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A B S T R A C T   

By neglecting the kinetics of leaching, accumulation of leachables in a clinically relevant medium in contact with 
plastics is principally driven by the equilibrium partition coefficient between the polymer and the medium phase. 
Based on experimental partition coefficients for a wide set of chemically diverse compounds between low density 
polyethylene (LDPE) and water, a linear solvation energy relationship (LSER) model was obtained in part I of this 
study, reading: logKi,LDPE/W = − 0.529+ 1.098 Ei − 1.557 Si − 2.991 Ai − 4.617 Bi + 3.886 Vi. The model was 
proven accurate and precise (n = 156, R2 

= 0.991, RMSE = 0.264). 
In this part II of the study, for further evaluation and benchmarking of the LSER model ~ 33% (n = 52) of the 

total observations were ascribed to an independent validation set. Calculation of partition coefficients 
logKi,LDPE/W for this validation set was based on experimental LSER solute descriptors. Linear regression against 
the corresponding experimental values yielded R2 

= 0.985 and RMSE = 0.352. When using LSER solute de-
scriptors predicted from the compound’s chemical structure by means of a QSPR prediction tool, instead, R2 =

0.984 and RMSE = 0.511 were obtained. These statistics are considered indicative for extractables with no 
experimental LSER solute descriptors available. By comparison to LSER models from the literature, a strong 
correlation between the quality of experimental partition coefficients and the chemical diversity of the training 
set to the model’s predictability was observed, the latter of particular relevance for the application domain of the 
model. 

Further, to tentatively match partitioning into LDPE to partitioning into a liquid phase, partition coefficients 
logKi,LDPE/W were converted into logKi,LDPEamorph/W by considering the amorphous fraction of the polymer as 
effective phase volume only. A LSER model now recalibrated based on the observations for logKi,LDPEamorph/W 

exhibited the constant in the equation above to now read -0.079 instead of -0.529 which rendered the model 
more similar to a corresponding LSER-model for n-hexadencane/water. 

Based on LSER system parameters available, the sorption behavior of LDPE could be efficiently compared to 
the one of polydimethylsiloxane (PDMS), polyacrylate (PA) and polyoxymethylene (POM). The latter, by offering 
capabilities for polar interactions due to their heteroatomic building blocks, exhibit stronger sorption than LDPE 
to the more polar, non-hydrophobic domain of sorbates up to an logKi,LDPE/W range of 3 to 4. Above that range, all 
four polymers exhibited a roughly similar sorption behavior. 

Overall, LSERs were found to represent an accurate and user-friendly approach for the estimation of equi-
librium partition coefficients involving a polymeric phase. All intrinsic input parameters can be retrieved from a 
free, web-based and curated database along with the outright calculation of the partition coefficient for any given 
neutral compound with a known structure for a given two-phased system.   
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1. Introduction and background 

Studies on extractables and leachables (E&L) represent the backbone 
of a chemical safety risk assessment as required for primary contact 
plastic materials used in the pharmaceutical industry (EMA, 2005; ISO, 
2020; U.S. FDA, 1999). As opposed to safety assessments on plastic 
materials in direct food contact, regulatory thinking with E&L allocates 
a high priority on the correlation between extractables and leachables in 
order to estimate and control the ultimate patient exposure risk from 
material knowledge, i.e. identity and levels of plastic constituents. 

The industry approach to E&L studies is largely driven by 
experimentally-based, analytical protocols (Jenke, 2018). Hence, 
relating workflows typically do not leverage information on physico-
chemical factors which dictate the distribution of compounds in the 
system under investigation, and thus, ultimately patient exposure 
(Jenke, 2011). 

More recently and in line with modern risk-based thinking (ICH Q9, 
2009a; ICH Q8(R2), 2009b), predictive concepts and toolsets to char-
acterize the distribution of potentially leaching compounds have been 
reported and aim to improve this situation (Jenke and Barge, 2015; 
Welle, 2014; Egert 2018; Saylor et al., 2019; Paudel et al., 2020; Hauk 
et al., 2021). By following the general paradigms of these attempts, 
emphasis of the work presented herein is devoted to the many 
equilibrium-driven, i. e. partition-controlled situations of use involving 
primary contact plastic materials. Specifically, in such situations, in-
formation on the kinetics of migration can be neglected, i.e. the 
maximum accumulation of leachables upon equilibration of a system 
can be projected based on partition coefficients of (potential) leachables 
and their limiting solubilities, only (Bodai, 2016; Jenke, 2015). To this 
end, in part I of this work (Egert, 2022), thoroughly determined parti-
tion coefficients between low density polyethylene (LDPE) and water for 
159 compounds spanning a wide range of chemical diversity, molecular 
weight, vapor pressure, aqueous solubility and polarity (hydrophobici-
ty) were collected (n = 159, MW: 32 to 722, logKi,O/W: − 0.72 to 8.61 and 
logKi,LDPE/W: − 3.35 up to 8.36). With respect to their chemical nature, 
these compounds are generally considered indicative for the wide uni-
verse of compounds potentially leaching from plastics (Ball et al., 2012; 
Bohrer, 2012; Groh et al., 2019; Jenke, 2008; Wiesinger et al., 2021). 
LDPE, representative for the family of polyolefines, is a material of 
particular interest for healthcare applications. 

