
Physics Letters B 827 (2022) 136933
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Flavor violating muon decay into an electron and a light gauge boson

Alejandro Ibarra a, Marcela Marín b, Pablo Roig b,∗
a Physik-Department, Technische Universität München, James-Franck-Straße, 85748 Garching, Germany
b Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, 07000, Ciudad de México, Mexico

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 November 2021
Received in revised form 19 January 2022
Accepted 25 January 2022
Available online 29 January 2022
Editor: J. Hisano

We analyze the flavor violating muon decay μ → eχ , where χ is a massive gauge boson, with emphasis 
in the regime where χ is ultralight. We first study this process from an effective field theory standpoint 
in terms of form factors. We then present two explicit models where μ → eχ is generated at tree level 
and at the one-loop level. We also comment on the prospects of observing the process μ → eχ in view 
of the current limits on μ → 3e from the SINDRUM collaboration.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The Standard Model of Particle Physics [1–3] predicts the conservation of lepton flavor. The discovery of neutrino oscillations [4–6]
provided conclusive evidence for the violation of lepton flavor in Nature, and therefore for the existence of new physics beyond the 
Standard Model. However, and aside for neutrino oscillations, no other lepton flavor violating process has been observed up to this day.

Experimental searches for lepton flavor violation in muon decays date back to the late 1940’s [7,8]. The most sensitive searches as of 
today have set the upper limits Br(μ+ → e+γ ) ≤ 4.2 × 10−13 by the MEG collaboration [9] and Br(μ+ → e+e−e+) ≤ 1.0 × 10−12 by the 
SINDRUM collaboration [10]. The searches for rare muon decays are complemented by those for other lepton flavor violating processes, 
such as μ − e conversion in nuclei [11–13], muonium-antimuonium conversion [14], or in neutral meson decays, such as K 0

L → μ±e∓ [15]
or B0 → μ±e∓ [16] among others (see e.g. [17]).

In recent years there has been interest in Physics at the low energy frontier (for a review, see [18]). This possibility may lead to 
new lepton flavor violating muon decays, such as μ → eχ , with χ an invisible boson. The non-observation of this decay by the TWIST 
collaboration allows to set the 90% C.L. upper limit B R(μ → eχ) < 8.1 ×10−6 [19]. Further, the light boson χ could lead to the three-body 
lepton flavor violating decay μ+ → e+e−e+ , when χ is off-shell, resulting into complementary constraints on this scenario.

In this work we will focus on the possibility that χ is a light gauge boson, associated to the spontaneous breaking of an Abelian gauge 
symmetry, U (1)χ (the case where χ is a light scalar or a pseudoscalar has been extensively studied, see e.g. [20–35]).

The simplest Lagrangian describing the lepton flavor interacting interaction is LLFV = gμγ ρχρe + h.c., with χρ the 4-potential asso-
ciated to the U (1)χ symmetry. With this effective description, the rate for μ → eχ contains terms proportional to g2/m2

χ , due to the 
emission of the longitudinal component of the gauge boson (a similar behavior is found for other effective interactions). Naively, the 
rate diverges as mχ → 0, therefore the effective theory cannot be matched to the well studied decay μ → eγ . Further, one may wonder 
whether the decays into several gauge bosons μ → eχ · · ·χ , could also contribute significantly to the total decay width, reminiscent of 
the “hyperphoton catastrophe” for the electron decay into a neutrino and an ultralight photon [36–38].

In this paper we present a detailed analysis of the decay rate μ → eχ , with special emphasis in the regime where mχ → 0 (for 
previous works, see e.g. [39–41]). In Section 2 we present the most general effective interaction leading to the decay μ → eχ in terms 
of a number of form factors, and we identify the conditions that the form factors must fulfill in order to render a finite rate in the 
limit mχ → 0. In Sections 3 and 4 we present two gauge invariant and renormalizable models where the process μ → eχ is generated, 
respectively, at tree level and at the one-loop level. We calculate the rate for μ → eχ and we explicitly show that the rate remains finite 
as mχ → 0. For these two models, we also calculate the rate for the rare decay μ → 3e. Finally, in Section 5 we present our conclusions.
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Table 1
Spins and charges under SU (2)L × U (1)Y × U (1)χ of the particles of the model described in 
Section 3, leading to the decay μ → eχ at tree level. All fields are assumed to be singlets 
under SU (3)C .

