

Contents lists available at ScienceDirect

Stem Cell Research

journal homepage: www.elsevier.com/locate/scr

Generation of heterozygous (MRli003-A-3) and homozygous (MRli003-A-4) TRPM4 knockout human iPSC lines

Peripheral Blood Mononuclear Cell

SOX2, KLF4 and MYC

Clonal

Essential 8^{TM}

Induced mutation:

N/A

Non-integrating sendai virus OCT3/4.

Cell line 1_ MRli003-A-3: frame shift in

Fangfang Zhang^{a,b}, Anna B. Meier^{a,b}, Peter Lipp^c, Karl-Ludwig Laugwitz^{a,b}, Tatjana Dorn^{a,b}, Alessandra Moretti^{a, b, *}

^a First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine & Health, Munich, Germany

^b DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany

^c Molecular Cell Biology, Centre for Molecular Signaling (PZMS), Medical Faculty, Saarland University, Homburg, Germany

ABSTRACT

TRPM4 is a Ca²⁺-activated channel mediating the transport of monovalent cations across the cell membrane. Mutations in the *TRPM4* gene have been associated with cardiac arrhythmias in humans. Using CRISPR/Cas9 gene editing technology, we established two TRPM4 knockout human iPSC lines - one heterozygous (MRli003-A-3) and one homozygous (MRli003-A-4) - by inserting a frameshift mutation in exon 2 of the TRPM4 gene. Both lines maintained pluripotency, a normal karyotype, parental cell morphology, and the ability to differentiate into the three germ layers.

1. Introduction

1.1. Resource utility

AsTRPM4 mutations have been implicated in inherited cardiac arrhythmias in humans (Amarouch et al., 2020), these heterozygous and homozygous TRPM4 knockout iPSC lines may be useful to study the underlying mechanisms.

Recourse table 2

. Resource table			one allele of exon 2 of <i>TRPM4</i> gene Cell line 2 MRli003-A-4: frame shift in
Unique stem cell line identifier	Cell line 1: MRli003-A-3 Cell line 2: MRli003-A-4	Associated disease	two alleles of exon 2 of <i>TRPM4</i> gene N/A
Alternative name(s) of stem cell lines	Cell line 1: TRPM4+/-	Gene/locus	TRPM4 gene/19q13.33
Institution	Cell line 2: TRPM4–/– Klinik und Poliklinik Innere Medizin I.	Method of modification/site-specific nuclease used	CRISPR/Cas9
	Klinikum rechts der Isar – Technical University of Munich, Munich, Germany	Site-specific nuclease (SSN) delivery method	Plasmid transfection
Contact information of the reported cell line distributor	amoretti@mytum.de	All genetic material introduced into the cells	Cas plasmid
Type of cell lines	iPSCs	Analysis of the nuclease-targeted allele	Sanger Sequencing
origin	Human, MRli003-A hiPSCs described in	status	
	Moretti et al. 2020, Nature Medicine	Method of the off-target nuclease	Top off-target site analyzed by PCR/
Additional origin info	Age: N/A	activity surveillance	sequencing in genomic exons
	Sex: Male	Name of transgene or resistance	N/A
	Ethnicity: Caucasian		N/A
	(continued on next column)		(continued on next page)

* Corresponding author at: First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine & Health, Munich, Germany.

E-mail address: amoretti@mytum.de (A. Moretti).

https://doi.org/10.1016/j.scr.2022.102731

Received 14 January 2022; Accepted 25 February 2022 Available online 26 February 2022

1873-5061/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creati vecommons.org/licenses/by-nc-nd/4.0/).

(continued) Cell Source

Clonality

Method of reprogramming

copy if applicable)

Cell culture system used

Type of Genetic Modification

Evidence of the reprogramming

transgene loss (including genomic

(continued)

Eukaryotic selective agent resistance (including inducible/gene expressing	
Inducible/constitutive system	N/A
Date archived/stock date	July 15, 2021
Cell line repository/bank	Cell line 1: https://hpscreg.eu/cell-line /MRIi003-A-3
	Cell line 2: https://hpscreg.eu/cell-line /MRIi003-A-4
Ethical/GMO work approvals	The choice of appropriate human donors, the procedures for taking peripheral
	blood, isolation of mononuclear cells
	from blood, generation of iPSCs and their
	were performed under the positive votes
	of the Ethics Committee of the Faculty of
	Medicine (TUM, approval number: 2109/
	08). All study participants gave informed
	consent prior to entry into the study.

