. Moreover, with this modification BVI converges in this example, 
intuitively because now the upper bound of t depends on action c as it should. We choose the name “deflating” to evoke 
decreasing the overly high “pressure” in the EC until it equalizes with the actual “pressure” outside.

However, this does not lead to convergence of BVI yet. Consider for instance the SG in Fig. 3. It is correct to decrease the 
upper bound to the maximal exiting one, i.e. max{α̂, β̂}, where α̂ := Ui(a), β̂ := Ui(b) are the current approximations of α
and of β , but this itself does not ensure BVI convergence. Indeed, if for instance α̂ < β̂ then deflating all states to β̂ is not 
tight enough, as values of p and q can even be bounded by α̂ . In fact, we have to find a certain sub-EC that corresponds to 
α̂, in this case {p,q} and set all its upper bounds to α̂ . We define and compute these sub-ECs in the next section.

In summary, the general structure of our convergent BVI algorithm is to produce a sequence U by applying Bellman 
updates and occasionally finding the relevant sub-ECs and deflating them. The main technical challenge is that states in an 
EC in SGs can have different values, in contrast to the case of MDPs.

4. Convergent over-approximation

In Section 4.1, we characterize SGs where Bellman equations have more than one fixpoint. Based on this analysis, sub-
sequent sections show how to alter the procedure computing the sequence Gi over-approximating V so that the resulting 

7 Precisely, they represent a probabilistic branching with probability α (or β) to 1 and with the remaining probability to 0. For clarity, we omit this 
branching and depict only the value.
7
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tighter sequence Ui still over-approximates V, but also converges to V, which ensures convergence of BVI. Section 5 presents 
the learning-based variant of our BVI.

4.1. Bloated end components cause non-convergence

As we have seen in the example of Fig. 3, BVI generally does not converge due to ECs with a particular structure of the 
exiting actions. The analysis of ECs relies on the extremal values that can be achieved by exiting actions (in the example, α
and β). Given the value function V or just its current over-approximation Ui , we define the most profitable exiting action 
for Maximizer (denoted by �) and Minimizer (denoted by ©) as follows.

Definition 3 (bestExit). Given a set of states T ⊆ S and a function f : S → [0, 1] (and its equivalent on state-action pairs, see 
Footnote 6), the best exit according to f from T of Maximizer and Minimizer, respectively, is defined as

bestExit�f (T ) := max
s∈T�

(s,a) exits T

f (s,a)

bestExit
©
f (T ) := min

s∈T©
(s,a) exits T

f (s,a)

with the convention that max∅ = 0 and min∅ = 1.

Example 1 (Non-convergence). In the example of Fig. 3 on the left with T = {p, q, r} and α < β , we have bestExit�V (T ) = β

and bestExit
©
V (T ) = 1. It is due to β < 1 that BVI does not converge here. We generalize this in the following lemma. �

Lemma 1 (Multiple solutions). Let T ⊆ S \ F be an EC. For every m satisfying bestExit�V (T ) ≤ m ≤ bestExit
©
V (T ), there is a solution 

U : S → [0, 1] to the Bellman equations, which for all states in T is greater than m, and for at least one state is equal to m.

Proof. Intuitively, this lemma states the following: given an over-approximation that is greater than what T can actually 
achieve, but smaller than what Minimizer can certainly restrict to, Bellman updates (value iteration) will be stuck at the 
over-approximation. However, constructing the exact over-approximation where the iteration is stuck is technically involved.

Let m satisfy bestExit�VG
(T ) ≤ m ≤ bestExit

©
VG

(T ). Note that we explicitly added G in the index, as we will later construct 
a modified SG G′ and thus have to make clear to which SG we are referring to. We first construct a function from states 
to real numbers, then prove that it is greater than m for all states in T and afterwards that it is a solution to the Bellman 
equations, i.e. a fixpoint of applying Equations (3) and (4). Lastly, we show that it assigns exactly m to at least one state 
in T .

We obtain a modified SG G′ from the given SG G as follows: for every Maximizer state in T , add an action that leads to 
a target state with probability m and to a sink state with probability (1 − m). Intuitively, this allows all Maximizer states to 
actually achieve the over-approximation m in every state. Further, we have to treat the corner case of ECs that only consist 
of Minimizer states. If there is an EC T ′ ⊆ T© , then all states in T ′ also get an action leading to a target with m and to a 
sink with the 1 − m; moreover, all other actions of these states are removed. Let U := VG′ be the value function of G′ .

We now prove that for all states s ∈ T , it holds that U(s) = VG′(s) ≥ m. If s is a Maximizer state, then it has the newly 
added action with value m. Thus, the value in the modified SG8 of every s ∈ T� is at least m (but possibly higher9).

If s is a Minimizer state, we have to treat the corner case of an EC consisting only of Minimizer states. If s is in an EC 
T ′ ⊆ T© , then by construction it only has an action with value m, and thus its value is (at least) m. Finally, we consider the 
case of a Minimizer state which is not part of an EC T ′ ⊆ T© . We know that for all leaving actions (actions a� ∈ Av(s) with 
(s, a�) exits T ) it holds that

VG′(s,a�) ≥ VG(s,a�) ≥ bestExit
©
VG

≥ m

The first inequality holds, because in G′ we only added more possibility to reach the target, potentially increasing the value; 
note in particular that ECs with only Minimizer states actually have a value of 0. The second inequality follows from the 
definition of bestExit and the third from the choice of m.

8 For the remainder of this sub-proof of VG′ (s) ≥ m, we omit the phrase “in the modified SG” for ease of notation.
9 In the original paper [39], this lemma was wrong, since it claimed that the solution has to be constant on T . We provide a counter example. Consider 

the leftmost EC from Fig. 3. Let action e lead to a target with probability 1
2 and to r with probability 1

2 ; let β = 1
2 . Then we have V(r) = V(r, f ) = 1

2
and V(q) = V(q, e) = 1

2 + 1
2 · 1

2 = 3
4 . Note that the Minimizer state p prefers to go down using action c, as V(r) < V(q). The best exit is bestExit�V (T ) = 3

4 . 
However, picking m = 3

4 and setting U(q) = U(p) = U(r) = m is not a fixpoint of Bellman updates, because applying an update on q we have U(q, e) =
1
2 + 1

2 · m = 7
8 > m. This is why we adjusted the statement of the lemma to only require equality with m in at least one state in T , not all of them. This 

weaker claim still suffices to prove Corollary 1.
8
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Now we consider staying actions of s . Let X be the set of states that are reached by following Minimizer’s optimal staying 
actions starting from s . Formally, X is initialized to {s} and then for all s′ ∈ X© we recursively add arg min

a∈Av(s)
¬(s,a)exits T

Post(s, a). As 

T is finite and only states from T can be added (since we consider staying actions), X will converge. We analyze all cycles 
in X . If there is an EC X ′ ⊆ X© consisting only of Minimizer states, we already proved that its value is m. All other cycles 
have at least some probability to go to a Maximizer state, and we already proved that all Maximizer states in T have value 
at least m. So s has no other choice but to almost surely reach a Maximizer state or an EC consisting only of Minimizer 
states, both of which have value of at least m. Thus, for all actions of s we have proven that their value in the modified SG 
is at least m.

Now we show that U is a fixpoint applying Bellman updates in the original SG G . If in G′ a state depended on an 
action that is also available in G , applying one Bellman update will not change its value; this is because U was a fixpoint 
of applying Bellman updates in G′ . Thus we only have to prove that all states that depended on an action added in the 
modified SG do not change their value upon applying a Bellman update. Firstly consider a Maximizer state s ∈ T� . If 
U(s) > m, it would not depend on the newly added action, and hence we know that U(s) = m. As T is an EC, s has a 
staying action as with U(s, as) ≥ m, because all states in T have U of at least m. We also know that U(s, as) = m, because 
U(s) = m, and Maximizer would have used an action yielding more than m if it was available. So for every Maximizer state 
that previously used one of the newly added actions, it is optimal to choose a staying action and the estimate after one 
Bellman update is still m. Secondly consider a Minimizer state s ∈ T© . We only added an action for those if they were 
part of some EC T ′ ⊆ T© . For all states s′ ∈ T ′ we have U(s′) = m. Hence, by playing actions that stay in T ′ , Minimizer can 
achieve a U of m. It is the optimal choice for Minimizer to do this, because by assumption all exiting actions are worse 
(higher number) than m. In conclusion, applying a Bellman update on U in G will not change U, and thus it is a fixpoint.

Finally we prove that at least one state s ∈ T has U(s) = m. We already know U(s) ≥ m for all s ∈ T . Assume for 
contradiction that U(s) > m for all s ∈ T . Then no state would depend on one of the newly added actions. Thus, the values 
in G and G′ would be equal, and we would also have VG (s) > m for all s ∈ T . This is a contradiction, because the value of 
states in an EC can be at most bestExit�V (T ) ≤ m. So we conclude that there exists a s ∈ T with U(s) = m. �
Corollary 1. If bestExit

©
V (T ) > bestExit�V (T ) for some EC T , then G∗ �= V.

Proof. There are m1, m2 such that bestExit�V (T ) < m1 < m2 < bestExit
©
V (T ). By Lemma 1, for both there exists a solution to 

the Bellman equations U1 and U2. The solutions are distinct, as there always exists at least one state where U1(s) = m1 <

m2 ≤ U2(s).
Thus, there exist multiple fixpoints of Bellman updating. In particular, G∗ > L∗ = V, and BVI does not converge. �
In accordance with our intuition that ECs satisfying the above inequality should be deflated, we call them bloated.

Definition 4 (BEC). An EC T is called a bloated end component (BEC), if bestExit
©
V (T ) > bestExit�V (T ).

Example 2 (BEC). In the example of Fig. 3 on the left with α < β , the ECs {p,q} and {p,q, r} are BECs. �

Example 3 (Corner cases of bestExit). If an EC T has no exiting actions of Minimizer (or no Minimizer’s states at all, as in an 
MDP), then bestExit

©
V (T ) = 1 (the case with min∅). Hence all numbers between bestExit�V (T ) and 1 are a solution to the 

Bellman equations and G∗(s) = 1 for all states s ∈ T .
Analogously, if Maximizer does not have any exiting action in T , then it holds that bestExit�V (T ) = 0 (the case with 

max∅), T is a BEC and all numbers between 0 and bestExit
©
V (T ) are a solution to the Bellman equations. �

Note that in MDPs all ECs belong to one player, namely Maximizer. Consequently, all ECs are BECs except for ECs where 
Maximizer has an exiting action with value 1; all other ECs thus have to be collapsed (or deflated) to ensure BVI convergence 
in MDPs. Interestingly, all non-trivial ECs in MDPs are a problem, while in SGs through the presence of the other player 
some ECs can converge, namely if both players want to exit, which we illustrate in the subsequent example.

Example 4 (Unproblematic ECs). If in the example of Fig. 3 on the left p had an exiting action with value γ < min(α, β), then 
Minimizer’s best strategy is to pick the leaving action and ensure the smaller value. Consequently, Maximizer realizes that 
going to p is suboptimal, as both α and β are larger than γ . Thus all states depend on exiting actions, we have no cyclic 
dependencies and BVI converges. �

Our first theorem states that BECs are indeed the only obstacle for BVI convergence. To prove it, we need the following 
lemma.
9
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Lemma 2. If a set T ⊆ S does not contain an EC, then there exists a state s ∈ T , such that for all a ∈ Av(s) it holds that (s, a) exits T .

Proof. Let T ⊆ S be a set of states that does not contain an EC. Assume for contradiction that for all states s ∈ T there exists 
an action a , such that ¬(s, a) exits T . Then we can construct an EC as follows: let T ′ = {s} for some state s ∈ T . Then, for 
all states in T ′ add all successors of the actions that do not exit T to T ′ . Repeat this until a fixpoint is reached. This must 
happen, as T is finite and the actions are not exiting, i.e. only have successors in T . Now compute the strongly connected 
components of T ′ with only the staying actions. There has to be a non-trivial strongly connected component, because T ′
is connected and finite, and every state has at least one outgoing edge to another state in T ′ , so there exists a cycle. The 
strongly connected component forms an EC, which is a contradiction. Thus we know that for some state, all actions are 
leaving T . �

We will also sometimes use the contrapositive of this lemma, i.e. that if every state in a set T has at least one staying 
action, then T contains an EC.

Theorem 1 (Convergence without BECs). If an SG contains no non-trivial BECs, i.e. no BECs in S \ (F ∪ Z), then G∗ = V, i.e. value 
iteration from above converges to the value in the limit.