By utilizing these data and striving for a robust predictive model to 
characterize partitioning LDPE (polymer)/water, two types of Linear 
Solvation Energy Relationships (LSERs) model were successfully cali-
brated in part I of this study. First, the LSER(EV) model obtained reads: 

log Ki,LDPE/W = − 0.529+1.098 Ei − 1.557 Si − 2.991 Ai − 4.617 Bi+3.886 Vi
n = 156, R2=0.991, RMSE=0.264, F=3436

(1) 

A very good correlation was obtained (R2= 0.991). The RMSE of 
0.264 is considered excellent but slightly higher than RMSEs typical for 
solvent/water partition systems (0.10 – 0.20) (Ulrich et al., 2017). 

While LSER(EV) models are preferred for estimation of free-energy 
related solute transfer between condensed phases, the more generic 
form applicable to both condensed and gaseous phases is the LSER(VL) 
model as devised by (Goss, 2005). Established from the same set of 
experimental partition coefficients, the LSER(VL)-version reads: 

logKi,LDPE/W = − 0.330− 1.512 Si − 3.396 Ai − 5.069 Bi+2.115 Vi+0.594 Li

n = 138, R2=0.988, RMSE=0.308, F=2237
(2) 

In Eqs. (1) and (2), the five descriptor pairs quantify the molecular 
interactions that govern the partition process: non-specific van der 
Waals interactions and cavity formation (vVi, eEi or lLi), and specific 
polar interactions, i. e. dipolarity/polarizability (sSi) and hydrogen- 
bonding interactions (aAi and bBi ). The upper case letters denote the 
solute descriptors as follows: Ei: excess molar refraction in units of 
(cm3mol− 1)/10, Si: dipolarity/polarizability, Ai: solute hydrogen (H)- 
bond acidity, Bi: solute H-bond basicity, Vi: McGowan characteristic 
molar volume in units of (cm3 mol− 1)/100 (Abraham and McGowan, 
1987), and Li: logarithmic hexadecane/air partitioning constant, 
respectively. 

The lower case regression coefficients and regression constant 
(termed phase descriptors or system parameters) e, s, a, b, v, l and c are 
obtained by multiple linear (MLR) regression of an experimental set of 
solute properties (e. g. partition coefficient data) for a specific biphasic 
system. The regression coefficients and constants reflect the differential 
properties (or differential potential interactions) the solubilizing phases 
can undergo. Several excellent reviews exist covering the subtleties and 
general applications of LSERs ((Abraham et al., 2004; Endo and Goss, 
2014; Poole et al., 2009). 

LSERs have yet not been explored for the estimation of partition 
coefficients utilized in the safety evaluation of pharmaceutical - and 
food contact materials. Notwithstanding, a few reports on LSER models 
characterizing solute sorption from water to polymers in use for envi-
ronmental sampling, namely polydimethylsiloxane (PDMS), poly-
acrylate (PA) and polyoxymethylene (POM) exist and are listed in 
Table 2. 

By expanding on the LSER models constructed in part I, study part II 
presented herein aims at further exploring the performance of the 
models and to compare them to experimental data and models for par-
titioning LDPE/water from the literature. Also, based on LSER – pre-
dicted partition coefficients polymer/water, the sorption of a wide array 
of compounds indicative to extractable compounds from plastics to 
PDMS, PA and POM is briefly inspected. 

2. Results and discussion 

2.1. Predictivity of LSER(EV) model for logKi,LDPE/W - Validation Set 

To assess accuracy and robustness of the LSER(EV) model for 
logKi,LDPE/W, an independent validation set of partition coefficients as 
listed in Table 1 was generated by randomly selecting ~ 33% of the total 
observations (n = 52 out of 159 partition coefficients) from the full set of 
experimental observations for logKi,LDPE/W (this study + literature data). 
The remaining observations were then ascribed to a calibration set (n =

Nomenclature 

C Molar concentration 
E, S, A, B, V, L Abraham-type LSER solute descriptors 
f Volume fraction (0 - 1) 
K Volume based molar partition coefficient (L/L) 
V Phase volume Liter (L) 

Subscripts 
i,1/2 Solute i, partitioning between phases 1 and 2 
LDPE Low density polyethylene 
LDPEamorph Amorphous fraction of low density polyethylene 
M (Contacting) Medium 
O Octanol phase 
P Polymer 
PE Polyethylene 
W Water (or aqueous) phase 

Superscripts 
C Crystalline 
eq At equilibrium 
0 Time zero/ initial  
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104) to construct a LSER(EV)-model: 

logKi,LDPE/W = − 0.499+1.111 Ei − 1.607 Si − 3.400 Ai − 4.517 Bi+3.870 Vi

n = 104, R2=0.994, RMSE=0.220, F=3287
(3) 

Further statistics associated to Eq. (3) is provided in Table SI 1 of the 
supplemental information (SI). 

For the validation set, calculated values were again derived but now 
based on LSER Eq. (3) for the calibration set and were linearly regressed 
against the experimentally determined values, resulting in: 

logKi,LDPE/W exp = 0.98 (0.02)⋅logKi,LDPE/WLSER
/

expdesc+0.16 (0.07)
n = 52, R2 = 0.985, RMSE= 0.352, F= 3218

(4) 

The essentially unit slope and close to zero intercept of the regression 
line for experimental vs. predicted values for the independent validation 
set supports excellent accuracy of the calibrated LSER model for 
logKi,LDPE/W. With R2 =0.985 and RMSE = 0.352, a good precision of 
estimates could be demonstrated. 