L1 L2 eR1 eR2 φ11 φ12 φ21 φ22

spin 1/2 1/2 1/2 1/2 0 0 0 0
SU (2)L 2 2 1 1 2 2 2 2
U (1)Y −1/2 −1/2 −1 −1 Y11 Y12 Y21 Y22

U (1)χ qL1 qL2 qe1 qe2 qφ11 qφ12 qφ21 qφ22

2. Effective theory

We consider first the effective theory describing the decay μ → eχ , where χ is a light gauge boson, mχ � mμ . We de-
note the four-momenta of the muon, electron and χ as pμ , pe and pχ , respectively. The transition amplitude is given by M =
u(pe)�

α(pμ, pe)u(pμ)ε∗
α(pχ ), where �α(pμ, pe) can be written in terms of six dimensionless scalar form factors Fi(p2

χ ), Gi(p2
χ ), 

i = 1, 2, 3, as:

�α =
(
γ α − /pχ pα

χ

p2
χ

)
F1(p2

χ ) + i
σαβ pχβ

mμ + me
F2(p2

χ ) + 2pα
χ

mμ + me
F3(p2

χ )+
(
γ α − /pχ pα

χ

p2
χ

)
γ 5G1(p2

χ ) + i
σαβγ 5 pχβ

mμ + me
G2(p2

χ ) + 2pα
χ

mμ + me
γ 5G3(p2

χ ) ,

(1)

where σαβ = − i
2 [γ α, γ β ]. For the decay process μ → eχ , where the gauge boson χ is on-shell, p2

χ = m2
χ . The conservation of the U (1)χ

charge requires the form factor F3(p2
χ ) to vanish. Moreover the Ward identities imply that pα

χ · ε∗
α(pχ ) = 0, so the terms proportional to 

G3(p2
χ ) and /pχ pα

χ

p2
χ

will not contribute to the amplitude.

The decay rate can then be expressed in terms of four form factors and reads:

�(μ → eχ) = λ1/2[m2
μ,m2

e ,m2
χ ]

16πmμ

[(
1 − me

mμ

)2
(

1 − m2
χ

(mμ − me)2

)(
2
∣∣∣F1(m

2
χ ) − F2(m

2
χ )

∣∣∣2

+
∣∣∣F1(m

2
χ )

(mμ + me)

mχ
− F2(m

2
χ )

mχ

(mμ + me)

∣∣∣2
)

+
(

1 + me

mμ

)2
(

1 − m2
χ

(mμ + me)2

)
(

2
∣∣∣G1(m

2
χ ) − G2(m

2
χ )

(mμ − me)

(mμ + me)

∣∣∣2 +
∣∣∣G1(m

2
χ )

(mμ − me)

mχ
+ G2(m

2
χ )

mχ

(mμ + me)

∣∣∣2
)]

, (2)

where λ[m2
μ, m2

e , m2
χ ] is the usual Källén function. Analogous expressions hold for the decays τ → μχ and τ → eχ , with the appropriate 

substitutions.
The term proportional to 1/mχ corresponds to the emission of the longitudinal component of the vector boson, and apparently makes 

the limit mχ → 0 divergent and not continuously matched to the well studied result from μ → eγ [42–44]. Therefore, in an effective 
field theory approach, great care should be taken when considering decays into ultralight gauge bosons, since in a gauge invariant and 
renormalizable theory one generically expects the rate of μ → eχ to be finite.

In the following sections we present two explicit models where the lepton flavor violating effective interaction Eq. (1) is generated 
either at tree-level or at the one-loop level. Apart from the interest of the models in themselves, we will show explicitly that the form 
factors F1(m2

χ ) and G1(m2
χ ) contain an implicit dependence on mχ , rooted in gauge invariance, so that the rate for μ → eχ is finite in 

the limit mχ → 0.

3. μ → eχ at tree level

The particle content of the model, and the corresponding spins and charges under SU (2)L ×U (1)Y ×U (1)χ , are summarized in Table 1.1

Here, Li = (νLi , eLi ) and eRi , i = 1, 2, denote the Standard Model SU (2)L lepton doublets and singlets, respectively (we have restricted 
ourselves to the two generation case, although the extension to three generations is straightforward). They have a generation independent 
hypercharge, Y L and Ye respectively, although we allow for generation dependent charges under U (1)χ . Further, φ jk , i, j = 1, 2 denote 
complex scalar fields, doublets under SU (2)L , with hypercharge Y jk and charge under U (1)χ equal to qφ jk .