Proof (Structure). We first give the general idea of the proof.
We assume towards a contradiction, that there is some state s with a positive difference G∗(s) − V(s) > 0. Then we will 

look at the set of states X that have the maximal difference and prove the following.

No state in X “depends on the outside”. (5)

This means that for all states in X , the best action must not have successors outside of X . Best action means that it 
minimizes V for Minimizer states and maximizes G∗ for Maximizer states.

Then, using a case distinction over the possible graph structures of X , we show that the only way to satisfy Statement 
(5) is that we have an EC Z ⊆ X where the best action for every state is not exiting Z . However, this implies that Z is a 
BEC (and in fact even a simple end component, which will be introduced in the next section). This is a contradiction to the 
assumption that the game is BEC-free, and thus proves our goal.

Proof (Complete). We denote the difference in a state by (s) := G∗(s) −V(s). We also use (s, a), see Footnote 6. Assume 
for contradiction there exists a state s ∈ S with positive difference (s) > 0.

Let X := {s ∈ S | (s) = max
s∈S

(s)} denote the set of all states with maximal difference. Note that by assumption of 

there being a state with positive difference, X is non-empty and for all s ∈ X we have (s) > 0. By definition, we require 
V(1) = G∗(1) = 1 for every 1 ∈ F. Hence, (1) = 0 and thus, F ∩ X = ∅. Analogously, it holds that Z ∩ X = ∅. Hence we 
know that X ⊆ S \ (F ∪Z).

We will now prove that no state in X “depends on the outside”, i.e.

∀(s,a)exits X :
{

G∗(s,a) < G∗(s) if s ∈ X�
V(s,a) > V(s) if s ∈ X©

(5)

To prove Statement (5), first observe the following:

∀(s,a)exits X : (s,a) < (s). (6)

This holds, because if (s, a) exits X , then ∃t ∈ Post(s, a) \ X . Since t /∈ X , (t) < (s). Then the following chain of equations 
proves Statement (6):

(s,a) := G∗(s,a) − V(s,a) (Definition of )

=
∑
s′∈S

δ(s,a, s′) · (G∗(s′) − V(s′)) (Definition of V and G, pulling together the sums)

=
∑
s′∈S

δ(s,a, s′) · (s′) (Definition of )

< (s)

The last inequality holds, since δ(s, a, t) > 0 and (t) < (s), so there is one summand that is smaller than (s); also, 
(s) is the maximum difference, so there can be no larger summand to make up for the loss.
10
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Fig. 4. An example of an SG where all the sets in the proof of Theorem 1 are different. Numbers on exiting arrows denote values, see Footnote 7. Every 
state is inscribed with V/G.

Now we can prove Statement (5) with the following chain of equations:

G∗(s,a) − V(s,a) = (s,a) (Definition of )

< (s) (Using Statement (6))

= G∗(s) − V(s) (Definition of )

≤
{

G∗(s) − V(s,a) if s ∈ S�
G∗(s,a) − V(s) if s ∈ S©

The last inequality holds since for every available action a and for s ∈ S� : V(s) ≥ V(s, a), as Maximizer uses the maximum 
action, and dually for s ∈ S© : G∗(s) ≤ G∗(s, a). Simplifying the inequation yields Statement (5).

Now we make a case distinction over the possible graph structures of X and use Statement (5) and Lemma 2 to derive 
a contradiction.

• If X does not contain an EC,
then by Lemma 2 there exists a state s ∈ X , such that for all a ∈ Av(s) we have (s, a) exits X . Thus, this state “depends 
on the outside”, which by Statement (5) yields a contradiction. Formally, if s ∈ X� , we have that ∀a ∈ Av(s) : G∗(s, a) <
G∗(s), because all actions exit X and Statement (5). However, by definition G∗(s) = maxa∈Av(s) G∗(s, a), so there has to 
be an equality for some action. The argument works analogously for a Minimizer state s ∈ X© .

• If X contains an EC,
we need to make further steps. States can have a large difference just by depending on a BEC. Our further steps will 
allow us to find a BEC inside X . See Fig. 4 for an example of a game where all the sets we introduce in the following 
are different.
We now need the notion of bottom MEC. When talking about the whole game, bottom MECs are defined as MECs 
without leaving actions. However, we need the notion of bottom MEC in X . Formally, this requires that every successor 
of an action leaving the bottom MEC reaches a state outside of X with positive probability under all pairs of strategies. 
Intuitively, a bottom MEC in X is a MEC, such that after leaving it, there is no other MEC in X . They are computed by 
computing the MEC decomposition of X , ordering the MECs topologically and picking one at the end of a chain.
Let X ′ ⊆ X be a bottom MEC in X . X ′ exists, because by assumption X contains an EC, so there also is an EC that is 
bottom in X . If X ′ was a MEC at the end of the topological ordering of MECs in X , but not bottom, that would mean 
that there is a successor state s′ of some action exiting X ′ , such that there is a pair of strategies under which the 
play from s′ surely remains in X . This would imply that s′ can reach an EC inside X , which is a contradiction to the 
assumption that X ′ is at the end of the topological ordering of MECs in X .
Let m = maxs∈X ′ G∗(s) be the maximum upper bound in X ′ , and let Y := {s | s ∈ X ′ ∧ G∗(s) = m} be the states with 
that maximum upper bound.
∀s ∈ Y , ∃a ∈ Av(s) : ¬(s, a) exits Y , i.e. all states in Y have actions that stay in Y . We prove this by a case distinction 
over where the actions of Y can exit to. Let s ∈ Y be an arbitrary state. There has to be some action am with G∗(s, am) =
G∗(s) = m. We say that action am exits X towards a set of states T , if (s, am) exits X and some successor of the action 
is in T .
– Action am cannot exit towards S \ X . Otherwise, s would “depend on the outside” and we get a contradiction as in 

the case of X not containing an EC.
11
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– No action can exit towards X \ X ′ , because X ′ is a bottom MEC in X . If an action left towards some state t ∈ X \ X ′ , 
then from t there would be no reachable EC in X . Hence, by Lemma 2, the states that t can reach must contain some 
state that only has actions exiting X , which yields a contradiction as in the case of X not containing an EC.

– am cannot exit towards X ′ \ Y , as by definition of Y all states s′ ∈ X ′ \ Y have G∗(s′) < m.
– The only remaining possibility is that am stays in Y .
Let Z ⊆ Y be a bottom MEC in Y . Z exists, since by the previous step all states in Y have actions staying in Y , and by 
the contrapositive of Lemma 2 this implies the existence of a MEC in Y.
Note that for all states s ∈ Z we have V(s) = m − c, where c = maxs∈S (s), as Z ⊆ Y and Z ⊆ X . So in fact, Z is a 
simple EC, which will be introduced in the next subsection. This fact is relevant for the proof of Theorem 2.
We now prove that Z is a BEC by a case distinction on the bestExit of Maximizer.
– If bestExit�G∗(Z) > m,

then the Maximizer state s that has this exit would use it to get G∗(s) > m. However, we know that G∗(s) = m, so 
this is a contradiction.

– If bestExit�G∗(Z) = m,
then let (s, a�) be a state-action pair, such that s ∈ Z� , (s, a�) exits Z and G∗(s, a�) = G∗(s) = m. This pair exists by 
the assumption that there is an exit of Maximizer from Z that achieves m. However, we showed earlier, that such an 
action a� can only stay in Y (note that Z ⊆ Y , thus the earlier case distinction fully applies). Since (s, a�) exits Z , we 
know that there is a successor of that state-action pair in Y \ Z . This is a contradiction, because Z is a bottom MEC 
in Y . The argumentation is analogous to that of an action exiting Y towards X \ X ′ .

– If bestExit�G∗(Z) < m,
first note that we are not done yet, because the case distinction talks about bestExitG∗ , while the definition of BEC
uses bestExitV . We still need to show that the true value of Minimizer’s best exit is higher than the true value of 
Maximizer’s one. There are two possibilities, depicted in Fig. 4 as Z1 and Z2.
∗ If there are ©-exits,

then let (s, a�) be the minimal ©-exit, i.e. the state-action pair with s ∈ Z© and (s, a�) exits Z with V(s, a�) =
bestExit

©
V (Z). We know that (s, a�) cannot exit towards X \ X ′ or Y \ Z , by the same bottom MEC argumentation as 

before. It cannot exit towards X ′ \ Y , because then G∗(s, a�) < m = G∗(s), but Minimizer uses the minimal available 
action. Thus, it exits towards S \ X , i.e. (s, a�) exits X . Then, by Statement (5) we know that V(s, a�) > V(s). Recall 
that all states in Z have the same value. Additionally, for all s′ ∈ Z�, a′ ∈ Av(s′) we have V(s′) ≥ V(s′, a′) since 
Maximizer picks the best action. Let (s′, a′) be the state-action pair used for bestExit�V (Z). Then we know that Z is 
a BEC by the following inequation chain:

bestExit
©
V (Z) = V(s, a�) > V(s) = V(s′) ≥ V(s′, a′) = bestExit�V (Z).

∗ If there are no ©-exits,
then bestExit

©
V = 1, since min∅ = 1. Hence, by Lemma 1, m = 1. Recall that in the case distinction we assumed 

bestExit�G∗(Z) < m. Thus Z is a BEC, since

bestExit
©
V (Z) = 1 = m > bestExit�G∗(Z) ≥ bestExit�V (Z).

The fact that Z is a BEC is a contradiction to the assumption of the theorem that the SG contains no non-trivial BECs, 
as Z ⊆ S \ (F ∪Z). Thus we arrive at a contradiction in all cases, and Theorem 1 is proven. �

In Section 4.2, we show how to eliminate BECs by collapsing their “core” parts, called below MSECs (maximal simple 
end components). Since MSECs can only be identified with enough information about V, Section 4.3 shows how to avoid 
direct a priori collapsing and instead dynamically deflate candidates for MSECs in a conservative way.

4.2. The core of the problem: simple end components

Now we turn our attention to SG with BECs. In a BEC all Minimizer’s exiting actions have a higher value than what 
Maximizer can achieve; hence, Minimizer will not use exiting actions, but prefers staying in the EC and steering Maximizer 
towards his worse exiting actions. Consequently, only Maximizer wants to take an exiting action.

Intuitively, solving a BEC amounts to computing the attractors of Maximizer’s exits, i.e. those states that can reach an 
exit if Minimizer plays optimally. All states in such an attractor have the same value, namely that of the best exit they can 
reach. Thus, we define the following sub-component.

Definition 5 (Simple EC). An EC T is called simple end component (SEC), if for all s ∈ T we have V(s) = bestExit�V (T ).
A SEC T is maximal (MSEC) if there is no SEC T ′ such that T � T ′ .

To give another intuition: an EC is simple, if Minimizer cannot keep Maximizer away from his bestExit. Independently 
of Minimizer’s decisions, Maximizer can reach the bestExit almost surely, unless Minimizer decides to leave, in which case 
Maximizer would achieve an even higher value.
12
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Algorithm 2 FIND_MSEC.
1: function FIND_MSEC( f : S → [0, 1])
2: Av′ ← Av
3: for s ∈ S© do # Keep only optimal actions for Minimizer

4: Av′(s) ← {a ∈ Av(s) | f (s, a) = minb∈Av(s) f (s, b)}
5: return MEC(G[Av/Av′ ]) # MEC(G[Av/Av′ ]) are MSECs of the original G

In the MDP case, every EC is simple, as Maximizer can decide to use any exit. As a result, in MDPs all states of an EC 
have the same value and can all be collapsed into one state. In the SG case, Maximizer may be restricted by Minimizer’s 
behaviour or even not given any chance to exit the EC at all. As a result, a BEC may contain several parts, each with different 
value, intuitively corresponding to different exits. Thus instead of MECs, we have to decompose into finer MSECs and only 
collapse these.

Example 5 (SECs). Assume α < β in the example of Fig. 3. Then {p, q} is a SEC and an MSEC. Further observe that action 
c is sub-optimal for Minimizer and removing it does not affect the value of any state, but simplifies the graph structure. 
Namely, it destructs the whole EC into several (here only one) SECs and some non-EC states (here r). �

Lemma 3 (SECs are the core of the problem). For a set T ⊆ S, the following two statements hold.

1. If T is a BEC, then there exists a T ′ ⊆ T such that T ′ is a SEC.
2. If T is a SEC, then either T also is a BEC or bestExit

©
V (T ) = bestExit�V (T ).

