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a b s t r a c t

Multivariate time series exhibit two types of dependence: across variables and across
time points. Vine copulas are graphical models for the dependence and can conveniently
capture both types of dependence in the same model. We derive the maximal class of
graph structures that guarantee stationarity under a natural and verifiable condition
called translation invariance. We propose computationally efficient methods for estima-
tion, simulation, prediction, and uncertainty quantification and show their validity by
asymptotic results and simulations. The theoretical results allow for misspecified models
and, even when specialized to the iid case, go beyond what is available in the literature.
The new model class is illustrated by an application to forecasting returns of a portfolio
of 20 stocks, where they show excellent forecast performance. The paper is accompanied
by an open source software implementation.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In multivariate time series there are two types of dependence: cross-sectional and serial. The first is dependence
etween variables at a fixed point in time. The second is dependence of two random vectors at different points in time.
opulas are general dependence models and have been used for both types. One line of research considers copula models
or serial dependence in univariate Markov processes (including Darsow et al., 1992; Chen and Fan, 2006b; Chen et al.,
009; Ibragimov, 2009; Beare, 2010; Nasri et al., 2019). An orthogonal, but equally popular approach is to filter serial
ependence by univariate time series models, like the ARMA-GARCH family, and model the cross-sectional dependence
y a copula for the residuals (Patton, 2006; Hu, 2006; Chen and Fan, 2006a; Oh and Patton, 2017; Nasri and Rémillard,
019; Chen et al., 2021). See also Patton (2009, 2012), Aas (2016) for surveys in the context of financial and economic
ime series.

Copulas can be used to capture both types of dependence in a single model (e.g., Rémillard et al., 2012; Simard and
émillard, 2015). In this context, vine copulas (Bedford and Cooke, 2002; Aas et al., 2009) have been proven particularly
seful. Vine copulas are graphical models that build a d-dimensional dependence structure from two-dimensional building
locks, called pair-copulas. The underlying graph structure consists of a nested sequence of trees, called vine. Each
dge is associated with a pair-copula and each pair-copula encodes the (conditional) dependence between a pair of
ariables. Brechmann and Czado (2015), Smith (2015), and Beare and Seo (2015) proposed different vine structures
uitable for time series models. The three models are quite similar. The vine graphs start with copies of a cross-sectional
ree that connect variables observed at the same point in time. These trees are constrained to be either stars (Brechmann
nd Czado, 2015) or paths (Smith, 2015; Beare and Seo, 2015). Cross-sectional trees are then linked by a specific building
lan.
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Inspired by the three latter works, we propose more flexible vine models for stationary time series (Section 3). But we
pproach the problem from the opposite direction. Previous models aim to guarantee stationarity of the model through
condition called translation invariance (Beare and Seo, 2015): pair-copulas stay the same when corresponding random
ariables are shifted in time. Translation invariance is a necessary condition for stationarity and the only practicable
ondition to check. We derive a characterization of the class of vines for which translation invariance is also sufficient for
tationarity (Theorems 1 and 2). The class allows for general vine structures for cross-sectional dependence and leaves
lexibility for linking them across time. The class includes the D-vine and M-vine models of Smith (2015) and Beare and
eo (2015) as special cases, but not the COPAR model of Brechmann and Czado (2015). Hence, the COPAR model is not
tationary in general (see Example 1).
For practical purposes, it is convenient to restrict to Markovian models, which are easily obtained by placing

ndependence copulas on most edges in the vine (Theorem 3). Parameters of such models can be estimated by adapting the
opular sequential maximum-likelihood method to take time invariances into account. In Section 4, we show consistency
nd normality of parametric and semiparametric versions of this method (Theorems 4–7). By simulating from an estimated
odel, conditionally on the past, we can easily compute predictions. In Section 5, we translate this into a theoretical

ramework and prove consistency and asymptotic normality. The results also cover Monte Carlo integrals from estimated
id models, which are widely used but have not been formalized yet. We further propose a computationally efficient
ootstrap method for both parameter estimates and predictions in Section 6. In Section 7, we apply the methodology to
orecast portfolio returns, showing that our generalized models improve both performance and interpretability. Section 8
ffers concluding remarks. Abstract mathematical results on general method-of-moment estimators, which empower all
ur main theorems, are stated in Appendix A. Additional illustrations, simulation results, and all proofs are provided
n the supplementary materials. All methodology is implemented in the open source R package svines (available at
https://github.com/tnagler/svines), which is built on top the C++ library rvinecopulib (Nagler and Vatter, 2020).

2. Multivariate time series based on vine copulas

2.1. Copulas

Copulas are models for the dependence in a random vector. By Sklar’s theorem (Sklar, 1959), any multivariate
distribution F of a d-dimensional random vector X = (X1, . . . , Xd)′ with marginal distributions F1, . . . , Fd can be expressed
as

F (x1, . . . , xd) = C
{
F1(x1), . . . , Fd(xd)

}
for all x ∈ R

d,

for some function C : [0, 1]d → [0, 1] called copula. It characterizes the dependence in F because it determines how
margins interact. If F is continuous, then C is the unique joint distribution function of the random vector U =

(F1(X1), . . . , Fd(Xd))′. A similar formula can be stated for the density provided F is absolutely continuous:

f (x1, . . . , xd) = c
{
F1(x1), . . . , Fd(xd)

}
×

d∏
k=1

fk(xk) for all x ∈ R
d,

where c is the density of C and called the copula density, and f1, . . . , fd are the marginal densities.

2.2. Regular vines

Vine copulas are a particularly flexible class of copula models. They are based on an idea of Joe (1996, 1997) to
decompose the copula into a cascade of bivariate copulas. This decomposition is not unique, but all possible decomposition
can be organized as a graphical model, called regular vine (R-vine) (see, Bedford and Cooke, 2001, 2002). We shall briefly
outline the basics of R-vines; for more details on R-vines, we refer to Dissmann et al. (2013), Joe (2014), Czado (2019).
Additional illustrations of the following definitions can be found in Section S1 of the supplementary materials.

A regular vine is a sequence of nested trees. A tree (V , E) is a connected acyclic graph consisting of vertices V and
edges E.

Definition 1. A collection of trees V = (Vk, Ek)d−1
k=1 on a set V1 with d elements is called R-vine if

(i) T1 is a tree with vertices V1 and edges E1,
(ii) for k = 2, . . . , d − 1, Tk is a tree with vertices Vk = Ek−1,
(iii) (proximity condition) for k = 2, . . . , d − 1: if vertices a, b ∈ Vk are connected by an edge e ∈ Ek, then the

corresponding edges a = {a1, a2}, b = {b1, b2} ∈ Ek−1, must share a common vertex: |a ∩ b| = 1.

Fig. 1 shows a graphical example of special regular vine, called D-vine. We call a vine a D-vine if each tree is a path. A
tree is a path if each vertex is connected to at most two other vertices. Such a structure is most natural when there is a
natural ordering (e.g., in time or space) of the variables. When one tree of the vine is a path, all trees at higher levels are
fixed uniquely by the proximity condition. Another prominent sub-class are C-vines, where each tree is a star (see also
306
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Fig. 1. A five-dimensional D-vine.

igure S2 in the supplementary material). A tree is a star if there is one vertex that is connected to all remaining vertices.
his structure is most natural when there is a single variable driving the others (e.g., a market factor driving individual
tocks). In that case, the proximity condition poses no restrictions on the next tree.
The connection of regular vines to a decomposition of the dependence becomes apparent through a specific labeling

f the edges. Each edge corresponds to a pair of random variables conditioned on some others. This is encoded in the
onditioned and conditioning sets of an edge. We first need the definition of a complete union.

efinition 2. The complete union of an edge e ∈ Ek is given by

Ue = {i ∈ V1| i ∈ e1 ∈ e2 ∈ · · · ∈ e for some (e1, . . . , ek−1) ∈ E1 × · · · × Ek−1}

and for a singleton i ∈ V1 it is given by the singleton, i.e. Ui = {i}.

In other words, the complete union of an edge e ∈ Ek is just the set of all vertices from the first tree T1, which are
nvolved in the iterative construction of the edge e.

Definition 3.

(i) The conditioning set of an edge e connecting v1 with v2 is De = Uv1 ∩ Uv2 .
(ii) The conditioned set of an edge e connecting v1 with v2 is defined as (ae, be), where ae = Uv1 \ De and be = Uv2 \ De.

We will then label an edge by e = (ae, be|De).

Definition 3 complements Definition 1 by relating each edge in the R-vine to a pair-wise conditional distribution, as
we shall see in the following section. Note that the conditioning set De is empty for edges of the first tree level.

2.3. Vine copulas

By fixing the marginal distributions F1, . . . , Fd, it suffices to consider a random vector U = (F1(X1), . . . , Fd(Xd))′ with
standard uniform margins to describe the dependence structure of X . A vine copula model for U identifies each edge of
an R-vine with a bivariate copula. We shall write the model as (V, C(V)), where V = (Vk, Ek)d−1

k=1 is the vine structure, d
the number of variables, and C(V) = {ce : e ∈ Ek, k = 1, . . . , d − 1} the set of associated bivariate copulas. As an example,
consider the regular vine shown in Fig. 1. The vertices in the first tree represent the random variables U1, . . . ,U5. All edges
connecting them are identified with a bivariate copula (or pair-copula). The edge (ae, be) then encodes the dependence
between Uae and Ube . In the second tree, the edges have labels (ae, be|De) and encode the dependence between Uae and
Ube conditional on UDe . In the following trees, the number of conditioning variables increases.