The kinetic terms of the particles of the model read:

Lkin =
2∑

j=1

i(L j /DL j + eR j
/DeR j ) +

2∑
j,k=1

(Dμφ jk)
†(Dμφ jk) , (3)

where Dμ denotes the covariant derivative, given by

1 The model can be made anomaly-free adding heavy particles with suitable charges, without modifying the discussion that follows.
2
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Dμ = ∂μ + igW a
μTa + ig′Y Bμ + igχqχμ for the SU (2)L doublets ,

Dμ = ∂μ + ig′Y Bμ + igχqχμ for the SU (2)L singlets , (4)

with g , g′ and gχ the coupling constants of SU (2)L , U (1)Y and U (1)χ respectively.
We also assume Y jk = 1/2. Then, for j, k such that qφ jk = qL j − qek the following Yukawa couplings arise in the Lagrangian:

−LYuk =
2∑

j,k=1

y jk L jφ jkeRk + h.c. (5)

We also assume that the doublet scalars acquire a vacuum expectation value for some i, j, 〈φ jk〉 = v jk . To keep the discussion general, we 
consider that the charges of the particles allow all Yukawa couplings, and that all φ jk acquire a vacuum expectation value; the different 
subcases follow straightforwardly by setting the corresponding y jk and/or v jk to zero.

The non-zero expectation values for φ jk generate a mass for the χ boson:

m2
χ = g2

χ (q2
φ11

v2
11 + q2

φ12
v2

12 + q2
φ21

v2
21 + q2

φ22
v2

22) . (6)

Furthermore, since φ jk have charge under SU (2)L × U (1)Y , their expectation value would also contribute to the Z and W masses. Since 
we are assuming mχ � mμ , this contribution can be safely neglected.

The expectation value of the doublet scalars generates a mass term for the charged leptons, −Lmass ⊃ eL j M jkeRk + h.c., with

M =
(

y11 v11 y12 v12
y21 v21 y22 v22

)
. (7)

We now rotate the fields to express the Lagrangian in the mass eigenstate basis:(
eL

μL

)
=

(
cos θL sin θL

− sin θL cos θL

)(
eL1

eL2

)
,

(
eR

μR

)
=

(
cos θR sin θR

− sin θR cos θR

)(
eR1

eR2

)
(8)

so that −Lmass ⊃ eLmeeR + μLmμμR + h.c., with

m2
μ � y2

11 v2
11 + y2

12v2
12 + y2

21 v2
21 + y2

22 v2
22 ,

m2
e � (y11 v11 y22 v22 − y12 v12 y21 v21)

2

y2
11 v2

11 + y2
12 v2

12 + y2
21 v2

21 + y2
22 v2

22

,

sin 2θL � −2
y11 v11 y21 v21 + y12 v12 y22 v22

y2
11 v2

11 + y2
12 v2

12 + y2
21 v2

21 + y2
22v2

22

,

sin 2θR � −2
y11 v11 y12 v12 + y21 v21 y22 v22

y2
11 v2

11 + y2
12 v2

12 + y2
21 v2

21 + y2
22v2

22

, (9)

where we have used that empirically mμ � me .
Finally, we recast the kinetic Lagrangian Eq. (4) in terms of the mass eigenstates. We find flavor violating terms of the form

−L ⊃ eR ig R R
eμγ ρχρμR + eL igLL

eμγ ρχρμL + h.c. , (10)

with

g R R
eμ = gχ (qe1 − qe2) sin θR cos θR ,

gLL
eμ = gχ (qL1 − qL2) sin θL cos θL . (11)

Clearly, if the U (1)χ charges are generation independent, the flavor violation is absent at tree-level (as is the case for the photon and Z
flavor violating couplings). Further, if the interaction eigenstates are aligned to the mass eigenstates, the tree-level flavor violation is also 
absent. This happens in particular for some choices of the expectation values of the fields φi j , for example, when vii = 0, but v12, v21 
= 0.