2.1. Resource details

The *TRPM4* gene encodes a transient receptor potential melastatinlike subfamily member 4 (TRPM4) protein, which is an intracellular calcium-activated nonselective channel permeable to monovalent cations (Amarouch et al., 2020; Wang et al., 2018). While it is regulated by intracellular Ca²⁺, it is not permeable to Ca²⁺. TRPM4 is detected ubiquitously and is abundantly expressed in cardiac cells. Recent evidence suggests that it plays an important role in cardiac excitability and automaticity (Amarouch et al., 2020; Wang et al., 2018).

Here, using CRISPR/Cas9 technology, we generated heterozygous (MRli003-A-3) and homozygous (MRli003-A-4) TRPM4 knockout human iPSC lines with a single guide RNA (sgRNA) targeting TRPM4 exon 2 (Fig. 1A, Table 1). After editing, sequencing revealed a heterozygous 4 nt (CGAC) deletion and a 2 nt (TA) insertion in the MRli003-A-3 line and a homozygous 1 nt (A) insertion in the MRli003-A-4 line, which caused a premature stop codon in both cases (Fig. 1B, Fig. S1A). Both lines displayed typical iPSC colony formation (Fig. 1C) and expressed the pluripotency markers OCT3/4 and NANOG (Fig. 1D). Moreover, mRNA expression of the pluripotency markers OCT3/4, SOX2, REX1, NANOG, and TDGF1 was significantly higher in these lines compared to fibroblasts, as detected by qRT-PCR (Fig. S1B). Flow cytometry analysis showed that over 98% of cells expressed both surface pluripotency markers TRA-1-60 and SSEA4 (Fig. 1E). Both lines successfully differentiated towards all three germ layers, as demonstrated by qRT-PCR analysis of specific markers of endoderm (FOXA2, SOX17, CXCR4, and GATA4), mesoderm (TBXT, DES, ACTA2, SCL, and CDH5), and ectoderm (PAX6, KRT14, NCAM1, TH, and GABRR2) (Fig. 1F). Both edited lines also presented a normal karyotype (46, XY) (Fig. 1G) and were free of mycoplasma contamination (Fig. S1C). No mutations were found at the coding region of the PI4KA gene, the only coding locus exhibiting a high off-target editing score for the sgRNA used (Fig. S1D).

As *TRPM4* is not expressed in undifferentiated iPSCs, we subjected both lines to a Wnt-based cardiac induction protocol, which showed that they can be efficiently differentiated into $\text{cTNT}^+ \alpha$ -actinin⁺ cardiomyocytes (CMs) (Fig. S1E, Fig. 1H). This allowed us to confirm that the indels introduced in exon 2 of the *TRPM4* gene led to the premature termination of protein translation, as Western blot analysis showed decreased TRPM4 protein levels in cardiomyocytes derived from the MRli003-A-3 line compared to unmodified cells and complete absence of the protein in cardiomyocytes from the MRli003-A-4 line (Fig. 1I).

3. Materials and methods

3.1. hiPSC culture

hiPSCs were cultured on Geltrex-coated (Thermo Fisher Scientific, A14133-02) plates in Essential 8 medium (Thermo Fisher Scientific, A1517001) containing 0.5% Penicillin/Streptomycin (Thermo Fisher Scientific, 15140–122) at 37 °C, 5% CO₂. Cells were passaged at a ratio of 1:14 every 4–5 days using 0.5 mM EDTA (Thermo Fisher Scientific, AM9260G). After passaging, the medium was supplemented with 10 μ M Thiazovivin (Sigma-Aldrich, SML1045) for 24 h.

3.2. Cloning of targeting constructs

A sgRNA targeting exon 2 of the *TRPM4* gene was designed and evaluated with CRISPOR (http://crispor.tefor.net). It was then cloned into a pSpCas9(BB)-2A-Puro (PX459) V2.0 plasmid (Addgene, 62988), referred to as pSpCas9(BB)-TRPM4-KOgRNA-2A-Puro. Cloning steps were performed according to Ran et al. (2013).

3.3. 4D Nucleotransfection of hiPSCs

Nucleotransfection was performed on 10^6 cells following the Lonza Amaxa 4D Nucleofector basic protocol for human stem cells. hiPSCs were transfected with 5 µg pSpCas9(BB)- TRPM4-KOgRNA-2A-Puro plasmid and reseeded in Matrigel-coated (BD, 354277) 24 well-plates in mTeSR1 (Stemcell Technologies, 05854) containing 10 µM Thiazovivin. 24 h later, 0.2 µg/ml puromycin (Calbiochem, 540411) was added for 24 h. Another 1–2 days later, cells were dissociated with Accutase (Thermo Fisher Scientific, A11105-01) and replated for single clone expansion.

