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a b s t r a c t 

Voluntary and involuntary patient motion is a major problem for data quality in clinical routine of Mag- 

netic Resonance Imaging (MRI). It has been thoroughly investigated and, yet it still remains unresolved. In 

quantitative MRI, motion artifacts impair the entire temporal evolution of the magnetization and cause 

errors in parameter estimation. Here, we present a novel strategy based on residual learning for ret- 

rospective motion correction in fast 3D whole-brain multiparametric MRI. We propose a 3D multiscale 

convolutional neural network (CNN) that learns the non-linear relationship between the motion-affected 

quantitative parameter maps and the residual error to their motion-free reference. For supervised model 

training, despite limited data availability, we propose a physics-informed simulation to generate self- 

contained paired datasets from a priori motion-free data. We evaluate motion-correction performance 

of the proposed method for the example of 3D Quantitative Transient-state Imaging at 1.5T and 3T. We 

show the robustness of the motion correction for various motion regimes and demonstrate the general- 

ization capabilities of the residual CNN in terms of real-motion in vivo data of healthy volunteers and 

clinical patient cases, including pediatric and adult patients with large brain lesions. Our study demon- 

strates that the proposed motion correction outperforms current state of the art, reliably providing a 

high, clinically relevant image quality for mild to pronounced patient movements. This has important 

implications in clinical setups where large amounts of motion affected data must be discarded as they 

are rendered diagnostically unusable. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The capability to non-invasively provide high-resolution volu- 

etric imaging with versatile soft-tissue contrast makes Magnetic 

esonance Imaging (MRI) the modality of choice for the detection, 

haracterization and monitoring of a wide variety of medical con- 
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itions in modern radiology. Despite the various advantages of MRI 

ver other medical imaging modalities, its main drawback for clin- 

cal routine is that image encoding and acquisition is inherently 

low. Due to the prolonged scan times, MRI acquisitions are ex- 

remely susceptible to voluntary and involuntary patient motion. 

he arising motion artifacts impair diagnostic information and de- 

rease the validity of obtained images, making diagnosis inaccurate 

r ambiguous. Images become diagnostically unusable and scans 

ave to be repeated, potentially under sedation. Motion robustness 

s therefore a key requirement for data quality in routine imag- 

ng and is especially crucial for pediatric and elderly patients and 

hose who are affected by diseases that prevent them from main- 

aining a still position throughout the acquisition. It is therefore of 

igh clinical relevance to develop techniques that effectively pre- 

ent or resolve motion artifacts. 

Subject motion causes erroneous signal allocation in k -space. 

ow this mismatch propagates to image-space and in what kind 

f artifact appearance it manifests highly depends on: 

– the acquisition and readout schemes (e.g. Cartesian vs. non- 

Cartesian), 

– the targeted diagnostic question (e.g. static vs. time-resolved ac- 

quisition), 

– the body region to be imaged (e.g. rigid vs. non-rigid organ mo- 

tion) and / or 

– the condition of the patient and his / her ability to cooperate. 

Motion therefore remains a complex problem without a uni- 

ersal solution. A number of conceptually different motion mitiga- 

ion, reduction and correction methods have been previously sug- 

ested ( Zaitsev et al., 2015; Lee et al., 2021 ). In general, all these

trategies can be classified into one of the following categories 

 Godenschweger et al., 2016 ): 

– Prevention to avoid, suppress or minimize motion events in the 

first place, e.g., through fixation, sedation or breath-holding. 

– Sequence design to increase motion-robustness of the acquisi- 

tion, e.g., via accelerated scans, less sensitive (non-Cartesian) 

readout schemes or triggering / gating techniques. 

– Correction to prospectively or retrospectively detect and ac- 

count for motion, e.g., via external tracking, data-driven (self-) 

navigator information or incorporation in the reconstruction 

model. 

For quantitative MRI, body motion is particularly problematic. 

his is because multiple acquisitions are required to encode the 

arameter information together with the spatial information. De- 

pite its great potential for quantifying tissue parameters and 

ence for characterizing diseases, the resulting long scan times 

f quantitative MRI techniques together with the correspondingly 

igh susceptibility to motion are the main barrier for establishing 

RI-based tissue parameter mapping in routine clinical practice 

 Seiberlich et al., 2020 ). 

With the overarching goal of accelerating MRI, significant 

ethodological advances in terms of acquisition and reconstruc- 

ion - with a great impulse due to the recent advances of deep 

earning methods - paved the way towards shorter scan times and 

otentially higher robustness to motion. From the initial incen- 

ive in the context of qualitative MRI, these methods are now also 

ntering the field of quantitative MRI. In addition, there is great 

linical interest to progress from state-of-the-art single-parameter 

o more efficient multiparameter mapping techniques, to over- 

ome the practical limitations of quantitative MRI. In this con- 

ext, the seminal work on MR Fingerprinting ( Ma et al., 2013 ) 

or the joint mapping T 1 , T 2 and proton density ( P D ) certainly

onstituted a major step forward and aroused the development 

f other efficient multiparameter encoding schemes in the tran- 

ient state (e.g. Jiang et al., 2015; Christodoulou et al., 2018 ; 
2 
omez et al., 2019 ), demonstrating high quantification accuracy 

ogether with high repeatability and reproducibility ( Jiang et al., 

017; Panda et al., 2019; Buonincontri et al., 2021 ). These attributes 

ogether with the improved motion robustness compared to con- 

entional quantitative MRI with lengthy scanning protocols make 

ransient-state techniques promising candidates for the clinical 

ractice. 

Although motion artifacts are generally reduced in these highly 

ccelerated acquisition schemes, they are not entirely insensitive to 

atient motion. Previous work on motion correction for transient- 

tate techniques almost exclusively concentrated on 2D acquisi- 

ion schemes ( Mehta et al., 2018; Cruz et al., 2019; Xu et al., 

019 ). To the best of our knowledge, for 3D variants thereof 

e.g. Ma et al., 2018 ; Gómez et al., 2020 ), there is only the re-

ently proposed navigator-based retrospective rigid motion cor- 

ection of Kurzawski et al. (2020) . For motion estimation and 

ubsequent correction in 3D Quantitative Transient-state Imaging 

QTI, Gómez et al., 2020 ), they rely upon intrinsic self-navigator 

nformation that is reconstructed from the segmented acquisi- 

ion scheme. Although this realignment strategy was demon- 

trated to be capable of retaining a critical amount of the un- 

erlying multiparameter information, the temporal resolution of 

he self-navigators limits the resolvable motion scales so that 

uantitative maps of T 1 , T 2 and P D showed remaining motion 

rtifacts. 