Comparing to the general form of the lepton flavor violating interaction vertex, Eq. (1), one can identify

F1 = 1

2
(g R R

eμ + gLL
eμ) ,

G1 = 1

2
(g R R

eμ − gLL
eμ) , (12)

while all other form factors vanish at tree-level. The rate for μ → eχ then reads:

�(μ → eχ) = mμ

32π

(∣∣gLL
eμ

∣∣2 + ∣∣g R R
eμ

∣∣2
)(

2 + m2
μ

m2
χ

)(
1 − m2

χ

m2
μ

)2

, (13)

where we have neglected the electron mass against the muon mass. Naively, the term m2
μ/m2

χ would enhance the rate as mχ → 0. 
However, if the gauge and fermion masses arise as a consequence of the spontaneous breaking of the U (1)χ symmetry, the limit mχ → 0
requires v jk → 0 for all i, j (which in turn implies mμ → 0), or gχ → 0 (which in turn implies gLL

eμ, g R R
eμ → 0). One can explicitly check 
3
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from Eqs. (6), (9) and (11) that indeed when mχ → 0 the term (|gLL
eμ|2 + |g R R

eμ |2) m2
μ/m2

χ is finite (as expected from the Goldstone boson 
equivalence theorem [45–48]), and depends on a function of the Yukawa couplings, the gauge coupling, and the charges and vacuum 
expectation values of the fields φ jk .2

For example, for the specific case where the Yukawa couplings satisfy y22 � y11 � y12, y21 and all v jk = v , so that the mass matrix 
M is almost diagonal, and q jk = Q , the relevant parameters of the model after the spontaneous breaking of the gauge symmetries are:

m2
μ � y2

22 v2, m2
e � y2

11 v2, m2
χ � 4g2

χ Q 2 v2 ,

sin 2θL � −2
y12

y22
, sin 2θR � −2

y21

y22
.

(14)

Therefore, the rate for μ → eχ in the limit mχ → 0 is given by

�(μ → eχ)

∣∣∣
mχ →0

� mμ

32π

g2
χ

y2
22

(
2 + y2

22

4g2
χ Q 2

)(
1 − 4g2

χ Q 2

y2
22

)2 [
y2

12(qL1 − qL2)
2 + y2

21(qe1 − qe2)
2
]

. (15)

The rate is maximal when Q gχ/y22 → 0, and zero when Q gχ/y22 � 1/2, which corresponds to mχ/mμ � 1, i.e. when the phase space 
available for the decay closes. For most values of gχ/y22, the prefactor is ∼ 10−3, and therefore the rate can only be suppressed by 
invoking small couplings y12, y21, or by postulating intergenerational universality of the U (1)χ charges. In the latter case, the process 
μ → eχ could be generated at the one loop level, as we will discuss in the next section.

A complementary probe of the μ-e flavor violation is the three-body decay μ+ → e+e−e+ , which is generated in this model at tree-
level via the exchange of a virtual χ . The flavor conserving interaction vertex of the electron with the χ -boson has a similar form as 
Eq. (10):

−L ⊃ eR ig R R
ee γ ρχρeR + eL igLL

ee γ ρχρeL , (16)

where

g R R
ee = gχ

(
qe2 sin2 θR + qe1 cos2 θR

)
,

gLL
ee = gχ

(
qL2 sin2 θL + qL1 cos2 θL

)
. (17)

The doubly differential decay width for μ → 3e can be calculated from the interaction Lagrangians Eqs. (16) and (10) and reads:

d2�(μ → 3e)

ds dt
= 1

128π3m3
μ

[
(|gLL

ee |2|g R R
eμ |2 + |g R R

ee |2|gLL
eμ|2)

(
t(m2

μ − t)

(m2
χ − s)2 + m2

χ�2
χ

+ s(m2
μ − s)

(m2
χ − t)2 + m2

χ�2
χ

)

+
(
|gLL

ee |2|gLL
eμ|2 + |g R R

ee |2|g R R
eμ |2

)⎛
⎝ (s + t)

(
m2

μ − s − t
)(

4�2
χm2

χ + (s + t − 2m2
χ )2

)
((m2

χ − s)2 + m2
χ�2

χ )((m2
χ − t)2 + m2

χ�2
χ )

⎞
⎠]

, (18)

where we have defined s ≡ (pμ − pe1 )
2 and t ≡ (pμ − pe2)

2, with pe1 and pe2 the electron momenta, and which are kinematically 
restricted to be in the range:

0 ≤ t ≤ (m2
μ − s) and 0 ≤ s ≤ m2

μ . (19)

Further, �χ is the total width of the χ -boson. We focus in what follows in a scenario where 1 MeV � mχ � mμ . In this mass range, the 
dominant decay channels are χ → e−e+, νL1νL1 , νL2νL2 . Using the electron interaction vertex from Eq. (16) and the neutrino interaction 
vertex from Eq. (4), we find that the total decay width is:

�χ = mχ

24π

(
|gLL

ee |2 + |g R R
ee |2 + |gχqL1 |2 + |gχqL2 |2

)
, (20)

which satisfies �χ � mχ .
We show in Fig. 1 the ratio between �(μ → eχ) and �(μ → 3e) as a function of mχ , for a representative case where χ couples only 

to the right-handed leptons (i.e. qL1 = qL2 = 0; and qe2 = 0, gχqe1 = 2, and tan θR = 1) or when χ couples only to the left-handed leptons 
(i.e. qe1 = qe2 = 0; and qL2 = 0, gχqL1 = 2, and tan θL = 1). In the former case, the ratio is � 1, and in the latter it is � 5; with a mild 
sensitivity to the concrete choices of the charges and mixing angles. This result can be understood using the narrow width approximation 
(NWA), which holds when χ is produced close to the mass shell. Under this approximation, one can replace in the propagators:

1

(x − m2
χ )2 + m2

χ�2
χ

→ π

mχ�χ
δ(x − m2

χ ) , (21)

where x is any Mandelstam variable. Under this approximation, the decay rate for μ → 3e reads:

2 An analogous behavior occurs in the top decay t → bW + . The decay rate is �(t → bW +) ∼ m3
t /m2

W and naively diverges when mW → 0. However, since both masses 
arise as a consequence of the spontaneous breaking of the electroweak symmetry, �(t → bW +) ∼ mt y2

t /g2 and is finite.
4
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Fig. 1. Ratio of rates of μ → eχ and μ → 3e as a function of mχ for the tree-level model presented in Section 3, for the cases described in the text qLi = 0, qe2 = 0, 
gχ qe1 = 2, and tan θR = 1 (magenta line); and qei = 0, qL2 = 0, gχ qL1 = 2, and tan θL = 1 (blue line).

Table 2
Spins and charges under SU (2)L × U (1)Y × U (1)χ of the particles of the model described in 
Section 4, leading to the decay μ → eχ at the one loop level. All fields are assumed to be 
singlets under SU (3)C .

L1 L2 eR1 eR2 φ ψ η

spin 1/2 1/2 1/2 1/2 0 1/2 0
SU (2)L 2 2 1 1 2 1 1
U (1)Y −1/2 −1/2 −1 −1 +1/2 Yψ Yη

U (1)χ qL qL qe qe qφ qψ qη

�(μ → 3e) � mμ

32π

(
|gLL

eμ|2 + |g R R
eμ |2

)(|gLL
ee |2 + |g R R

ee |2)
|gLL

ee |2 + |g R R
ee |2 + |gχqL1 |2 + |gχqL2 |2

(
2 + m2

μ

m2
χ

)(
1 − m2

χ

m2
μ

)2

+ mχ

64π

(
|gLL

ee |2|gLL
eμ|2 + |g R R

ee |2|g R R
eμ |2

)mχ

mμ

(
1 − 2

m2
χ

m2
μ

)
. (22)

As for the decay μ → eχ the rate apparently diverges as mχ → 0, but is in fact finite since mμ and mχ are both generated after 
the breaking of the U (1)χ symmetry. Further, and using Eq. (13), one reproduces the result �(μ → eχ)/�(μ → 3e) � 1 or � 5 that we 
obtained numerically for our two representative scenarios. As mχ becomes larger, the ratio becomes sensitive to the underlying model 
parameters, although this sensitivity is suppressed by a factor m2

χ/m2
μ , and is hence typically weak, in agreement with the numerical 

results of Fig. 1.
Given the current experimental limits on Br(μ → eχ) and Br(μ → 3e), the most stringent constraints on the model will stem from 

the latter process.3 For the case mχ � mμ , and using the upper limit Br(μ → 3e) ≤ 1.0 × 10−12 from SINDRUM, one finds very stringent 
constraints on the strength of the effective couplings. Concretely, when qLi = 0, one finds |g R R

eμ |/mχ � 1.6 × 10−16/MeV. This limit on the 
effective parameters can in turn be translated into limits on the Yukawa couplings, U (1)χ -charges and gauge coupling, and expectation 
values of the scalar doublets φi j , with the restriction of reproducing the correct muon mass mμ � 105 MeV. Let us finish this section 
noting that the rare muon decay μ → eγ could occur in this model at the one loop level. However, the strong constraints from the 
tree-level decay μ → 3e preclude the observation of this process.