3.4. Immunocytochemistry

Immunocytochemistry was performed as previously described (Dorn et al., 2018) with the antibodies listed in Table 2.

3.5. Western blotting

Cell lysates of iPSC-derived day 15 cardiomyocytes were prepared with RIPA buffer (Sigma-Aldrich, R0278) containing a protease inhibitor (Roche, 11836170001). Western blotting was performed using standard protocols. Antibodies are listed in Table 2.

3.6. Flow cytometry

iPSCs were dissociated with Accutase and 10^6 cells were stained with TRA-1–60-PE or the corresponding isotype antibody (Table 2). Data were acquired at a Gallios flow cytometer (Beckman Coulter, Germany) and analyzed with Kaluza software version 1.2.

3.7. Quantitative real-time PCR (qRT-PCR)

Total mRNA was isolated with the Absolutely Microprep RNA kit (Agilent, 400805) and cDNA was prepared with the High-Capacity cDNA Reverse Transcription kit (Applied Biosystems, 4368813). qRT-PCR was performed with the Power SYBR Green PCR Master Mix (Applied Biotechnologies, 4367659) and the primers listed in Table 2 using a 7500 Fast Real-Time PCR instrument (Applied Biosystems, Germany). Gene expression levels were normalized to *GAPDH*.

3.8. Mycoplasma detection

Mycoplasma detection was performed with the MycoAlert PLUS Mycoplasma Detection Kit (Lonza, LT07-703).

Fig. 1. Generation and validation of the TRPM4 knockout iPSC lines MRIi003-A-3 and MRIi003-A-4.

Table 1

Characterization and validation.

Classification	Test	Result	Data
Morphology	Brightfield imaging	Normal morphology	Fig. 1C
Pluripotency status evidence for the described	Immunocytochemistry	OCT3/4 and NANOG staining	Fig. 1D
cell line	Flow cytometry	98% Double positive of SSEA4 and TRA-1–60 for MRli003-A-3 and MRli003-A-4	Fig. 1E
	RT-qPCR	mRNA level of OCT3/4, SOX2, REX1, NANOG and TDGF1	Fig. S1B
Karyotype	Karyotype (G-banding) and resolution	MRli003-A-1: 46, XY; Resolution 450–525 bands MRli003-A-2: 46, XY; Resolution 425–550 bands	Fig. 1G
Genotyping for the desired genomic alteration/ allelic status of the gene of interest	PCR across the edited site/ Sequencing	Both MRli003-A-3 and MRli003-A-4 determined by PCR and confirmed by Sanger sequencing	Fig. 1B, Fig. S1A
	Transgene-specific PCR	N/A	N/A
Verification of the absence of random plasmid integration events	PCR/Southern	N/A	N/A
Parental and modified cell line genetic identity evidence	STR analysis	Performed by Eurofins MWG Operon company	Supplementary file, submitted in the archive with journal
Mutagenesis /genetic modification outcome analysi	Sequencing (genomic DNA PCR or RT-PCR product)	Sanger sequencing tracks	Fig. 1B
	PCR-based analyses	Not performed	Not performed
	Western blotting (for knockouts, KOs)	TRPM4 protein levels were determined in both MRli003-A-3 and MRli003-A-4	Fig. 1I
Off-target analysis	PCR across top predicted off-target sites and sequencing	Sanger sequencing	Fig. S1D
Specific pathogen-free status	Mycoplasma	Biochemical luminescence MycoAlert [™] Plus Mycoplasma Detection Kit, Lonza, Negative	Fig. S1C
Multilineage differentiation potential	Directed differentiation	Three germ layer formation: germ layer specific gene expression checked by RT-qPCR	Fig. 1F
Donor screening	HIV 1 + 2 Hepatitis B, Hepatitis C	N/A	N/A
Genotype - additional histocompatibility info	Blood group genotyping	N/A	N/A
	HLA tissue typing	N/A	N/A

Table 2

Reagents details.

