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A B S T R A C T

Calibrating DTA models is complex due to the involved indeterminacy, non-linearity, and
dimensionality, restricting the application of conventional calibration approaches, especially
for larger networks. For this, Principal Component Analysis (PCA) is slowly establishing itself
as the new state of the art because it can greatly tackle two well known challenges—i.e.
problem dimensionality and non-linearity. PCA application limits the optimization search space
in a lower dimension space, defined by orthogonal Principal Components, evaluated upon
a set of historical estimates. In this paper, we solve practical implementation problems for
PCA-based calibration techniques. Specifically, we formulate a data-assimilation framework to
propose multiple OD historical data-set generation methods which allows the use of PC-based
algorithms in case the historical data is irrelevant or unavailable, often the case for large-
scale DTA models. Furthermore, we propose a simplified problem formulation that leverages
properties of the novel data-set generation framework and helps for faster and more efficient
calibration. The methodology is implemented using the PC-SPSA algorithm, which combines
PCA with the popular Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm,
commonly used to calibrate smaller networks. The approach is tested on a large-scale case study
of the Munich metropolitan urban network, with encouraging calibration results. The proposed
data-assimilation framework can account for spatial, temporal, and day-to-day variations in
the demand. Different methods and combinations are tested and compared. The results suggest
that all these correlations should be used in order to avoid over-fitting issues. Furthermore,
the implementation properties of PCA and PC-SPSA are also explored using different sensitivity
analyses to assess the toll and benefits of using PCA i.e., ease in SPSA hyper-parameter, role
of historical data-set generation parameters and the algorithm’s performance against different
target demand fluctuations. The analysis shows encouraging results for PC-SPSA robustness
and helps establishing simplified guidelines for implementing such PCA-methods practically on
large-scale DTA models.

1. Introduction

Dynamic Traffic Assignment (DTA) models have been successfully applied as decision support tools for the evaluation of traffic
planning and traffic management solutions for many years. They not only offer the opportunity to estimate and predict the transport
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network traffic state, but also to evaluate different transport measures, therefore quantifying their effectiveness (Ben-Akiva et al.,
2001; Mahmassani, 2001; Tampere et al., 2010). Given the importance of these models, DTA calibration is a long-hauled research
topic and the literature within the last decade is filled with many efforts trying to propose different calibration techniques with
better application towards large DTA models (Balakrishna, 2006; Antoniou et al., 2009; Zockaie et al., 2014; Antoniou et al., 2015;
Shafiei et al., 2018). Such a calibration problem is extremely complex as DTA models are highly non-linear and require a large set
of parameters to be calibrated (Marzano et al., 2009).

As a wrong demand pattern will also generate a biased simulation output, mobility demand is one of the most important inputs
or a DTA model. Typically, mobility demand is represented as an Origin–Destination (OD) demand matrix, where each cell of the
atrix represents the number of trips travelling from a certain origin to a certain destination, during a specific time interval. The
ain problem is that state of the art measurement systems, such as loop detectors, measure the effect of the demand on the network

ather than the demand itself (Frederix et al., 2011; Shafiei et al., 2017). As a consequence, practitioners usually turn to demand
eneration models in order to estimate the OD demand matrix (McNally, 2007). Although demand generation models provide an
nitial guess about the demand, the estimated OD matrix is at most an approximation of the average demand. Unfortunately, daily
emand patterns show substantial fluctuations with respect to the average demand, because of partially predictable phenomena such
s weather conditions (Balakrishna, 2006). These deviations can be corrected by using traffic measurements, such as loop detectors,
o update the existing (a-priori) OD matrix. This problem, which is known in the literature as the Dynamic Demand Estimation
roblem (DODE), searches for time-dependent OD demand matrices able to best fit measured traffic data (Cascetta and Postorino,
001).

Depending on the specific DTA application, several formulation frameworks have been proposed in the literature to solve the
ODE problem. A first distinction is between offline (Balakrishna et al., 2007b; Cipriani et al., 2011; Antoniou et al., 2015; Osorio,

2019) and online models (Antoniou et al., 2007; Prakash et al., 2018; Cantelmo et al., 2020), where the former focus on medium-long
term planning, while the latter are frequently adopted for real-time applications, such as route guidance. In addition, the DODE can
be formulated as an optimization (Balakrishna et al., 2007b; Cipriani et al., 2011; Antoniou et al., 2015; Qurashi et al., 2019)
or a state–space problem (Ashok and Ben-Akiva, 2000; Antoniou et al., 2007; Prakash et al., 2018; Cantelmo et al., 2020). The
state–space formulation is especially used for capturing day-to-day dynamics (Zhou and Mahmassani, 2007) or for on-line demand
estimation (Ashok, 1996; Ashok and Ben-Akiva, 2000). However, studies that implement a state–space model in the context of off-line
also exist (Balakrishna et al., 2005). Finally, we can further divide existing models into assignment–matrix based and assignment–
matrix free algorithms (Cantelmo et al., 2014b). Assignment–matrix based algorithms explicitly use an analytical representation of
the relationship between demand and traffic flows to estimate the most likely demand matrix (Cascetta and Postorino, 2001; Toledo
and Kolechkina, 2012). However, this relationship is usually assumed to be linear. As this is not the case in reality, other authors
proposed assignment–matrix free algorithms, using the DTA model to indirectly capture this correlation (Balakrishna et al., 2007b;
Vaze et al., 2009). These models can be further divided into gradient-based (Cipriani et al., 2011; Antoniou et al., 2015; Qurashi
et al., 2019) and gradient-free (Zhang et al., 2017; Osorio, 2019). Similarly, attempts to use Machine–Learning (neural networks)
to solve the DODE problem have also been proposed (Wu et al., 2018; Krishnakumari et al., 2019).