The universe of chemicals potentially leaching from plastics for 
medicinal and medical device applications comprises a considerable 
number of chemical structures with no experimental LSER solute 

Table 1 
Validation Set – measured logKi,LDPE/W and LSER calculated values based on the calibration set (Eq. (3)).      

logKi,LDPE/W  

VAL ID Solute ID CAS Compound Meas-ured LSER calca (EXP descr) Diff LSER calc b (QSAR descr) Diff     
(1) (2) (2)- (1) (3) (3)-(1) 

1 104 2245-38-7 2,3,5-trimethylnaphthalene 4.36 4.24 0.12 4.08 0.28 
2 105 1730-37-6 1-methylfluorene 4.11 4.23 -0.12 3.18 0.93 
3 26 94-26-8 Butyl-hydroxybenzoate 0.04 -0.08 0.12 0.07 -0.03 
4 18 108-88-3 Toluene 2.10 2.02 0.08 1.81 0.29 
5 157 86-57-7 1-Nitronaphthalene 2.51 2.29 0.22 2.59 -0.08 
6 77 131-11-3 Dimethyl phthalate -0.13 -0.34 0.21 -0.18 0.05 
7 68 20651-71-2 4-Butylbenzoic acid 1.74 0.61 1.13 0.48 1.26 
8 136 52663-77-1 2,2′ ,3,3′,4,5,5′,6,6′-Nonachlorbiphenyl 7.62 8.15 -0.53 8.23 -0.61 
9 145 104-72-3 n-decylbenzene 7.06 6.94 0.12 6.91 0.15 
10 69 2051-62-9 4-Chlorobiphenyl 4.11 4.27 -0.16 3.85 0.26 
11 96 192-97-2 Benzo[e]pyrene 6.12 5.64 0.48 6.44 -0.32 
12 21 591-50-4 Iodobenzene 2.56 2.74 -0.18 2.82 -0.26 
13 88 86-73-7 Fluorene 3.78 3.69 0.09 3.11 0.67 
14 3 97-88-1 n-Butyl methacrylate 1.81 1.60 0.21 1.64 0.17 
15 80 91-20-3 Naphthalene 2.82 2.81 0.01 2.84 -0.02 
16 38 109-69-3 Chlorobutane 1.75 1.72 0.03 1.71 0.04 
17 143 2189-60-8 n-octylbenzene 5.96 5.83 0.13 5.78 0.18 
18 59 1219-38-1 n-Octyl-4-hydroxybenzoate 2.60 1.84 0.76 1.93 0.67 
19 87 208-96-8 Acenaphthylene 3.45 3.25 0.20 3.16 0.29 
20 90 120-12-7 Anthracene 4.29 4.26 0.03 4.69 -0.40 
21 8 589-18-4 4-Methylbenzyl alcohol -0.90 -0.74 -0.16 -0.92 0.02 
22 81 83-32-9 Acenaphthene 3.61 3.47 0.14 3.20 0.41 
23 100 53-70-3 Dibenz[a,h]anthracene 7.12 7.17 -0.05 7.47 -0.35 
24 47 107-07-3 2-Chloroethanol -2.06 -2.94 0.88 -1.83 -0.23 
25 97 205-99-2 Benzo[b]fluoranthene 6.30 5.88 0.42 6.02 0.28 
26 40 107-04-0 1-Bromo-2-chloroethane 0.81 0.93 -0.12 1.22 -0.41 
27 116 16605-91-7 2,3-Dichlorobiphenyl 4.53 4.64 -0.11 4.28 0.25 
28 1 80-62-6 Methyl methacrylate 0.12 0.24 -0.12 0.23 -0.11 
29 154 207122-16-5 2,2′ ,3,4,4′,5′,6-heptabromodiphenylether 7.60 8.27 -0.67 9.51 -1.91 
30 32 647-42-7 FTOH 6:2 1.32 1.47 -0.15 1.59 -0.27 
31 146 123-01-3 n-dodecylbenzene 8.36 8.02 0.34 7.99 0.37 
32 51 95-16-9 Benzothiazole 0.66 1.16 -0.50 1.35 -0.69 
33 92 206-44-0 Fluoranthene 4.84 4.71 0.13 4.24 0.60 
34 150 60348-60-9 2,2′ ,4,4′,5-Pentabromodiphenylether 6.82 6.84 -0.02 7.45 -0.63 
35 119 16606-02-3 2,4′ ,5-Trichlorbiphenyl 5.26 5.20 0.06 5.05 0.21 
36 64 75-52-5 Nitromethane -1.78 -1.69 -0.09 -0.78 -1.00 
37 129 38411-22-2 2,2′ ,3,3′,6,6′-Hexachlorbiphenyl 6.74 6.56 0.18 6.49 0.25 
38 102 571-58-4 1,4-dimethylnaphthalene 3.75 3.83 -0.08 3.65 0.10 
39 125 38380-01-7 2,2′ ,4,4′,5-Pentachlorbiphenyl 6.27 6.08 0.19 6.23 0.04 
40 44 120-92-3 Cyclopentanone -0.91 -1.03 0.12 -1.02 0.11 
41 22 141-78-6 Ethyl acetate -0.65 -0.52 -0.13 -0.68 0.03 
42 123 33284-52-5 3,3′ ,5,5′-Tetrachlorbiphenyl 6.31 5.89 0.42 5.88 0.43 
43 53 100-06-1 Acetanisole 0.27 0.29 -0.02 0.36 -0.09 
44 2 140-88-5 Ethyl acrylate -0.10 0.08 -0.18 -0.23 0.13 
45 156 3380-34-5 Triclosan 3.30 2.02 1.28 2.70 0.60 
46 61 109-74-0 Butyronitrile -0.90 -0.70 -0.20 0.11 -1.01 
47 75 118-79-6 2,4,6-Tribromophenol 2.30 1.87 0.43 2.59 -0.29 
48 139 100-41-4 Ethylbenzene 2.48 2.54 -0.06 2.53 -0.05 
49 121 41464-43-1 2,3,3′,4′-Tetrachlorbiphenyl 5.86 5.72 0.14 5.61 0.25 
50 29 123-91-1 1,4-Dioxane -1.39 -1.59 0.20 -1.38 -0.01 
51 106 13764-18-6 1,4,6,7-tetramethylnaphthalene 4.78 4.74 0.04 4.46 0.32 
52 57 132-65-0 Dibenzothiophene 4.02 4.10 -0.08 3.86 0.16 
53 Na 1620-98-0 3-tert-butyl-4-hydroxybenzaldehyde 2.81 ? — 2.78 0.03  