Antibodies and stains used for immunocytochemistry/flow-cytometry

	Antibody	Dilution	Company Cat # and RRID
Pluripotency markers	Rabbit anti-OCT3/4	1:200	Abcam Cat# ab19857, RRID:AB_445175
	Rabbit anti-NANOG	1:200	Abcam Cat# ab21624, RRID:AB_446437
	Human anti-TRA-1–60-PE	1:10	Miltenyi Biotec Cat# 130–100-347, RRID:AB_2654227
	Human anti-SSEA4-FITC	1:10	Miltenyi Biotec Cat# 130–098-371, RRID:AB_2653517
Cardiomycyte specific markers	Rabbit anti-cTNT	1:500	Abcam Cat# ab92546, RRID:AB_10585593
	Mouse anti-α-actinin	1:200	Sigma-Aldrich Cat# A7811, RRID:AB_476766
Isotype control	REA Control (S)-PE-Vio615	1:10	Miltenyi Biotec Cat# 130–107-146, RRID:AB_2661694
	REA Control (S)-FITC	1:10	Miltenyi Biotec Cat# 130–104-610, RRID:AB 2661688
TRPM4 specific antibody	Rabbit anti-TRPM4	1:200	Custom-made by Prof. Veit Flockerzi, Department of Pharmacology and Toxicology, Saarland Uniserity, Germany
	Rabbit anti-GAPDH	1:2000	Cell signaling Cat# 2118, RRID:AB_561053
Secondary antibodies	Goat Anti-Rabbit Alexa Fluor 488 IgG	1:500	Invitrogen Cat# A11008,
-	Goat Anti-Mouse Alexa Fluor 594 IgG		RRID:AB 143165
	Anti-rabbit IgG HRP	1:500	Invitrogen Cat# A-11005,
	Ŭ		RRID:AB 141372
		1:10000	Sigma-Aldrich Cat# A0545,
			RRID:AB 257896
Nuclear stain	Hoechst 33,258	1 μg/ml	Sigma-Aldrich Cat# 94,403
Site specific nuclease			
Nuclease information	WT S progenes Cas9 (SpCas9)	Ran et al	Nat Protoc 2013 Nov:8(11):2281_308
Delivery method	Nucleotransfection	Lonza: 4D-NucleofectorTM core Unit \pm X Unit (Δ AE-1002B \pm Δ AE-1002X)	
Selection/enrichment strategy	Antibiotic selection	Lonza, 4D-Nucleolectol I M cole Olitt $+ x$ Olitt (AAF-1002D + AAF-1002A)	
Selection/ enrichment strategy	Anubiotic selection	Futoniyei	11
Primers and Oligonucleotides used in	this study		
	Target	Forward/	Reverse primer (5'-3')
Pluripotency Markers	OCT3/4	GACAGG	GGGAGGGGAGGAGCTAGG/
		CTTCCCT	CCAACCAGTTGCCCCAAAC
	SOX2	GGGAAA	TGGGAGGGGTGCAAAAGAGG/
		TTGCGTC	GAGTGTGGATGGGATTGGTG
	NANOG	TGCAAGA	AACTCTCCAACATCCT/ATTGCTATTCTTCGGCCAGTT
	REX1	ACCAGCA	ACACTAGGCAAACC/TTCTGTTCACACAGGCTCCA
	TDGF1	CCCAAGA	AAGTGTTCCCTGTG/ACGTGCAGACGGTGGTAGTT
Three germ layer Markers	FOXA2	CCGACTO	GGAGCAGCTACTATG/TGTACGTGTTCATGCCGTTC
	SOX17	ACGCCGA	AGTTGAGCAAGA/GCGGCCGGTACTTGTAGTT
	CXCR4	CCCTCCTGCTGACTATTCCC/TAAGGCAACCATGTGTGC	
			(continued on next ness)

Table 2 (continued)