Regardless of the specific application, recent years have witnessed a shift towards assignment matrix-free methods. matrix-free
algorithms solve two of the main issues common to all DODE formulations. First, they allow to accurately model the relationship
between supply and demand. Second, assignment–matrix free formulations allow to incorporate any data source and do not require
defining an analytical relationship between data and observations (e.g. between Bluetooth data and mobility demand). To include
additional data is in fact a crucial aspect, as the DODE is traditionally a highly underdetermined problem, due to the fact that the
number of variables to be estimated far exceeds the available amount of information (Marzano et al., 2009). One such approach,
named ‘Simultaneous Perturbation Stochastic Approximation’ (SPSA) (Spall, 1998), has been one of the most popular algorithms
for DTA model calibration (Balakrishna et al., 2007a). SPSA, due to its ability to deal with non-linear and stochastic systems, a
generalized problem formulation, and ease of implementation, has been used frequently by many researchers (Balakrishna et al.,
2005; Cantelmo et al., 2014a; Barceló et al., 2010; Ros-Roca et al., 2021). However, conventional algorithms, including the SPSA,
often fail in convergence with large-scale problems, because their performance deteriorates rapidly with the increase of the problem
scale and complexity. For example, SPSA’s gradient approximation gets highly sensitive against: (1) definition of hyper-parameters
(objective function gets more expensive, making trail-based setup infeasible); (2) more varying OD magnitudes, which increase
exponentially with DTA model size and are also sparsely correlated with traffic measurements.

Most of the literature, which aims to improve the application scalability of DTA model calibration, has followed two major
domains i.e., reducing problem dimensions or reducing problem non-linearity (adding structural/correlation information in the
objective function). Within the dimension reduction domain, approaches tend to reduce the number of estimation variables by
e.g., using a statistical technique i.e. Principal Component Analysis (PCA) (Djukic et al., 2012; Prakash et al., 2018; Qurashi et al.,
2019), using a correlation assumption i.e., quasi dynamic (Cascetta et al., 2013; Cantelmo et al., 2014b), clustering the model param-
eters (Tympakianaki et al., 2015), redefining the problem formulation i.e., utility-based formulations (Cantelmo et al., 2018, 2020).
While, in the other domain of catering problem non-linearity, approaches tend to add additional structural/correlation information
spatially or temporally among model parameters and traffic measurements e.g., adding a weight matrix for correlation between
ODs and network (Cantelmo et al., 2014a; Lu et al., 2015; Antoniou et al., 2015), using response surface methods or (physical)
metamodels which approximate the DTA simulation’s input/output relationship using differentiable analytical functions (Zhang
et al., 2017; Osorio, 2019), using assignment matrix for OD flows and links sensitivity information (Shafiei et al., 2017).

Within all such efforts for improving the objective functions of different conventional approaches, the application of PCA stood
3 1
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out for being significantly more efficient in reducing problem dimensions (from the scale of 10 to 10 ) and non-linearity, as it
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transforms the OD vector into a lower dimensional space defined by orthogonal/uncorrelated PCs extracted from the variance of
historical OD estimates. Hence, the application of Principal Component Analysis (PCA) has been widely adopted for both offline
and online calibration problems to do dimension reduction. For DTA model calibration, it is first proposed by Djukic et al. (2012),
followed by many other approaches e.g., PC-GLS (Prakash et al., 2017), PC-EKF (Prakash et al., 2018), and PC-SPSA Qurashi et al.
(2019). In all these PCA-based OD estimation frameworks, given a series of historical estimates, PCA leverages strong patterns and
correlations to represent the problem with a few orthogonal/uncorrelated Principal Components (PCs) in a low dimensional space.

PC-based methods, although being powerful and intuitive, strongly rely on the presence and quality of the historical estimates,
y which they extrapolate estimation patterns. PCA provides a considerable advantage through dimension reduction, providing a
ower dimensional search space based on PCs evaluated from historical data-set. Hence, application and performance of PCA-based
ethods is limited by the presence and quality/relevance of the historical data-set relative to the target solution. This in general is not
ossible for large-scale DTA models, for which such PCA-based methods are proposed, because conventional calibration techniques
truggle to calibrate them and PCA application requires historical estimates. Considering this limitation, this paper aims to further
xplore, optimize, and establish better implementation methods for the application of demand estimation models based on Principal
omponent Analysis and PC-SPSA. First, we propose a new methodology to use PC-based methods, when a reliable historical data-set