Bedford and Cooke (2001) showed that the density of a such a copula model for the vector U has a product form:

c(u) =

d−1∏
k=1

∏
e∈Ek

cae,be|De

(
uae|De , ube|De | uDe

)
,

where uae|De := Cae|De (uae | uDe ), uDe := (ul)l∈De is a subvector of u = (u1, . . . , ud) ∈ [0, 1]d and Cae|De is the conditional
distribution of Uae given UDe . The functions cae,be|De are copula densities describing the dependence of Uae and Ube
conditional on UDe = ue. For every e ∈ Ek, the conditional distributions Cae|De can be expressed recursively as

uae|De =
∂Cae′ ,be′ |De′

(uae′ |De′
, ube′ |De′

| uDe′
)
,

∂ube′ |De′
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Fig. 2. Example for the first tree level of a four-dimensional D-vine on three time points.

Fig. 3. Example for the first tree level of a four-dimensional M-vine on three time points.

here e′
∈ Ek−1, ae = ae′ , be′ ∈ De and De′ = De \ be′ . At the end of the recursion, the right hand side involves an edge

e′
∈ E1, for which uae′ |De′

= uae′ and ube′ |De′
= ube′ .

To make the model tractable, one commonly ignores the influence of uDe on the pair-copula density cae,be|De . Under
this assumption, the density simplifies to

c(u) =

d−1∏
k=1

∏
e∈Ek

cae,be|De

(
uae|De , ube|De

)
.

Since each pair-copula can be modeled separately, simplified vine copulas remain quite flexible. Conditional independence
properties can be imposed by setting appropriate pair-copulas to the independence copula. This shall prove convenient
when we construct Markovian time series models in Section 3.5. We further note that a similar factorization holds when
some variables are discrete (see, Stöber, 2013, Section 2.1). Although both continuity and the simplifying assumption
are immaterial for our theoretical results, we will stick to the simplified, continuous case for convenience. For a more
extensive introduction to vine copulas, we refer to Aas et al. (2009) and Czado (2019).

2.4. Vine copula models for multivariate time series

Now suppose (X t )t=1,...,n = (Xt,1, . . . , Xt,d)′t=1,...,T is a stationary time series, whose cross-sectional and temporal
dependence structure we model by a vine copula. Throughout the paper, stationarity refers to strict stationarity. By fixing
the stationary marginal distributions F1, . . . , Fd, it suffices to consider time series (U t )t=1,...,T = (Ut,1, . . . ,Ut,d)′t=1,...,T of
marginally standard uniform variables, where Ut,1 = F1(Xt,1), . . . ,Ut,d = Fd(Xt,d). Note that the random variables Ut,j in
our model have two sub-indices. The first sub-index t indicates the time point and the second sub-index j determines
the marginal variable. In the time series context, each vertex of a vine’s first tree is identified with a tuple (t, i), where t
is the time index and i is the variable index. The vertex (t, i) corresponds to the random variable Ut,i. In particular, the
components of edge labels e = (ae, be|De) (i.e., ae, be as well as elements of De) are tuples.

All existing regular vine models for multivariate time series follow the same idea (Beare and Seo, 2015; Smith, 2015;
Brechmann and Czado, 2015). There is a vine capturing cross-sectional dependence of U t ∈ Rd for all time points
t = 1, . . . , T . The first trees of the cross-sectional structures at time t and t + 1 are then linked by one edge connecting a
vertex from the structure at t to one vertex from the one at t +1. Because the time series is stationary, it is reasonable to
assume that the cross-sectional structure and the linking vertices are time invariant. The existing models make specific
choices for the cross-sectional structure and connecting edge. Their first tree for a four-dimensional model on three time
points is illustrated in Figs. 2–4. Graphs of the first five trees T1, . . . , T5 and additional details can be found in Section S2
of the supplementary materials. In short, there are three different models:

• D-vine of Smith (2015): (i) the cross-sectional structure is a D-vine, (ii) two cross-sectional D-vines at time points t
and t +1 are connected at the two distinct vertices that lie at opposite borders of the D-vine trees. For the first tree,
illustrated in Fig. 2, we can assume without loss of generality that these vertices are (t, d) and (t + 1, 1). With these
choices, there is only one global vine model satisfying the proximity condition, which is a long D-vine spanning all
variables at all time points.
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Fig. 4. Example for the first tree level of a four-dimensional COPAR on three time points.

• M-vine of Beare and Seo (2015): (i) the cross-sectional structure is a D-vine, (ii) two cross-sectional D-vines at time
points t and t + 1 are connected at one vertex that lies at the same border of the D-vine trees. For the first tree,
illustrated in Fig. 3, we may assume without loss of generality that the vertices (t, 1) and (t + 1, 1) are connected.
With the additional restriction that vertices of adjacent time points are connected first, this also uniquely fixes all
further trees of the vine.

• COPAR of Brechmann and Czado (2015): (i) the cross-sectional structure is a C-vine, (ii) the first trees of two C-vines
at time points t and t + 1 are connected at the root vertex of the C-vine. For the first tree, illustrated in Fig. 4, we
may assume without loss of generality that vertices (t, 1) and (t + 1, 1) are connected. This leaves a lot of flexibility
for higher trees and the authors settled on a specific set of rules. In particular, the model contains all edges of a
D-vine on the variables U1,1,U2,1, . . . ,UT ,1.

There is obvious potential for generalization. First, we would like to allow for arbitrary R-vines in the cross-sectional
structure. Second, we would like to connect two cross-sectional trees at arbitrary variables. Specific versions of such
models were constructed in preliminary work by Krüger (2018) (called temporal vine) and in unpublished work by Harry
Joe. But where should we stop? In principle, we could take any (T × d)-dimensional vine as a model for the vector
(U1, . . . ,U T ). We address this question comprehensively in the following section.

3. Stationary vine copula models

The time series context is special. To facilitate inference, it is common to assume that the series is stationary, i.e., the
distribution is invariant in time. When a time series is stationary, also its copula must satisfy certain invariances. This is
a blessing and a curse: invariances reduce the complexity of the model, but not all vine structures guarantee stationarity
under practicable conditions on the pair-copulas. We shall derive a generalization of the existing models that is maximally
convenient in this sense. All proofs are collected in Section S5 of the supplementary material.

3.1. Stationary time series

As explained in Section 2.4, any stationary time series can be transformed into one with uniform marginal distributions
by the probability integral transform. To ease our exposition, we shall therefore assume uniform marginal distributions
in what follows. Let (V, C(V)) be a vine copula model for the random vector (U ′

1, . . . ,U
′

T )
′

∈ RTd. The time series
U1, . . . ,U T ∈ Rd is strictly stationary if and only if U t1 , . . . ,U tm and U t1+τ , . . . ,U tm+τ have the same joint distribution
for all 1 ≤ t1 < t2 < · · · < tm ≤ T , 1 ≤ τ ≤ T − maxmj=1 tj, and 1 ≤ m ≤ T .

For vine copulas, this condition can involve intractable functional equations. The reason is that only some pairwise
(conditional) dependencies are explicit in the model. Explicit pairs are those that correspond to edges in the vine V . All
other dependencies are only implicit, i.e., they are characterized by the interplay of multiple pair-copulas. By only focusing
on the explicit pairs, we see that translation invariance, defined below, is a necessary condition for stationarity. Recall that,
in the time series context, the elements of the set V1 of a vine are tuples (t, j) with time index t = 1, . . . , T and variable
index j = 1, . . . , d.

Definition 4 (Translation Invariance). A vine copula model (V, C(V)) on the set V1 = {1, . . . , T } × {1, . . . , d} is called
translation invariant if cae,be|De = cae′ ,be′ |De′

holds for all edges e, e′
∈
⋃Td−1

k=1 Ek for which there is τ ∈ Z such that

ae = ae′ + (τ , 0), be = be′ + (τ , 0), De = De′ + (τ , 0), (1)

where the last equality is short for De = {v + (τ , 0) : v ∈ De′}.

Remark 1. The notation e = e′
+ (τ , 0) will be used short for (1) and indicates a shift in time by τ steps. For example, if

a ′ = (t, j) then a = (t + τ , j) and similarly for b and D .
e e e e
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Translation invariance was formally defined by Beare and Seo (2015), and also used as an implicit motivation for the
odels of Brechmann and Czado (2015) and Smith (2015). For example, in the M-vine of Beare and Seo (2015) shown

n Fig. 3, the copulas associated with the edges (1, 1) − (1, 2) and (2, 1) − (2, 2) must be the same. As mentioned above,
his is only a necessary condition for stationarity. For all non-explicit pairs, stationarity requires more complex integral
quations to hold. Provided with sufficient computing power, they could be checked numerically for any given model.
ut even if it holds for a specific model, a slight change in the parameter of a single pair-copula may break it. This is
roblematic in practice. Hence, the practically relevant vine structures are those for which translation invariance is also
sufficient condition for stationarity. These structures are characterized in what follows.

.2. Preliminaries

First we need some graph theoretic definitions. The first is a version of Definition 6 of Beare and Seo (2015).

efinition 5 (Restriction of Vines). Let V = (Vk, Ek)Td−1
k=1 be a vine on {1 . . . , T } × {1, . . . , d} and V ′

1 = {t, . . . , t + m} ×

{1, . . . , d} for some t,m with 1 ≤ t ≤ T , 0 ≤ m ≤ T − t . For all k ≥ 1, define E ′

k = Ek ∩
(V ′

k
2

)
and V ′

k+1 = E ′

k. Then the
sequence of graphs Vt,t+m = (V ′

k, E
′

k)
(m+1)d−1
k=1 is called restriction of V on the time points t, . . . , t + m.