a Calculated by using Eq. (3). 
b Calculated by using Eq. (3), but employing QSPR-based solute descriptors instead of experimental solute descriptors for test solutes. 

T. Egert and H.-C. Langowski                                                                                                                                                                                                                



European Journal of Pharmaceutical Sciences 172 (2022) 106138

4

descriptors available. In such a case, the LSER solute descriptors must be 
calculated by means of a quantitative structure property relationship 
(QSPR) algorithm (Jover et al., 2004; Platts et al., 2000, 1999; Ulrich 
et al., 2017) with an inherently lower quality of the obtained descriptors 
when compared to thoroughly obtained experimental descriptors (see 
below). 

By now deploying solute descriptors generated by a QSPR as 
implemented in the publicly available LSER database (Ulrich et al., 
2017), predicted values for the validation set (still calculated by Eq. (3)) 
now gave the correlation: 

logKi,LDPE/W = 0.98(0.03)⋅logKi,LDPE/WLSER
/

QSARdesc + 0.07(0.11)
n = 52,R2 = 0.984,RMSE = 0.511, F = 1500

(5) 

Again, an essentially unit slope and intercept of the regression line 
indicates high accuracy of the model while R2=0.984 and RMSE =
0.511 suggest still acceptable predictions also for a compound set with 
no experimental solute descriptors available. Both the values predicted 
by using experimental - and QSPR-derived solute descriptors for the 
validation set are plotted against experimental partition coefficients in 
Fig. 1. Note that one has to be cautious with extrapolating this result to 
compounds exhibiting a higher degree of chemical complexity, for 
example, multifunctionality in combination with sterical variability. For 
such structures, QSPR predicted solute descriptors might be distinctly 
less reliable (Stenzel et al., 2014). With research on the improvement of 
algorithms to predict LSER solute descriptors ongoing (Niederquell 

et al., 2019; Ulrich and Ebert, 2022), it appears appropriate stating that 
the chemical nature of the majority of non-ionic extractable compounds 
is well within the domain of LSERs. 

2.2. Evaluation of a LSER screening model for polyethylene from the 
literature 

For polyethylene (PE), amongst other polymers, Reppas- 
Chrysovitsinos and coworkers (Reppas-Chrysovitsinos et al., 2016), 
have compiled an extensive set of literature data (n = 383) on logKi,PE/W. 
Here, values originated from studies involving various types of poly-
ethylene in combination with predominantly environmental contami-
nants, rendering the compound set to be of some limited chemical 
diversity. Based on these data and utilizing QSPR-based solute de-
scriptors (ABSOLV Version 15.01), the authors constructed an LSER 
(“VL”-type) model by emphasizing that the character of the model is “for 
screening” due to its generation and purpose: 

logKi,PE/W = +0.4+0.1Si,qspr − 5.6Ai,qspr − 4.5Bi,qspr − 0.1Vi,qspr +0.6Li,qspr

n = 383,R2 = 0.93,RMSE= 0.53
(6) 

Seeking comparison to the data from the study herein, first, in 
addition to the experimentally based LSER(VL) model according to Eq. 
(2) and similarly to Eq. (6), an LSER (“VL”-type) screening model was 
also calibrated based on our full dataset and QSPR-based solute de-
scriptors:  

with further statistics associated to Eq. (7) provided in Table SI 2 of the 
SI. 

Comparing Eqs. (6) and (7), an only weak match between the two 
models was found with strong disparities of the system parameters c, s 
and v. Reversely, Eq. (6) matched our full dataset with only R2 = 0.861 
and RMSE = 1.18 when based on QSPR solute descriptors and R2 =

0.858 and RMSE = 1.25 when based on experimental solute descriptors. 
Both variabilities are considered inappropriate. 