4. μ → eχ at the one loop level

In this section we present a renormalizable model with generation independent U (1)χ charges, and containing new fields that generate 
the process μ → eχ at the one loop level. To provide masses to charged leptons we introduce a doublet scalar, with hypercharge +1/2, 
and with U (1)χ -charge qφ = qL − qe , such that the Yukawa coupling y jk L jeRk φ + h.c. is allowed. This choice leads to the conservation of 
the electron and the muon flavors, akin to the Standard Model. To violate the lepton flavor numbers, we introduce a new Dirac fermion ψ
and a new complex scalar η, both singlets under SU (2)L , with hypercharges and Yψ and Yη , and U (1)χ -charges qψ and qη respectively. 
The spins and charges of the particles of the model are listed in Table 2.

We assume that qe = qψ + qη and Ye = Yψ + Yη , so that the Yukawa couplings y′
ieRi ψη are allowed by the symmetries. We also 

assume that φ acquires a vacuum expectation value, but η does not. The gauge boson of the U (1)χ symmetry then acquires a mass

mχ = gχqφ〈φ〉 , (23)

which we assume to be mχ � mμ .4 Further, a mass matrix for the charged leptons is generated, of the form Eq. (7). Let us note that if η
acquires an expectation value, a mixing between eRi and ψ is generated, and the mass matrix becomes instead 3 × 3. The analysis in that 
case would be analogous, although we disregard that possibility for simplicity and assume that 〈η〉 = 0.

3 We note that the on-shell χ decays into e+e− with a decay length Lχ � 7.9 × 10−10 m (mχ /MeV)−2 g−2, where g is a combination of couplings, cf. Eq. (20), and 
therefore the decay occurs inside the detector.

4 In this simple model, mμ , me and mχ are all proportional to 〈φ〉. However, one can completely uncorrelate the fermion masses and the gauge boson masses by imposing 
qφ = 0 and by postulating the existence of another scalar field, whose expectation value contributes to mχ , but not to the fermion masses.
5
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Fig. 2. One loop diagrams contributing to the decay μ → eχ .

Fig. 3. Moduli of the functions Fiα(x), with i = 1,2 and α = η,ψ , as defined in Eq. (27).

Recasting the Lagrangian in terms of the mass eigenstates of the theory, eL,R and μL,R , one finds interaction terms with the massive 
gauge boson χ of the form

L ⊃ −igχqL
(
eLγ

νeL + μLγ
νμL + νL1γ

ννL1 + νL2γ
ννL2

)
χν − igχqe

(
eRγ νeR + μRγ νμR

)
χν

−igχq��γ ν�χν − iqη gχ

[
η∗(∂νη) − (∂νη∗)η

]
χν , (24)

as well as a Yukawa coupling to the right-handed leptons:

L ⊃ heeRηψ + hμμRηψ + h.c. (25)

The process μ → eχ is generated in this model at the one loop-level, through the four diagrams shown in Fig. 2. The form factors are 
finite and read:

F1(m
2
χ ) = G1(m

2
χ ) = gχhehμ

384π2

m2
χ

M2
η

[
qηF1η

( M2
ψ

M2
η

)
+ qψF1ψ

( M2
ψ

M2
η

)]
,

F2(m
2
χ ) = −G2(m

2
χ ) = gχhehμ

384π2

m2
μ

M2
η

[
qηF2η

( M2
ψ

M2
η

)
+ qψF2ψ

( M2
ψ

M2
η

)]
, (26)

where

F1η(x) = −2 + 9x − 18x2 + x3 (11 − 6 ln x)

3 (1 − x)4
,

F1ψ(x) = 16 − 45x + 36x2 − 7x3 + 6 (2 − 3x) ln x

3 (1 − x)4
,

F2η(x) = 1 − 6x + 3x2(1 − 2 ln x) + 2x3

(1 − x)4
,

F2ψ(x) = −2 − 3x(1 + 2 ln x) + 6x2 − x3

(1 − x)4
. (27)