Simply put: to restrict a vine on time points t to t +m, we delete all edges and vertices where time indices outside the
range [t, t+m] appear in the labels. Note that the restriction Vt,t+m = (V ′

k, E
′

k)
(m+1)d−1
k=1 is not necessarily a vine; the graphs

(V ′

k, E
′

k) can be disconnected (hence, no trees). For example, if the first tree of the vine V contains a path (1, i)−(3, i)−(2, i),
the vertices (1, i) and (2, i) will be disconnected in V1,2.

The translation of a vine V is obtained by shifting all vertices and edges in time by the same amount.

Definition 6 (Translation of Vines). Let m ≥ 0, and V = (Vk, Ek)
(m+1)d−1
k=1 be vine on {t, . . . , t + m} × {1, . . . , d} and

V ′
= (V ′

k, E
′

k)
(m+1)d−1
k=1 be a vine on {s, . . . , s + m} × {1, . . . , d}. We say that V is a translation of V ′ (denoted by V ∼ V ′) if

for all k = 1, . . . , d − 1 and edges e ∈ Ek, there is an edge e′
∈ E ′

k such that e = e′
+ (t − s, 0) (and vice versa).

Remark 2. We shall call two edges e, e′ satisfying e = e′
+ (τ , 0) translations of another and write e ∼ e′. This defines

an equivalence relationship between edges.

Additional illustrations of these concepts are provided in Section S1 of the supplementary material.

3.3. Stationary vines

The last definitions are key to ensure stationarity in vine copula models. If for all time points s, t and gap m, the
restriction of a vine on t, . . . , t +m is a translation of the restriction on s, . . . , s+m, translation invariance will guarantee
stationarity.

Theorem 1. Let V be a vine on the set V1 = {1, . . . , T } × {1, . . . , d}. Then the following statements are equivalent:

(i) The vine copula model (V, C(V)) is stationary for all translation invariant choices of C(V).
(ii) There are vines V (m),m = 0, . . . , T − 1, defined on {1, . . . ,m + 1} × {1, . . . , d}, such that for all m = 0, . . . , T − 1,

1 ≤ t ≤ T − m,

Vt,t+m ∼ V (m). (2)

An important word in condition (i) is all. There are vines violating (ii) that are stationary for a specific choice of C(V). For
example, ce ≡ 1 for all edges always leads to a stationary model. But these structures are impractical, because they limit
the choices of C(V) to a restrictive and unknown set. Condition (ii) can be seen as a graph theoretic notion of stationarity
for vine structures.

Definition 7 (Stationary Vines or S-Vines). A vine V on the set V1 = {1, . . . , T }× {1, . . . , d} is called stationary if it satisfies
condition (ii) of Theorem 1.

S-vines have a distinctive structure. There is a d-dimensional vine V (0) that contains only pairs for cross-sectional
dependence. We will therefore call V (0) the cross-sectional structure of V . Next, there is a 2d-dimensional vine V (1) that nests
two duplicates of V (0). Besides these cross-sectional parts, the vine contains d2 pairs for dependence across two subsequent
time points that are not yet constrained by translation invariance. A similar principal applies for vines V (m),m ≥ 2, with d2
unconstrained edges entering in every step (i.e., going from V (m−1) to V (m)). An illustrative example for a five-dimensional
S-vine on three time points is given in Section S2.5 of the supplementary materials.

It is easy to check that M-vines and D-vines of Beare and Seo (2015) and Smith (2015) are stationary. As the following
example shows, the structure of the COPAR model of Brechmann and Czado (2015) is not stationary, however. In particular,
the graph Vt,t+1 is not a vine for t ≥ 2 because the second level of the restricted graph is disconnected. This poses an
additional constraint on the choice of pair copulas that went seemingly unnoticed.
310
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Fig. 5. Example for the second tree level of a COPAR model with d = 2, T = 3.

xample 1. Let us illustrate the tricky part of the proof Theorem 1 with the COPAR model for d = 2, T = 3. The second
ree of the model is given in Fig. 5, see also Figure S11 in the supplement for the remaining trees. For simplicity, we assume
hat all pair-copulas in trees k = 1 and k ≥ 3 are independence copulas. The restriction V2,3 of the model is obtained
by deleting all vertices and edges where a time index 1 occurs. Clearly, V2,3 is not a vine, because the vertex (U2,1,U2,2)
is disconnected from the others. Now let us see why this is problematic. The joint copula density of vertices (U2,1,U2,2)
and (U2,1,U3,1) equals the product of copulas associated with the edges along the path joining them, integrating over all
intermediate vertices. That is,

c(2,2),(3,1)|(2,1)(u, v) =

∫ 1

0
c(1,1),(2,2)|(2,1)(w, u)c(1,1),(3,1)|(2,1)(w, v)dw.

By translation invariance, it must further hold

c(1,2),(2,1)|(1,1)(u, v) =

∫ 1

0
c(1,1),(2,2)|(2,1)(w, u)c(1,1),(3,1)|(2,1)(w, v)dw.

The copula on the left hand side is an explicit dependence in the model, because it is associated with an edge in the graph
(the leftmost one). Thus the equation contains three pair-copulas of the model that are not constrained by translation
invariance. For most combinations of pair-copulas, the equality does not hold and the model is not stationary.

3.4. An explicit characterization of stationary vines

Stationary vines can also be characterized more explicitly. Somewhat surprisingly, it suffices to pick a cross-sectional
structure V (0) and two permutations of (1, . . . , d). The permutations determine how the first d trees of the cross-sectional
structures are connected across two adjacent time points. The first permutation, called in-vertices, determines how trees
of one cross-sectional vine are connected to trees of the preceding time point; the second permutation, called out-vertices,
regulates the connections to the succeeding time point. The permutations are constrained by the choice of cross-sectional
structure. For simplicity, we omit the time index t in the following definition.

Definition 8 (Compatible Permutations). We call a permutation (i1, . . . , id) of (1, . . . , d) compatible with a vine V on
{1, . . . , d} if for all k = 2, . . . , d, there is an edge e ∈ Ek−1 with conditioned set {ik, ir} and conditioning set {i1, . . . , ik−1}\ir
for some r ∈ {1, . . . , k − 1}.

The first index of the permutation (i1) is not constrained by compatibility, but the remaining ones are. A permutation
is only compatible if the vine contains the edge {i2, i1} in the first tree. Further, the vine must contain an edge with either
(a) conditioned set {i3, i1} and conditioning set {i2}, or (b) an edge with conditioned set {i3, i2} and conditioning set {i1},
etc. Because i1 is unconstrained, this also implies that any d-dimensional vine has at least d compatible permutations (see
Lemma 1 below). The following theorem shows that S-vines are characterized by the cross-sectional structure and two
compatible permutations.

Theorem 2. A vine V on {1, . . . , T } × {1, . . . , d} is stationary if and only if

(i) there is a vine V (0) on {0} × {1, . . . , d} such that Vt,t ∼ V (0), for all 1 ≤ t ≤ T ,
(ii) there are two permutations (i1, . . . , id) and (j1, . . . , jd) compatible with V (0), such that

Ek =

T⋃
t=1

E(0)
k + (t, 0) ∪

T−1⋃
t=1

k⋃
r=1

{
e : ae = (t, ik+1−r ), be = (t + 1, jr ),De =

k−r⋃
s=1

{(t, is)} ∪

r−1⋃
s=1

{(t + 1, js)}
}

for k = 1, . . . , d.
As mentioned earlier, S-vines generalize previous models:
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Table 1
Number of distinct pair-copulas to specify four different vine models.

T = 100, d = 5 T = 100, d = 20 T = 1 000, d = 20

General model 124750 1999000 199990000
Stationary model 2 485 39790 399790
Stationary Markov(2) model 60 990 990
Stationary Markov(1) model 35 590 590

(i) If V (0) is a D-vine and (i1, . . . , id) = (j1, . . . , jd), we obtain the M-vine of Beare and Seo (2015).
(ii) If V (0) is a D-vine and (i1, . . . , id) = (jd, . . . , j1), we obtain the long D-vine of Smith (2015).
(iii) If we choose is, js, iteratively for s ≥ 2 as the smallest compatible indices, we obtain the T-vine model of Krüger

(2018).

Compared to the models of Beare and Seo (2015) and Smith (2015), S-vines do not require the cross-sectional structure
to be D-vines. Further, we have some degree of freedom in how we connect variables across different time points. This
relaxation can improve both interpretability and performance of associated copula models, as illustrated in Section 7 and
Section S5 of the supplementary materials. The explicit characterization of Theorem 2 also makes it easy to establish
conditions for existence and uniqueness of a stationary vine. The first step is to show that a compatible permutation
always exists.

Lemma 1. For any d-dimensional vine V and any i1 ∈ {1, . . . , d}, there exists at least one permutation (i1, . . . , id) compatible
ith V .

Now the following result is an immediate consequence of Theorem 2 and Lemma 1.

orollary 1.

(i) (Existence) For any vine V∗, there exists a stationary vine with cross-sectional structure V (0)
= V∗.

(ii) (Uniqueness) Given a cross-sectional structure V (0) and two sequences of compatible in- and out-vertices, the stationary
vine is unique.