s not available, including both cases of non-existent or irrelevant historical estimates. Then, we also establish a simplified problem
ormulation to define the objective function which alongside improving the computational times significantly, increases both the
east error convergence and solution quality. Later, to test the novel procedures, we use the PC-SPSA algorithm to calibrate a
arge urban network i.e., the Munich city network. Comparisons among all different possible historical OD generation methods and
onventional versus simplified problem formulation are performed to understand and depict the associated benefits. Later, to explore
nd understand the practical implementation of PC-SPSA, we perform a series of sensitivity analyses focusing on two aspects. First,
o test the ease of setting up SPSA hyper-parameters for PC-SPSA calibration. Second, to test the influence of different historical
ata-set characteristics (i.e., size, variance, and dimension reduction) and their quality/relevance with respect to target demand.
inally, using all different empirical results, we also propose a set of guidelines helpful to conveniently setup PCA based methods
nd PC-SPSA.

Below, the contributes of this paper are further discussed in detail.

1. Properties of Principal Component Analysis

(a) Generation of historical OD estimates: This paper contributes to define a data-assimilation framework for both
generating historical estimates data-set and controlling their quality. As mentioned above, PCA, using the historical
data-set, extracts a set of PCs, which are then used to transform and estimate the model parameters in a lower-
dimensional space, restricting the search space of the model. Hence, the application and performance of any PCA-based
method is limited by the presence and quality of these historical estimates. The data-assimilation framework proposed
in this paper explores all possible correlation in the existing demand matrix and generates a set of (artificial) historical
estimates from a given historical OD matrix. In addition, this method also provides the possibility to derive these
correlations from different available data sources which can help further reduce the residual errors.

(b) Simplified problem formulation: This paper proposes a simplified problem formulation for DODE. Since OD demand
cannot be observed and the DODE problem is under-determined, the objective function comprises two minimizing error
terms: the error between simulated and traffic measurements and the one between calibrated and initial OD estimate.
The second term constraints the calibrated OD demand from moving away off the starting estimate and overfitting the
traffic data. It also limits the calibration performance due to added noise and complexity in the objective function.
We show in this research that the application of PCA does not require to constraint the calibrated OD pattern, as
the proposed data-assimilation framework allows to include information about the historical matrix directly into the
principal components, even when historical estimates are not available. The search space is therefore already restricted
by the variance of historical data-set, hence the DODE problem formulation can be simplified by using only the error
term between traffic measurements. Comparisons between the simplified and the conventional problem formulation
show that simplified formulation requires significantly lesser number of iterations and converges to the least error
and best OD solution quality. That because, conventional formulation leads to a sub-optimal solution due to an over
representation of the historical demand in the objective function.

2. Implementation properties of PC-SPSA

(a) Ease of hyper-parameters tuning: This paper performs sensitivity analyses for robustness of PC-SPSA against SPSA
hyper-parameters. Although (Spall, 1998) has proposed general guidelines for SPSA hyper-parameters definition, there
is no set rule to define these parameters generically for SPSA and its variants. Besides, even other approaches that
aim for calibrating large scale DTA models require regress effort to set up specific to a DTA model (e.g., defining
appropriate metamodel functions (physical metamodel as per Zhang et al., 2017; Osorio, 2019), create network
correlation weight matrices (Antoniou et al., 2015)). In previous studies, sensitivity analysis was often use to identify
case-specific SPSA hyper-parameters (Cantelmo et al., 2014a). In this research, we show that PC-SPSA converges on
high quality solutions even when a sub-optimal set of hyper-parameters is used. This advantage of skipping problem-
specific manual input, especially with large-scale DTA models, is the reduction of additional computational effort for
running simulations repeatedly during this trial/definition phase. In this paper, we show that PCA gives the ease to
3

tune SPSA’s hyper-parameters because of showing significant robustness to a range of different hyper-parameter values.
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(b) Value of added structural information: Many literature approaches use different techniques to add information
within the objective function for improving their application scalability (Antoniou et al., 2015; Cantelmo et al., 2014a;
Tympakianaki et al., 2018; Osorio, 2019). Similarly, PCA also incorporates OD structural patterns from the historical
estimates to reduce non-linearity and computational requirements. But how to implement PCA in real-life applications
is still an open question. It requires determining the optimum number of historical estimates, the effect of the amount
of variance present in the system, and the optimum amount of PCs. Defining these set of hyper-parameters adds up as
a requirement due to the PCA application. Hence, in this paper, we perform multiple sensitivity analyses to measure
the impact of varying historical data-set characteristics (i.e., size, variance, and number of PCs) on PC-SPSA calibration
performance. The analysis helps to understand the value of structural information added in the objective function. It
also provides directions to control model over fitting.

(c) Computational efficiency: Most calibration methods, let alone their capability to calibrate large-scale networks,
require significant computational efforts due to the higher simulation run-times, large set of estimation variables,
and iterative nature. Methods proposed in this paper address this practical challenge, and calibrate a large experiment
for DODE to date i.e., the Munich network. First, the results show the direct benefits of PCA i.e., the increase in
dimensionality and non-linearity/complexity for Munich network does not directly translate into an equivalent increase
in optimization complexity and estimation variables. Moreover, exploiting PCA properties, the ease of SPSA hyper-
parameters tuning eliminate the need of recursive simulations for trail-based setting. Similarly, we also eliminate
the requirement of using multiple gradient replications in SPSA (otherwise used in all SPSA methods to remove
gradient biased). Also, the simplified problem formulation provides significant improvements for the required number
of iterations. Hence overall, the calibration of Munich network is shortened between 2–6 iterations with practically
almost 1 simulation run-time required per iteration (with parallel replications and SPSA gradient evaluation), making
PC-SPSA even feasible for online calibration.