In contrast, Eqs. (7) and (2) along with associated statistics show 
appreciable similarity. Thus, in conclusion, it appears that discrepancies 
between Eqs. (6) and (7) mainly result from a high variability in mate-
rials and/or inclusion of inaccurate partition coefficients in the litera-
ture dataset used in the cited work. 

Further, in a very recent work (Zhu et al., 2021), Zhu and coworkers, 
along with non-linear QSPR-approaches for partitioning low density 
polyethylene/water, reported a pp-LFER (LSER) model derived from a 
large set of (n = 120) hydrophobic chemicals of interest to environ-
mental monitoring. Their optimized model reads: 

logKi,PE/W = − 0.957 + 1.186B + 3.592V
n = 96,R2 = 0.898,RMSE = 0.300, F = 420 (8) 

The model revealed statistically insignificant values for e, s and a and 
was successfully characterized and validated by means of dedicated 
statistical tests as recommended by internationally accepted reports and 
guidelines (Gramatica, 2007, 2013; OECD, 2007). Comparison of the 

Fig. 1. LSER-predicted partition coefficients logKi,LDPE/W for the validation set 
calculated from (i) experimental solute descriptors and (ii) QSPR-predicted 
solute descriptors against experimental partition coefficients. 

logKi,PE/W = − 0.740 − 1.241Si,qspr − 3.651Ai,qspr − 4.680Bi,qspr + 2.407Vi,qspr + 0.516Li,qspr

n = 156,R2 = 0.960,RMSE = 0.571,F = 711
(7)   
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Table 2 
Overview of LSER and log-linear models for polymer/water and solvent/water systems (log K data near 25◦C)  

Model no. Log K for systema Data set Model typea LSER system parametersa      

e/l s a b v l c N R2 RMSE F Reference 

1 PDMS/water 
(Lwater/LPDMS) 

— LSER 
EV 

0.601 
(0.043) 

- 1.416 
(0.073) 

- 2.523 
(0.092) 

-4.107 
(0.084) 

3.637 
(0.044) 

— 0.268 (0.038) 170 0.993 0.171 4475 (Sprunger et al., 2007) 

2 POM/water 
(Lwater/kgPOM) 

— LSER 
EV 

+ 0.39 
(0.06) 

0.28 
(0.10) 

0.46 
(0.15) 

-3.98 
(0.09) 

+ 2.98 
(0.10)  

- 0.37 
(0.11) 

116 0.986 0.24 – (Endo et al., 2011b) 

3 PA/water 
(Lwater/LPA) 

— LSER 
EV 

+ 0.50 
(0.10) 

– 0.16 
(0.16) 

0.16 
(0.10) 

-4.00 
(0.15) 

3.28 
(0.11)  

- 0.12 
(0.08) 

79 0.97 0.23 – (Endo et al., 2011a) 

4 n-hexadecane/water 
(Lwater/Lsolvent) 

— LSER 
EV 

+ 0.667 
(na) 

– 1.617 
(na) 

– 3.587 
(na) 

-4.869 
(na) 

+ 4.433 
(na)  

0.087 
(na) 

— — — — (Stephens et al., 2012) 

5 n-hexane/water 
(Lwater/Lsolvent) 

— LVER 
EV 

0.560 
(0.014) 

-1.710 
(0.053) 

-3.578 
(0.051) 

-4.939 
(0.065) 

4.463 
(0.037)  

0.333 
(0.032) 

201 0.996 0.156 8671 (Stephens et al., 2012) 

6 1-octanol/w (wet) 
(Lwater/LPA) 

— LSER 
EV 

0.56 
(na) 

-1.05 
(na) 

0.03 
(na) 

-3.46 
(na) 

3.81 
(na)  

0.09 
(na) 

— — — — (Abraham and Acree, 2010) 

7 LDPE/water 
(Lwater/LPE) 

— LSER 
VL (QSAR) 

0.7 
(na) 

-0.9 
(na) 

-2.7 
(na) 

-3.9 
(na) 

+ 0.8 
(na) 

+ 0.3 
(na) 

- 0.9 
(na) 

383 0.79 1.16 — (Reppas-Chrysovitsinos et al., 2016) 

8 LDPE/water 
(Lwater/LLDPE) 

full set LSER  
VL (QSAR) 

0.516 
(0.063) 

- 1.241 
(0.201) 

-3.651 
(0.270) 

-4.680 
(0.283) 

2.407 
(0.266) 

— -0.740 (0.172 156 0.960 0.571 711 this study 

9 LDPE/water 
(Lwater/LLDPE) 

full set LSER 
VL (EXP) 

0.594 
(0.036) 

- 1.512 
(0.105) 

-3.396 
(0.152) 

-5.069 
(0.140) 

2.115 
(0.155) 

— -0.330 (0.103 138 0.988 0.308 2237 this study 

10 LDPE/w  
[Lwater/LLDPE] 

full set LSER 
EV 

1.098 
(0.047) 

- 1.557 
(0.082) 

- 2.991 
(0.117) 

-4.617 
(0.111) 

3.886 
(0.059) 