3.5. Markovian models

Stationarity is a convenient property because it limits model complexity. An arbitrary vine copula model for U1, . . . ,U T
∈ [0, 1]d requires to specify (or estimate) Td(Td − 1)/2 = O(T 2d2) pair-copulas. In a stationary vine copula model, cross-
sectional dependencies are associated with the same pair copulas for each time point. Similarly, serial dependencies are
modeled with identical copulas for each lag. This significantly reduces the number of free pair-copulas in the model.
We only need to specify (T − 1)d2 + d(d − 1)/2 = O(Td2) of them, all other pair-copulas are constrained by translation
invariance. When the time series contains more than a few dozen time points, this is still too much. Most popular time
series models also satisfy the Markov property:

Definition 9. A time series U1, . . . ,U T ∈ [0, 1]d is called Markov (process) of order p if for all u ∈ [0, 1]d,

P
(
U t ≤ u | U t−1, . . . ,U1

)
= P

(
U t ≤ u | U t−1, . . . ,U t−p

)
.

The Markov property limits complexity further. For the M-vine model, Beare and Seo (2015, Theorem 4) showed that
it is equivalent to an independence constraint on the pair-copulas, used similarly by the Markovian models of Brechmann
and Czado (2015) and Smith (2015). The same arguments apply for the general class of stationary vines.

Theorem 3. A vine copula model (V, C(V)) on a stationary vine V is Markov of order p if and only if ce ≡ 1 for all e /∈ Vt,t+p,
t = 1, . . . , T − p.

In a stationary Markov model of order p, the independence copula is assigned to all edges reflecting serial dependence
of lags larger than p. This reduces the number of distinct pair copulas further to pd2 +d(d−1)/2 = O(pd2). Table 1 shows
the number of distinct copulas in an unrestricted model for the full time series, a stationary vine model, and a stationary
vine model with Markov order p = 1, 2. We can see a significant reduction when imposing stationarity and the Markov
property.

4. Parameter estimation

Joint maximum-likelihood is unpopular for vine copula models, because they have many parameters even in moderate
dimension. Beare and Seo (2015) discussed a version of the popular step-wise maximum likelihood estimator (Aas et al.,
2009) for M-vine copula models, but without theoretical guarantees. We shall introduce such a method for the more
general class of stationary vines and prove its validity, allowing for either parametric or nonparametric marginal models.
The step-wise method is fast also for large models, but incurs a small loss in efficiency according to Hobæk Haff (2013).
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.1. Estimation of marginal models

We follow the common practice to estimate marginal models first. Given estimates F̂1, . . . , F̂d of the marginal
distributions, the copula parameters can then be estimated based on ‘pseudo-observations’ Ût,j = F̂j(Xt,j), t = 1, . . . , T ,
j = 1, . . . d.

Suppose we are given parametric models fj(·; ηj), j = 1, . . . , d, for the marginal densities. Then the parameters can be
estimated by the maximum-likelihood-type estimator

η̂j = argmax
ηj

T∑
t=1

ln fj(Xt,j; ηj), j = 1, . . . , d. (3)

Given estimates of the marginal parameters, we then generate pseudo-observations from the copulas model via Û (P)
t,j =

Fj(Xt,j; η̂j), t = 1, . . . , T , j = 1, . . . , d.
We can also consider semiparametric copula models by estimating the marginal distributions by empirical distribution

functions F̂j(x) =
∑T

t=1 1(Xt,j ≤ x)/(T+1). This leads to the pseudo-observations Û (SP)
t,j = F̂j(Xt,j), t = 1, . . . , T , j = 1, . . . , d.

In what follows, pseudo-observations Ût,j are used generically in place of Û (P)
t,j or Û (SP)

t,j .

4.2. Estimation of copula parameters

For all edges e in the vine, let c[e](·; θ[e]) be a parametric model with parameter θ[e]. Because of translation invariance,
many of the edges must have the same families and parameters. This is reflected by the notation [e] which assigns a
family c[e](·; θ[e]) and parameter θ[e] for the entire equivalence class [e] = {e′

: e′
∼ e}. Recall from Section 2.3 that the joint

density of the model involves conditional distributions of the form Cae|De which can be expressed recursively. We again
write Ca[e]|D[e] to highlight the invariance of the function with respect to shifts in time. For an edge e ∈ Ek, denote by Sa(e)
the set of edges e′

∈ {E1, . . . , Ek−1} involved in this recursion and θSa([e]) = (θ[e′])e′∈Sa(e). Finally, write [Ek] = {[e] : e ∈ Ek},
θ[Ek] = (θ[e])[e]∈[Ek] and θ = (θ[Ek])

(p+1)d−1
k=1 as the stacked parameter vector.

The joint (pseudo-)log-likelihood of a stationary vine copula model for (X1, . . . ,X T ) is

ℓ(θ) =

d(p+1)−1∑
k=1

∑
e∈Ek

ln c[e]
{
Ca[e]|D[e] (Ûae | ÛDe; θSa([e])), Cb[e]|D[e] (Ûbe | ÛDe; θSb([e])); θ[e]

}
,

where (Û1, . . . , Û T ) can be either the parametric or nonparametric pseudo-observations. The joint MLE, argmaxθ ℓ(θ), is
often too demanding. The step-wise MLE of Aas et al. (2009) estimates the parameters of each pair-copula separately,
starting from the first tree. We can adapt it to the setting of a Markov process of order p: for k = 1, . . . , d(p+ 1)− 1 and
every e′

∈ Ek

θ̂[e′] = argmax
θ
[e′]

∑
e∼e′

ln c[e]
{
Ca[e]|D[e] (Ûae | ÛDe; θ̂Sa([e])), Cb[e]|D[e] (Ûbe | ÛDe; θ̂Sb([e])); θ[e′]

}
. (4)

The vectors θ̂S(a[e]), θ̂S(b[e]) in (4) only contain parameter estimates from previous trees, i.e., ones that were already found
in earlier iterations.

4.3. Asymptotic results

In what follows, we establish consistency and asymptotic normality of the parametric and semiparametric parameter
estimates. Their proofs are given in Section S6 of the supplementary material. All results are derived as consequences of
the more general Theorems A.1 and A.2 given in Appendix A. A discussion of the results is given at the end of this section.

We shall assume in the following that the series (X t )t∈Z is strictly stationary and absolutely regular. For p = 1, d = 1,
it is sufficient that the copula density is strictly positive on a set of measure 1 (Longla and Peligrad, 2012, Proposition 2).
The proof can be easily extended to p, d ≥ 1, which leads to the mild sufficient condition that all pair-copula densities
are strictly positive on (0, 1)2. In what follows, ∥ · ∥ denotes the Euclidean norm.

4.3.1. Parametric estimator
To state the asymptotic results, it is convenient to introduce some more notation. For S-vines of Markov order p, one

can check that any edge e ∈ Ek, 1 ≤ k ≤ d(p + 1) − 1, the set {ae, be,De} only contains variables at most p time points
apart. More precisely, if ae = (t1, j1), be = (t2, j2) and t = min{t1, t2}, then (xae , xbe , xDe ) is a sub-vector of (xt , . . . , xt+p).
Hence, we denote

F[e],1,η,θ(x1, . . . , x1+p) = Fa[e]|D[e] (xa[e] | xD[e]; η, θSa([e])),
F[e],2,η,θ(x1, . . . , x1+p) = Fb[e]|D[e] (xb[e] | xD[e]; η, θSb([e])),
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sj,ηj (xt , . . . , xt+p) = ∇ηj ln fj(xt,j),

s[e],η,θ(xt , . . . , xt+p) = ∇θ[e] ln c[e]{F[e],1,η,θ(xt , . . . , xt+p), F[e],2,η,θ(xt , . . . , xt+p); θ[e]},

and define

φ
(P)
η,θ =

( (
sj,ηj

)
j=1,...,d(

s[e],η,θ
)
[e]∈[Ek],k=1,...,(p+1)d

)
.

Up to a finite number of terms, the parametric step-wise MLE (̂η(P), θ̂
(P)

) is then defined as the solution of the estimating
equation

1
T

T∑
t=1

φ
(P)
η,θ(X t , . . . ,X t+p) = 0.

To allow for misspecified parametric models, we further define pseudo-true values (η∗, θ∗) via

E{φ
(P)
η∗,θ∗ (X1, . . . ,X1+p)} = 0,

and note that they agree with the true parameters if the model is correctly specified. Here and in the sequel, all
expectations are taken with respect to the unknown true distribution of X1, . . . ,X1+p.

We impose the following regularity conditions:

(P1) The pseudo-true values (η∗, θ∗) lie in the interior of H ×Θ and for every ϵ > 0,

inf
∥η−η∗∥+∥θ−θ∗

∥>ϵ

E{φ(P)
η,θ(X1, . . . ,X1+p)

} > 0.

(P2) The function φ
(P)
η,θ is continuously differentiable with respect to (η, θ) and satisfies

E

[
sup
η∈H̃

sup
θ∈Θ̃

{φ(P)
η,θ(X1, . . . ,X1+p)

+
∇(η,θ)φ

(P)
η,θ(X1, . . . ,X1+p)

}] < ∞

for any compact H̃ × Θ̃ ⊆ H ×Θ .
(P3) The matrix Jη∗,θ∗ = E

{
∇

′

(η∗,θ∗)φ
(P)
η∗,θ∗ (X1, . . . ,X1+p)

}
is invertible.