With the aim of improving on the navigator-based motion cor- 

ection of Kurzawski et al. (2020) , we developed a residual learn- 

ng strategy for retrospective motion correction in fast 3D multi- 

arametric MRI. We take their previously developed method and 

mprove by adding five main contributions: 

1. We propose a residual learning model to learn the non-linear 

relationship between the motion-affected T 1 , T 2 and P D maps 

and the residual error maps, i.e., the deviation from the motion- 

free counterpart. In contrast to a direct mapping to the motion- 

free domain, this allows an efficient, decoupled representation 

and hence identification of the motion artifacts in the sparse 

residual space. 

2. We rely on a 3D multiscale convolutional neural network (CNN) 

architecture to capture the intrinsic 3D nature of spatial cor- 

relations that inevitably arise (1) from spatially correlated im- 

age artifacts due to subject movements in the 3D space, and 

(2) from the 3D acquisition scheme with spatial undersampling 

and multi-coil imaging, additionally causing a mixing of signal 

components in the 3D space. 

3. We present a physics-informed simulation of motion artifacts 

for generating self-contained, paired training data, enabling su- 

pervised model training without the need for large amounts of 

paired acquisitions or fully sampled data. 

4. We evaluate the performance of the proposed method on real- 

motion data of healthy volunteers acquired with the 3D QTI 

scheme at 1.5T and 3T field strengths. 

5. We analyze the generalization capabilities of our method with 

clinical cases of pediatric and adult patients. 

In the present study we build upon our previous work 

 Pirkl et al., 2021 ). Based on the initial methodological con- 

epts, we extended the recent paper by a more detailed overview 

f related works. We also added a comprehensive formalisation 

f the encoding and reconstruction problem and a detailed de- 

cription of the proposed physics-informed motion simulation to- 

ether with the underlying motion model. From a methodolog- 

cal perspective, we refined the training strategy, evaluated the 

erformance of the proposed motion correction for different mo- 

ion regimes in a dedicated sensitivity analysis and performed 
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Q

v

n extensive tissue-specific evaluation for the real-motion in vivo 

ata. 

. Related works 

Recent advances of deep learning demonstrated improved ro- 

ustness of MRI acquisitions towards subject motion, achieving 

imilar performance as conventional methods or even outperform- 

ng the current state of the art in terms of image quality, recon- 

truction speed or computational efficiency. 

In this section, we review these deep learning-based motion 

eduction and correction approaches for single-contrast qualita- 

ive MRI, and then give an overview of how motion and motion- 

nduced artifacts are handled in quantitative MRI, particularly fo- 

using on fast transient-state methods, such as MR Fingerprinting 

 Ma et al., 2013; Jiang et al., 2015 ). 

.1. Deep learning-based motion correction 

Most of the recently proposed deep learning-based algorithms 

or reducing and correcting motion artifacts are retrospective 

ethods and purely data-driven, i.e., without the need for any a 

riori information or additional (navigator) acquisitions. 

In general, deep learning-based motion encoding and resolving 

ethods almost exclusively take place in image space and mainly 

ely on deep CNN architectures trained in a supervised fashion 

 Lee et al., 2021 ). Depending on the specific scope, i.e., the re-

ion of interest and the respective type of motion, previously pre- 

ented learning strategies either target motion artifacts caused by 

on-rigid patterns, e.g., due to involuntary respiratory, cardiac or 

ntestinal motion ( Lee et al., 2018; Tamada et al., 2019; Kromrey 

t al., 2020 ), or rigid patterns, e.g., due to head movements ( Duffy

t al., 2018; Johnson and Drangova, 2018; Pawar et al., 2018; Pawar 

t al., 2019; Johnson and Drangova, 2019; Dou et al., 2019; Bydder 

t al., 2019; Haskell et al., 2019; Sommer et al., 2020; Usman et al., 

020; Duffy et al., 2021 ). 

Although being initially designed for different types of body 

otion, consequently resulting in different artifacts, these tech- 

iques can in general be differentiated into two main strategies: 

otion correction , i.e., to infer an artifact-free MRI image from the 

otion-corrupted input, where all aforementioned works belong 

o, and motion detection/parameter estimation , e.g., to be used for 

ubsequent realignment-based correction ( Miao et al., 2016; Hou 

t al., 2018 ). 

As stated before, the propagation of the movement that occurs 

uring the k -space acquisition, to the final appearance of the arti- 

act in image space is not only dependent on the type of motion, 

ut also on the acquisition scheme, e.g., Cartesian vs. non-Cartesian 

eadouts. The majority of deep learning-based motion correction 

pproaches focused on Cartesian sampling patterns, which are pre- 

ominant in conventional state-of-the-art MRI. There is only little 

ork on non-Cartesian techniques so far ( Dou et al., 2019 ). This 

s the case even though non-Cartesian gradient waveforms are su- 

erior to Cartesian readouts (not only) in terms of motion robust- 

ess. As they do not have unique frequency- and phase-encoding 

irections, artifacts manifest as diffuse image blurring. In contrast, 

ubject motion translates as coherent ghosting or geometric distor- 

ions in case of Cartesian sampling, which is easier to correct for. 

Another conceptually different approach to motion correction 

s to integrate motion encoding into the (deep learning) recon- 

truction model ( Christodoulou et al., 2018; Schlemper et al., 2018; 

uang et al., 2021 ). Modeling temporal correlations such as in dy- 

amic cardiac MRI acquisitions allows to better capture spatially 

edundant information and to identify and correct for motion- 

nduced artifacts. 
3 
.2. Motion correction for fast multiparametric MRI 

Quantitative MRI opens the possibility to obtain quantitative 

easures of the actual tissue parameter(s) by acquiring multi- 

le contrast-weighted images within one scan. The signal evolu- 

ion, however, that encodes the underlying (multiple) parameter 

nformation, is vulnerable to various sources of artifacts, includ- 

ng motion. This additionally complicates the translation of these 

echniques into routine clinical practice. To overcome this bar- 

ier, numerous strategies have been proposed to avoid or miti- 

ate motion artifacts in quantitative MRI. Of these, accelerated ac- 

uisition schemes combined with advanced reconstruction tech- 

iques, e.g., compressed sensing, or motion prevention methods, 

uch as breath-holding or triggering, have been shown to improve 

otion robustness of both the quantitative and qualitative MRI 

chemes. Also, retrospective correction approaches have been suc- 

essfully transferred from conventional contrast-weighted scans to 

uantitative MRI techniques. More recently, deep learning strate- 

ies have entered the field. Gong et al. (2021) proposed a CNN- 

ased correction for diffusion-weighted MRI acquisitions, while 

amada et al. (2019) and Kromrey et al. (2020) successfully im- 

roved image qualities of dynamic contrast-enhanced MRI exams 

y learning to resolve motion-induced artifacts in quantitative per- 

usion maps. 