Proof. 1. Let τ be an optimal strategy of Minimizer. If T ⊆ S is a BEC, then bestExit
©
V (T ) > bestExit�V (T ), so the optimal 

strategy of Minimizer does not contain any exiting actions, or formally for all (s, a) exits T with s ∈ T© , we have 
τ (s)(a) = 0. Hence, every state in the MDP Gτ induced by fixing an optimal Minimizer strategy has an available staying 
action, and thus it still contains an EC T ′ ⊆ T , by the contrapositive of Lemma 2.
Note that T ′ can be a subset of T , if Minimizer restricts the game to a part of the EC, as in Example 5.

2. Let T ⊆ S be a SEC. Note that our goal is equivalent to showing

bestExit
©
V (T ) ≥ bestExit�V (T ),

as that means either the two numbers are equal, or the best Minimizer exit is greater and thus T is a BEC.
If there is no Minimizer exit, we have bestExit

©
V (T ) = 1 ≥ bestExit�V (T ), using the convention that min∅ = 1 and the fact 

that no probability can be greater than 1.
If on the other hand there is a Minimizer exit, then let (s, a) be the best Minimizer exit. Then the following chain of 
equations proves our goal:

bestExit
©
V (T ) = V(s,a) (By (s,a) being the best Minimizer exit)

≥ V(s) (By definition of V(s) (Equation (1)))

= bestExit�V (T ) (As T is a SEC)

�
So SECs are the core of the problem, as by Theorem 1 BECs are the reason for non-convergence, and by Lemma 3 every 

BEC contains a SEC. As all states in a SEC have the same value, they are easy to treat; we can even collapse them as in 
MDPs without changing the value.

Thus, we need to find SECs. Algorithm 2, called FIND_MSEC, shows how to compute the inclusion maximal MSECs. It 
returns the set of all MSECs if called with parameter V. However, as we want to compute the value and hence cannot 
assume to know it, later we also call this function with other parameters f : S → [0, 1].

The idea of the algorithm is the following: Minimizer actions with a non-minimum value cannot be part of any SEC and 
thus should be ignored when identifying SECs. Hence, we construct the set of available actions Av′ which does not contain 
non-minimum Minimizer actions. (The previous example illustrates that ignoring these actions is indeed safe as it does not 
change the value of the game.) We denote the game G where the available actions Av are changed to the new available 
actions Av′ (ignoring the Minimizer’s sub-optimal ones) as G[Av/Av′] . Once removed, Minimizer has no choices to affect the 
outcome of the game and thus every remaining EC is simple. Another intuition for this is that we fix Minimizer’s strategy 
to be optimal according to f and then compute the ECs in the resulting MDP.

Lemma 4 (Correctness of Algorithm 2). T ∈ FIND_MSEC(V) if and only if T is an MSEC.
13
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Proof. Direction ⇒ We want to show: T ∈ FIND_MSEC(V) =⇒ T is an MSEC. Let T ∈ FIND_MSEC(V). So T is a 
MEC of the game where the mapping of available actions is Av′ . Hence for all s ∈ T©, a ∈ Av′(s) we have V(s, a) =
minb∈Av(s) V(s, b) = V(s). We now show that for all s ∈ T we have V(s) = bestExit�V (T ).

• If there is no exit for Maximizer, then bestExit�V (T ) = 0, and all states in T have the value 0, since Minimizer can force 
the game to stay inside the EC forever.

• If there is an exiting state e for Maximizer, then also from each state in T there is a path using only states in T
to e. For each state s ∈ T we can compute V(s) by recursively applying the Bellman equations. In each application, 
we choose an action that leads us closer to e, i.e. for t being the next state on the path to e, choose a such that 
V(s, a) = δ(s, a, t) · V(t) +∑

s′∈Post(s,a)\{t} δ(s, a, s′) · V(s′). Since for each state in T we have a path to e, we can replace 
every V(s′) in this way. By repeating this and thereby multiplying all the probabilities δ(s, a, t), the factor in front of 
the terms that do not contain V(e) approaches 0, and thus we get V(s, a) = V(e) for an arbitrary s ∈ T and a staying 
action a . Since we showed before that for Minimizer all actions have the same value, all Minimizer states have as value 
V(e). Maximizer can certainly achieve V(e) by picking the action with the maximal value. Maximizer cannot achieve 
more than V(e), because this is defined to be the best exit from the EC, and thus the best value that can be achieved 
from any state in the EC.

Since T is a MEC of the game with some available actions removed, it certainly is an EC in the original game. Thus, from 
this and the previous argument, we know that T is a SEC.

T is inclusion maximal, because if there was some T ′ � T , such that T ′ is a SEC, then there exists some state s ∈ T ′ \ T
with all staying actions of this state having the value bestExit�V (T ). If it is a Minimizer’s state, it cannot have a lower exit 
available, because otherwise T ′ would not be a SEC. Thus no staying action of s is removed by Line 4, and it should also be 
part of the MEC in the modified game. This contradicts the assumption that s /∈ T , and thus T is an MSEC.
Direction ⇐ Let T be an MSEC. We need to show that T is a MEC of the game where the mapping of available actions is 
Av′ .

We first show that T is an EC in the modified game. Since T is an EC in the original game, there exists a B such that 
for each s ∈ T , a ∈ B ∩ Av(s) we do not have (s, a) exits T by the first condition of Definition 2. Moreover, B ∩ Av(s) is 
non-empty, as otherwise there could not be a path starting in s and using only actions from B , see the second condition of 
Definition 2. Hence for all s ∈ T , a ∈ B ∩ Av(s) the following holds.

V(s,a) :=
∑
s′∈S

δ(s,a, s′) · V(s′) (by definition of V (s,a) (Equation (2)))

=
∑
s′∈S

δ(s,a, s′) · bestExit�V (T ) (since s′ ∈ T and T is simple)

= bestExit�V (T )

So every action that stays in T (i.e. does not exit T ), in particular every action in B , is not removed from the game, because 
for all s ∈ T , a ∈ Av(s), ¬(s, a) exits T we have V(s) = bestExit�V (T ) = V(s, a). The first equality comes from T being an 
MSEC, the second is what we have just shown.

Since no action in B is removed from the game and T is still an EC after the removal, T is inclusion maximal by the 
same argumentation as at the end of the ⇒ case, and thus T ∈ FIND_MSEC(V). �
Remark 1 (Hypothetical algorithm with an oracle). In Section 3, we have seen that collapsing MECs does not ensure BVI 
convergence on SGs. Collapsing does not preserve the values, since in BECs states with different values would be collapsed. 
Hence we only want to collapse MSECs, where the values are the same. If we collapse all MSECs of a game G , the resulting 
game G′ does not contain any BECs (as by Lemma 3 every BEC contains a SEC), and hence by Theorem 1 BVI converges. 
Using a similar argument as the correctness of collapsing in MDPs [11], we could show that the values in G′ are equivalent 
to those in G .

However, the difficulty with this algorithm is that it requires an oracle to compare values, for instance a sufficiently 
precise approximation of V. Consequently, we cannot pre-compute the MSECs, but have to find them while running BVI.

But since the approximations converge only in the limit we may never be able to conclude on simplicity of some ECs. 
For instance, if α = β in Fig. 3, and if the approximations converge at different speeds, then Algorithm 2 always outputs 
only a part of the EC, although the whole EC on {p,q, r} is simple.

4.3. Deflating simple end components

Since MSECs cannot be identified from approximations of V for sure, we refrain from collapsing10 and instead only 
decrease the over-approximation in a conservative way. We call the method deflating, by which we mean decreasing the 

10 Our subsequent method can be combined with local collapsing whenever the lower and upper bounds on V are conclusive.
14



J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886
Algorithm 3 DEFLATE.
1: function DEFLATE(State set T , f : S → [0, 1])
2: for s ∈ T do
3: f (s) ← min( f (s), bestExit�f (T )) # Decrease the upper bound

4: return f

Algorithm 4 UPDATE procedure for bounded value iteration on SG.
1: procedure UPDATE(L : S → [0, 1], U : S → [0, 1])
2: L, U get updated according to Eq. (3) and (4) # Bellman updates

3: for T ∈ FIND_MSEC(L) do # Use lower bound to find ECs
4: U ← DEFLATE(T , U) # and deflate the upper bound there

upper bound of all states in an EC to its bestExit�U , see Algorithm 3. The procedure DEFLATE (called on the current upper 
bound Ui ) decreases this upper bound to the minimum possible value according to the current approximation and thus 
prevents states from only depending on each other, as in SECs.

Overall, we want to gradually approximate SECs and perform the corresponding adjustments, but we do not commit to 
any of the approximations by collapsing and thus definitively changing the game graph.

Lemma 5 (DEFLATE is sound). For any f : S → [0, 1] such that f ≥ V (where ≥ is point-wise comparison) and any state-set T ⊆ S, 
it holds that DEFLATE(T , f ) ≥ V.

Proof. Let T ⊆ S and f : S → [0, 1] be such that f ≥ V. We reformulate the goal to saying that for all states s ∈ T it holds 
that min( f (s), bestExit�f (T )) ≥ V(s).
This is equivalent to our goal, because the change in Line 3 is the only change Algorithm 3 applies and because the com-
parison of the functions DEFLATE(T , f ) and V is point-wise.

If in Line 3 of DEFLATE the expression min( f (s), bestExit�f (T )) gets evaluated to f (s) or if f (s) = bestExit�f (T ), by 
assumption of f ≥ V the goal trivially holds.

If f (s) > bestExit�f (T ), the following chain of equations proves our goal:

DEFLATE(T , f )(s) = bestExit�f (T )

≥ bestExit�V (T ) (Since f ≥ V)

≥ V(s) (Since no state can achieve a greater value than the best exit)

�
Using DEFLATE, we can define an improved UPDATE procedure which makes the BVI algorithm (Algorithm 1) converge. 

The difference to the standard update are the additional lines 3 and 4. After the usual Bellman updates in Line 2, we 
compute the MSEC candidates according to the current under-approximation in Line 3. Then for every MSEC candidate, the 
upper bound is deflated in Line 4. Since DEFLATE is sound, the upper bound always remains a correct over-approximation. 
Intuitively, the over-approximation converges, because L converges to the value in the limit, and thus we eventually find 
the correct MSECs and deflate them.

The main loop of Algorithm 1 using Algorithm 4 as UPDATE describes an operator B : ([0, 1]S , [0, 1]S ) → ([0, 1]S , [0, 1]S ), 
i.e. given two functions from states to [0, 1], it computes two updated versions of these functions. In order to prove the 
correctness and termination of Algorithm 1 using Algorithm 4 as UPDATE, we first prove that the sequence of upper bounds 
converges to a fixpoint.

Lemma 6 (Upper bound converges to a fixpoint). The limit of repeatedly applying the operator B to the initial lower and upper bound 
exists and is a fixpoint of the operator B, i.e. limi→∞ Bi(L0, U0) = B

(
limi→∞ Bi(L0,U0)

)
.

Proof. On a high level, the proof amounts to phrasing the problem so that the Kleene fixpoint theorem is applicable. 
Concretely, we follow the proof of [27, 8.15 CPO Fixpoint Theorem I.], adjusting some details to fit our setting.

We consider the domain [0, 1]
∣∣S∣∣ × [0, 1]

∣∣S∣∣
, i.e. every element consists of two functions from states to real numbers, the 

under- and over-approximation. We say (L1, U1) � (L2, U2) if and only if both L1 ≤ L2 and U1 ≥ U2 with component-wise 
comparison. Intuitively, an element on the right side of � is a more precise approximation. The bottom element of the do-
main is (�0, �1), where �a denotes the function that assigns a to all states. We further restrict the domain to exclude elements 
of the domain that are trivially irrelevant for the computation. Concretely, we exclude all tuples (L, U) where L(s) < 1 for a 
target state s ∈ F or U(s) > 0 for a state with no path to the target s ∈ Z . Then the bottom element is ⊥ = (L0, U0), where 
L0(s) is 1 for target states and 0 everywhere else, and U0(s) is 0 for states in Z and 1 everywhere else. Note that these are 
the vectors that we have before the first iteration of the main loop of Algorithm 4. The comparator � induces a complete 
15
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partial order over the domain, as we have a bottom element, and as every directed subset has a supremum; the latter claim 
holds, because � reduces to component-wise comparisons between real numbers from [0, 1], where suprema exist. For 
more details on the definition of directed set and complete partial orders, we refer to [27, Definition 7.7] respectively [27, 
Definition 8.1].