(P4) The β-mixing coefficients of (X t )t∈Z satisfy
∑

∞

t=0

∫ β(t)
0 Q 2(u)du < ∞, where Q is the inverse survival function of

∥φ
(P)
η∗,θ∗ (X1, . . . ,X t+p)∥.

Condition (P1) ensures identifiability of the model parameters, (P2) and (P3) are standard regularity condition for
maximum-likelihood methods. Condition (P4) quantifies a trade-off between moments of the ‘score’ function φ

(P)
η∗,θ∗ and

the mixing rate, see the discussion in Section 4.3.3.

Theorem 4. Under (P1)–(P2), it holds (̂η(P), θ̂
(P)

) →p (η∗, θ∗).

Theorem 5. Under (P1)–(P4), it holds ∥(̂η(P), θ̂
(P)

) − (η∗, θ∗)∥ = Op(T−1/2) and

√
T
(̂

η(P)
− η∗

θ̂
(P)

− θ∗

)
d

→ N
{
0, J−1

η∗,θ∗ Iη∗,θ∗ (J−1
η∗,θ∗ )′

}
,

here Iη∗,θ∗ =
∑

∞

t=1{1 + 1(t ≥ 2)}E
{
φ
(P)
η∗,θ∗ (X1, . . . ,X1+p)φ

(P)
η∗,θ∗ (X t , . . . ,X t+p)′

}
.

Note that iid models are included as a special case:

Corollary 2. If (X t )t∈N is iid and p = 0, then Theorems 4 and 5 hold with Iη∗,θ∗ = E
{
φ
(P)
η∗,θ∗ (X1)φ

(P)
η∗,θ∗ (X1)′

}
. If the latter

expectation exists, condition (P4) can be dropped.

4.3.2. Semiparametric estimator
Similarly to the parametric case, we define

C[e],1,θ(ut , . . . , ut+p) = Ca[e]|D[e] (uae | uDe; θSa([e])),
C[e],2,θ(ut , . . . , ut+p) = Cb[e]|D[e] (uae | uDe; θSb([e])),
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s[e],θ(u1, . . . , u1+p) = ∇θ[e] ln c[e]
{
C[e],1,θ(ut , . . . , ut+p), C[e],2,θ(ut , . . . , ut+p); θ[e]

}
.

For a generic vector of functions G = (G1, . . . ,Gd) write G(x) =
(
G1(x1), . . . ,Gd(xd)

)
. Let F̂ = (̂F1, . . . , F̂d) be the vector of

empirical distribution functions and F = (F1, . . . , Fd) be the true distributions. Setting φ
(SP)
θ = (s[e],θ)[e]∈[Ek],k=1,...,(p+1)d, the

semiparametric step-wise MLE θ̂
(SP)

is then defined as the solution of the estimating equation

1
T

T∑
t=1

φ
(SP)
θ {̂F (X t ), . . . , F̂ (X t+p)} = 0.

Further, we define the pseudo-true value θ∗ via

E
[
φ
(SP)
θ∗ {F (X1), . . . , F (X1+p)}

]
= 0.

For u ∈ (0, 1) and some γ ∈ [0, 1), define the weight function w(u) = uγ (1 − u)γ and set Fδ = ×
d
j=1{G :R →

0, 1], supx |Fj(x) − G(x)|/w{Fj(x)} ≤ δ}.

(SP1) The pseudo-true value θ∗ lies in the interior of Θ and for every ϵ > 0,

inf
∥θ−θ∗

∥>ϵ

E[φ(SP)
θ {F (X1), . . . , F (X1+p)}

] > 0.

(SP2) The functions φ
(SP)
θ are continuously differentiable with respect to θ and its arguments and there is δ > 0 such that

E

[
sup
θ∈Θ̃

sup
G∈Fδ

{φ(SP)
θ {F (X1), . . . , F (X1+p)}

+
∇θφ

(SP)
θ {G(X1), . . . ,G(X1+p)}

}] < ∞,

E

[
sup
θ∈Θ̃

sup
G∈Fδ

 ∂

∂{Gj(Xt,j)}
φ
(SP)
θ {G(X1), . . . ,G(X1+p)}w{Fj(Xt,j)}


]
< ∞

for any compact Θ̃ ⊆ Θ , t = 1, . . . , 1 + p, j = 1, . . . , d.
(SP3) The mixed derivatives ∇θ∇

′
uφ

(SP)
θ (u) are continuous in u ∈ (0, 1)(p+1)d and θ in a neighborhood of θ∗ and there is

δ > 0 such that for all t = 1, . . . , 1 + p, j = 1, . . . , d,

E

[
sup

∥θ−θ∗
∥≤δ

sup
G∈Fδ

 ∂

∂{Gj(Xt,j)}
∇θφ

(SP)
θ {G(X1), . . . ,G(X1+p)}w{Fj(Xt,j)}


]
< ∞.

(SP4) The matrix J θ∗ = E
[
∇

′

θ∗φ
(SP)
θ∗ {F (X1), . . . , F (X1+p)}

]
is invertible.

(SP5) For γ ∈ [0, 1/2), the β-mixing coefficients of (X t )t∈Z satisfy β(t) = O(t−a) with a > 1/(1 − 2γ ) and it holds∑
∞

t=0

∫ β(t)
0 Q 2(u)du < ∞, where Q is the inverse survival function of ∥φ

(SP)
θ∗ {F (X1), . . . , F (X1+p)}∥.

Similar to the parametric case, (SP1) ensures identifiability of the model parameters and (SP4) is a standard regularity
ondition. Conditions (SP2)–(SP3) are more involved due to the suprema over function classes Fδ . This is typical for
emiparametric copulas models (see, Genest et al., 1995; Tsukahara, 2005; Chen and Fan, 2006b; Hobæk Haff, 2013; Chen
t al., 2020). Derivatives of copula functions tend to blow up in the corners of the unit hypercube. This can be offset by
xploiting stronger convergence properties of the empirical margins in these corners. The function w is used to strengthen
he metric accordingly. (SP5) quantifies the trade-off between moments of the ‘score’ function φ

(SP)
θ∗ and the mixing rate,

ee also our discussion below.

heorem 6. Under (SP1)–(SP2), it holds θ̂
(SP)

→p θ∗.

heorem 7. Under (SP1)–(SP5), it holds ∥̂θ
(SP)

− θ∗
∥ = Op(T−1/2) and

T 1/2 (̂θ
(SP)

− θ∗)
d

→ N
{
0, J−1

θ∗ Iθ∗ (J−1
θ∗ )′

}
,

here Iθ∗ = E(Z1Z ′

1) + 2
∑

∞

t=2 E(Z1Z ′

t ) and

Z t = φ
(SP)
θ∗ {F (X t ), . . . , F (X t+p)} + D(X t ),

D(x1, . . . , xd) =

d∑ 1+p∑
E

[
{1(xj ≤ Xt,j) − Fj(Xt,j)}

∂φ
(SP)
θ∗ {F (X1), . . . , F (X1+p)}

∂{Fj(Xt,j)}

]
.

j=1 t=1
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orollary 3. If (X t )t∈N is iid and p = 0, then Theorems 6 and 7 hold with

Iθ∗ = E
(
[φ

(SP)
θ∗ {F (X1)} + D(X1)][φ

(SP)
θ∗ {F (X1)} + D(X1)]′

)
.

If E[∥φθ∗{F (X t )}∥2
] < ∞, condition (SP5) can be dropped.

4.3.3. Discussion
The

√
T -convergence predicted by our theorems is confirmed in numerical experiments in Section S4.1 of the

supplementary materials. The results extend the existing literature in various ways. The results on the fully parametric
sequential MLE (Theorems 4 and 5) appear to be new — even in the iid case. Joe (2005) provided a similar result when
there are only two steps: one for the marginal parameters and one for the copula parameters. For semiparametric models
(Theorems 6 and 7), a similar result was obtained by Rémillard et al. (2012) for p = 1, and a joint MLE for the copula
parameters. It does not apply to the step-wise MLE commonly used in vine copula models, however. The only known
results for the semiparametric step-wise MLE were provided by Hobæk Haff (2013) in the iid (p = 0) case. These results
assume a D-vine structure and correctly specified copula model. The latter assumption is especially questionable in view
of the common simplifying assumption (see Section 2.3).

Also the results in Chen and Fan (2006b) are obtained as a special case with d = 1, p = 1. The regularity conditions here
are slightly weaker than theirs, and also than those of Tsukahara (2005) and Hobæk Haff (2013) in the iid case. Specifically,
conditions (SP2)–(SP3) require a first moment uniformly in Θ̄ × Fδ , whereas previous results require a second moment.
A higher order moment constraint is only imposed on φ

(SP)
θ∗ {F (X1), . . . , F (X1+p)} and only at the single point (θ∗, F ) via

(SP5). Conditions (P4) and (SP5) ensure existence of the asymptotic covariance and are, to the best of our knowledge, the
weakest known for β-mixing time series. Writing generically φ for either φ

(P)
η∗,θ∗ in (P4) or φ

(SP)
θ∗ in (SP5), the conditions

are satisfied in each of the following cases (see, Rio, 2017, Section 1.4):

(i) (X t )t∈Z is iid and E
{
∥φ(X1, . . . ,X1+p)∥2

}
< ∞.

(ii) There is b ∈ (0, 1) such that β(t) = O(bt ) and

E
{
∥φ(X1, . . . ,X1+p)∥2 ln(1 + ∥φ(X1, . . . ,X1+p)∥)

}
< ∞.