— -0.529 (0.077) 156 0.991 0.264 3436 this study 

11 LDPEamorph/w  
[Lwater/LLDPE] 

full set LSER 
EV 

1.099 
(0.047) 

- 1.553 
(0.081) 

- 2.979 
(0.12) 

-4.617 
(0.110) 

3.889 
(0.058) 

— -0.529 (0.077) 156 0.996 0.267 3370  

12 LDPE/w  
[Lwater/LLDPE] 

Calibration 
Set 

LSER 
EV 

1.111 
(0.049) 

- 1.607 
(0.081) 

- 3.400 
(0.126) 

-4.516 
(0.108) 

3.870 
(0.065) 

— -0.499 (0.077) 156 0.994 0.220 3287 this study 

13 LDPE/w 
[Lwater/LLDPE] 

weak HD/HA only LL 1.18 (0.014) log KO/W – 1.33 (0.069) 115 0.984 0.313 7046 this study 
14 full set LL 1.26 (0.028) log KO/W – 1.99 (0.125) 156 0.930 0.742 2040 this study  

a For abbreviations and information on model details see text. 
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system parameters with the model from this study given by Eq. (1) re-
veals a comparable contribution of molecular size (v = 3.592 vs. v =
3.886), however, the remaining system parameters (e, s, a = 0; b = +

1.186  vs. b = -4.167) suggest a notable disparity of predictions obtained 
from Eqs. (1) and (8) if applied to more polar compounds, especially if 
they are capable to undergo hydrogen-bonding interactions. Mainly, this 
is expected to affect the applicability domain of the model which 
directly corresponds to its underlying training set. As the training set 
applied to derive Eq. (8) is restricted to widely hydrophobic, weak 
hydrogen donors / - acceptors, respectively, this accordingly, restricts 
the application domain of the model. 

2.3. Comparison of solute partitioning from water into LDPE, n- 
hexadecane and selected polymers 

Given the structural similarity of the polymer backbone to that of 
linear hydrocarbons, the partitioning behavior of LDPE was previously 
supposed to be close to the one of n-hexadecane (Hale et al., 2010). 
Deploying the full set of test solutes, this can indeed be confirmed by 
plotting LSER calculated logarithmic partition coefficients for LDPE/-
water versus those for n-hexadecane/water (Fig. 3A). It is noted that, in 
general, compounds show stronger sorption to n-hexadecane than to 
LDPE, with a more pronounced tendency at increasing hydrophobicity 
and size of molecule. Naturally, this behavior is also expressed by the 
differences in system parameters c (− 0.529 for LDPE/w versus 0.667 for 
n-hexadecane/w) and as well by the system parameter v accounting for 
molecular volume and therefore, cavity formation energy (3.886 for 

Fig. 2. Structural repeat units of polymers.  

Fig. 3. Comparison of the differential sorption behavior polymer-water of selected polymers based on LSER calculated partition coefficients: logKi,LDPE/W vs. 
logKi,n− hexadecane/W (A) logKi,LDPE/W vs. logKi,PDMS/W (B) logKi,LDPE/Wvs. logKi,PA/W (C) logKi,LDPE/W vs. logKi,POM/W (D). 
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LDPE/w versus 4.869 for n-hexadecane/w (see Table 2)). While the 
constant c causes the overall offset from the 1:1 line, a larger system 
parameter v for n-hexadecane translates to a stronger sorption to 
n-hexadecane with increasing molecular size/volume. 

Sorption to polymers can be loosely divided into two general cases. 
Firstly, situations involving amorphous (“liquid like”) polymers, which 
exhibit linear sorption isotherms with absorption being the dominating 
mechanism of sorption into the macromolecular network. Secondly, 
polymers of significant crystallinity and polymorphic structures often 
give rise to more complex sorption mechanisms, e. g. surface sorption 
subject to saturation, nano-scaled capillary effects and, as a result, non- 
linearity of sorption isotherms (Fang and Vitrac, 2017; Guo et al., 2012; 
Uber, 2019). Furtheron, polymer crystallites are deemed inaccessible to 
a solute which consequently would lead to the effective polymer volume 
being similar to its amorphous fraction, only. However, in general, 
published experimental partition coefficients involving a polymer phase 
have not been calculated in account of the polymer’s crystallinity (see 
Table 2). If the polymer’s accessible volume is corrected by crystallinity, 
this would be expected to affect the constants in both LSER approaches 
(Goss, 2011; Hale et al., 2011; Loschen and Klamt, 2014; Van Noort, 

2012). 
Hence, to account for disparities in total- versus accessible polymeric 

phase volume a related LSER model requires calibration based on 
partition coefficients calculated from the accessible (amorphous) 
experimental polymer phase volume to render it comparable to models 
for (organic) liquid phase systems. 

In part I of this study, partition coefficients between LDPE and water, 
logKi,LDPE/W, were thoroughly obtained from equilibrium concentrations 
as measured in both phases: 

logKi,LDPE/W = log

(
Ceq

i,LDPE

Ceq
i,W

)

(9)  

and hence further converted to a partition coefficient related to the 
amorphous polymer phase, Ki,LDPEamorph/W by: 

logKi,LDPEamorph/W = log
(

10logKi,LDPE/W

1 − XC
LDPE

)

(10)  

where XC
LDPE is the polymer’s crystalline fraction by volume assumed as 

Fig. 4. Comparison of LSER system parameters for partition systems polymer/water as compared to n-hexadecane/water and 1-octanol/water.  