We prove several facts about B that we need for the final argument. B first applies Bellman updates and then addi-
tionally deflates the over-approximation. Bellman updates are monotonic (see Section 2.3) and deflating is monotonic, as in 
Line 3 of Algorithm 3 we take the minimum of the current value and the best exit. Thus for all i and every pair of approx-
imations (L, U) we have Bi(L, U) ≤ Bi+1(L, U). Intuitively, applying B can only make the approximations more precise. It 
follows that

⊥ � B(⊥) � · · · � Bi(⊥) � Bi+1(⊥) � . . .

form an ascending chain. Since the domain with � is a complete partial order, we know that

lim
i→∞

Bi(⊥) = sup
i≥0

Bi(⊥), (7)

and that the supremum exists.
We now argue that B eventually is continuous. Bellman updates are continuous (see Section 2.3). Applying Bellman 

updates to the lower bound converges to the true value V, see e.g. [18]. Thus, after a finite number of steps n the optimal 
actions of Minimizer according to L do not change any more, because the lower approximation has converged enough such 
that Ln of every suboptimal action is larger than Ln of every optimal action. In case of multiple optimal actions, one of 
them might converge at slower speed, and only some optimal action is selected, not all of them. Still, the selected actions 
stay constant for every n′ ≥ n. This implies that we always find and deflate the same ECs. Thus deflating an EC T simplifies 
to applying a Bellman update on the whole T , updating every over-approximation to the best exit. Thus, for every n′ ≥ n, 
deflating is also continuous. Since we argue about behaviour in the limit, it suffices that B is eventually continuous.

Then we can conclude:

B( lim
i→∞

Bi(L0,U0)) = B(sup
i≥0

Bi(⊥)) (Definition of ⊥ and Equation (10))

= sup
i≥0

B(Bi(⊥)) (The supremum is certainly larger than Bn, thus B is continuous.)

= sup
i≥1

Bi(⊥)

= sup
i≥0

Bi(⊥) (since ⊥ ≤ Bn(⊥) for all n)

= lim
i→∞Bi(L0,U0) (Definition of ⊥ and Equation (10))

�
Remark 2. Lemma 6 was assumed without justification in the conference version of the paper, as it relies on standard 
methods from lattice theory and seemed obvious. However, there is one surprising complication: the operator B is not 
continuous in general. This is because the algorithm deflates SEC-candidates, and these candidates vary depending on the 
current under-approximation. A state might be part of a SEC-candidate for a less precise under-approximation, but not 
be part of a SEC-candidate for a more precise under-approximation. In the first case it is deflated and its upper bound 
decreased. In the second case, it is not deflated and its upper bound stays. This violates continuity, since the upper bound 
in the first case is more precise, even though the element of the domain was more precise in the second case. This is why 
we argue about eventual continuity in the proof of Lemma 6.

Theorem 2 (Soundness and completeness). Algorithm 1, using Algorithm 4 as UPDATE, produces monotonic sequences L under- and 
U over-approximating V, and terminates for every ε > 0.

Proof. We denote by Li and Ui the lower/upper bound function after the i-th call of UPDATE. Li and Ui are monotonic 
under- respectively over-approximations of V because they are updated via Bellman updates, which preserve monotonicity 
and the under-/over-approximating property (this can be shown by a simple induction), and from Lemma 5.

Note that UPDATE, FIND_MSEC and DEFLATE take finite time, as all the for-loops in the algorithms iterate over finite 
sets. So it remains to prove that the main loop of Algorithm 1 terminates, i.e. that for all ε > 0 there exists an n such that 
Un(s0) − Ln(s0) < ε. It suffices to show that limn→∞ Un − V = 0, because limn→∞ Ln = V (from e.g. [18]).

In the following, let U∗ := limn→∞ Un and (s) := U∗(s) − V(s); we also use (s, a), see Footnote 6. Assume for con-
tradiction that the algorithm does not converge, i.e. there exists a state with (s) > 0.

The rest of the proof is structured as follows.
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Step 1 From (s) > 0 we derive that there has to be a SEC Z by using an analogue of the proof of Theorem 1.
Step 2 Then we show that by applying one more iteration of the loop of Algorithm 1, a SEC Z ′ ⊆ Z is found and deflated, 

thereby decreasing the upper bound.
Step 3 This is a contradiction, because by Lemma 6, U∗ is a fixpoint. Thus we get that for all s ∈ S we have (s) = 0 and 

hence convergence from above.

The full technical proof follows.

Step 1 We reuse parts of the proof of Theorem 1 to prove that there exists a SEC Z . Note that as before when proving 
Theorem 1, we have the assumption that there exists a state with (s) > 0.
The difference is, that instead of the greatest fixpoint G∗ we use limit of the upper bound computed by our algorithm 
U∗ . We prove the analogue of Statement (5).

∀(s,a)exits X :
{

U∗(s,a) < U∗(s) if s ∈ X�
V(s,a) > V(s) if s ∈ X©

The only argument that we need to adjust is that for the fact: ∀s ∈ S�, a ∈ Av(s) : U∗(s) ≥ U∗(s, a). For a Bellman 
update this property holds, as the upper bound of a state is always the maximum upper bound of all its actions.
The additional deflating does not violate the property. Deflating is only executed if s ∈ Z for some EC Z that was found 
by the latest call of FIND_MSEC. It sets U(s) = bestExit�U (Z). For actions staying inside Z , all successors have the same 
upper bound, namely bestExit�U (Z). Thus all staying actions a satisfy bestExit�U (Z) = U(s) = U(s, a). No exiting action 
a can have U(s, a) > bestExit�U (Z), because then by definition of bestExit we would have U(s, a) = bestExit�U (Z). So all 
exiting actions satisfy U(s) = bestExit�U (Z) ≥ U(s, a). As every application of deflating preserves the property, it also 
transfers to U∗ .
Then, using the analogue of Statement (5) and Lemma 2, we can construct the sets X , X ′ , Y and Z as before. All states 
in Z have the same value, as noted already in the proof of Theorem 1. This implies that Z is a SEC, as the only possible 
value for the states is bestExit�V (Z). If there is no Maximizer exit, the value of all states as well as bestExit�V (Z) is 0. 
If there is a Maximizer exit, let (s, a) be the best exit. Then V(s) ≥ V(s, a) = bestExit�V (Z), and an EC cannot have a 
higher value than that of its best Maximizer exit.

Step 2 Applying one more iteration of the loop of Algorithm 1, i.e. calling UPDATE once more, finds an EC Z ′ ⊆ Z . This is the 
case, because after some finite number of steps Li is close enough to V such that the following holds: ∀s ∈ Z©, (s, a)

exits Z : Li(s, a) > Li(s). This will happen, because all ©-exits from Z lead towards S \ X , and hence by Statement 
(5), we have V(s, a) > V(s). So from some point onward, for all i′ ≥ i, we have Li′(s, a) > V(s) ≥ Li′ (s). Then, when 
computing FIND_MSEC(Li′ ), all actions exiting Z are removed and the MECs of the modified game are computed. This 
will result in finding an EC Z ′ ⊆ Z , because every state has to have at least one action, and all actions have to stay 
inside Z .
Z ′ can be a strict subset of Z , for example if the BEC looks as depicted in Fig. 3 and α = β , but Li′(q, e) �= Li′ (r, f ) for 
all i′ , because they converge at different speeds. However, this poses no problem for the convergence of our algorithm; 
intuitively, after Z ′ is deflated, the states from Z \ Z ′ adjust their upper bounds according to their best exit, as going to 
Z ′ is suboptimal.
When calling UPDATE once more on U∗ , we can instantiate L with some Li that is such that we find Z ′ ⊆ Z (by previous 
arguments). Since Z ′ is returned by FIND_MSEC(Li), the algorithm executes DEFLATE(Z ′, U∗). Then for all s ∈ Z ′ we 
set U∗

new(s) = bestExit�U∗(Z ′), thereby decreasing the upper bound and yielding the contradiction bestExit�U∗ (Z ′) < U∗(s), 
because of the following argument.
There have to be �-exits. If there were no �-exits in Z ′, then for all i we have bestExit�Ui

(Z ′) = 0 (the case of max∅), 
and hence (s) would be 0; however, since Z ′ ⊆ X , it has to hold that (s) > 0. Let (se, ae) be one of the best �-exits, 
i.e. U∗(se, ae) = bestExit�U∗(Z ′). Using Statement (5), we know that U∗(se, ae) < U∗(se).

Step 3 Finally, we get U∗
new(se) = bestExit�U∗(Z ′) = U∗(se, ae) < U∗(se). This is a contradiction, because by Lemma 6 U∗ is a 

fixpoint, but applying one more update yields a smaller U∗
new.

Hence our assumption that there was some state with a positive difference is wrong, and thus BVI also converges from 
above. Thus, the algorithm will terminate for every ε > 0. �

The story so far:

1. Using only Bellman updates on an over-approximation need not converge to the value (see Corollary 1).
2. Since maximal ECs can have non-constant values, instead we have to focus on maximal simple ECs. Collapsing those 

allows BVI to converge (see Remark 1).
3. As we cannot find maximal simple ECs without knowing a close enough approximation of the value, we identify candi-

dates for simple ECs on the fly and gradually deflate them (see Algorithm 4).
4. This is correct, because deflating is sound, and it converges, because we eventually find the correct maximal simple ECs 

and deflate them (see Theorem 2).
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Algorithm 5 Update procedure for the learning/BRTDP version of BVI on SG.
1: procedure UPDATE(L : S → [0, 1], U : S → [0, 1])

# Simulating
2: ρ ← s0
3: repeat
4: s′ ← sampled as successor of the last state in ρ
5: ρ ← ρ s′
6: until s′ ∈ F or SIMULATION_STUCK

# Deflating
7: if SIMULATION_STUCK then
8: for T ∈ FIND_MSECρ (L) do
9: DEFLATE(T , U)

# Bellman updates
10: L, U get updated by Eq. (3) and (4) on all states s ∈ ρ

5. Learning-based algorithm

State spaces of systems in model checking often are very large, so that standard algorithms take too long; the state space 
might be so large that it doesn’t even fit onto memory. To tackle this problem, we harvest our convergence results and BVI 
algorithm for SGs to extend the asynchronous learning-based approach of BRTDP (bounded real time dynamic programming) 
to SGs.

Asynchronous value iteration selects in each round a subset T ⊆ S of states and performs the Bellman update in that 
round only on T . Consequently, it may speed up computation if “important” states are selected, i.e. states that have a high 
probability to be visited and where the current error still is large. However, using standard VI one does not know the current 
error and thus cannot estimate the importance of the states; moreover, if certain states are not selected infinitely often the 
lower bound may not even converge.

In the setting of bounded value iteration, the current error bound is known for each state and thus convergence can 
easily be enforced. This gave rise to algorithms such as BRTDP in the setting of stopping MDPs [51], where the states are 
selected as those that appear on a simulation run. Very similar is the adaptation for general MDP [11, Section 4.1].

These algorithms in principle still have access to every parameter of the model, e.g. the exact transition function for 
every state-action pair. The advantage is that they are based on partial exploration, i.e. they try to avoid working on the 
whole state space by only considering those states that were encountered in simulations. This allows to work on the “core” 
of the model, which typically is much smaller than the whole state space [41]. Still, in the worst case the whole state space 
might be explored. Note that there are variants of the algorithms which do not know the transition function, but only the 
minimum transition probability for MDPs [11, Section 4.2] and for SGs [6].

Algorithm 5 shows the pseudocode for the BRTDP version of UPDATE. After describing the algorithm, we illustrate it as 
well as its advantages on several examples. Then we explain how some parts of the algorithm can be improved. Afterwards, 
we talk about the differences between Algorithm 5 and its predecessor from [11], as well as advantages and disadvantages 
when compared to the deterministic Algorithm 4 and finally prove its correctness.
Description of the algorithm. First a run of the SG is simulated (Lines 2-6). It starts with the initial state and then repeatedly 
samples a successor of the last state in the current run. When sampling, the non-deterministic choice is resolved by picking 
the “most promising action”. For a Minimizer state, this is the action with the lowest lower bound, for a Maximizer state 
dually it is the highest upper bound; in case of ties, the choice is resolved uniformly at random. The probabilistic choice 
can be resolved by sampling a successor according to the transition distribution; a different idea is described below. The 
simulation is stopped either when a target state is reached or when it is stuck (SIMULATION_STUCK) inside an EC that 
it cannot leave, see Example 6. Several ways to detect if a simulation is stuck are discussed after the examples. If the 
simulation was stuck in an EC, we need to deflate this EC to get new information (Line 7-9), see Example 7. Note that in the 
pseudocode, we wrote FIND_MSECρ (L) to indicate that we do not search for MSECs in the whole game, but only on the 
path we just constructed. The procedure uses the knowledge of the transition function to ensure that a cycle that occurred 
along the path is indeed an EC. Afterwards Bellman updates are executed on all states that were just simulated (Line 10). 
These updates happen asynchronously and backwards, which allows them to propagate information faster, see Example 8.