For both qualitative and quantitative MRI, fast acquisition and 

ncoding schemes were shown to be powerful means to prevent 

otion artifacts. One advantage of highly accelerated parameter 

apping techniques, e.g., based on transient-state readouts, is the 

igher motion robustness due to a shorter acquisition compared to 

engthy conventional quantitative MRI methods. Despite the pre- 

iously demonstrated high immunity to subject movements, mo- 

ion artifacts are attenuated but not completely suppressed. Ret- 

ospective methods based on a realignment of the individual time 

rames are commonly used to correct for motion artifacts in MR 

ingerprinting and other transient-state schemes, such as the QTI 

cheme of Gomez et al. (2020) . The high temporal resolution that 

s achieved by these techniques is a priori beneficial for retrospec- 

ive detection and correction of spatial mismatches between con- 

ecutive time frames. However, the massive k -space undersampling 

enders a precise realignment on these native time scales impos- 

ible. That is, to collect a sufficient amount of spatial information 

or image-based registration, the acquired image time-series are ei- 

her reconstructed using sliding-window techniques or consecutive 

ime-points are collapsed. Although these techniques have proved 

aluable for reducing motion-induced artifacts, the underlying mo- 

ion patterns cannot be resolved in the high, natively acquired 

emporal resolution. This inevitably causes residual artifacts that 

annot be fully resolved. This particularly complicates motion cor- 

ection for 3D acquisition schemes. To achieve the same high tem- 

oral resolution as 2D readouts, 3D acquisition schemes ( Ma et al., 

018 ; Gómez et al., 2020 ) are commonly characterized by seg- 

ented readouts with the 3D kt-space being filled iteratively, e.g., 

s illustrated in Fig. 1 a for the example of 3D QTI. In contrast to 2D

t-sampling schemes, motion does not only cause spatial misalign- 

ent between subsequent time frames, but also results in discrep- 

ncies between iteratively sampled k -space locations of the same 

ime frame. This is the main reason why previous work on mo- 

ion correction for transient-state imaging has almost exclusively 

oncentrated on 2D acquisition schemes ( Mehta et al., 2018; Cruz 

t al., 2019; Xu et al., 2019 ). 

. QTI acquisition and reconstruction model 

In this section, we aim to give a concise summary of the 3D 

TI framework that this work builds upon. We start with a re- 

iew of the acquisition and encoding scheme, with a particular 
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Fig. 1. Illustration of the 3D Quantitative Transient-state Imaging (QTI) scheme and the navigator-based retrospective rigid motion correction. (a) Excitation scheme that is 

repeated segment by segment. (b) Acquisition scheme based on segmented (multishot) readouts. (c) Realignment of the self-navigators X na v 
ν> 1 to the first baseline navigator 

X na v 
ν=1 to estimate and subsequently correct for inter-segment motion M ν . 
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ocus on the segmented signal readout ( Section 3.1 ). We then 

ive a formal description of the underlying image and parame- 

er reconstruction model ( Section 3.2 ) and how rigid motion is 

ntegrated into the encoding operator ( Section 3.3 ). Finally, we 

riefly recap the navigator-based motion correction as proposed by 

urzawski et al. (2020) ( Section 3.4 ). 

.1. Acquisition and encoding scheme 

The QTI acquisition scheme employed in this work follows a 

teady-state Free Precession (SSFP) scheme to jointly encode T 1 
nd T 2 relaxation time information as the magnetization evolves in 

he transient state. An initial adiabatic inversion pulse precedes a 

rain of RF excitations with flip angles following a ramp-up/ramp- 

own pattern as illustrated in Fig. 1 a. The 3D kt-space is acquired 

sing spiral projections combined with a multishot readout based 

n consecutive segments ν ( ν = 1 , . . . , N = 56 ) of the same RF ex-

itation scheme. To iteratively fill the 3D kt-space, in-plane and 

pherical rotation angles, ϕ and θ , of the gradient waveform are 

andomly permuted from one repetition to the next ( Fig. 1 b). 

.2. Reconstruction model 

Taking both the temporal signal evolution and the spatial 

ourier relationship into account, the 3D kt-space data are then 

econstructed by formulating the image reconstruction problem as 

 linear spatio-temporal model ( Ma et al., 2013 ) 

 = E(X ) + ξ . (1) 

Here, Y ∈ C 

T ×m ×C is the multi-coil raw kt-space acquired at 

ime points t = 1 , . . . , T , m are the sampled k -space locations, ξ is

 noise term and X ∈ C 

T ×n is the image time-series to be recon-

tructed with n spatial voxels. 
4 
The forward encoding operator E with 

 := U 

�F S (2) 

s composed of the (under-) sampling operator U 

�, with �

escribing the temporally varying kt-space sampling locations, 

he Fourier transform F and the multi-coil sensitivity profiles S

 Golbabaee et al., 2021 ). 

Further, a temporal projection V ∈ C 

T ×s with s << T is applied 

o transfer the high T -dimensional problem to a low-rank sub- 

pace, Range (V ) ⊂ C 

T . With temporal subspace compression, the 

econstruction model from Eq. (1) is given by 

 ≈ E(V X 

′ ) + ξ , (3) 

here X ′ is the subspace-projected image time-series. 

To retrieve the quantitative tissue properties q ∈ R 

Q×n , includ- 

ng but not limited to T 1 , T 2 and P D , that are encoded in the tem-

oral transient-state signal responses, the parameter inference is 

ormulated as a voxel-wise optimization problem 

ˆ 
 (r i ) = argmin q 

∣∣∣∣X 

′ (r i ) − P D (r i ) V 

H B(q (r i ) , η) 
∣∣∣∣

∀ i ∈ 1 , . . . , n, 
(4) 

here B(q, η) is the Bloch signal response as a function of the tis- 

ue parameters q and the time-dependent sequence parameters η, 

ncluding flip angle F A , repetition time T R and echo time T E. 