Table 3 
Experimental values for logKi, PE/W from the literature along with their logKi, O/W and logKi, PE/W values calculated by the COSMO-RS method and by LSER  

ID CAS no Compound logKi, O/W
a  logKi, PE/W

b  Hydrogen donor/acceptor strength 
f     

Experi- 
mental.c 

COSMO- 
RSd 

LSERe  

1 99-96-7 4-Hydroxybenzoic acid 1.42 -0.84 -3.64 -2.07 strong HD/weak HA 
2 99-76-3 Methyl-4-hydroxybenzoate 1.86 -0.72 -1.44 -1.42 strong HD/weak HA 
3 589-18-4 4-Methylbenzyl alcohol 1.49 -0.75 -0.04 -0.66 strong HD/HA 
4 118-90-1 2-Methylbenzoic acid 2.35 -0.13 -0.34 -0.32 strong HD/weak HA 
5 94-13-3 Propyl-4-hydroxybenzoate 2.93 0.08 -0.54 -0.34 strong HD/weak HA 
6 84-66-2 Diethyl phthalate 2.70 0.80 1.66 0.68 weak HD/strong HA 
7 108-88-3 Toluene 2.68 1.57 1.86 2.00 weak HD/HA 
8 20170-32- 

5 
3,5-Di-tert-butyl-4-hydroxyphenyl propanoic acid 4.48 1.42 1.96 1.29 strong HD/HA 

9 96-76-4 2,4-Di-tert-butyl phenol 4.86 2.47 2.96 2.72 strong HD/weak HA 
10 128-37-0 2,6-Di-tert-butyl-4-methyl phenol 5.32 3.21 4.76 3.99 strong HD/weak HA 
11 117-81-7 Bis(2-ethylhexyl) phthalate 8.71 5.22 6.96 6.14 weak HD/strong HA 
12 2082-79-3 Octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl) 

propionate 
13.9 8.19 13.3 12.1 strong HD/HA  

a Values calculated by Advanced chemistry Development (ACD) Software V8.14 for Solaris as reported in (Gasslander et al., 2007). 
b Data from (Gasslander et al., 2007), measured by cosolvency method. 
c Non-specified type of polyethylene. 
d Calculated by COSMOR-RS (FV) method as reported in (Loschen and Klamt, 2014). 
e Calculated by LSER Eq. (1). 
f See classification in (Egert, 2022). 
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0.35. 
From the amorphous volume – based partition coefficients 

logKi,LDPEamorph/W obtained by Eq. (10), another LSER(EV) model was 
constructed: 

logKi,LDPEamorph/W = − 0.079+1.099E − 1.553S − 2.979A − 4.626B+3.889V
n = 156,R2 =0.996,RMSE=0.267,F=3370

(11)  

It is noted that the constant c showed an associated standard error of 
0.078 and is therefore de facto insignificant. Further statistics associated 
to Eq. (11) provided in Table SI 3 of the SI. 

As expected, when comparing the models in Eqn 1 and 11, utilizing 
logKi,LDPEamorph/W for calibration mainly affected the model’s offset, i.e. 
the constant to change from − 0.529 to now − 0.079 rendering it more 
similar to the LSER model for n-hexadecane/water (and hexane/water, 
see Table 2). 

Along these lines, a comparison of the sorption behavior of LDPE to 
other polymers of pharmaceutical interest can be made, both visually 
(Fig. 3B–D, and also supported by the differences in LSER system pa-
rameters listed in Table 2 and visualized in Fig. 4. Here, poly-
dimethylsiloxane (PDMS), in comparison to LDPE, shows a stronger 
sorption to (more polar) compounds of the lower log K range and less 

sorption in the higher log K range, with a center point between a log K of 
3 to 4. In contrast, polyacrylate (PA) exhibits overall stronger sorption 
(up to about 3 log units!) of polar compounds below a log K range of 5 
with some scatter around the 1:1 line above a log K of 5. A quite similar 
behavior can be seen for polyoxymethylene (POM) with stronger sorp-
tion of nonpolar compounds into LDPE above a log K of 5 (Fig. 3). 

A comparison of the LSER system parameters for the systems poly-
mer/water versus n-hexadecane/water, and finally octanol/water, 
respectively, is depicted by Fig. 4. Inspecting the parameters for the 
specific intermolecular interactions, i.e., s, a and b, the trend from 
nonpolar towards more polar materials becomes readily visible. Simi-
larly, for the non-specific type of interactions (e, v) a similar but opposite 
trend can be clearly seen. 

2.4. Evaluation of literature data on logKi,PE/W for compounds 
representative for potential leachables 

One of the rare datasets on partition coefficients polyethylene/water 
for compounds being chemically representative for chemicals poten-
tially leaching from polymers for pharmaceutical and food applications 
and specifying adequate experimental details was reported by Gass-
lander et al. (2007). The reported partition coefficients were measured 

Fig. 5. Correlations for partition coefficients polyethylene-water. Experimental logKi,PE/W from Gasslander et al. (2007) versus logKi,O/W (A), experimental logKi,PE/W 
vs  LSER calculated logKi,LDPE/W (B), experimental logKi,PE/W vs  logKi,PE/W calculated by COSMO-RS (FV) (C), and comparison of values predicted by COSMO-RS 
(FV-term) and LSER (D). For abbreviations see text. 
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using the cosolvency method (Smedes, 2018; Smedes et al., 2009). 
Loschen and Klamt (2014), in a previous study, have referenced this 
dataset for evaluating the performance of the COSMO-RS method 
(Klamt, 2018) by including a free-volume (FV) term for the estimation of 
partition coefficients polyethylene/water. 