Example 6 shows why we need to check whether a simulation is stuck.

Example 6 (Simulation). Consider the SG in Fig. 2. The starting state s only has a single available action with a single 
successor. The next state t can choose between action b and c. Both currently have an upper bound of 1, so the action is 
picked randomly. Assume action c was selected; then the next state is sampled according to the distribution δ(t, c). Let 0
be the next state in the simulation. If we just had the breaking condition s′ ∈ F , we would continue sampling infinitely. The 
additional condition to detect that the simulation is stuck in the EC {0} allows us to stop. Several ways to detect whether a 
simulation is stuck are discussed after the examples. �

Example 7 demonstrates when and how DEFLATE is executed.
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Fig. 5. An example of an SG to illustrate the advantages of BRTDP. The cloud symbolizes an arbitrarily large state space that need not be explored.

Example 7 (Deflating). Consider the SG in Fig. 2. When a simulation is stuck in the EC {0}, DEFLATE is executed on this EC. 
Since there is no exit, the upper bound is correctly set to 0.

If afterwards the simulation is stuck in the EC {s, t}, because U(t, b) = 1 > 2
3 = U(t, c), then DEFLATE is executed on {s, t}, 

setting the upper bound of both states to the best current approximation bestExit�U ({s, t}) = U(t, c) = 2
3 .

In the next iteration, the simulation is stuck again as U(t, b) = 2
3 > 5

9 = U(t, c), and thus DEFLATE is executed again. This 
is repeated until the required precision is reached. �

Example 8 shows that information can be propagated faster using asynchronous VI.

Example 8 (Propagation of information). Consider the top path in the SG in Fig. 5. To propagate the information that the 
target can be reached surely from sn to s0, normal VI needs n + 1 steps. After simulating the top path, BRTDP executes 
the Bellman updates in a backward manner, directly using the updated information: first L(sn) is set to 1; then L(sn−1) is 
updated and can immediately use the information that L(sn) = 1, and hence also is set to 1. Thus after one simulation of the 
top path and one update, BRTDP knows the result for this game, while normal VI needs n steps. This idea of immediately 
using the information available is part of asynchronous value iteration, and not directly linked to simulating paths; however, 
simulating the paths gives an easy and reasonable way to decide which states to update first. �

Example 9 shows how BRTDP can avoid exploring the whole state space.

Example 9 (Avoid state space exploration). Consider the bottom path in the SG in Fig. 5. The cloud symbolizes an arbitrarily 
large state space with arbitrary value. After sampling ⊥ as successor once, U(s0, b) ≤ 0.5. Then b is never used in simu-
lations from then on, as the upper bound of the other action is higher, and hence the other action is “more promising”. 
So the cloud will most likely not be explored often, potentially (if ⊥ is picked as successor the first time) never. This way, 
BRTDP can ignore billions of states, if they are not relevant for convergence. The value of s0 certainly depends on action a, 
so the exact value of action b does not need to be computed. In contrast, normal VI and BVI have to remember the bounds 
for all the states symbolized by the cloud. �

Detecting SIMULATION_STUCK. We now discuss ways to detect that a simulation is stuck. A safe approach is to keep a 
partial model of all states of the current simulation and their successors, and check this partial model for ECs. This is similar 
to the idea of candidates in [26], but in contrast to that work it can utilize the full information about the model. However, 
as it is acceptable to have false positives (report stuck if we are not stuck), we can use heuristics such as stopping after 
the simulation has a certain length, which is a lot faster to check and easier than keeping track of a partial model. Several 
heuristics about when to stop are discussed and compared in [11,58]; in our own experiments, however, none of their 
suggestions performed as well as the simple idea of stopping the simulation when the length of the run becomes longer 
than twice the size of the currently explored state space. Even if deflation is not necessary in an EC and the simulation has 
a positive probability to exit, it might still loop several times. Hence the bound to stop the simulation should be greater 
than the explored state space, to allow for some looping. However, the approaches of [11,58] allowed to cycle for a very 
long time, thus sometimes wasting time before generating new information. For a more in-depth discussion of stopping 
heuristics, we refer the interested reader to [5].
Improvements for probabilistic choice. Another part of the algorithm that can be heuristically improved is how to resolve 
the probabilistic choice. Instead of picking the successor according to the transition distribution, we can weight the proba-
bilities with the difference U − L. It was shown in [11,58] that this converges faster than just using the probabilities. This 
is the case, because states where we still know little (high difference between U and L) get more weight than states where 
we know a lot. In particular, states that have already converged (U − L = 0) are not assigned any weight. Note that it is 
important to not only consider the difference between the bounds, but also the transition distribution, as states that are 
reached with a high probability are more important than states that are only reached with a very small probability.
Comparison. Algorithm 5 is built upon the algorithm in [11]. The key differences are that (i) in SG there also is a mini-
mizing player, who minimizes the lower bound instead of maximizing the upper bound and that (ii) in SG the approach of 
collapsing does not work in general, and hence we use deflating.
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In contrast to using Algorithm 4 as UPDATE, BRTDP uses simulation and asynchronous partial updates and deflations. The 
(dis-)advantages of BRTDP on SG compared to BVI are the same as for the special case of MDP [11]: the backward updates 
propagate information faster and the exploration of parts of the state space can be avoided, as illustrated in Examples 8
and 9. This can save both time and memory. However, if large parts of the state space are relevant or if there are many 
ECs, simulations tend to perform worse than straightforward updates on the whole state space. Still, for models that are too 
large to load into memory, BRTDP is an option to get at least some information on the value.

Theorem 3 (BRTDP soundness and completeness). Algorithm 1, using Algorithm 5 as UPDATE, produces monotonic sequences L under-
and U over-approximating V, and terminates almost surely for every ε > 0.

Proof. Soundness (L and U being monotonic sequences under- respectively over-approximating the value) follows from the 
same argument as in the proof for the deterministic algorithm. The fact that we only update parts of the state space does 
not affect the correctness of the Bellman update or deflation.

For completeness, the proof is similar to the one for MDPs [11, Theorem 3]. The difference is (i) that we also have to 
argue that Minimizer picks correct actions in the simulations by using the one with minimal lower bound and (ii) that 
instead of collapsing ECs we deflate them.

As before, we denote by Li and Ui the under-/over-approximations after the i-th iteration of the main loop and show 
that U∞(s0) −L∞(s0) = 0, which implies that for every ε > 0 the algorithm terminates. Note that in contrast to the previous 
theorems, we only have to show that the approximations converge in the initial state, not in all states. We instead prove 
the claim that the approximations converge in all states that are sampled infinitely often by the simulations.

Let S∞ be exactly those states that, when running the algorithm forever, are sampled infinitely often almost surely. Since 
every simulation starts in s0, we have s0 ∈ S∞ .

We call actions that are optimal according to U respectively L approx-optimal. Concretely, in iteration i an action in 
a Maximizer state is approx-optimal if it has the highest upper bound Ui ; and dually in a Minimizer state if it has the 
lowest lower bound Li . Every approx-optimal action has a positive probability to be chosen, and every successor of such 
an action has a positive probability to be sampled. Thus, when considering a state s ∈ S∞ and an action a that is approx-
optimal infinitely often, this action is picked infinitely often almost surely; further, all successors are sampled infinitely often 
almost surely, thus we have Post(s, a) ⊆ S∞ . Note that actions that are not picked infinitely often are detected as not being 
approx-optimal in some iteration, cf. Example 9.

We know the approximations for all states in S∞ are updated infinitely often almost surely. Thus we can use the same 
argument as in the proofs of Theorems 1 and 2: assume there was a state s ∈ S∞ with a positive difference U∞(s) −L∞(s) >
0. Then we can consider the set of states X ⊆ S∞ with maximal difference, where again we know that no state may “depend 
on the outside”: since the sampling picks the optimal actions (according to U∞ respectively L∞ for Maximizer/Minimizer 
states) and every state in S∞ is updated infinitely often, we know that no optimal action can lead outside of X . Thus, by the 
same case distinction as in Theorem 1, we have that X has to contain a bottom MEC Z . However, since X ⊆ S∞ , Z is almost 
surely sampled, detected and deflated. If Z has no exit, its upper bound becomes 0, decreasing the difference to 0; if Z
has an exit, it has to exit towards a state outside of X , thereby again “depending on the outside” and decreasing the upper 
bound. Thus we get the contradiction to the assumption that there was a state s ∈ S∞ with a positive difference and can 
conclude that the approximations converge for all states that are sampled infinitely often, in particular the initial state. �
6. Experimental results

In the following, we present our experimental results on how these theoretical improvements perform practically on 
MDPs and on SGs. After describing the used models, tools and the technical setup, we report on some optimizations which 
we considered. Next, we present our results on MDPs and finally on SGs. Note that we include tests on MDPs since there 
are not so many SG models available for benchmarking, and since it is interesting to see how the more general approach of 
deflating compares to the more specialized collapsing.

6.1. Models and tools

We implemented both our algorithms as an extension of PRISM-games [43], a branch of PRISM [44] that allows for 
modelling SGs, utilizing previous work of [11,58] for MDP and SG with single-player ECs, respectively.

We tested the implementation on the SGs from the PRISM-games case studies11 that have reachability properties and 
one additional model from [13] (thus using all models with reachability properties that were used in [58]). We compared 
the results with both the explicit and the hybrid engine of PRISM-games, but since the models are small both of them 
performed similar and we only display the results of the faster hybrid engine in Table 4.

Furthermore we ran experiments on MDPs from the PRISM benchmark suite [45] and on the adversarial example 
from [33]. We compared our results there to the hybrid and explicit engine of PRISM 4.5, the interval iteration of [33]

11 prismmodelchecker.org/games/casestudies.php.
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J. Eisentraut, E. Kelmendi, J. Křetínský et al. Information and Computation 285 (2022) 104886
Table 1
Verification times (in seconds) for both our 
algorithms, BVI and BRTDP, applied to the 
model cloud with N=6, using various values 
of i for Optimization (III). An X in the table 
indicates a timeout.

1 10 100 1000

BVI X 123 123 117
BRTDP 11 12 25 255

as implemented in PRISM, the BRTDP implementation of [11] and the hybrid engine of Storm 1.3.0 [28], which uses topo-
logical value iteration. All the models, MDPs as well as SGs, are described in Appendix C.
Technical setup. All of the experiments were conducted on a server with 256 GB RAM and 2 Intel(R) Xeon(R) E5-2630 v4 
2.20 GHz processors. We limited the computation to one core to avoid results being incomparable due to different times 
spent parallelizing. All model checkers worked at a precision of ε = 10−6. Each experiment had a timeout of 15 minutes, 
which is represented by an X in the tables. We set the available Java memory to 16 GB. Still, the largest versions of csma 
and mer could not be loaded with the explicit engine of PRISM. Since the learning-based approaches are randomized, we 
took the average of 20 repetitions of the experiments.

6.2. Optimizations

We considered the following optimizations:

(I) collapsing of SECs when we are certain that it is safe;
(II) preferring exiting actions during the simulation in BRTDP;

(III) executing FIND_MSEC and DEFLATE only every i steps for various i;
(IV) caching the MECs of the SG and restricting the SEC computation to them.

When used with the learning-based algorithm, optimizations (I) and (II) reduce the length of simulations. As an example, 
consider the SG in Fig. 1: after DEFLATE was executed on the EC {p, q}, both action b and c have the same upper bound. 
So in state q, a simulation randomizes uniformly between picking b and c, which means that there is a positive probability 
to cycle through the EC again. Since we are only interested in runs that leave the EC, we want to minimize the time that is 
spent cycling through an EC again.

Optimization (I) does this by collapsing ECs where we are certain that collapsing is safe, i.e. that the EC is a SEC. Col-
lapsing a SEC intuitively means replacing it with a single state that has only the exiting actions available, thereby removing 
the possibility to loop inside the EC. Thus we always use the best leaving action immediately. Extending the collapsing from 
MDPs to SGs requires some technical changes, which are explained in Appendix B.