The rest of the paper is structured as follows. Section 2 describes the overall methodology followed in this research. After
ntroducing PCA in the OD estimation context, we discuss the proposed data-assimilation framework for historical data matrix
eneration, the simplified problem formulation, and our implementation of PC-SPSA. Then, Section 3 describes the experimental
etup, network case study, and the calibration results for PC-SPSA. It also includes the comparisons for different historical OD
eneration methods and conventional versus simplified problem formulations. Later, Section 4 covers the sensitivity analyses
erformed on PCA and PC-SPSA implementation properties alongside the guidelines for their setup. Finally, Section 5 concludes
he paper describing the overall contributions and findings of the research alongside its future implications and possible research
irections.

. PCA based OD estimation

Principal Component Analysis (PCA) is already a standard for problem dimension reduction. It allows to dimensionally reduce a
arge set of decision variables 𝜽 or 𝒙 (i.e., the starting OD vector for DODE) into few number of PC-scores using a lower dimensional

space. This space is defined by a set of Principal Components (PCs) estimated by the application of PCA on the time series historical
data of the decision vector. The optimization problem is then formulated and estimated using the PC-scores, solved by a suitable
optimization approach. For OD estimation, Djukic et al. (2012) is the first to apply PCA on the time series OD matrices, extracting
the spatial–temporal correlation among different OD pairs. Although the idea of PCA’s application is of dimension reduction, it also
gives other favourable properties. For example, it gives an orthogonal/uncorrelated OD demand representation which otherwise is
sparsely correlated and it keeps the search space limited in the variance captured from historical estimates resulting in good quality
OD solutions.

2.1. Dimension reduction

Principal Components (PCs) are linear vectors combinations containing the variance information of a time series data. All PCs
have their subsequent coefficients (named ‘PC-directions’) which define the amount of variance captured by them. The value of
these PC-directions decrease in an ascending order i.e., the first PC captures the highest sample variance in the data followed by the
second PC with the second-highest variance captured and soon. The estimation of PCs requires a time series OD demand information
which can be supplemented using historical OD estimates (calibrated offline or online). Given the availability of historical estimates,
they are set in a data matrix 𝐷 with dimensions [𝑛𝑘 × 𝑛𝑥], where 𝑛𝑘 is the number of historical data points and 𝑛𝑥 is the size of OD
vector estimate. Then, Singular Value Decomposition (SVD) is applied on this historical data matrix 𝐷 to evaluate the PCs, given
as:

𝐷 = 𝑈𝛴𝑉 𝑇 (1)

The unitary matrix 𝑉 with dimension [𝑛𝑥 × 𝑛𝑥] contains vectors of the orthogonal PCs and their corresponding PC-directions are
stored in the rectangular–diagonal matrix 𝛴 with dimension [𝑛𝑘 × 𝑛𝑥]. 𝑈 is a [𝑛𝑘 × 𝑛𝑘] unitary matrix with orthogonal vectors. A
time series historical estimates data-set of 𝑛𝑘 data points result in 𝑛𝑘 PCs (Djukic et al., 2012), hence the first 𝑛𝑘 columns of unitary
matrix 𝑉 are PCs and the diagonal 𝑛 values of matrix 𝛴 are their PC-directions. The evaluated PCs can be further reduced to retain
4
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only the first few significant PCs 𝑛𝑑 , which can explain most of the time series variance from the historical estimates (Djukic et al.,
012), hence 𝑉 is further reduced to 𝑉 :

𝑉 = [ 𝑣1 𝑣2 𝑣3 ... 𝑣𝑛𝑣 ] (2)

The starting OD vector 𝒙 (otherwise used directly for estimation) is transformed into a lower dimensional PCs space. The reduced
̂ unitary matrix containing 𝑛𝑣 significant PCs is used to transform 𝒙 into to set of PC scores 𝑧 of dimension [𝑛𝑣 × 1], as:

𝑧 = 𝑉 𝑇 𝑥 (3)

hese PC scores are instead then used for estimation, while the OD vector can be re-approximated as:

𝑥 ≈ 𝑉 𝑧 (4)

.2. Historical data matrix generation

Historical OD estimates used for estimating PCs are critical for application of PCA-based methods. These historical estimates
hould be relevant temporally (i.e., day-to-day historical estimates of the same time intervals ( = {1, 2,… , ℎ}), to ensure similar
D spatial/structural patterns as of the target solution. This implies that different historical data-sets should be constructed between
.g., morning and evening peak hours, peak and off-peak hours, weekdays and holidays. If relevant estimates are not available then
CA-based models will give poor quality solutions. Setting the relevance property aside, the existence/availability of historical OD
stimates is even more critical (especially for large scale DTA models). As stated before (under Section 2.1), it is evident from
he literature that conventional models, such as SPSA, are in fact not capable of being used to calibrate large-scale networks and
herefore the presence of calibrated/estimated historical OD data-set is impractical, hence limiting the use of PCA-based techniques
n practice.