To solve the optimization problem in Eq. (4) , it is approximated 

y a dictionary matching pursuit ( Mallat and Zhang, 1993 ), i.e., 

y voxel-wise grid searching a precomputed dictionary D of syn- 

hetic signal responses to retrieve the most correlated dictionary 

ntry D j := B(q j , η) for each reconstructed subspace signal evolu- 

ion X ′ (r ) ∀ i ∈ 1 , . . . , n . 
i 
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Fig. 2. Schematic diagram of the proposed residual learning model. The 3D patch-based multiscale CNN receives the motion-affected parametric maps as input and outputs 

the residual maps, i.e., the deviation from the high-quality maps. The learned residuum is then used to retrieve the final, motion-corrected parameter maps. 
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d
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.3. Rigid motion model 

When integrating a rigid motion operator M := T R with 

 : ˜ X t (r) �→ 

˜ X t (r ± δr) , for translations along x, y, z, 

 : ˜ X t (r) �→ 

˜ X t (R (δα) r) , for rotations around x, y, z, 
(5) 

nto the image encoding formalism, Eq. (1) becomes 

˜ 
 = E(MX ) + ξ , (6) 

here X is the motion-free image time-series. Spatial translations 

re reflected by δr = (δx, δy, δz) 
 and the rotation matrix R (δα) =
 x (δαx ) R y (δαy ) R z (δαz ) accounts for spatial rotations. 

For the segmented, i.e., multishot, acquisition scheme (as illus- 

rated in Fig. 1 b), where the k -space of a time point t is filled iter-

tively, Eq. (1) can be written as 

 t = 

∑ N 
ν=1 E ν,t (X ν,t ) + ξν,t 

= 

∑ N 
ν=1 U 

�
ν,t F S(X ν,t ) + ξν,t , 

(7) 

here the subsequently acquired segments of the same time point 

are indicated by ν . 

In this case, Eq. (6) becomes 

˜ 
 t = 

N ∑ 

ν=1 

U 

�
ν,t F S(M ν,t X ν,t ) + ξν,t . (8) 

.4. Navigator-based rigid motion correction 

The navigator-based correction ( Kurzawski et al., 2020 ) identi- 

es motion-induced misalignment in the acquired image-time se- 

ies ˜ X = MX . To do so, the full kt-space ˜ Y is binned into subse- 

uently acquired segments ˜ Y ν , 

˜ 
 ν = 

∑ T 
t=1 E ν,t ( ̃  X ν,t ) + ξt 

= 

∑ T 
t=1 U 

�
ν,t F S( ̃  X ν,t ) + ξν,t , 

(9) 

rom which full 3D equal-contrast navigator images X na v 
ν ∈ C 

1 ×n 

re reconstructed ∀ ν = 1 , . . . , N as illustrated in Fig. 1 c. To achieve

ufficiently high spatial information despite the high degree of 

patial undersampling, the first singular value coefficient of the 

ubspace-projected image time-series X na v 
ν = V H ˜ X ν with V ∈ C 

T ×s =1 

s used for the self-navigators X na v 
ν . The self-navigators X na v 

ν> 1 
are 

hen aligned to the first baseline navigator X na v 
ν=1 

based on the nor- 

alized correlation coefficient ( Penny et al., 2006 ) to estimate the 

ffective inter-segment movement M ν , i.e., δr ν and δαν , and to 

ubsequently realign the kt-space data ˜ Y ν accordingly. The cor- 

ected raw kt-space series are then fed into the reconstruction 

ipeline as described in Section 3.2 to yield the motion-corrected 

arametric maps. 
5 
. Residual learning for retrospective 3D motion correction 

Inspired by the recently demonstrated efficacy of residual learn- 

ng techniques ( Zhang et al., 2017; Jin et al., 2017; Ulas et al., 2018 ),

e adopt this approach to resolve motion artifacts in fast 3D multi- 

arametric MRI. Considering the motion correction as an inference 

ask between the motion-affected image input and the residual er- 

or, i.e., the deviation of the motion-corrupted image data from the 

igh-quality, motion-free reference, has been shown to be more ef- 

ective than a direct mapping ( Tamada et al., 2019; Haskell et al., 

019; Kromrey et al., 2020; Sommer et al., 2020; Liu et al., 2020 ).

n this work, we propose a residual CNN model to efficiently learn 

he non-linear relationship of a motion-corrupted multiparameter 

pace ˜ q and its high-quality, motion-free reference q . We demon- 

trate our deep learning method by taking the 3D QTI framework 

or joint T 1 , T 2 and P D mapping as an exemplary acquisition and

arameter encoding scheme. The residual learning strategy allows 

s to disentangle the propagation of motion (from the kt-domain 

o the parameter domain in image space), from the a priori high- 

imensional problem of joint spatial image and multiparameter 

ncoding ( Eq. (6) ). This way, we can efficiently identify and resolve 

he motion-induced corruptions in the parameter maps in a more 

parse representation. 

We show that the potential application scenario of the pro- 

osed residual learning strategy is twofold: First, our deep learn- 

ng framework is able to resolve residual motion artifacts that 

ould not be sufficiently corrected by the navigator-based method 

f Kurzawski et al. (2020) . Second, the trained algorithm can also 

e applied as a stand-alone method to mitigate mild image cor- 

uptions without prior navigator-based correction. 

In this section, we introduce the proposed deep learning strat- 

gy with its key components: the residual CNN model ( Section 4.1, 

ection 4.2 and Section 4.3 ) and the physics-informed generation 

f artificial motion artifacts ( Section 4.4 ). 

.1. Residual CNN model 

We propose a patch-based 3D multiscale CNN architecture as 

llustrated in Fig. 2 . The model receives a 3D patch of 24 × 24 × 24

oxels of the quantitative maps degraded by motion artifacts as in- 

ut. The T 1 , T 2 and P D information is captured along the channel

imension with Q = 3 parametric channels. The model is built by 

 local and a global pathway to account for the inherent overlay of 

ncoded spatial information on multiple scales. These dual path- 

ay structures were recently shown to efficiently capture spatial 

elationships that naturally arise from the Fourier imaging prin- 

iple ( Kamnitsas et al., 2017; Kim et al., 2017; Ulas et al., 2018 ).