If it is not clear how to collapse an EC, e.g. if it looks like in Fig. 3, we can still avoid cycling by using Optimization (II), 
i.e. preferring exiting actions if possible. For example, if in Fig. 3 the actions d and f for state r have the same value, we 
prefer f.

Our implementation of optimization (I) and (II) did not result in a significant speed up, because both checking whether 
an EC can really be collapsed as well as checking in each step whether some action is exiting was about as costly as the 
gain it brought in our implementation. However, with a better implementation these optimizations are promising, as they 
ensure that there no longer is a probability for simulations to cycle in an EC.

Optimization (I) can also be used for the deterministic algorithm, but our experiments did not show a significant speed 
up there as well.

Since finding all MSEC candidates is a costly operation, Optimization (III) decreases the number of times that FIND_MSEC
and DEFLATE are executed, by only calling the procedures every i steps for some i. Optimization (III) had the largest impact 
on the model cloud (with scaling parameter N = 6), as depicted in Table 1. For i = 1, BVI was not able to finish within 15 
minutes, while for the other i it was done within approximately 2 minutes. Looking at BRTDP on this model, we see that 
increasing the i increased the verification time from 11 seconds for i = 1 to 255 for i = 1000. Note that depending on the 
combination of algorithm and model, both a small and a large i can be advantageous. Probably the number of MSECs as 
well as their position in the model play a role. On the one hand, if i is too small, time is wasted to repeatedly compute 
the current MSEC decomposition. On the other hand, if i is too large, then we might need to wait for i iterations of the 
main loop before we can deflate some MSEC. As in our experiments both very small and very large i (1 or 1000) brought 
the possibility of a huge increase in verification time, for all following experiments we chose i = 10. This number always 
yielded a verification time that was very close to the optimum we could achieve.

Finally, Optimization (IV) is a technical improvement that speeds up the computation of SECs. In Algorithm 2, we com-
pute the MECs of the modified SG with only optimal Minimizer actions. However, note that any MEC in the modified SG 
is an EC in the original SG, and hence a subset of a MEC in the original SG. Thus, we do not have to look for MECs in the 
whole modified SG, but it suffices to perform the computation on the MECs of the original SG. By caching these original 
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Table 2
CPU time for each MDP experiment in seconds. For each model, there first is a row giving the name of 
the model and the parameter(s), and then several rows for the different parameter values we tried. We 
compared our deterministic and learning based approaches (BVI and BRTDP) to the deterministic and 
learning based approaches based on collapsing ([33] and [11]). We also compared to the explicit engine 
of PRISM (PRISM_e), and the hybrid engines of PRISM (PRISM_h) and the topological value iteration of 
Storm, all three of which are without guarantees. X indicates a timeout, W that the returned result was 
wrong.

Model (scaling-
parameters)

With guarantees Without guarantees

Deterministic Learning-based

BVI [33] BRTDP [11] PRISM_e PRISM_h Storm

firewire (dl)
220 418 389 5 4 389 202 125
240 634 512 5 4 491 346 163
260 894 621 5 4 617 695 186

wlan (k, COL)
4, 2 20 17 5 4 18 12 3
4, 6 36 34 5 3 34 16 7
6, 2 715 691 5 4 760 128 53
6, 6 709 701 5 5 773 134 53

zeroconf (K, N)
2, 20 14 9 3 7 9 7 1
2, 1000 14 10 8 11 9 7 1
10, 20 254 233 7 8 163 133 26
10, 1000 282 170 8 10 155 146 27

csma (N, K)
2, 2 1 1 7 2 1 <1 <1
2, 6 5 3 93 39 3 1 <1
3, 2 4 3 22 12 3 1 <1
3, 6 X X X X X 47 X

leader (N)
3 3 2 4 4 1 1 <1
4 5 3 10 9 1 1 <1
5 8 6 17 28 2 2 <1
6 20 14 50 X 8 8 3

mer (x, n)
10−4, 1500 X X 73 15 629 83 145
10−4, 3000 X X 70 13 X 172 516
0.1, 1500 X X X X 571 115 146
0.1, 3000 X X X X X 235 513

hm (N, p)
20, 0.5 70 33 X 604 W W W
20, 0.9 67 33 X 585 W W W

MECs, we can speed up the computation drastically, especially since typically MECs are small and many states are not part 
of any MEC.

6.3. MDP results

We compare seven different approaches to compute the reachability probability as well as optimal strategies on MDPs. 
We group these algorithms as follows.
Value iteration with guarantees. There are four guaranteed value iteration approaches – two of them based on collapsing 
([11] and [33]) and two based on the new idea of deflating (BRTDP and BVI). Comparing columns 2 and 3 as well as 4 and 
5 of Table 2, we see that both the deterministic (BVI and [33]) and both the learning-based (BRTDP and [11]) approaches 
perform similarly. We conclude that collapsing and deflating are both useful for practical purposes. The collapsing based 
approaches are usually slightly faster. This might be the case, because after an EC is collapsed, it will not have to be 
considered again, while for our new approach it is deflated every time. However, the difference might also depend on other 
implementation details, for example the different implementations of SIMULATION_STUCK between the two learning-based 
approaches.
Value iteration without guarantees. We compare BVI to the usual (unguaranteed) value iteration of PRISM’s explicit engine 
(column 6 of Table 2) and see that the guaranteed approach did not take significantly more time in most cases. In all models 
but zeroconf for K=10 and mer for n=1500, PRISM_e and BVI produce times in the same order of magnitude. This implies 
that the overhead for the computation of the guarantees often is negligible.
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Table 3
The number of states for each model and the number of states 
that the two simulation based approaches of [11] and of this pa-
per (BRTDP) explored. Models and their scaling parameters are 
denoted on the left as in Table 2. An X indicates a timeout.

Model #States [11] BRTDP
(scaling-parameters)

firewire (dl)
220 10,490,495 792 751
240 13,366,666 779 702
260 15,255,584 791 596

wlan (k, COL)
4, 2 345,118 767 199
4, 6 728,990 764 333
6, 2 5,007,666 858 116
6, 6 5,007,670 691 133

zeroconf (K, N)
2, 20 89,586 393 125
2, 1000 89,586 1,625 898
10, 20 3,001,911 1,161 599
10, 1000 3,001,911 5,358 782

csma (N, K)
2, 2 1,038 964 965
2, 6 66,718 64,341 33,413
3, 2 36,850 22,883 26,650
3, 6 84,856,004 X X

leader (N)
3 364 335 313
4 3,172 2,789 2,599
5 27,299 21,550 8,281
6 237,656 128,593 22,368

mer (x, n)
10−4, 1500 8,862,064 2,603 2,032
10−4, 3000 17,722,564 2,632 2,028
0.1, 1500 8,862,064 X X
0.1, 3000 17,722,564 X X

hm (N, p)
20, 0.5 41 41 X
20, 0.9 41 41 X

Note that for hm the approaches without guarantees return the wrong result (denoted by “W” in the table), e.g. PRISM_e 
reports 0.35 when the true result is 0.9. The model checker does not print a warning that this might have happened.
Hybrid approaches. Compared to the hybrid engine of Storm and PRISM (columns 7 and 8 in Table 2), BVI is vastly outper-
formed on larger models; however, this difference is because BVI explicitly constructs the whole model, while the hybrid 
engines can avoid this using symbolic representations. An implementation of BVI using the hybrid engine would most prob-
ably also get the speed up of this approach, and hence again be comparable. Looking at the differences between PRISM’s 
explicit and hybrid engine we see that the gain of the different engine is much larger than the overhead for computing the 
guarantees.
Simulation-based approaches. The simulation based approaches BRTDP and [11] perform well on firewire, wlan and zero-
conf, even outperforming Storm in some cases. For firewire, they are two orders of magnitude faster. So in certain cases, 
simulation based approaches can produce a huge speed-up while still giving guarantees, as already noted in [11]. However 
for csma, leader and mer they are not well suited, as they need to explore thousands of states to achieve convergence. For 
the first two rows of mer they are still faster, since the explored part of the state space is very small in comparison to the 
whole model and not too large in general, but as the model is scaled, the number of relevant states grows too large for 
the simulation based approaches to work well. In hm, the adversarial handcrafted model, every value iteration algorithm 
is slow due to the slow convergence of the values. Moreover, the simulation based approaches have an additional problem 
that increases their runtime: every time a simulation starts in the initial state, it has a high probability, around 99.99% 
for our choice of N, to lead back to the initial state and not reach a target or a sink. Thus, simulations are often stopped 
by SIMULATION_STUCK without making any progress. Intuitively, the algorithm assumes that it does not reach a target 
because of an EC, while in fact it is only due to the low probability to reach the goal.

The results in Table 3 show that [11] explores a larger portion of the state space for almost all experiments. This is due 
to the different choice of the heuristic SIMULATION_STUCK, i.e. the number of steps before a simulation is stopped. The 
implementation in [11] allows for simulating longer, and hence more of the state space is explored. Depending on the model 
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Table 4
Experimental results for the experiments on SGs. Models and their scaling parameters 
are denoted on the left as in Table 2. Columns 2, 3 and 4 display the verification time in 
seconds for each of the solvers, namely PRISM-games (referred as PRISM), our determin-
istic algorithm (BVI) and our learning-based algorithm (BRTDP). The next two columns 
compare the number of states that BRTDP explored (#States_B) to the total number of 
states in the model. The rightmost column shows the number of MSECs in the model. 
An X indicates a timeout.

Model Model checking times Model properties

(scaling-parameters) PRISM BVI BRTDP #States_B #States #MSECs

mdsm (prop)
1 10 14 20 895 62,245 1
2 6 9 28 471 62,245 1

cdmsn
3 4 9 1,213 1,240 1

teamform (N)
3 5 7 102 7,337 12,476 0
4 10 14 X X 96,666 0

cloud (N)
5 6 15 19 1,311 8,842 4,421
6 9 123 12 768 34,954 17,477

structure, this can be advantageous or detrimental for the verification time. In hm, the longer simulations are necessary to 
have a good chance of reaching a target or sink and making progress, so here [11] outperforms BRTDP. In contrast, in leader 
with N=6 [11] explores 128,593 states without producing a result, while BRTDP can terminate after seeing only 22,368 
states. Here, stopping a simulation early prevents the algorithm from wasting time exploring irrelevant parts of the state 
space or cycling in ECs for a long time.

In general one can see, that the approach of deflating works well also on MDPs and that giving guarantees often is 
possible without significant overhead.

6.4. SG results

Since we gave the first guaranteed value iteration approach, we performed experiments to empirically estimate the 
overhead for the upper bound computation. We compared both our algorithms, the deterministic BVI and the learning-
based BRTDP, to the hybrid engine of PRISM-games; note that the latter does not give any guarantees on the value. The 
results in Table 4 show that on all our benchmarks at least one of our approaches was close to the time that the hybrid 
engine of PRISM-games needed. The amount of times deflate has to be executed grows when there are many MSECs, as 
for example in cloud. This explains the longer runtime that BVI has, especially for cloud with N=6. Luckily, for this model 
apparently only a small part of the state space is relevant for convergence, and thus BRTDP performs well. On the other 
hand, for cdmsn and teamform a large part of the state space is relevant, so that BRTDP is slow in comparison and does not 
even finish in time for teamform with N=4.

In conclusion, we see that deflating can be very costly, but the cost often is negligible or can be mitigated by using the 
learning-based approach.

7. Conclusions

We have provided the first stopping criterion for value iteration on simple stochastic games and an anytime algorithm 
with bounds on the current error and thus guarantees on the precision of the result. The main technical challenge was that 
states in end components in SGs can have different values, in contrast to the case of MDPs. We have shown that collapsing 
is in general not possible, but we utilized the analysis of the game graph to obtain the procedure of deflating, a solution 
on the original graph. Besides, whenever a simple end component is identified for sure it can be collapsed and the two 
techniques of collapsing and deflating can thus be combined.

The experiments indicate that the price to pay for the overhead to compute the error bound is often negligible. For each 
of the experimental models, at least one of our two implementations has performed similar to or better than the standard 
approach that yields no guarantees. Further, the obtained guarantees facilitate (e.g. learning-based) heuristics which treat 
only a part of the state space and can thus potentially lead to huge improvements. Surprisingly, already our straightforward 
adaptation of a learning-based algorithm from MDP to SG yields good results, sometimes palliating the overhead of our non-
learning method, despite the most naive implementation of deflating. Future work could reveal whether other heuristics or 
more efficient implementation can lead to huge savings as in the case of MDP [11].