In this section, we propose a data-assimilation framework for applicability of PCA-methods in scenarios of irrelevant or non-
xisting historical estimates. In such scenarios, there exists a possibility to synthetically generate historical OD estimates using
he available OD estimate. As discussed previously, PCA limits the search space by projecting each OD pair into a few principal
omponents capable of explaining their variance. Traditionally, principal components are obtained from time series of data - i.e. the
istorical estimates. The data assimilation framework allows to incorporate historical information from one single historical demand
atrix into the principal components of the problem. This means that, while previous approaches rely on historical estimates, in this

ase the Principal Components represent the historical (seed) matrix, which can be easily obtained with any demand model, from the
ravity model to Synthetic Population. Given a single demand matrix 𝑥, we perturb the demand and artificially generate variations
ithin the data. Different types of demand fluctuations are considered, such as spatial, temporal, and day-to-day variations. This
llows us to use PCA-based algorithms, without even the need to first obtain the historical estimates, which is often infeasible in
ractice. Additionally, by artificially perturbing the demand in three different dimensions, the proposed approach allows to have
ontrol over the search space definition (e.g., define a narrow search space if small variations are assumed and hence good OD
uality is retained in reference to the initial OD estimate; or a broader search space with more variance is considered in case the
odel error does not converge to a good solution).

.2.1. Correlations among time-dependent OD flows
Dynamic OD demand is mostly represented as time-dependent OD flows (𝒙𝟏,𝒙𝟐,… ,𝒙𝒉), which are individual sets of OD matrices

each representing a single time interval ℎ. Demand fluctuations among such time-dependent OD flows can correlate in three
ossible dimensions. Fig. 1 presents the conceptual directions for each of these three correlation dimension in a OD demand time
eries plot, where each vertical vector represents a single time-dependent OD for a given time interval. Further, we describe these
imensions as:

• Spatial correlation: The spatial correlation presents the spatial structure of the OD demand over the network, i.e., how all
the OD pairs 𝑥𝑛𝑖𝑗 are spatially correlated among themselves. This correlation dimension should help in capturing the demand
fluctuations triggered spatially e.g., the changes in trip distribution among different OD pairs. The source of these fluctuations
can variate from long-term changes of land-use to short-term changes in trip attractions and distributions among OD pairs due
to consistently varying network travel times or traffic congestion patterns.

• Temporal correlation: The temporal correlation presents the times series evolution of demand, i.e., the time-dependent
fluctuations of each OD pair 𝑥𝑛𝑖𝑗 between all time intervals 𝑡 (or previously said  = 1, 2,… , ℎ). This correlation dimensions
helps in capturing the demand fluctuations or distributions for departure time choice of the overall demand for each OD
pair. Individual departure time choice decisions depend on factors such as trip purpose/activity, network state/congestion
and person demographics.

• day-to-day correlation: Mobility demand is correlated to the demand for activities. As such, it follows a structure and day-to-
day variations are likely to occur. Hence, day-to-day correlations presents the correlation of each OD pair 𝑥𝑛𝑖𝑗 among different
days 𝑑. This correlation dimension should capture the day-to-day demand fluctuations for individual OD pairs due to change in
their trip generation/attractions for different trip activities which are influenced by e.g., day-of-the-week, weather conditions,
seasons, special events like sales, festivals, sport events etc.
5
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Fig. 1. Different correlation dimensions among time-dependent OD flows.

Table 1
List of symbols.
𝑫 Historical data matrix with dimensions [𝑛𝑖𝑗 × (𝑛𝑡𝑛𝑑 )]
𝜟𝑇 Perturbation matrix for correlation of type 𝑇
𝒙 Current/prior OD estimate matrix with dimensions [𝑛𝑖𝑗 × 𝑛𝑡]
𝑿 Augmented matrix of multiple 𝑥 sets with dimensions [𝑛𝑖𝑗 × (𝑛𝑡𝑛𝑑 )]
 𝑜𝑑 ,  𝑡,  𝑑 Gaussian distributions of size 𝑛𝑖𝑗 , 𝑛𝑡 and 𝑛𝑑 , mean 𝜇 and standard deviation 𝜎
𝑅𝑜𝑑 , 𝑅𝑡 Perturbation/weight coefficient for sizing the effect of spatial and temporal correlation variance
𝑅𝑚𝑖𝑛 The smaller value within 𝑅𝑜𝑑 and 𝑅𝑡
𝑛𝑖𝑗 , 𝑛𝑡, 𝑛𝑑 Number of OD pairs, time intervals and historical days

2.2.2. Historical data-set generation methods
After developing our understanding on the above mentioned correlation dimensions for time-dependent ODs, we consider that

he demand fluctuations within the historical OD estimates should naturally follow these correlations. Hence, synthetic historical
ata-sets can be generated by perturbing the starting OD vector 𝒙 among them. Since, these three correlation dimensions cover the

possible user behaviours, we propose six different historical OD generation methods exploiting them. Intuitively, more correlations
should lead to a more realistic representation of the behaviour. However, this will also requires a larger time series, which also
means more principal components and therefore more variables to be calibrated. To mathematically express the proposed methods,
we first define the utilized notations in Table 1, followed by the definitions of all methods.