D QTI relies on multi-coil readouts and the massive spiral un- 

ersampling causes spatial aliasing across the entire imaging vol- 

me. With the proposed multiscale implementation we capture the 
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Fig. 3. Schematic diagram of the proposed simulation of continuous rigid motion 

patterns. 

Fig. 4. Schematic diagram of the reconstruction pipeline. 
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ull dimensionality of the encoded information - the encoded pri- 

ary parameter and spatial information and also the interfering 

econdary motion effects. The local pathway is built by four 3D 

onvolutional layers, each with a kernel size of 3 × 3 × 3 and sub- 

equent rectified linear unit (ReLU) non-linearity. This way, the lo- 

al pathway extracts localized, spatially adjacent features, while in 

arallel the global pathway is constructed to account for longer- 

ange contextual information. It comprises four ReLU-activated 3D 

ilated convolutional layers with dilation factors of 2 , 4 , 8 and 12, 

nd kernel sizes of 3 × 3 × 3 . To efficiently combine the decoded 

ultiscale information and to eventually yield the targeted output, 

.e., the residual error maps for each of the Q = 3 parameter maps,

ocal and global features are concatenated along the channel di- 

ension and fed into a block of fully-connected layers. To maintain 

he spatial dimension throughout the CNN, zero-padding is applied 

rior to each convolutional operation and the fully-connected lay- 

rs are implemented such that they only act on the channel di- 

ension. 

.2. CNN training 

The residual CNN was trained based on in vivo 3D QTI data 

rom ten healthy volunteers who underwent the acquisition twice. 

he first no motion reference dataset was acquired with the in- 

truction to hold still, while for the second motion scan the vol- 

nteers were asked to rapidly move the head as detailed by 

urzawski et al. (2020) . The no motion reference dataset was used 

o generate paired training sets by retrospectively applying rigid 

otion to the acquired kt-space data as described in Section 4.4 . 

he motion dataset was used for testing only. 

Following a supervised training strategy, the residual CNN 

odel was supposed to learn the non-linear mapping from the 

arametric maps with simulated motion artifacts ˜ q to the resid- 

al error ε = q − ˜ q , with q being the motion-free counterpart. Fol- 

owing a leave-one-out strategy, 10,0 0 0 training patches were ran- 

omly sampled from the retrospectively corrupted datasets of eight 

ubjects. For validation, 3,0 0 0 patches were sampled from another 

ubject’s data. To ensure sufficient amount of training/validation 

nformation, only patches with less than 70% background were 

onsidered. The one remaining subject’s data was held back for 

esting. The residual CNN was trained with a learning rate of 1 e −4 

or a maximum of 100 epochs and a mini-batch size of 20, using 

dam optimization to minimize the L 1 loss function 

 1 = 

∑ 

J 

| ε − ˆ ε| , (10) 

etween the predicted output ˆ ε and the corresponding reference 

f the residual error ε over all samples in the training set J. As 

nal model state we kept the epoch with the best validation loss. 

.3. CNN testing and application 

To feed motion-affected parametric maps into the trained resid- 

al CNN model, the full 3D field of view was divided into overlap- 

ing patches of 24 × 24 × 24 voxels, sampled by a step size of 2 

oxels along x, y, z. The predicted residual error patches were then 

dded to the motion-affected input patches. All motion-corrected 

atches of a neighborhood were mapped back to the original field 

f view and averaged to yield the full 3D motion-corrected T 1 , T 2 
nd P D maps. 

.4. Physics-informed simulation of motion 

For supervised model training, we created self-contained pairs 

f motion-corrupted and motion-free data. To do so, the motion- 

ree raw kt-space acquisitions were retrospectively distorted by ap- 

lying artificial motion patterns. We then made implicit use of the 
6 
orward encoding operator E H to propagate the simulated move- 

ents from the kt-space through the reconstruction pipeline to the 

arameter maps. 

The brain is less affected by non-rigid deformations than ab- 

ominal or thorax regions, where respiratory, cardiac or intestines 

otion is prevalent. Neglecting the effect of brain pulsation and 

lood flow, rigid head movements, i.e., global translations δr or 

otations δα, are the prevailing cause of motion artifacts in head 

nd neck MRI. Therefore we applied continuous translations and 

otations to the motion-free time frames Y ν,t of the acquired kt- 

pace. Translations were performed by global shifts of Y ν,t along 

, y, z, while rotations around x, y, z-axes were applied to the gra- 

ient waveform. 

Aiming for a realistic artifact appearance, translation and rota- 

ion patterns were created to continuously vary the misalignment 

f consecutive kt-space time points, considering translations δr = 

δx, δy, δz) 
 and rotations δα = (δαx , δαy , δαz ) 
 with a maximum 

isplacement from the initial position of −20 mm ≤ �r ≤ 20 mm 

nd −20 ◦ ≤ �α ≤ 20 ◦, respectively ( Kurzawski et al., 2020 ). To 

imulate continuous head movements with varying displacements 

nd time scales throughout the acquisition, we randomly sampled 

ffective displacements δr ν , δαν for each segment ν > 1 . For each 

f these motion events, an onset t ν, 0 and an offset t ν, 0+�t time 

oint were randomly sampled. Between t ν, 0 and t ν, 0+�t , transla- 

ion and rotation steps were continuously applied to the consecu- 

ive time-points t ν, 0 ≤ t ≤ t ν, 0+�t to move from one displacement 

 δr ν−1 , δαν−1 ) to the next ( δr ν , δαν ) ( Fig. 3 ). 

For model training, we performed a navigator-based correction 

o mitigate artifacts due to inter-segment movements M ν in the 

rst place as schematically shown in Fig. 5 . The obtained paramet- 

ic maps with residual artifacts due to intra-segment movements 

 t were the input to the CNN. 
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Fig. 5. Data flow diagrams. (a) Proposed simulation of motion-affected data + residual CNN training setup. (b+c) Data processing setup in case of residual CNN motion 

correction with and without prior navigator-based realignment, respectively. 
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. Methodology and experimental setup 

.1. In vivo data 

All in vivo data presented in this study were acquired in accor- 

ance with the 1964 Helsinki declaration and its later amendments 

r comparable ethical standards. Approval was granted by the local 

thics boards. 