The concept of simple end components has already been generalized to settings with limited information [6], with 
multiple objectives [4] and to concurrent stochastic games [30]. It is probable that it can also be applied in settings with 
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Fig. A.6. An example of an SG (also MDP) where following (ε-)optimal actions is not necessarily an (ε-)optimal strategy.

other objectives, e.g. expected reward or parity. To this end, the relationship between simple end components and tangles 
in parity games [29] should also be investigated.
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Appendix A. Obtaining ε-optimal strategies

In this appendix, we show how to obtain ε-optimal strategies, given an SG G = (S, S�, S©, s0, A, Av, δ) and vectors of 
under- and over approximants of the value, L respectively U. Intuitively, the strategy just plays an action which is optimal 
according to the approximants. However, this might not be sufficient, as the following counter-example shows.

Consider the SG (that also is an MDP) from Fig. A.6. After one update we have L(s1) = L(s2) = 1. Thus,
arg maxa∈Av(si)

L(si, a) = {stay, exit} and L is ε-close to the true value (in fact it is equal). Both actions are indeed opti-
mal, as after playing stay, the other state still can reach the target with probability 1. However, using the strategy that in 
both states picks the stay-action results in probability 0 to reach the target. Intuitively, the problem is that picking ε-optimal 
actions only guarantees that they are one-step ε-optimal, but does not ensure that the target is actually reached in the end. 
Thus, in order to obtain ε-optimal strategies, we additionally have to ensure that the strategies “make progress” towards 
the target.

A way to achieve this would be to randomize over all ε-optimal actions; however, this is suboptimal, as theoretically it 
needs the additional power of randomization and practically the strategy has a chance of cycling unnecessarily by using the 
actions that stay instead of making progress.

In [7, Remark 10.104], the authors observe that Li corresponds to the i-step-bounded reachability probability (for MDPs, 
but the argument extends to SGs). They suggest that a strategy obtaining this value can be generated by choosing an optimal 
action according to Li in the first state, then according to Li−1 in the next step and so on.12 However, note that this strategy 
requires memory as well as knowledge of all intermediate results Li .

We now describe a way to obtain a memoryless deterministic ε-optimal strategy for Maximizer and Minimizer, using 
only the final approximants L respectively U. We also prove the correctness of our strategies. Concretely, we want to find a 
σ such that for all τ : Pσ ,τ

s0
(�F) > V(s0) − ε. Dually we also want a τ such that for all σ : Pσ ,τ

s0
(�F) < V(s0) + ε. Intuitively, 

for the Minimizer it suffices to just play actions which are optimal according U. For the Maximizer, we play optimally 
according to L, but additionally have to ensure that the actions make progress; we achieve this by performing a backwards 
search from the target states and picking only those actions that decrease the distance to the targets.

A.1. Assumptions on the approximants

We first state several assumptions which the approximants have to satisfy and for each assumption prove that it is 
satisfied for approximants coming from our algorithm. For ease of notation, we use the operator arg opt to find the set of 
optimal actions for a state s:

arg opt
a∈Av(s)

:=
{

arg maxa∈Av(s) if s ∈ S�
arg mina∈Av(s) if s ∈ S©

• The approximants are correct, i.e. for all states L(s) ≤ V(s) ≤ U(s). This assumption is satisfied for our algorithm by 
Theorem 2.

12 In the previous example, for all i > 1, both stay and exit are optimal, while for i = 1 only exit is optimal. Thus, this strategy ensures that the target is 
reached.
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• The approximants are ε-close in the initial state, i.e. V(s0) − L(s0) < ε and U(s0) − V(s0) < ε. This is satisfied for our 
algorithm, as the bounds are correct and the stopping criterion ensures U(s0) − L(s0) < ε.

• For all target states the lower approximant is 1. This assumption is satisfied by the initialization of the algorithm.
• Unfolding the Bellman equation for the approximants can only make them more precise, i.e. for all states s:

L(s) ≤ arg opt
a∈Av(s)

∑
s′∈S

δ(s,a, s′) · L(s′)

U(s) ≥ arg opt
a∈Av(s)

∑
s′∈S

δ(s,a, s′) · U(s′)

We first prove this assumption for the lower approximants. Let i be the iteration in which the algorithm computing the 
approximants finished. We denote by L j the approximants in the j-th iteration for all j ≤ i. Then we have L = Li by 
definition. The lower approximant is computed according to the Bellman equations (3) and (4). Thus for all states s we 
have

Li(s) := arg opt
a∈Av(s)

∑
s′∈S

δ(s,a, s′) · Li−1(s
′)

≤ arg opt
a∈Av(s)

∑
s′∈S

δ(s,a, s′) · Li(s
′),

where the second inequality follows the fact that the bounds are monotonically increasing, i.e. Li−1(s) ≤ Li(s).
For the upper approximant, the proof is mostly analogous, replacing ≤ with ≥. However, we also have to address 
the additional deflating that can modify the upper approximants. If a state s is deflated down to x, then it is part 
of an EC T and all states in the T were deflated to x as well. As T is an EC, every s ∈ T has a staying action as . 
Since all successors of this action are in the EC and have an upper estimate of x, we have U(s, as) = x. Hence, if s
is a Minimizer state, we have U(s) = x and arg mina′∈Av(s)

∑
s′∈S δ(s, a, s′) · U(s′) ≤ U(s, as) = x and the assumption is 

satisfied. If s is a Maximizer state, we also use the fact that x = bestExit�U (T ), and thus for all leaving actions a� we 
have U(s, a�) ≤ x. Then, as all staying actions have an estimate of x and all leaving actions have at most x, we can 
conclude that arg maxa′∈Av(s)

∑
s′∈S δ(s, a, s′) · U(s′) = x.

Note that given the true values V, unfolding the Bellman equations for one step results in exactly the same values, as 
the value vector is a fixpoint. Thus, in that case we have an equality.

A.2. Strategies following only the approximants

Let σ L and τU be the strategies that pick an action that is optimal according to the approximants L respectively U. 
Formally, for all states s , let σ L(s) be an element of arg maxa∈Av(s)

∑
s′∈S δ(s, a, s′) · L(s′). Dually, let τU(s) be an element 

of arg mina∈Av(s)
∑

s′∈S δ(s, a, s′) · U(s′).
We now prove that following these strategies for a finite number of steps does not decrease the probability to reach the 

target. For this, let �i X := {ρ ∈ (S × A)ω | ρ = s0a0s1a1 · · · ∧ si ∈ X} denote the measurable set of all paths which reach a 
state from the set X ⊆ S after exactly i steps. We mention two technical details: firstly, we only require that X is visited 
after exactly i steps. We do not require that this is the first visit to X . Secondly, this definition only restricts a finite prefix of 
the path; however, as we have defined the probability distribution only over infinite paths, this set contains infinite paths.

Lemma 7 (Following the approximants for a finite time). For all states s ∈ S and all i ∈N0 , the following two statements hold. For all 
Minimizer strategies τ :∑

s′∈S

Pσ L,τ
s [�i{s′}] · L(s′) ≥ L(s).

Dually, for all Maximizer strategies σ :∑
s′∈S

Pσ ,τU

s [�i{s′}] · U(s′) ≤ U(s).

Proof. We show only the first statement, as the second proof is completely analogous. We proceed by induction on i, the 
number of steps for which we follow σ L . For i = 0,

Pσ L,τ
s [�0{s′}] =

{
1 if s = s′

0 otherwise
.
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Thus, the left side of the inequality evaluates to L(s) and the base case is completed.
For the induction step, the following chain of equations proves our goal. We justify every transformation below the 

equations.∑
s′∈S

Pσ L,τ
s [�i+1{s′}] · L(s′)

=
∑
t∈S

Pσ L,τ
s [�i{t}] ·

⎛
⎝∑

s′∈S

δ(t,π(t), s′) · L(s′)

⎞
⎠ (Step 1)

≥
∑
t∈S

Pσ L,τ
s [�i{t}] · L(t) (Step 2)

≥ L(s) (Induction hypothesis)

For Step 1, instead of considering paths that follow the strategies for i + 1 steps, we consider paths that follow it for i steps 

and explicitly unfold the final step. Here, π(s′) =
{
σ L(s′) if s ∈ S�
τ (s′) if s ∈ S©

.

For Step 2, we use the fourth assumption on the approximants, namely that unfolding the Bellman equation can only 
make them more precise. If t is a Maximizer state, by definition we have

σ L(t) = arg max
a∈Av(t)

∑
s′∈S

δ(t,a, s′) · L(s′)

and thus can immediately apply the assumption. If t is a Minimizer state, we know that the assumption holds for arg min
of all available actions, so it also holds for whichever action τ uses. In the final step, we apply the induction hypothesis. �
Lemma 8. τU is an ε-optimal strategy of Minimizer.

Proof. Using Lemma 7, we have that for all states s , all Maximizer strategies σ and all i ∈N0:∑
s′∈S

Pσ ,τU

s [�i{s′}] · U(s′)

=
⎛
⎝∑

s′∈F

Pσ ,τU

s [�i{s′}] · U(s′)

⎞
⎠ +

⎛
⎝ ∑

s′∈S\F

Pσ ,τU

s [�i{s′}] · U(s′)

⎞
⎠ (Splitting the sum)

≤ U(s) (Lemma 7)

The second sum over all non-target states certainly evaluates to 0 or more. Also, U(s′) = 1 for all s′ ∈ F . Hence, it holds that∑
s′∈F

Pσ ,τU

s [�i{s′}] ≤ U(s).

Thus, pulling the sum into the definition of the paths, we get

Pσ ,τU

s [�iF] ≤ U(s).

Note that as this statement holds for all i and all target states are absorbing, we can also take the limit and consider all 
paths that reach a target state �F . Considering the initial state s0 and using that U is correct and ε-optimal, we conclude 
that τU is ε-optimal:

Pσ ,τU

s0
[�F] ≤ U(s0) ≤ V(s0) + ε. �

A.3. Ensuring maximizer makes progress

We already saw in the counter-example in the beginning that the dual of Lemma 8 is not true, as only playing actions 
according to the approximants is not ε-optimal. We will now show how to augment σ L to become ε-optimal.

We employ a folklore construction which is sometimes called attractor, similar13 to the one used in [15, Section 5.3]. In 
other words: we perform a backwards search from the target state, using only actions that are ε-optimal according to L.

13 In that paper, they ensure that the target or sink states are reached almost surely. We require that target states are reached with positive probability.
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Formally, we use the following recursive procedure. Let Sattr
0 = F . For i ≥ 1, we define

Sattr
i = {s ∈ S� | ∃a ∈ arg max

a′∈Av(s)
L(s,a′).Post(s,a) ∩ Sattr

i−1 �= ∅}

∪ {s ∈ S© | ∀a ∈ Av(s).Post(s,a) ∩ Sattr
i−1 �= ∅}.

We terminate when Sattr
j = Sattr

j−1.

For all i, Sattr
i contains those states that have a path of length at most i to the target which for Maximizer states uses 

only ε-optimal actions, and for Minimizer states has no other choice but to continue on a path towards the target. This can 
be proven by simple induction on the length of the path. Note that the states with no path to the target are not in Sattr

i for 
any i.

Let P := {s ∈ S | V(s) > 0} be all states with a positive value. As every state with a positive value has a path to a target 
state, it holds that P = Sattr

j , where j is the iteration where the recursive procedure terminates.

We now define the ε-optimal Maximizer strategy σ L,attr. Note that for states in F or states with value 0, the strategy 
is irrelevant as either we anyway have reached target or no strategy can reach the target (against a rational opponent). 
Thus, here σ L,attr picks an arbitrary available action. For every state in s ∈ P \ F , we pick an action as follows: let i be the 
minimum number with s ∈ Sattr

i . As s ∈P , such an i exists. Then the strategy σ L,attr(s) picks an action from

{a ∈ Av(s) | a ∈ arg max
a′∈Av(s)

L(s,a′) ∧ Post(s,a) ∩ Sattr
i−1 �= ∅}.

Such an action exists, because s was added in the i-th step, hence it must have an action leading to Sattr
i−1 by definition 

of Sattr
i . Note that not all successors of the action have to be in Sattr

i−1, but we require only at least one in order to have a 
positive probability of making progress. Further, note that i − 1 ≥ 0, since s /∈ F , so the strategy is well defined.

Under this strategy σ L,attr, for every Minimizer strategy τ , every state in s ∈P \ F has a positive probability to reach the 
target states. To prove this, observe that every s is in some Sattr

i . For a Maximizer state, by construction it uses an action 
with a positive chance to reach a state in Sattr

i−1; for Minimizer, it has no choice but to put positive probability on reaching 
Sattr

i−1. Repeating the argument until i = 0 shows the claim.