• Method 1: Spatial correlation
This method considers the spatial correlation to generate the historical OD data-set 𝐷. The perturbation matrix 𝜟𝒐𝒅 is generated
using  𝒐𝒅 Gaussian distribution. The mathematical expression is given as:

𝑫 = (𝟏 + 𝑅𝑜𝑑𝜟𝒐𝒅)⊙𝑿 (5)

where 𝑿 is an augmented matrix given by:

𝑿 = (𝑥|𝑥|… |𝑥)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝑛𝑑

(6)

while 𝑥 is the initial OD estimate matrix of 𝑛𝑖𝑗 OD pairs and 𝑛𝑡 time intervals. The ⊙ operation achieves the Hadamard (element-
wise) product to perturb the augmented matrix 𝑋. Note that, 𝑅𝑜𝑑 is the perturbation factor for sizing the effect of perturbation
matrix 𝜟𝒐𝒅 .

• Method 2: Temporal correlation
This method considers the temporal correlation to generate the historical data-set 𝐷. The perturbation matrix 𝜟𝒕 is generated
using  𝒕 Gaussian distribution. The mathematical expression is given as:

𝑫 = (𝟏 + 𝑅𝑡𝜟𝑡)⊙𝑿 (7)

where 𝑅𝑡 is the perturbation factor for sizing the effect of perturbation matrix 𝜟𝒕.
• Method 3: Spatial and temporal correlation

This method considers both spatial and temporal correlations to generate the historical data-set 𝐷. The perturbation matrix
𝜟𝒐𝒅,𝒕 is generated using the Gaussian distributions  𝒐𝒅 and  𝒕 in spatial and temporal directions (see Fig. 1). The
mathematical expression is given as:

𝑫 = (𝟏 + 𝑅𝑚𝑖𝑛𝜟𝑜𝑑,𝑡)⊙𝑿 (8)
6

where 𝑅𝑚𝑖𝑛 is the lowest of the perturbation factors 𝑅𝑜𝑑 and 𝑅𝑡 for sizing the effect of perturbation matrix 𝜟𝒐𝒅,𝒕.
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• Method 4: Spatial and day-to-day correlation
This method considers both spatial and day-to-day correlations to generate the historical data-set 𝐷. The perturbation matrix
𝜟𝒐𝒅,𝒅 is generated using the Gaussian distributions  𝒐𝒅 and  𝒅 in spatial and day-to-day directions (see Fig. 1). The
mathematical expression is given as:

𝑫 = (𝟏 + 𝑅𝑜𝑑𝜟𝑜𝑑,𝑑 )⊙𝑿 (9)

• Method 5: Temporal and day-to-day correlation
This method considers both temporal and day-to-day correlations to generate the historical data-set 𝐷. The perturbation
matrix 𝜟𝒕,𝒅 is generated using the Gaussian distributions  𝒕 and  𝒅 in temporal and day-to-day directions (see Fig. 1).
The mathematical expression is given as:

𝑫 = (𝟏 + 𝑅𝑡𝜟𝑡,𝑑 )⊙𝑿 (10)

• Method 6: Spatial, temporal and day-to-day correlation
This last method considers all possible correlation dimensions possible in time-dependent ODs. To estimate the historical data-
set 𝐷. The perturbation matrix 𝜟𝒐𝒅,𝒕,𝒅 is generated using the Gaussian distributions  𝒐𝒅 ,  𝒕 and  𝒅 in spatial, temporal and
day-to-day directions (see Fig. 1). The mathematical expression is given as:

𝑫 = (𝟏 + 𝑅𝑚𝑖𝑛𝜟𝑜𝑑,𝑡,𝑑 )⊙𝑿 (11)

The six proposed generation methods capture all possible combinations between spatial, within-day temporal and day-to-day
emporal correlations. Note that, in current methodology we use Gaussian distributions with zero mean to define the perturbation
atrices 𝛥𝑇 but an additional value of these generation formulations is that these correlation distributions (currently  𝒐𝒅 ,  𝒕, and
𝒅) can be derived by other data sources, such as mobile phone network data and survey data. Finally, this leads to a framework

hat is more general – as it does not depend on an historical database – and is more flexible – as the structure of the PCs would
eflect both OD flows as well as other spatial–temporal dynamics.