The absolute values of these functions are shown in Fig. 3, and are regular at x = 1.
Using Eq. (2), and that F1 = G1, F2 = −G2, the decay rate can be recast as

�(μ → eχ) � mμ

8π

(
1 − m2

χ

m2
μ

)2 [∣∣∣F1(m
2
χ )

mμ

mχ
− F2(m

2
χ )

mχ

mμ

∣∣∣2 + 2
∣∣∣F1(m

2
χ ) − F2(m

2
χ )

∣∣∣2
]

, (28)
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Fig. 4. Branching ratio of the process μ → eχ as a function of mχ for the one loop model presented in Section 4, assuming qη = 1 and qψ = 0 (left plot), and qη = 0 and 
qψ = 1 (right plot); in both cases it was assumed hehμ = 1 and gχ = 1. The solid lines show the full result obtained from Eq. (28), while the dashed lines neglect the 
contribution from F1. The gray dotted line indicates the current upper limit on Br(μ → eχ) from the TWIST collaboration.

where we have neglected the electron mass. The form factor F1 (and G1) is proportional to m2
χ/M2

η , while F2 (and G2) is proportional to 
m2

μ/M2
η . Inserting these form factors in the rate Eq. (28), one finds that the factors 1/mχ from the emission of the longitudinal polarization 

cancel with the factors m2
χ implicit in the form factors F1 and G1, yielding a finite rate for μ → eχ in the limit mχ → 0. Further, one 

finds that F1mμ/mχ ∝ mχmμ/M2
η , and F2mχ/mμ ∝ mχmμ/M2

η . Since we are assuming Mη, Mψ � mμ , it follows that the rate in the limit 
mχ → 0 will depend mostly on the form factors F2 and G2, and can be well approximated by:

�(μ → eχ)

∣∣∣
mχ →0

� g2
χ |he|2|hμ|2
(768)2 π5

m5
μ

M4
η

[
qηF2η

(
M2

ψ

M2
η

)
+ qψF2ψ

(
M2

ψ

M2
η

)]2

. (29)

Nevertheless, the form factors F1 and G1 generate a sizable contribution to the rate when mχ /mμ � 0.1.
We show in Fig. 4, the branching ratio for μ → eχ for two representative choices of charges, qη = 1 and qψ = 0 (left plot) and qη = 0

and qψ = 1 (right panel), and three choices of the masses of the particles in the loop: Mψ = 750 GeV and Mη = 500 GeV (blue line), 
Mψ = Mη = 500 GeV (purple line), and Mψ = 500 GeV and Mη = 750 GeV (red line). These values are compatible with the current 
searches for exotic charged particles [49,50]. We have also taken for concreteness hehμ = 1 and gχ = 1, although the scaling of the rates 
with the Yukawa couplings is straightforward. The solid lines show the full result calculated using Eq. (28), while the dashed lines assume 
F1 = G1 = 0. As apparent for the plot, while for mχ � mμ the form factors F1 and G1 can be neglected, they modify the rate when 
mχ/mμ � 0.1, especially close to the threshold. We also show the current 90% C.L. upper limit Br(μ → eχ) < 8.1 × 10−6 from the TWIST 
collaboration [19].

The process μ+ → e+e−e+ is generated in this toy model also at the one loop-level, through χ -penguin and through box diagrams; 
the former are proportional to h2

e h2
μg4

χ and the latter to h6
e h2

μ . Assuming he � gχ , the decay will be dominated by the penguin diagrams, 
with doubly differential rate given by:

d2�(μ → 3e)

ds dt
� g2

χ

32π3m5
μ

[
1(

m2
χ − s

)2 + m2
χ�2

χ

(
|qe|2(m2

μ − s − t)
(

m2
μs

∣∣F1(m
2
χ ) − F2(m

2
χ )

∣∣2+

t (|F1(m
2
χ )|m2

μ − |F2(m
2
χ )|s)

)
+ |qL |2 t

(∣∣F1(m
2
χ )m2

μ − F2(m
2
χ )s

∣∣2−

t (|F1(m
2
χ )|2m2

μ − |F2(mχ )|2s)
))

+ t ↔ s +

2|qe|2(m2
μ − s − t)