Lemma 9. σ L,attr is an ε-optimal strategy of Maximizer.

Proof. We again use Lemma 7 and split the sum as in the proof of Lemma 8. However, this time we split S into F , P and 
the remaining states with value 0. Note that for states with value 0 also the lower approximant is 0, since by assumption 
the lower approximant is correct. Hence, the summand considering the value 0 states evaluates to 0. Thus we have that for 
all states s , all Minimizer strategies τ and all i ∈N0:⎛

⎝∑
s′∈F

Pσ L,attr,τ
s [�i{s′}] · L(s′)

⎞
⎠ +

⎛
⎝ ∑

s′∈P\F

Pσ L,attr,τ
s [�i{s′}] · L(s′)

⎞
⎠ ≥ L(s)

Here is the crucial difference between constructing a Maximizer and Minimizer strategy: for Maximizer, it is possible that 
the whole probability mass still remains in P . Following a strategy that maximizes L for a finite number of steps does not 
decrease the chance of reaching the targets, but it might be necessary to eventually switch to the optimal strategy in order 
to actually realize the value. This is why we used the attractor construction to ensure that under σ L,attr every state in P \ F
has a positive probability to reach the target. Then, for i → ∞, the second summand converges to 0. Intuitively, more and 
more probability leaves towards the target or sink states. Formally, as from every state there exists a path with positive 
probability to reach a target, the probability to reach F in 

∣∣S∣∣ steps is at least q := p
∣∣S∣∣

, where p is the minimum probability 
occurring in the SG. Since 

∑∞
i q · (1 − q)i = 1 (geometric series), the probability to remain in P \ F is 0.

Having ensured that the probability mass actually arrives at the target, we can consider the infinite behaviour and 
conclude:

Pσ L,attr,τ
s [�F] ≥ L(s)

Note that we again pulled the sum into the definition of the paths and used that for target states the lower approximant is 
initialized to 1. Finally, considering the initial state and using that L is correct and ε-close, we arrive at our goal:

Pσ L,attr,τ
s0

[�F] ≥ L(s0) ≥ V(s0) − ε. �
Note that, given the true values V, all inequalities in the proofs become equalities. Thus, we also showed how to construct 

optimal strategies from the true value vector.
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Appendix B. Definition of COLLAPSE

The way in which we define COLLAPSE is not only able to collapse ECs in MDPs, but also simple ECs (SEC, see Defini-
tion 5) in SGs. Note that every EC in an MDP is a SEC. If there are no actions of Maximizer leaving the SEC, we have to keep 
staying actions, so the SEC becomes an absorbing state (we do not want a state without actions, as we assumed the game 
is non-blocking). Otherwise all staying actions are removed and the SEC becomes a single state, whose available actions are 
all the exiting actions of Maximizer states in the SEC. Note that we have to remove Minimizer actions, because otherwise 
we would allow Maximizer to use an exit that Minimizer wants to prevent.

Definition 6 (COLLAPSE). Let G = (S, S�, S©, s0, A, Av, δ) be an SG and T a SEC in G . Then COLLAPSE(G, T ) = G′ =
(S′, S′�, S′

©, s′
0, A

′, Av′, δ′), where G′ is defined as follows:

• S′ = (S \ T ) ∪ {sT }
• S′� = (S� \ T ) ∪ {sT }
• S′

© = S© \ T

• s′
0 =

{
sT if s0 ∈ T

s0 otherwise
• A′ = A ∪ {⊥}, where ⊥ /∈ A is a new action.
• Av′(s) is defined for all s ∈ S′ by:

– Av(s),
if s ∈ (S \ T ), i.e. s �= sT
(Rest stays the same)

–
⋃

t∈T�
{a ∈ Av(t) | (t, a) exits T },

if s = sT and ∃t ∈ T� : (t, a) exits T
(Keep leaving Maximizer actions, if there is an exit for Maximizer)

– {⊥},
if s = sT and ¬∃t ∈ T� : (t, a) exits T
(Keep a staying action, if there is no exit for Maximizer)

• δ′ is defined for all s ∈ S′ and a ∈ Av′(s) by:
– δ′(s, a)(s′) = δ(s, a)(s′)

for all s′ ∈ S′ with s, s′ �= sT
(Rest stays the same)

– δ′(s, a)(sT ) = ∑
s′∈T δ(s, a)(s′),

if s �= sT
(going to T )

– δ′(sT , a)(s′) = δ(s, a)(s′)
for all a ∈ Av′(sT ), the unique s ∈ T with a ∈ Av(s) and all s′ ∈ S′ \ {sT }
(leaving from T )

– δ′(sT , a)(sT ) = ∑
t∈T δ(s, a)(t)

for all a ∈ Av′(sT ) and the unique s ∈ T with a ∈ Av(s)

(staying in T when using an exit)
– δ′(sT , ⊥)(sT ) = 1

if ⊥ ∈ Av′(sT )

(staying in T in the case of no Maximizer exits)

Note that when defining δ in the case of leaving from T , we assume that no action is available for multiple states in T . 
If there are duplicates, we rename the actions before collapsing, e.g. by indexing them with their respective state.

When computing the reachability probability of reaching a target set F , we also have to adjust the target set as follows: 

F′ = (F \ T ) ∪
{

∅ if T ∩ F = ∅
{sT } otherwise

.

We now argue about the correctness of this definition. Firstly, note that G′ is well-defined. All states in S \ T remain a 
part of the state space, and the controlling player as well as the available actions remain unchanged. All states from T have 
been replaced by the newly added sT . To argue about the transition function, we make a case distinction:

• Going to T : if an action previously lead to a state s′ ∈ T , now this probability mass leads to sT . Note that an action 
might have multiple different successors in T , thus we sum over all s′ ∈ T when defining δ′(s, a)(sT ). Thus, δ′ still is a 
valid probability distribution, since all probability mass previously going to a state in T now goes to s .
T
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• Using an exit from T : the third and fourth items in the definition of δ′ deal with the case that we use an action 
a ∈ Av′(sT ) that was an exit from T . Note that for this case we use the additional assumption that — possibly by 
renaming actions — there were no states s, s′ ∈ T such that a ∈ Av(s) ∩ Av(s′), i.e. actions are unique for the states in 
T . So for an action a there is a unique state-action pair (s, a) with s ∈ T that identifies this exit. Thus, for transitions 
leading to states s′ outside of T , we can reuse the old transition function δ(s, a)(s′); this is done by the third item. 
For transitions leading back into T (which is possible, since for a to be an exit we do not require all successors to be 
outside of T , but only at least one of them), we use the same idea as in the previous item: we sum the probability 
of all transitions leading to any state t ∈ T and assign it to sT ; this is done by the fourth item. Thus, δ′ still is a valid 
probability distribution, since (i) it is defined for every available action of sT , and (ii) all probability mass leaving T
remains unchanged, and all probability mass staying in T now leads to sT .

• If there is no exit for Maximizer in T , formally ¬∃t ∈ T� : (t, a) exits T , then we use the newly added action ⊥ that 
loops surely.

Appendix C. Description of the experimental models

Our experiments are based on the ones that were conducted in [58]. Most models we use are also analyzed in that 
thesis, and we obtained them from the website,14 where the author of the thesis made them available for download. We 
used the exact models from that website, but partly modified the properties to be of a form that our implementation can 
handle. These modifications did not change the semantics of the property, e.g. instead of formulating a property that a 
probability is greater than a certain number (P>0.999) we compute the maximal probability (Pmax=?), and then manually 
check whether it is greater than the number. The only models not from [58] are the MDPs csma and leader and the MC hm.

We consider six MDP models, namely firewire, wlan, zeroconf, csma, leader and mer. The first five are part of the PRISM 
benchmark suite [45], mer is from [31]. The four SG models are mdsm, cdmsn, team-form and cloud, and the first three are 
contained in the PRISM-games case studies.15 Cloud is from [13]. Note that some of the SG models actually contain more 
than two players. However, since there are at most two coalitions, they can be viewed as an SG with only two players. We 
will now shortly describe all models, the properties we check and the parameters we use for scaling.

firewire [48]:
This case study models the protocol known as FireWire, which is a leader election protocol of the IEEE 1394 High Perfor-
mance Serial Bus. Several devices connected to a bus can use the protocol to dynamically elect a leader. We compute the 
probability Pmax=? [Fleader_elected], so the maximal probability with which a leader gets elected before the deadline. By 
this one can check the property that a leader gets elected with a certain, optimally high, probability. To scale the model up, 
we raise the deadline.

wlan [47]:
This model describes the two-way handshake mechanism of the IEEE 802.11 medium access control (WLAN protocol). Two 
stations try to communicate with each other; however, if both of them send at once, a collision occurs. We are interested 
in computing the maximum probability that both stations transmit their messages correctly, i.e. Pmax=? [F s1=12 & s2=12], 
where s1 and s2 describe the state of the stations, and 12 is the final state where the transmission was successful. To scale 
the model up, we increase the maximal backoff k and the maximal number of collisions COL.

zeroconf [46]:
Zeroconf is a protocol for dynamically assigning an IP address to a device, provided that several other hosts have already 
blocked some IP addresses. The device picks some IP randomly and then sends probes to check whether this address is 
already in use. The parameters that we use to scale the model are N , the number of other hosts already possessing an IP 
address and K , the number of probes sent. The probability we are interested in is Pmin=? [F configured], so the minimum 
probability with which the device obtains an IP address.

csma: [45]
This case study concerns the IEEE 802.3 CSMA/CD (Carrier Sense, Multiple Access with Collision Detection) protocol. N is 
the number of stations and K is the maximum backoff. Pmin=? [F min_backoff_after_success<=K] is the probability we are 
interested in, namely that a message of some station is eventually delivered before K backoffs.

leader [45]:
This case study is based on the asynchronous leader election protocol of [37]. This protocol solves the following problem. 
Given an asynchronous ring of N processors design a protocol such that they will be able to elect a leader (a uniquely 
designated processor) by sending messages around the ring. The probability we are interested in is Pmax=? [F “elected”], so 
that at some point a leader is elected.

mer [31]:
In the Mars Exploration Rover there is a resource arbiter that handles distributing resources to different users. There is a 
probability x that the communication between the arbiter and the users fails. We change this probability to influence the 

14 http://www.prismmodelchecker.org /files /thesismujma/.
15 prismmodelchecker.org/games/casestudies.php.
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structure of the MDP. The probability we compute is Pmax=? [F err_G], which is the maximum probability that an error 
occurs.

hm [33]:
An example that was handcrafted to show when value iteration without guarantees fails. It consists of two chains of states 
of length n that lead to the target and a sink state; however, at every position in the chain there is some probability to go 
back to the initial state. This also is an adversarial example for simulation based algorithms, as the probability to reach a 
sink state and make any progress the simulation has to be lucky n times in a row, which is unlikely.

mdsm [20]:
This case study models multiple households which all consume different amounts of energy over time. To minimize the peak 
energy consumption, they utilize the distributed energy management “Microgrid Demand-Side Management” (mdsm). The 
property we check is the maximal probability with which the first household can deviate from the management algorithm, 
i.e. Pmax=? [F deviated], which should be smaller than 0.01. We check the property once for player 1 and once for player 2.

cdmsn [20,54]:
This model describes a set of agents which have different sites available and different preferences over these sites. The 
collective decision making algorithm of this case study is utilized so that the agents agree on one decision. We anal-
yse the model to find the strategy for player 1 to make the agents agree on the first site with a high probability, so 
<<p1>> Pmax=? [F all_prefer_1].

team-form [21]:
As in the previous case study, there is a set of agents in a distributed environment. They need to form teams so they are 
able to perform a set of tasks together. We want to compute a strategy so that the first task is completed with the maximal 
possible probability, so we check the property <<p1,p2,p3>> Pmax=? [F task1_completed]. The model can be scaled using 
the number of agents N. However, for this model PRISM’s pre-computations already solve the problem and hence it cannot 
be used to compare the approaches; thus, it is not included in any of our tables.

cloud [13]:
This model describes several servers and virtual machines forming a cloud system. The controller of the system wants to 
deploy a web application on one of the virtual machines, but it is possible that the servers fail due to hardware failures. We 
compute the strategy and the maximal probability for the controller to successfully deploy his software, so <<controller>>

Pmax=? [F deployed]. The model can be scaled by increasing the number of virtual machines N.
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