.3. Simplification of DODE problem formulation

The DTA calibration problem is generally formulated as an optimization problem, minimizing the specified objective function
y optimizing the model parameter values with the given constraints (to decide a feasible parameter space). A generic problem
ormulation for DTA model calibration is given as:

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒
𝛽,𝑥

𝑧(𝒚, 𝒚′,𝒙,𝒙𝒑, 𝜷, 𝜷𝒑) (12)

Where 𝑦/𝑦′ represent the observed/simulated traffic measurements, 𝑥 and 𝛽 indicate the current values for the origin–destination
emand flows and for the behavioural parameters, respectively, while 𝑥𝑝 and 𝛽𝑝 are their historical (or prior) estimates. The
raditional DODE problem focuses on only estimating time-dependent OD flows {𝑥1, 𝑥2,… , 𝑥ℎ}, while other model parameters 𝛽
re kept constant. The objective function formulation for time-dependent DODE problem can be reformulated as:

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒
𝑥

ℎ=1
∑

𝐻
[𝑤1𝑧1(𝒚𝒉, 𝒚′𝒉) +𝑤2𝑧2(𝒙𝒉,𝒙

𝒑
𝒉)] (13)

ubject to:

𝒚′𝒉 = 𝑓 (𝒙𝟏,… ,𝒙𝒉; 𝛽;𝑮𝟏,… ,𝑮𝒉)

𝒍𝒙 ≤ 𝒙 ≤ 𝒖𝒙

here the calibration time period is defined in intervals  = {1, 2,… ,𝐻} and:

𝒙𝒉 ∶ Time-dependent demand parameters i.e., OD flows
𝒚𝒉 ∶ Observed time-dependent traffic measurements
𝒚′𝒉 ∶ Simulated time-dependent traffic measurements
𝜷 ∶ Other fixed DTA model parameters
𝒙𝒑𝒉 ∶ Prior values for time-dependent demand parameters i.e., OD flows
𝑮𝒉 ∶ Road network and other supply parameters

he minimization of the DODE objective function (Eq. (13)) heavily relies on 𝑧1, which measures the goodness of fit between
bserved and simulated traffic measurements, while 𝑧2 (i.e., the goodness of fit between estimated and prior OD demand) help
o restrain the estimated solution closer to the prior/starting OD. The weight factors 𝑤1 and 𝑤2 are used to scale the reliance
or reflect uncertainty) on both observed traffic measurements 𝑦ℎ and prior OD flows 𝑥𝑝ℎ information. The simulated traffic data 𝑦′ℎ
etected in time interval ℎ are explicitly modelled through a (non-linear) function 𝑓 (⋅) (i.e., DTA simulator) of all OD flows 𝑥, model
arameters 𝛽 and the road network/supply parameters till time interval ℎ. Using this optimization-based problem formulation with
7
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any non-assignment based approach provides an advantage of including any available traffic data 𝑦ℎ for estimation (requiring 𝑓 (⋅)
to be a DTA simulator).

Since the nature of DODE problem is highly underdetermined (far more estimation variables against traffic measurements),
reliance on using 𝑧2 can be seen throughout the literature because its keeps the calibrated OD solution close to the prior/starting
stimate, considering it the most reliable available estimate. For PCA-based models, we propose to simplify the DODE formulation
eleasing the 𝑧2 error term. This is a generalization of PCA-based models where the use of PCs help us include historical OD

information in the objective function, allowing us to release 𝑧2 from Eq. (13) and simplify the DODE problem formulation (Eq. (14)).
It also allows to simplify the problem through dimension reduction (as we solve it in PC space). The new simplified problem
formulation is given as:

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒
𝑥

ℎ=1
∑

𝐻
[𝑧1(𝒚𝒉, 𝒚′𝒉)] (14)

This simplification is possible only by the use of PCA, where previously the standard approach (Eq. (13)) requires the term 𝑧2 to
nclude prior information about the historical demand. This information, however, is already included within the PCA components,
here the vector of Principal Components 𝑉 is in fact directly obtained by the time series historical demand, which means that the
Cs defined search space is already constrained within the variance present in the historical estimates. This keeps all the patterns of
he calibrated OD estimate within those present in historical estimates, which is also the purpose of using the error term 𝑧2. Hence,
or all PCA-based methods, the purpose of using the error term 𝑧2 is already fulfilled by PCA’s dimension reduction.

.4. Estimation setup

As discussed before in Section 1, SPSA is arguably the most popular assignment matrix-free method due to its generalized problem
ormulation and ability to deal with non-linear and stochastic systems. Therefore, to demonstrate the significance of the proposed
CA methods, we choose it as the optimization problem solver to estimate the DODE problem formulated in PC space (Qurashi
t al., 2019). Below, we describe the SPSA setup for PCA-based DODE and emphasize on the ease in requirement of defining SPSA
yper-parameters alongside proposing some modifications to exploit the properties of PCA application. Similarly, we also discuss
he PCA application setup to understand the role of new hyper-parameters required to define the characteristics of historical data
atrix and dimension reduction.

.4.1. SPSA for PCA-based estimation
SPSA (Spall et al., 1992) is a Stochastic Approximation (SA) algorithm with a unique advantage of approximating a noisy gradient

ith only two objective function evaluations using simultaneous perturbation. Qurashi et al. (2019) proposed a modified SPSA to
olve PCA-based DODE problem. Eq. (15) shows the modified gradient estimation method to estimate PC-scores 𝑧, where 𝛥 is a
-dimensional vector generated randomly from a ±1 Bernoulli distribution (where 𝑃 is the length of decision vector 𝒛𝒌).