(iii) β(t) = O(t−a) with a > 1/(1 − 2γ ) and there is q > max{2, 2/(a − 1)} such that

E
{
∥φ(X1, . . . ,X1+p)∥q} < ∞.

If the mixing decay is fast, we can therefore use weaker moment conditions. The latter two conditions already appeared in
similar form in Chen and Fan (2006b). For p = 1, d = 1, a sizeable literature (including Chen and Fan, 2006b; Chen et al.,
2009; Beare, 2010, 2012; Longla and Peligrad, 2012) suggests that all popular parametric models exhibit exponentially
decaying mixing coefficients, which is stronger than necessary. However, extending these results to the multivariate case
is nontrivial and poses an important open problem.

5. Prediction

Vine copula models are quite complex and rarely allow closed-form expressions of conditional means, quantiles, or
the predictive distribution. One may instead simulate (conditionally) from the estimated model and approximate such
quantities by Monte Carlo methods. The standard simulation algorithm (e.g., Czado, 2019, Chapter 6) poses unnecessary
computational demands, however. An efficient algorithm exploiting the Markov property is given in Section S3.2 of the
supplementary material.

With the ability to simulate conditionally on the past, it is easy to compute predictions for all sorts of quantities, like
conditional means or quantiles. More specifically, suppose we are interested in a functional µ = ψ(Fk,p) of the conditional
distribution Fk,p(· | xt−1, . . . , xt−p) = FX t ,...,X t+k|X t−1,...,X t−p (· | xt−1, . . . , xt−p) of the next k time points given the past. We
construct an estimator of this functional as follows:

1. Simulate N iid replicates (X (i)
t , . . . ,X

(i)
t+k)

N
i=1 from the (estimated) conditional distribution of (X t , . . . ,X t+k) given

X t−1 = xt−1, . . . ,X t−p = xt−p using the estimated model (either parametric or semiparametric; see Section 4).
2. Compute ψ (̂Fk,p) where

F̂k,p(xt , . . . , xt+k) =
1
n

N∑
i=1

1(X (i)
t ≤ xt , . . . ,X

(i)
t+k ≤ xt+k).

When simulating from an estimated parametric model Fk,p(· | xt−1, . . . , xt−p; η̂(P), θ̂
(P)

), we call the resulting estimator
µ(P); when simulating from a semiparametric model Fk,p(· | xt−1, . . . , xt−p; F̂ , θ̂

(SP)
), we call the resulting estimator µ̂(SP).

The corresponding pseudo-true value µ∗ is defined as ψ{Fk,p(· | xt−1, . . . , xt−p; η∗, θ∗)} or ψ{Fk,p(· | xt−1, . . . , xt−p; F , θ∗)}
for the parametric and semiparametric cases respectively.
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The following results account for the fact that we simulate from an estimated model. They are an immediate
onsequence of Theorem A.3 in Appendix A. In general, we assume that the map F ↦→ ψ(F ) is Frechet differentiable.

heorem 8. Suppose the map (θ, η) ↦→ ψ{Fk,p(· | xt−1, . . . , xt−p; η, θ)} is continuously differentiable at (θ∗, η∗) with gradient
θ∗,η∗ .

1. If N → ∞ and conditions (P1)–(P2) hold, then µ̂(P)
→p µ

∗.
2. If additionally T = o(N) and conditions (P4)–(P3) hold, then µ̂(P)

− µ∗
= Op(T−1/2) and

√
T (µ̂(P)

− µ∗) →d N
(
0,Ψ ′

θ∗,η∗ J−1
η∗,θ∗ Iη∗,θ∗ (J−1

η∗,θ∗ )′Ψ θ∗,η∗

)
,

where Iη∗,θ∗ , Jη∗,θ∗ are defined in Section 4.3.1.

For any function G, let W (G) = G(·)/w{G(·)} and denote W (G) = (W (G1), . . . ,W (Gd)).

heorem 9. Suppose the map (W (G), θ) ↦→ ψ{Fk,p(· | xt−1, . . . , xt−p;G, θ)} is Frechet differentiable at (W (F ), θ∗) with
erivative (W (h), θ) ↦→

∑d
j=1 Ψj(hj) + Ψ ′

θθ.

1. If N → ∞ and conditions (SP1)–(SP2) hold, then µ̂(SP)
→p µ

∗.
2. If additionally T = o(N) and conditions (SP3)–(SP4) hold, then µ̂(SP)

− µ∗
= Op(T−1/2) and

√
T (µ̂(SP)

− µ∗) →d N (0, σ 2),

where σ 2
= Var(Z1) + 2

∑
∞

t=2 Cov(Z1, Zt ) with

Zt =

p∑
k=0

d∑
j=1

Ψj{1(Xt+k,j ≤ ·) − Fj(·)} + Ψ ′

θ[φ
(SP)
θ∗ {F (X t ), . . . , F (X t+p)} + D(X t )]

and D(X t ) given in Theorem 7.

Simulation-based prediction from vine copula models has been used widely in the last decade, despite a lack of
theoretical justification. A consistency result for extreme quantile estimation in semiparametric iid models was previously
established by Gong et al. (2015, Theorem 1). In contrast, the results above allow for both parametric and semiparametric
models, time series data, and a generic prediction target. In addition, Theorems 8 and 9 characterize a distributional limit
for such predictions. This is of practical importance because it allows to properly assess estimation/prediction uncertainty.
Of course, the results specialize to the iid case similarly to Corollaries 2 and 3. The asymptotic covariances are generally
unknown and must be estimated. We propose computationally efficient methods in the following section.

6. Uncertainty quantification

In principle, the asymptotic covariances in the preceding theorems can be estimated by HAC methods (e.g., Andrews,
1991). In the prediction context such methods become numerically demanding, especially for the semiparametric
estimator. (Semi-)parametric or block bootstrap methods (Künsch, 1989; Chen and Fan, 2006b; Genest and Rémillard,
2008) are general alternatives, but similarly demanding because the model has to be fit many times. We propose a
more efficient bootstrap method based on an asymptotic approximation of the parameter estimates. In essence, we avoid
refitting the entire model by performing only a single Newton–Raphson update on the bootstrapped likelihood.

We employ a dependent multiplier bootstrap scheme similar to Bücher and Kojadinovic (2016). Its idea is as follows. Let
ℓT be a sequence with ℓT → ∞. We simulate a stationary time series of bootstrap weights ξ1, . . . , ξT that is ℓT -dependent,
independent of the data, and satisfies E(ξ1) = Var(ξ1) = 1 and Cov(ξ1, ξ1+t ) = 1 − o(t/ℓT ). Given a sufficiently regular
stationary time series Z1, . . . , ZT , one can then show that T 1/2

{T−1∑T
t=1 Zt −E(Z1)} and T−1/2∑T

t=1(ξt −1)Zt converge to
independent copies of the same random variable (see, Bühlmann, 1993; Bücher and Kojadinovic, 2019). We shall apply
this principle to bootstrap the step-wise log-likelihood and (if necessary) empirical marginal distributions.

Consider the bootstrapped estimating equation

1
T

T∑
t=1

ξtφ
(P)
η,θ(X t , . . . ,X t+p) = 0.

We define our bootstrap replicates as an approximate one-step Newton–Raphson update from (̂η(P), θ̂
(P)

), i.e.,(̃
η(P)

θ̃
(P)

)
=

(̂
η(P)

θ̂
(P)

)
−

( T∑
∇(η,θ)φ

(P)

(̂η(P) ,̂θ(P))
(X t , . . . ,X t+p)

)−1 T∑
ξtφ

(P)

(̂η(P) ,̂θ(P))
(X t , . . . ,X t+p).
t=1 t=1
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ecause ∇(η,θ)φ
(P)

(̂η(P) ,̂θ(P))
and φ

(P)

(̂η(P) ,̂θ(P))
have already been evaluated when computing (̂η(P), θ̂

(P)
), this update has negligible

computational cost. One may then show that

1
T

T∑
t=1

∇(η,θ)φ
(P)

η̂(P) ,̂θ
(P) (X t , . . . ,X t+p) →p Jη∗,θ∗ ,

1
T

T∑
t=1

ξtφ
(P)

(̂η(P) ,̂θ(P))
(X t , . . . ,X t+p) →d N (0, Iη∗,θ∗ ),

with limiting variable independent of (̂η(P), θ̂
(P)

).
In semiparametric models, we also have to bootstrap the empirical marginal distribution:

F̃j(x) =
1
T

T∑
t=1

ξt1(Xt ≤ x), j = 1, . . . , d.

Now consider the bootstrapped estimating equation

1
T

T∑
t=1

ξtφ
(SP)
θ {̃F (X t ), . . . , F̃ (X t+p)} = 0

and the approximate one-step update

θ̃
(SP)

= θ̂
(SP)

−

(
1
T

T∑
t=1

∇θφ
(SP)
θ {̂F (X t ), . . . , F̂ (X t+p)}

)−1 1
T

T∑
t=1

ξtφ
(SP)

θ̂
(SP) {̃F (X t ), . . . , F̃ (X t+p)}.

ote that the function φ
(SP)

θ̂
(SP) on the far right is evaluated at the bootstrapped margins. This is necessary to account for the

estimation uncertainty in the margins. It also makes the update slightly more demanding, since we have to evaluate the
function φ

(SP)

θ̂
(SP) for every bootstrap replication. This cost is manageable, however. One may again show that θ̃

(SP)
and θ̂

(SP)

converge in distribution to two iid variables.
To get bootstrap replicates for a prediction µ̂, we simply simulate from bootstrapped models: for r = 1, . . . R,

1. Simulate multipliers ξ1, . . . , ξT independently from previous steps.
2. Compute a bootstrapped model (parametric or semiparametric) as outlined above.
3. Compute µ̃r as in Section 5, where X (i)

t , . . . ,X
(i)
t+k, i = 1, . . . ,N are simulated conditionally on the past from the

bootstrapped model.