Antibodies and stains used for immunocytochemistry/flow-cytometry

	Antibody	Dilution Company Cat # and RRID
	GATA4	GGCCTGTCATCTCACTACGG/ATGGCCAGACATCGCACT
	TBXT	TGTTTATCCATGCTGCAATCC/CCGTTGCTCACAGACCACAG
	DES	GTGAAGATGGCCCTGGATGT/TGGTTTCTCGGAAGTTGAGG
	ACTA2	GTGATCACCATCGGAAATGAA/TCATGATGCTGTTGTAGGTGGT
	SCL	CCAACAATCGAGTGAAGAGGA/CCGGCTGTTGGTGAAGATAC
	CDH5	CCTACCAGCCCAAAGTGTGT/TGTCCTTGTCTATTGCGGAGA
	PAX6	CAGCTTCACCATGGCAAATAA/ATCATAACTCCGCCCATTCA
	KRT14	CACCTCTCCTCCCAGTT/ATGACCTTGGTGCGGATTT
	NCAM1	CAGATGGGAGAGGATGGAAA/CAGACGGGAGCCTGATCTCT
	TH	TGTACTGGTTCACGGTGGAGT/TCTCAGGCTCCTCAGACAGG
	GABRR2	CTGTGCCTGCCAGAGTTTCA/ACGGCCTTGACGTAGGAGA
House-Keeping Genes (qPCR)	GAPDH	TCCTCTGACTTCAACAGCGA/GGGTCTTACTCCTTGGAGGC
Genotyping (sequence of target region)	TRPM4 (Exon2); Length: 618 bp (WT)/616	GAGACTCCTGAGTCTGGAGCG/CCTTGGGAGCGCTGAGTGAGG
	(heterozygous mutation)/619 (homozygous mutation)	
sgRNA oligonucleotide	TRPM4 gene specific	GTCAACTATGAACGTCGTGC
Oligo for cloning sgRNA	TRPM4_guide primers	CACCGTCAACTATGAACGTCGTGC/AAACGCACGACGTTCATAGTTGACC
	U6-Fw primer for sequencing	GACTATCATATGCTTACCGT
Genomic target sequence(s)	TRPM4 Exon 2	Homo sapiens chromosome 19, GRCh38.p13: 49157792–49211841
Top off-target mutagenesis predicted site sequencing (for CRISPR/Cas9)	Chr.22_PI4KA	ATGGAAAATGATAGGCCTAACTAGG /AAATGTATAAATGGGGTGGGTGC

4. GenotypingV

The genotype of the clones was determined by PCR followed by Sanger sequencing (Eurofins MWG Operon) (Primers are listed in Table 2).

4.1. Karyotyping

Karyotyping was performed at the Institute of Human Genetics of the Technical University of Munich via metaphase preparation and G-banding (≥ 20 metaphases counted).

4.2. Trilineage differentiation

Cells were differentiated into the three germ layers in 2D using the StemMACSTM Trilineage Differentiation Kit (Miltenyi Biotec, 130-115-660) according to manufacturer's instructions.

4.3. STR analysis

STR analysis was performed by Eurofins MWG Operon.

4.4. Off-target analysis

Potential off-target sites were predicted using CRISPOR (http: //crispor.tefor.net). The top sequence was amplified (Primers are listed in Table 2) and verified by Sanger sequencing.

4.5. Differentiation towards cardiomyocytes

iPSCs were differentiated towards cardiomyocytes as described in Foo et al. (2018).

Declaration of Competing Interest

The authors declare that they have no known competing financial

interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank Birgit Campbell and Christina Scherb for their technical assistance in cell culture and molecular cloning and Gabi Lederer (Cy-togenetic Department, TUM) for karyotyping. This work was supported by grants from: the European Research Council (ERC), (788381 to A.M.); the German Research Foundation, Transregio Research Unit 152 (to A. M., K-L.L., and P.L.) and 267 (to A.M. and K-L.L.); the German Centre for Cardiovascular Research (DZHK), (FKZ 81Z0600601 to A.M. and K-L.L.), (FKZ 81X2600608 to A.M. and P.L).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scr.2022.102731.

References

- Amarouch, M.-Y., El Hilaly, J., Yu, H., 2020. Inherited cardiac arrhythmia syndromes: focus on molecular mechanisms underlying TRPM4 channelopathies. Cardiovasc. Ther. 2020, 1–10.
- Dorn, T., Kornherr, J., Parrotta, E.I., Zawada, D., Ayetey, H., Santamaria, G., Iop, L., Mastantuono, E., Sinnecker, D., Goedel, A., et al., 2018. Interplay of cell-cell contacts and RhoA/MRTF -A signaling regulates cardiomyocyte identity. EMBO J. 37, e98133.
- Foo, K.S., Lehtinen, M.L., Leung, C.Y., Lian, X., Xu, J., Keung, W., Geng, L., Kolstad, T.R., Thams, S., Wong, A.O., et al., 2018. Human ISL1+ ventricular progenitors selfassemble into an in vivo functional heart patch and preserve cardiac function post infarction. Mol. Ther. 26, 1644–1659.

Wang, C., Naruse, K., Takahashi, K., 2018. Role of the TRPM4 channel in cardiovascular physiology and pathophysiology. Cells 7 (6), 62.

Ran, F.A., Hsu, P.D., Wright, J., Agarwala, V., Scott, D.A., Zhang, F., 2013. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8 (11), 2281–2308.