.1.1. Acquisition and reconstruction 

Ten healthy volunteers, one pediatric and one adult pa- 

ient were scanned with the 3D QTI acquisition scheme as de- 

cribed in Section 3.1 . All healthy subjects were scanned on 

oth a 1.5T HDxt and a 3T MR750 scanner (both GE Health- 

are, Milwaukee, WI). The pediatric and the adult patients 

ere examined at 1.5T and 3T, respectively. For both mag- 

etic field strengths, the sequence parameters were identical, 

.e., T I = 18 ms , T E = 0 . 5 ms , T R = 8 . 5 ms and 0 . 7 ◦ ≤ F A ≤ 70 ◦. Data

ere acquired with a field of view of 225 × 225 × 225 mm 

3 

ith 1 . 125 × 1 . 125 × 1 . 125 mm 

3 isotropic voxel size and T = 880

epetitions. 

The formulation of the image reconstruction problem in 

q. (1) translates into the reconstruction pipeline as schemati- 

ally shown in Fig. 4 : The spatially undersampled 3D kt-space 

ime-series are first zero-filled and then projected into a lower 

imensional subspace in the time domain. In this work, we ap- 

lied the singular value decomposition (SVD) variant for tempo- 

al subspace compression ( McGivney et al., 2014 ). In this case, 

 projects the full temporal time-series to its first s = 10 sin- 

ular values. Subspace-projection is followed by a Non-Uniform 

ast Fourier Transform (NUFFT, F , Knoll et al., 2014 ) and sub- 

equent adaptive coil sensitivity estimation and combination ( S, 

alsh et al., 20 0 0 ). Parameter inference was performed us- 

ng a pattern matching algorithm. Using the Extended Phase 

raphs (EPG) formalism ( Weigel et al., 2010 ), a dictionary D
f synthetic signal evolutions B(q, η) was generated for T 1 = 

 20 ms , 50 0 0 ms ] and T 2 = [ 10 ms , 500 ms ] with steps of 20ms for

 1 < 30 0 0 ms , 200ms for T 1 ≥ 3000 ms , 5ms for T 2 < 300 ms and 

0ms for T 2 ≥ 300 ms , i.e., the same granularity and parameter 

anges of the T 1 and T 2 spaces as in the work of Jiang et al.

2015) . 
7 
.1.2. Processing 

For quantitative evaluation, we transformed the quantitative 

aps from the motion-affected and motion-free reference acqui- 

ition to a common space. For each subject, we registered the 

otion-free parameter space to its counterpart with motion ar- 

ifacts. To ensure sufficient image quality, FSL’s FLIRT-based rigid 

lignment (with 6 degrees of freedom) was performed based 

n the brain-extracted T 1 maps of the motion-free and motion- 

ffected dataset, after initial navigator-based motion correction for 

he latter one ( Jenkinson and Smith, 2001; Jenkinson et al., 2002 ). 

ased on the motion-free T 1 and T 2 maps, we obtained white mat- 

er (WM), gray matter (GM), and cerebrospinal fluid (CSF) tissue 

egmentation maps using FAST ( Zhang et al., 2001 ). 

.2. Quantitative performance evaluation 

Quantitative analysis was based on the following voxel-wise 

erformance measures: 

– Mean absolute percentage error (MAPE) 

MAPE (q pred , q re f ) = 

1 

I 

I−1 ∑ 

i =0 

∣∣q pred,i − q re f,i 

∣∣
max (λ, q re f,i ) 

, (11) 

where λ = 1 e −5 to avoid undefined results for q re f,i = 0 . 

– Root mean square error (RMSE) 

RMSE (q pred , q re f ) = 

√ 

1 

I 

I−1 ∑ 

i =0 

(q pred,i − q re f,i ) 2 , (12) 

– Peak signal-to-noise ratio (PSNR) 

PSNR (q pred , q re f ) = 20 log 10 ( 
q max √ 

MSE (q pred , q re f ) 
) , (13) 

where MSE = 

1 
I 

∑ I−1 
i =0 (q pred,i − q re f,i ) 

2 is the mean-squared er- 

ror (MSE). For q = T 1 , T 2 , P D , q max was set as the maximum

possible parameter value in the dictionary D, i.e., q max = 

50 0 0 ms , 500 ms , 1 . 

For all the above measures, the motion-free parameter maps 

ere used as the reference q re f . As an additional measure, we cal- 

ulated the signal to noise ratio (SNR) 

NR (q ) = 

q̄ 
. (14) 
σ
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Fig. 6. Sensitivity analysis - qualitative results. Axial views of a representative 

volunteer dataset acquired at 3T with retrospectively applied rigid motion pat- 

terns in different regimes, from mild ( �r = ±0 . 5 mm , �α = ±0 . 5 ◦) to pronounced 

( �r = ±20 mm , �α = ±20 ◦) movements. From left to right, quantitative maps are 

shown for the case without any correction ( Motion ), after navigator-based correc- 

tion ( Navigator ), after residual CNN correction ( residual CNN ), after residual CNN 

correction with prior navigator-based correction ( Navigator + residual CNN ) and as 

obtained from the motion-free reference scan ( No motion reference ). 
. Experiments and results 

.1. Sensitivity analysis 

To evaluate the efficacy of the proposed residual learning 

ethod and to understand how it depends on the respective mo- 

ion scale, we performed a sensitivity analysis as follows. We ap- 

lied the trained residual CNN model to the held-back test set of 

he 3T acquisition. To stress-test how the intensity of the move- 

ent influences model performance, we retrospectively applied 

he same randomly sampled pattern of translations and rotations 

o the initially motion-free kt-space data with varied amplitudes of 

he motion to simulate scenarios from mild ( �r = ±0 . 5 mm , �α = 

0 . 5 ◦) up to pronounced movements ( �r = ±20 mm , �α = ±20 ◦). 

e then investigated robustness of the proposed residual CNN 

odel ( Residual CNN ), the navigator-based correction ( Navigator ) 

nd when applied in combination ( Navigator + residual CNN ). 