Validity of the above procedure can be established along the lines of Theorems 4–9 and arguments similar to Bühlmann
(1993, Chapter 3). A formal proof is beyond the scope of this paper, but our simulation experiments in Section S4.2 of the
supplementary materials indicate approximately correct coverage in a range of scenarios.

7. Application

Vine copula models are widely used in finance, in particular for modeling cross-sectional dependence in time series
of financial returns (Aas, 2016). The most common approach is to model marginal series with ARMA/GARCH-models and
the cross-sectional dependence of their residuals with a vine copula. Stationary vine copula models are different; they
incorporate both serial and cross-sectional dependence in a single vine copula model.

We consider daily stock returns of 20 companies retrieved from Yahoo Finance.1 These companies belong to several
industry branches and can be found in Table 2. The data covers the time slot from 1st January 2015 until 31st December
2019, containing in total 1296 trading days.

7.1. In-sample analysis

We start with an in-sample illustration of models fit to the whole data set. We first fit skew-t distributions to the
individual time series of each company. We then apply the probability integral transform to obtain pseudo-observations
of the copula model. We consider the M-vine, D-vine, and a general stationary (S-)vine models from the previous
section, each with Markov orders p = 1 (higher order models were fit in preliminary experiments, but did not improve
fit/performance). Vine structures are selected by a modification of the algorithm by Dissmann et al. (2013), the pair-copula
families by the AIC criterion; we refer to Section S3 of the supplementary materials for details. We allow for all parametric
families implemented in the rvinecopulib R package (Nagler and Vatter, 2020). This includes families without tail

1 https://de.finance.yahoo.com/
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Table 2
Companies, their coding, and industry branches.
Coding Company Industry branch Coding Company Industry branch

1 Allianz Insurance 11 Microsoft IT
2 AXA Insurance 12 Apple IT
3 Generali Insurance 13 Amazon IT/Consumer goods
4 MetLife Insurance 14 Alphabet IT
5 Prudential Insurance 15 Alibaba IT/Consumer goods
6 Ping An Insurance 16 Exxon Oil and gas
7 BMW Automotive 17 Shell Oil and gas
8 General Motors Automotive 18 PetroChina Oil and gas
9 Toyota Automotive 19 Airbus Aerospace
10 Hyundai Automotive 20 Boeing Aerospace

Table 3
Akaike’s information criterion for the three vine copula time series models.
S-vine M-vine D-vine VAR GARCH-vine DCC-GARCH

−163371 −163257 −163258 −156360 −162279 −159857

Fig. 6. First tree of M- and D-vines fitted on the whole data set. Trees across time-steps are connected at (i1, j1) = (19, 19) (with τ̂ ≈ 0.02) for the
-vine, and (i1, j1) = (19, 10) (with τ̂ ≈ 0.05) for the D-vine.

ependence (e.g., Gaussian copula), and with tail dependence in either one (e.g., Clayton copula), two (e.g., BB7 copula),
r all four tails (e.g., the two-parameter t copula).
In Fig. 6 we illustrate the first trees of the M- and D-vine obtained via the previously described approach. We observe

that the cross-sectional D-vine for both approaches is described by a path 19 − · · · − 10. The M-vine makes the serial
connection by an edge linking the same stock from time t to time t + 1. In this case, the connection is (i1, j1) = (19, 19)
(Airbus→Airbus) which has an empirical Kendall’s τ of 0.02. The only other viable choice would have been (10, 10)
(Hyundai→Hyundai), but it had a lower Kendall’s τ of around 0.01. The D-vine connects two opposites ends of the path,
here from Hyundai (10) to Airbus (19) (̂τ = 0.05).

The corresponding tree of the S-vine can be seen in Fig. 7. The cross-sectional connection is described by a regular
vine. We can identify some clusters of industry branches: IT (variables 11–15), insurance (1–5), and oil and gas (16–18).
Interestingly, regional factors seem to be more important than the branch for aerospace and automotive stocks, however.
The European manufacturers BMW (7) and Airbus (19) are attached to the European insurance cluster (1–3). American
counterparts General Motors (8) and Boeing (20) are linked to the American insurances MetLife and Prudential (4, 5).
Some of these links can also be identified from the M-/D-vine structure in Fig. 6, but not as prominently. This plus in
interpretability is one of the big advantages of using general R-vines as the cross-sectional structure.

The inter-serial connection of the S-vine is made at (i1, j2) = (15, 6) (Alibaba→Ping An) with an empirical Kendall’s τ
of 0.16. The dependence here is much stronger than for the serial connections of the M- and D-vine models. This reflects
the greater flexibility of the S-vine model. Recall that compatibility does not restrict the connection in the first tree. We
are thus free to choose from all possible in-/out-pairs. The linking edge is interesting in itself. First, it links two different
companies across subsequent time points. Hence, this dependence must be stronger than any inter-serial dependence of
a single stock. Second, it links Alibaba, a Chinese IT/Consumer goods company, to Ping An, a Chinese insurance company,
which makes sense economically. Further, this link did not appear in the cross-sectional parts of either of the vine models.
So while the cross-sectional dependence between the companies is comparably weak, their inter-temporal dependence
is still quite strong.

The fit of the models is compared by AIC in Table 3. We only consider parametric vine models, but also include three
popular competitor models:
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Fig. 7. First tree of an S-vine fitted on the whole data set. Trees across time-steps are connected at (i1, j1) = (15, 6) (with τ̂ ≈ 0.16).

• VAR: A vector autoregressive model of order 1 (using the vars R package Pfaff, 2008).
• GARCH-vine: A combination of ARMA-GARCH marginal models (with skew-t residuals) and a vine copula for the

residuals (using rugarch and rvinecopulib, Ghalanos, 2020; Nagler and Vatter, 2020). The ARMA-GARCH orders
are selected for each marginal series individually by AIC. This model is an instance of the general residuals method
proposed by Nasri and Rémillard (2019). Other choices for marginal models would also be possible.

• DCC-GARCH: the DCC-GARCH model of Engle and Sheppard (2001) based on a multivariate t distribution (using
rmgarch, Ghalanos, 2019).

The VAR model clearly performs worst, since it cannot account for heteroscedasticity. We further see that the vine
odels outperform the GARCH-vine and DCC-GARCH models. The S-vine provides the best fit.

.2. Out-of-sample predictions

We now compare the forecasting abilities by a backtest. We fit all models on three years’ data (one year has 252
rading days). On each of the following days, we make predictions for the cumulative portfolio return over the next day
r week and compare them to the observed data. Every half year the models are fitted again on three years’ data.
Our predictions take the form of a Monte-Carlo sample drawn from the predictive distribution. They are evaluated

ith three types of measures:

• CRPS: The continuous ranked probability score of Gneiting and Raftery (2007).
• logS: The negative predictive log-likelihood.
• VaR95, VaR99: The check-loss known from quantile-regression (e.g., Koenker and Xiao, 2002) computed for predicted

quantiles at levels 0.05 and 0.01. Such quantiles are popular risk measures in banking and insurance, where they are
called Value-at-Risk (VaR).

RPS and logS are computed with the scoringRules R package (Jordan et al., 2019), VaRs as empirical quantiles of
he Monte-Carlo sample. The measures are averaged across 1000 randomly sampled portfolios. The first 19 weights are
rawn uniformly from a Uniform(−0.15, 0.25) distribution and the 20th set such that weights sum up to one.
The forecast performance is shown in Fig. 8. The dots are the average measure over the full period, the error bars

ndicate 90%-confidence intervals (adjusted for serial dependence). The left panel corresponds to 1-day-ahead, the right
o 1-week-ahead forecasts. Scores are centered such that S-vine has score 0. Some observations:

• A general observation is that uncertainty (as indicated by the confidence intervals) is rather larger compared to the
differences between models. Everything that follows should therefore be taken with a grain of salt.

• Overall all methods seem to provide reasonable predictions, including the residuals method (GARCH-vine).
• The three stationary vine models perform similarly in all scenarios. The S-vine and M-vine tend to perform slightly

better than the long D-vine. The S-vine is uniformly best for 1-day-ahead forecasts, but slightly outperformed by the
M-vine for 1-week-ahead forecasts (except for logS). After all, the vine structures are found by heuristics and there
is no guarantee that the best is found.

• For 1-day-ahead forecasts, the S-vine performs best for all measures, especially for extreme quantiles and the
predictive log-likelihood (logS). For 1-week-ahead forecasts the stationary vine models are outperformed by the
DCC-GARCH for CRPS and VaR95. It compares favorably for the other measures.

We conclude that stationary vine models provide good forecasts for financial time series. This is somewhat remarkable
ince, in contrast to the pure vine models, the GARCH-vine and DCC-GARCH models were specifically designed for
uch data. Recently, some copula families have been specifically designed for modeling serial dependence in economic
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Fig. 8. Forecast performance of various time series models. Dots are mean performance, error bars indicate 90%-confidence intervals (accounting for
30 lags of autocorrelation). The left panel corresponds to 1-day-ahead, the right to 1-week-ahead forecasts. Scores are centered such that S-vine has
score 0.

time series (e.g., Bladt and McNeil, 2020; Loaiza-Maya et al., 2018), but were not used in this article. We expect that
incorporating such families will lead to a further increase in performance.