(
m2

χ (�2
χ + m2

χ − s − t) + s t
)

((
m2

χ − s
)2 + m2

χ�2
χ

)((
m2

χ − t
)2 + m2

χ�2
χ

)
(

m2
μ(s + t)(|F1(m

2
χ )|2 − F1(m

2
χ )F2(m

2
χ )) + |F2(m

2
χ )|2s t

)]
, (30)

where s ≡ (pμ − pe1)
2 and t ≡ (pμ − pe2 )

2, with kinematic limits given in eq. (19), and �χ the total decay width of χ . Similarly to 
Section 3, the dominant decay modes are χ → e−e+, νL1νL1 , νL2νL2 , with width:

�χ = g2
χ mχ

24π

(
|qe|2 + 3|qL |2

)
. (31)

We show in Fig. 5, the branching ratio for μ → 3e for the same choices of qη and qψ as in Fig. 4, and adopting qL = 1 + qe (with 
qe = qψ + qη), using the full result Eq. (30) (solid lines) or setting the form factors F1 = G1 = 0 (dashed lines). As for μ → eχ , the 
form factors can be neglected when mχ � mμ , and only contribute to the rate when mχ/mμ � 0.1. In Fig. 6 we show the ratio of rates 
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Fig. 5. Same as Fig. 4, but for the process μ → 3e, assuming qL = 1 + qe .

Fig. 6. Same as Fig. 4, but for the ratio of rates �(μ → eχ)/�(μ → 3e), assuming qL = 1 + qe .

�(μ → eχ)/�(μ → 3e) as a function of mχ for each of the cases. We find that the ratio is ∼ 1. As in Section 3, this result can be 
understood analytically employing the narrow width approximation. Under this approximation, the decay rate for μ → 3e reads

�(μ → 3e) �mμ

4π

|qe|2 + |qL |2
|qe|2 + 3|qL |2

(
1 − m2

χ

m2
μ

)2 [∣∣∣F1(m
2
χ )

mμ

mχ
− F2(m

2
χ )

mχ

mμ

∣∣∣2 + 2|F1(m
2
χ ) − F2(m

2
χ )|2

]
+

g2
χ |qe|2
16π

m2
χ

mμ

(
1 − 2

m2
χ

m2
μ

)(
2
(
|F1(m

2
χ )|2 − F1(m

2
χ )F2(m

2
χ )

)
+ |F2(m

2
χ )|2 m2

χ

m2
μ

)
. (32)

Also in this scenario one finds an apparent divergence when mχ → 0, however the factor 1/mχ in the rate is canceled by the factor mχ

implicitly contained in the form factor F1. As a result, in the limit mχ → 0 the rate for μ → 3e is finite and comparable to the rate for 
μ → eχ , quite independently of the masses and charges of the particles in the loop.

Given that the current limits on the processes μ → 3e and μ → eχ , we expect the former to yield the strongest limits on this scenario. 
This is apparent from Fig. 5: the three choices of parameters are allowed by the current constraints on μ → eχ , but several orders of 
magnitude above the SINDRUM limit Br(μ → 3e) < 1.0 × 10−12.

5. Conclusions

We have studied in detail the lepton flavor violating process μ → eχ , with χ a massive gauge boson arising from the spontaneous 
breaking of a local U (1) symmetry. We have constructed the most general effective interaction between a muon, an electron and a massive 
gauge boson, and we have calculated the decay rate in terms of the corresponding form factors. The decay rate presents terms inversely 
proportional to the inverse of the χ -boson mass, corresponding to the decay into the longitudinal component of the χ -boson, which 
naively lead to an enhancement of the rate when χ is very light.

We have constructed two gauge invariant and renormalizable models where the decay μ → eχ is generated either at tree level or at 
one loop. We have analyzed the behavior of the rate in the limit mχ � mμ , and we have explicitly checked that the rate remains finite. 
We have also calculated the expected rate for the process μ → 3e, mediated by an off-shell χ . For these two models, the ratio of rates of 
μ → eχ and μ → 3e is O(1) in the range of χ -masses considered. Correspondingly, and in view of the current limits on μ → 3e from 
the SINDRUM collaboration, it would be necessary an improvement of experiments searching for μ → eχ [51] of at least 5-6 orders of 
magnitude compared to the TWIST sensitivity in order to observe a signal.
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