The qualitative assessment ( Fig. 6 ) shows that the navigator- 

ased approach by design identifies and corrects for movements 

n a coarser time scale. That is, very small motion scales, e.g., 

r = ±0 . 5 mm , �α = ±0 . 5 ◦ ( Fig. 6 a) could not be resolved due to

he limited temporal resolution ( � 7 s = T · T R ) of the navigator-

mages X na v 
ν . Theoretically, the navigator-based approach could use 

emporally higher resolved self-navigators. However, this would re- 

ult in lower SNR of the navigator-images and would be insuf- 

cient for reliable realignment. For milder motion scales, intra- 

egment movements and the thereby induced phase inconsisten- 

ies are the primary cause of image artifacts. In these domains 

he residual CNN outperformed the navigator correction. It effec- 

ively resolved image artifacts and achieved high image quality 

f the quantitative maps when performed with and without ini- 

ial navigator-based correction. The purpose of the residual CNN 

as to correct for intra-segment motion that cannot be resolved 

y the navigator approach. As the corrective effect of the preced- 

ng navigator-based approach is minor, actual amplitudes and time 

cales of the uncorrected and navigator-corrected data are simi- 

ar. That is, we observe that the residual CNN applied as a stand- 

lone tool was as effective as in combination with the navigator 

pproach. This is also seen from the quantitative analysis ( Fig. 7 ): 

or all quantitative maps, i.e., T 1 , T 2 and P D , residual CNN correc-

ion with and without prior navigator-correction achieved higher 

NR than the navigator-correction, even exceeding the high qual- 

ty of the reference maps. We attribute this to the fact that al- 

hough being acquired with the volunteer holding as still as pos- 

ible, very minor movements are not entirely avoidable, causing a 

light degradation of the image quality and hence lower SNR as 

he corrected maps. This fits the observation that RMSE between 

orrected and reference maps for P D indicates better agreement 

ith the reference for the navigator-corrected maps than for the 

esidual CNN-corrected counterparts. While the residual CNN reli- 

bly corrected motion artifacts for �r = ±1 mm , �α = ±1 ◦, achiev- 

ng high image qualities of the parameter maps ( Fig. 6 b), the im-

act of larger-scale inter-segment motion M ν becomes the more 

nd more dominant cause of image artifacts for increasing motion 

mplitudes. As visually observed from Fig. 6 d to e, image artifacts 

hat arise from movements with �r ≥ ±5 mm , �α ≥ ±5 ◦ could not 

e resolved by the residual CNN when applied directly to the 

otion-corrupted maps. The navigator-based correction clearly im- 

roved image qualities of the motion-affected parameter maps in 

hese motion regimes, where inter-segment movements becomes 

he prevailing effect. However, it could not achieve high-enough 

mage qualities to suffice for clinical diagnosis. Only the combina- 

ion of the navigator-based realignment and residual CNN process- 

ng demonstrated high motion-correction performance throughout 

he entire range of examined motion regimes, achieving clearly im- 

roved image qualities of the quantitative maps of T 1 , T 2 and P D
8 
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Fig. 7. Sensitivity analysis - quantitative results. Quantitative comparison with respect to the motion-free reference based on RMSE and SNR measures. The vertical bars 

reflect the individual tissue types, i.e., WM, GM and CSF. 
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ven in case of very pronounced head movements �r = ±20 mm , 

α = ±20 ◦, which would be clinically useless without the correc- 

ion ( Fig. 6 e). 

As such, the combination of the residual CNN with the 

avigator-based correction effectively mitigated rigid motion pat- 

erns on two scales: 

1. The navigator-based motion estimation and its subsequent cor- 

rection in the kt-space reliably corrected for inter-segment 

movements M ν and the thereby induced image artifacts. 

2. The residual CNN identified and resolved motion artifacts and 

phase inconsistencies due to continuous intra-segment move- 

ments M t , including residual artifacts that are unresolved by 

the limited temporal resolution of the self-navigators. 

Importantly, the proposed two-stage motion correction pre- 

erves brain tissue boundaries, e.g., in adjacent healthy WM, 

M and CSF structures, for mild to intermediate motion scales 

 �r < ±5 mm , �α < ±5 ◦, Fig. 6 a–c). Brain tissue structure is not

moothed out but is well recovered and clearly visible in the quan- 

itative maps after motion correction. Also in pronounced motion 

ases, e.g., �r = ±20 mm , �α = ±20 ◦ ( Fig. 6 e), the proposed cor- 

ection recovers a major portion of the underlying tissue struc- 

ure, previously corrupted by massive artifacts. Despite the clear 

mprovement in image quality, the high image quality as obtained 

or small to intermediate motion scales is not reached in these 

xcessive motion regimes. We would like to emphasize that such 

xtreme scenarios, however, exceed the range of head movements 

hat are observed in day-to-day clinical routine (cf. Fig. 10 ). 

.2. Performance analysis on real-motion in vivo data 

The proposed residual CNN was solely trained on artifacts ob- 

ained from artificial motion patterns. To show that this training 

trategy allows for reliable translation to real-motion scenarios, we 

ested the motion-correction performance based on the motion- 

ffected volunteer datasets for both the 1.5T and 3T acquisitions. 

o to so, we performed a ten-fold cross-validation experiment by 

epeating the training setup from Section 4.2 . Each of the result- 

ng ten model instances was then tested on the held-back volun- 

eer dataset with real motion. Before being fed into the model, we 
9 
rst corrected for inter-segment movements using navigator-based 

ealignment scheme. The cross-validation was performed indepen- 

ently for the 1.5T and the 3T dataset. In both cases, the corrected 

aps of T 1 , T 2 and P D were then compared to the co-registered

otion-free reference. 

The proposed motion-correction strategy, i.e., the combination 

f initial navigator-based correction followed by the residual CNN 

rovided T 1 , T 2 and P D maps with high image qualities and good 

greement with the motion-free reference maps. This is qual- 

tatively shown for two representative test cases of the cross- 

alidation experiments for the 1.5T ( Fig. 8 a) and the 3T acquisi- 

ion ( Fig. 8 b), respectively. This is the case even though the resid-

al CNN model was trained on purely artificially corrupted data. 