With the compound set and associated partition coefficients pro-
vided in Table 3, plots were generated (Fig. 5) to depict correlations 
between experimental values and logKi,O/W as well as values predicted 
by COSMO-RS and the LSER-model from this study (Eq. 1). Some con-
clusions can be drawn upon inspection of the plots and statistics of linear 
correlations between the experimental values and their predictors: 

Linear regression of logKi,PE/W against logKi,O/W gave: 

logKi,PE/W = 0.74(0.05)⋅logKi,O/W − 1.52(0.28)
n = 12,R2 = 0.955,RMSE = 0.607,F = 214 (12) 

A significantly better fit is obtained for the correlation between 
experimental and LSER predicted values: 

logKi,PE/W = 0.69(0.03)⋅logKi,LDPE/WLSER + 0.33(0.12)
n = 12,R2 = 0.992,RMSE = 0.363,F = 618

(13) 

However, the slope of 0.69 is still markedly different from unity. 
Correlation to estimates calculated by COSMO-RS (FV), although with a 
somewhat lower fit, resulted in a quite similar slope: 

logKPE/w = 0.60(0.04)⋅logKLDPE/wCOSMO + 0.34(0.19)
n = 12,R2 = 0.961,RMSE = 0.566, F = 248 (14) 

Noted by Loschen and Klamt (2014), this indicates that the experi-
mental partition coefficients, especially for the very hydrophobic com-
pounds, might be somewhat out of range from what is reliably 
measurable. By regressing values predicted by LSER and COSMO-RS 
(FV), however, a satisfactory fit was obtained, underpinning the reli-
ability of the estimates from the two methods. 

logKPE/wCOSMO = 1.12(0.05)⋅logKLDPE/wLSER ± 0.04(0.20)
n = 12,R2 = 0.983,RMSE = 0.605, F = 588 (15) 

This example provides some indication on how high performing 
models can be of value for plausibility assessment of experimental 
datasets on partitioning. This is of particular relevance for partition 
coefficients at the extremes of the log K scale, rendering the measure-
ment of reliable data a significant challenge. In the context of studies on 
extractables and leachables, this also translates to a toolset, which offers 
plausibility checks for meaningful correlations between extractables and 
leachables, as required by several regulatory texts (PQRI, 2006; USP, 
2020). 

3. Conclusion and Outlook 

Abraham-type Linear Solvation Energy Relationships (LSERs) were 
demonstrated to provide an accurate and robust means for the predic-
tion of partition coefficients between LDPE and water, as proven by a 
coefficient of determination of 0.985 and a standard deviation of 0.352 
for an independent validation set. The availability of reliable experi-
mental partition coefficients for model calibration was found of high 
importance, as expected. Using solute descriptors obtained from a QSPR 
prediction tool instead of experimentally derived descriptors yielded a 
somewhat lower predictivity (R2=0.984, RMSE = 0.511, n = 52). It is 
stressed that the both the quality of experimental partition coefficients 
and the chemical diversity of the applied compound training set is 
crucial to the quality and application domain of the LSER model ob-
tained, as shown by evaluation and external benchmarking of the model. 

Comparison of LSER calculated partition profiles between LDPE, 
polydimethylsiloxane, polyacrylate and polyoxymethylene revealed, in 
part, pronounced differences in the sorption characteristics between 
polymers. As expected, sorption capacities towards a specific solute 
were observed to strongly depend on the match between the chemical 
nature (potential for molecular interactions) of the polymer building 

block to the one of the solute. 
As speculated by previous research, n-hexadecane was demonstrated 

to represent a good surrogate for LDPE. Notably, if partition coefficients 
LDPE/water are calculated based on the effective volume of the amor-
phous LDPE fraction only, the inherent offset in the correlation for solute 
partitioning between systems LDPE/water to n-hexadecane/water be-
comes less pronounced. 

To identify maximum (i.e. worst-case) levels of leaching within 
chemical safety risk assessments on systems exhibiting partition 
controlled / equilibrium driven behavior, it appears adequate to utilize 
LSER calculated partition coefficients (in combination with solubility 
data) by ignoring any kinetical information, i.e. time to equilibrium. 
Thus, projection of patient exposure can, in a first step, be facilitated 
based on reliable quantitative extractables data along with robust esti-
mates of partition coefficients, only. By taking this further, the LSER- 
based calculation of partition coefficients polymer/water was found of 
high value for predictive modeling of small molecule mass transport in 
healthcare applications and also, with no constraints, for the concept of 
migration modeling as officially recognized for compliance testing of 
food contact materials. Future research should focus on establishing 
additional experimental LSER solute descriptors for the chemical space 
of extractables and as well on enhanced algorithms to derive solute 
descriptors from structural information, only. 
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