8. Discussion

This work deals with vine copula models for the joint distribution of a stationary time series. We derived the maximal
lass of vine structures that guarantee stationarity under practicable conditions. The underlying principle is intuitive: we
tart with a vine model for the dependence at a specific time point and connect copies of this model serially in a way
hat preserves time ordering. This class includes previously proposed models of Beare and Seo (2015) and Smith (2015)
s special cases. The COPAR model of Brechmann and Czado (2015) was shown to be inadequate in this sense because it
ails to guarantee stationarity under simple conditions. The simulations and application suggest that the added flexibility
eads to improvements over the previous models. Another benefit is the greater interpretability of the model structure.
ut more importantly, our contribution gives a final answer in the search for vine copula models suitable for stationary
ime series.

We developed methods for parameter estimation, model selection, simulation, prediction, and uncertainty quantifica-
ion in such models. All methods are designed with computational efficiency in mind, such that the full modeling pipeline
uns in no more than a few minutes on a customary laptop. The proposed bootstrap procedure avoids refitting the models
hrough a one-step approximation. The method appears to be new and may prove useful beyond the current scope. The
ootstrap technique also does not require explicit estimation of the rather complicated limiting variances in our theorems.
t might be possible to achieve this even more efficiently using a blocking technique similar to Ibragimov and Müller
2010).

We further provide theoretical justifications in the form of asymptotic results. To the best of our knowledge, these
re the first results applicable to vine copula models under serial dependence. Even when specialized to the iid case,
hey extend the existing literature in several ways. In particular, they provide post-hoc justification for what is already
racticed widely: step-wise estimation and simulation-based inference in fully parametric, but usually misspecified R-
ine models. Our main results are empowered by more abstract theorems given in Appendix A. They deal with general
emiparametric method-of-moment type estimators with potentially non-negligible nuisance parameter. As this is a
ommon setup, especially in copula models, these abstract results shall prove powerful beyond the present paper. For
xample, generalizations of the results in Tsukahara (2005) are obtained as easy corollaries. The results shall also help in
321
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ther interesting extensions of our model, for example accounting for long-memory dependence or non-stationarity (see,
.g., Ibragimov and Lentzas, 2017; Chen et al., 2020).
Despite confirmatory numerical experiments, a limitation of the results is an assumption on the decay of mixing

oefficients (required only for the asymptotic distribution). Judging from earlier work in a narrower context, we do not
elieve this poses a serious issue. However, we do not yet know any easily verifiable sufficient conditions. Investigating
he mixing properties of stationary vine copulas – and multivariate copula models more generally – is therefore an urging
roblem for future research.
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ppendix A. General results for semiparametric method-of-moment estimation

The proofs for the parametric and semiparametric cases are largely similar. To avoid duplication, we first establish
eneral results that cover both cases. The statements and proofs make extensive use of empirical process techniques (e.g.,
an Der Vaart and Wellner, 1996; Dehling and Philipp, 2002) and the associated short notation PT g =

1
T

∑T
t=1 g(X t ) and

Pg = E{g(X t )} for the empirical measure and expectation over an arbitrary function g .
Suppose we want to estimate a Euclidean parameter α∗

∈ A ⊆ Rp in the presence of a nuisance parameter ν∗
∈ N,

possibly infinite-dimensional. Let φα,ν = (φα,ν,1, . . . , φα,ν,r ) be a map Rs
→ Rr such that Pφα∗,ν∗ = 0. Given an estimator

ν of ν∗ define α̂ as the solution to PT φα,̂ν = 0. We shall assume that N is a subset of a Banach space and define

A(δ) = {α ∈ A : ∥α − α∗
∥ ≤ δ}, N(δ) = {ν ∈ N : ∥ν − ν∗

∥ ≤ δ}.

We impose the following general conditions:

(C1) The series (X t )t∈Z is strictly stationary and absolutely regular.
(C2) For every δ > 0, P(∥̂ν − ν∗

∥ ≤ δ) → 1 as T → ∞.
(C3) For every ϵ > 0, it holds inf∥α−α∗∥>ϵ ∥Pφα,ν∗∥ > 0.
(C4) For every K > 0, it holds P supα∈A(K ) ∥φα,ν∗∥ < ∞ and there is δ > 0 such that

P

{
sup

α1,α2∈A(K )
sup

ν1,ν2∈N(δ)

φα1,ν1
− φα2,ν2


∥α1 − α2∥ + ∥ν1 − ν2∥

}
< ∞.

(C5) There is δ > 0 such that

P

{
sup

α1,α2∈A(δ)
sup

ν1,ν2∈N(δ)

(φα1,ν1
− φα2,ν1

) − (φα1,ν2
− φα2,ν2

)


∥α1 − α2∥∥ν1 − ν2∥

}
< ∞.

(C6) T 1/2 (̂ν − ν∗) converges weakly to a tight, centered Gaussian limit N .
(C7) The map (α, ν) ↦→ Pφα,ν from A×N to Rr is Fréchet differentiable at (α∗, ν∗) with derivative (a, b) ↦→ Φα∗,ν∗,1(a)+

Φα∗,ν∗,2(b). That is, Φα∗,ν∗,1,Φα∗,ν∗,2 are continuous, linear maps such that for every ∥a∥ → 0, ∥b∥ → 0,Pφα∗+a,ν∗+b − Pφα∗,ν∗ −Φα∗,ν∗,1(a) −Φα∗,ν∗,2(b)
 = o(∥a∥ + ∥b∥).

Further assume that Φα∗,ν∗,1 is invertible.
(C8) The β-mixing coefficients of (Xt )t∈Z satisfy

∑
∞

t=0 β(t) < ∞ and
∑

∞

t=0

∫ β(t)
0 Q 2(u)du < ∞, where Q is the inverse

survival function of ∥φα∗,ν∗∥.

Conditions (C2) and (C6) make convergence of ν̂, the estimator of the nuisance parameter, a prerequisite. The other
onditions concern the regularity of the time series and identifying functions φα,ν . The following theorems establish
onsistency and asymptotic normality of α̂, our estimator for the parameter of interest.

heorem A.1. If (C1)–(C4) hold, then ∥̂α − α∗
∥ = op(1).

heorem A.2. Under conditions (C1)–(C8), it holds

α̂ − α∗
= −Φ−1

α∗,ν∗,1

{
PT φα∗,ν∗ +Φα∗,ν∗,2 (̂ν − ν∗)

}
+ op(T−1/2),

nd

T 1/2 (̂α − α∗) →d N {0,Φ−1
α∗,ν∗,1Σα∗,β∗ (Φ−1

α∗,ν∗,1)
′
},

∗ ∗
1/2

∗ ∗
∗
here Σα ,β is the limiting covariance of T {PT φα∗,ν∗ +Φα ,ν ,2 (̂ν − ν )}.
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Now let Fα,ν be a cumulative distribution function parametrized by (α, ν). Suppose the parameter of interest is defined
s µ∗

= ψ(Fα∗,ν∗ ) for some functional ψ . Denote FN,α,ν the empirical measure over N iid realizations from Fα,ν . For
estimators α̂, ν̂, define µ̂ = ψ(FN ,̂α,̂ν).

Theorem A.3. Suppose that the maps F ↦→ ψ(F ) and (α, ν) → ψ(Fα,ν) are Frechet differentiable at Fα∗,ν∗ and (α∗, ν∗)
respectively.

1. If T → ∞ and (̂α, ν̂) →p (α∗, ν∗), then µ̂ →p µ
∗.

2. If T = o(N) and T 1/2
{(̂α, ν̂) − (α∗, ν∗)} converges weakly to a tight process (A,N ), then

T 1/2(µ̂− µ∗) →d Ψ(α∗)(A) + Ψ(ν∗)(N ),

where (a, b) ↦→ Ψ(α∗)(a) + Ψ(ν∗)(b) is the Frechet derivative of the map (a, b) ↦→ ψ(Fa,b) at (α∗, ν∗).

In the context of our paper, ν̂ is a vector of empirical distribution functions. Lemma 4.1 of Chen and Fan (2006b)
establishes (C2) and (C6), but under conditions slightly stronger than our (C1) and (C8). The following lemma improves
their result accordingly. For sake of completeness, we give a detailed proof in Section S6.6 of the supplementary material.

Lemma A.1. Let Z1, . . . , ZT ∈ R be a stationary time series with β-mixing coefficients β(t), t ≥ 0. Define FT (z) =

(T + 1)−1∑T
t=1 1(Zt ≤ z) and WT = (FT − FZ )(z)/w{FZ (z)}, where w(u) = uγ (1 − u)γ , γ ∈ [0, 1).

1. If β(t) → 0, supz∈R |WT (z)| → 0 almost surely.
2. If γ ∈ [0, 1/2) and β(t) = O(t−a) with a > 1/(1− 2γ ), the process WT converges weakly in ℓ∞(R) to a tight Gaussian

limit W with mean zero and covariance

E{W (z1)W (z2)} =
Var{1(Z1 ≤ z1), 1(Z1 ≤ z2)} + 2

∑
∞

t=2 Cov{1(Z1 ≤ z1), 1(Zt ≤ z2)}
w(z1)w(z2)

.

ppendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2021.11.015. It
ontains additional illustrations, simulation results, and all proofs.
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