he residual CNN ( Navigator + residual CNN ) demonstrated a clear 

mprovement compared to the results obtained without the deep 

earning-based correction ( Navigator ), providing parameter maps 

ith image qualities that meet or even outperform the motion- 

ree reference in terms of SNR ( Fig. 9 a, b bottom). Quantitative 

valuation of the cross-validation experiment, i.e., by comparing 

he motion-affected ( Motion ) and motion-corrected maps ( Naviga- 

or, Navigator + residual CNN ) to the reference maps ( No motion ref- 

rence ) by means of RMSE, MAPE and PSNR substantiated the pre- 

ious qualitative findings. Overall, quantitative measures (RMSE ↓ , 

APE ↓ , PSNR ↑ ) indicate that the residual CNN effectively resolved 

emaining motion artifacts, pushing the outcome of the navigator- 

ased correction towards higher image qualities for all parame- 

ers ( T 1 , T 2 , P D ) and all tissue classes (WM, GM, CSF), with biggest

mprovements compared to the Navigator approach in case of T 2 
arameters in WM and GM. Despite the same general tendency 

or both field strengths, quantitative analysis suggests better cor- 

espondence between Navigator + residual CNN and No motion ref- 

rence for the 3T than for the 1.5T dataset. We see this observa- 

ion arising from a mixture of different effects that overlay each 

ther. First, the cross-validation experiments rely on real-motion 

cans. That is, although the same group of healthy volunteers was 

canned at 1.5T and 3T, the actual head movements in terms of 

ntensity and timing are not identical. Second, the 3T data has in- 

rinsically higher SNR than the 1.5T data ( Fig. 9 a, b bottom). This 

esults in higher image qualities of the self-navigators X ν and even- 
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Fig. 8. Axial views of representative real-motion volunteer test dataset acquired at (a) 1.5T and (b) 3T. T 1 , T 2 and PD maps show pronounced motion-induced artifacts 

( Motion ) compared to the No motion reference . Remaining artifacts after Navigator -based correction are resolved by the residual CNN ( Navigator + residual CNN ), providing 

high-quality, artifact-free parameter maps. 

10 
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Fig. 9. Quantitative, tissue-specific analysis of the cross-validation experiment based on RMSE, MAPE, PSNR and SNR as performance measures. The boxes extend from the 

first to the third quartile, with the line indicating the median. The whiskers reflect the 1.5-times interquartile range. Outliers in the boxplots were omitted for clarity. 
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ually leads to a more accurate realignment of the navigators. The 

etter agreement observed for 3T scans is also in line with the 

revious hypothesis that high-quality scans might still be affected 

y minor, noise-like motion and aliasing artifacts and are there- 

ore rather considered a reference than a ground truth. Third, as 

bserved in Section 6.1 , the residual CNN resolved motion-induced 

rtifacts even to an extent beyond the image qualities of the refer- 

nce maps and additionally suppresses noise-like aliasing. The lat- 

er effect is more pronounced for the 1.5T data with intrinsically 

ower SNR, also explaining the generally lower overall agreement 

ith the reference. 

Overall, the observed generalizability to real-motion scenarios 

roved the efficacy of the proposed supervised training scheme 

ased on the physics-informed generation of motion and motion- 

ree data pairs. 

.3. Generalization analysis to clinical pediatric and oncological data 

To demonstrate and validate the generalizability of our ap- 

roach beyond the healthy population, we applied the trained 

odel to the clinical 3D QTI scans of one pediatric (8-year old) pa- 

ient with subtotal agenesis of the corpus callosum, and one adult 

atient with glioblastoma. 

For the clinical data, representative axial views are shown in 

ig. 10 a and b. The proposed two-stage motion-correction strategy 

 Navigator + residual CNN ) yielded high-quality, artifact-free para- 
11 
etric maps. The improvement in image quality was substantiated 

y initial radiological evaluation. In both cases, motion artifacts in 

he uncorrected parameter maps ( Motion ) were less pronounced 

han for the volunteer data ( Fig. 8 ). Based on the findings of the

ensitivity analysis in Section 6.1 , we attribute this to the fact that 

he head movements of the patients were rather mild compared to 

he very pronounced (and advised) movements of the volunteers. 

his hypothesis is in line with the negligible, barely visible effect 

f the navigator-based correction ( Navigator ). Therefore, to enhance 

he quality of the maps, we also applied the residual CNN cor- 

ection without prior navigator-based realignment ( Residual CNN ) 

nd achieved similarly high image qualities in the parametric maps 

s suggested by the sensitivity analysis before. These findings also 

ubstantiate the generalization capabilities of the residual CNN be- 

ond the healthy volunteer data. In the proposed deep learning 

trategy with its key features - the patch-based data perception 

nd the sparse representation in the residual domain, we decou- 

led the primary parameter information and the anatomical con- 

ext from the secondary artifact component. These initial results 

n the evaluated patient data give confidence that the proposed 

eep learning model is agnostic to the respective brain anatomy in 

erms of pathologies (healthy vs. diseased) and development (adult 

s. pediatric). To gain further insights into model performance and 

obustness, we are in the process of rolling out this initial proof-of- 

oncept study to an extended clinical evaluation covering diverse 

isease patterns and pathologies. 
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Fig. 10. Axial views of two representative clinical patient cases. (a) Pediatric patient with subtotal agenesis of the corpus callosum and inter-hemispheric cyst, scanned at 

1.5T (b) Adult patient with glioblastoma in the temporo-parietal region with cystic-necrotic and hemorrhagic components, and marked perilesional edema, scanned at 3T. For 

both patients, the residual CNN improved image quality of all parametric maps ( Navigator + residual CNN ), mitigating image artifacts attributed to head movements during 

scan sessions. 
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. Conclusion 

In this work, we presented a deep learning model for retrospec- 

ive motion correction in fast 3D whole-brain multiparametric MRI. 

ith the proposed physics-informed motion simulation, we gener- 

ted self-contained data pairs for supervised model training, cir- 

umventing the need for large amounts of paired acquisitions. The 

D multiscale CNN architecture captures the inherent 3D nature 

f the motion artifacts. With a residual learning strategy, we took 

dvantage of the sparsity in the residual maps, effectively disen- 
12 
angling primary anatomical and parameter information from the 

econdary motion artifacts. Combining the proposed residual CNN 

ith a navigator-based algorithm demonstrated high efficacy, pro- 

iding high quality maps of T 1 , T 2 and P D in scenarios from mild to

ronounced motion artifacts. We substantially improved the qual- 

ty of motion-affected quantitative maps in case of healthy volun- 

eers but also for pediatric and adult patients with pathological 

ndings and different brain development stages. This is particu- 

arly important in clinical setups where motion corrupted scans 

requently have to be repeated, possibly under sedation, because of 
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otion artifacts. With short scanning time and the higher motion- 

mmunity, quantitative MRI may become a standard for clinical 

ractices. 
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