𝒈′ =
𝑓 (𝒛𝒌 + 𝒛𝒌 × 𝑐𝑘𝜟𝒌) − 𝑓 (𝒛𝒌 − 𝒛𝒌 × 𝑐𝑘𝜟𝒌)

2𝑐𝑘

[

𝛥1 𝛥2 . . 𝛥𝑝
]𝑇 (15)

The estimated gradient is used to minimize the solution using a modified form of SA approach (Eq. (16)).

𝒛𝒌+𝟏 = 𝒛𝒌 − 𝒛𝒌 × 𝑎𝑘𝒈′𝒌(𝒛𝒌) (16)

𝑐𝑘 = 𝑐∕𝑘𝛾 𝑎𝑘 = 𝑎∕(𝑘 + 𝐴)𝛼 (17)

Note that, the coefficients of perturbation 𝑐𝑘 and minimization 𝑎𝑘 evolve over the number of iterations  = {1, 2, 3,… , 𝑘} and are
evaluated based on the set of pre-defined hyper-parameters 𝑐, 𝑎, 𝛾, 𝛼, and 𝐴 (Eq. (17)). Apart from the general guidelines proposed
by Spall (1998), their is no set rule to define these hyper-parameters for SPSA or any of its variants. Hence, it requires a trail-based
method to find appropriate values which can result in good convergence. When combining PC-SPSA with the data-set generation
method proposed in Section 2.2.2, the number of hyper-parameters further increases, as the model requires to define both the
number of historical estimates 𝑛𝑑 as well as the mean and the variance for the spatio/temporal distributions  𝒐𝒅 , 𝒕, 𝒅 , which
regulate the link between historical demand and PCs. However, the application of PCA drastically reduces the required number of
iterations (Qurashi et al., 2019) and the modified SPSA (Eq. (16)) applies a percentage change instead of absolute increase/decrease
in estimation variables 𝒛𝒌, as in the traditional SPSA. Therefore, the sensitivity of the model to changes in the hyper-parameter
decreases significantly. as shown in Section 4.1. Additionally, by combining the proposed data-set generation method with the
simplified formulation discussed in Section 2.3, the number of iterations of PC-SPSA further decreases making the calibration of the
parameters 𝛾, 𝛼 and 𝐴 unnecessary, as the model converges for a low value of 𝑘. Finally, SPSA requires multiple gradient replications
for DODE (Balakrishna et al., 2007b) and almost all SPSA based literature works use it to reduce gradient bias (e.g., Cantelmo et al.
(2014a), Tympakianaki et al. (2015)) due to correlations and non-linearity present in DODE variables. We show in this paper that this
becomes unnecessary with PCA because all PCs are orthogonal and uncorrelated. Hence, we also propose to remove this requirement
and all experiments ran in this paper use only a single gradient estimate per SPSA iteration. A step-wise PC-SPSA algorithm is given
8

in Appendix.
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Fig. 2. Traffic zones of Munich major region.

2.4.2. PCA application setup
Recalling from Section 2.1, to transform the OD flows in lower dimensional space, PC-directions 𝑉 𝑇 are used. These PC-directions

are evaluated from the historical data matrix 𝐷 (see Eq. (1)) and represent the variance present in it. Note that, the optimization
search space for PCA-based methods is confined within this variance. In other words, it is the additional demand information added
to the DODE objective function. Hence, it is important to better understand the impact of this added variance information and
control it characteristics accordingly. The variance present in PC-directions can be controlled by certain parameters which define
the characteristic of historical data matrix 𝐷. These parameters include the number of historical estimates i.e., size 𝑛𝑑 of data matrix
𝐷 (Eq. (6)), number of PCs retained 𝑛𝑣 (Eq. (2)), and control of the variance present in historical estimates (defined by 𝑅 and 𝜎
from Eqs. (5)–(11), i.e., in case of using historical generation methods). Note that, both in case of availability or unavailability of
historical OD estimates, the variance information can be controlled. But, it also increases the overall set of required hyper-parameters
for manual setup.

3. Case study: Munich city

3.1. Experimental setup

3.1.1. Network and simulation setup
We implement the case study on the Munich regional network (about 900 km2). As shown in Fig. 2, the network is divided

into 73 zones resulting in 5329 OD pairs, including 10 external zones (green circles) at major radial motorways entering the
city. The network consists of a total of 8761 links (Fig. 4), excluding residential roads to reduce the route choice burden for the
simulation experiment. A total of 507 detector locations are used for the case study. As described previously, this leads to a highly
underdetermined system (5329 unknowns per interval with only 507 traffic measurements) and renders the application difficulties of
conventional calibration methods.

An open-source traffic simulator, Simulation of Urban MObility (SUMO, Lopez et al. (2018)), is assembled with the proposed
calibration algorithm for experiments. All simulations are implemented at the mesoscopic level via the trip-based (one-shot)
stochastic user route choice assignment method. To focus on DODE problem, we fix the route choice and supply side parameters
(e.g., jam threshold). Also, to cater for the stochasticity of the traffic simulations we used outputs averaged from 10 simulation
replications. Overall, the run-time for a single simulation (for morning peak hours i.e., 6 am–10 am) is 12 min and the 10 simulation
replications are run in parallelization. One iteration of SPSA needs minimum 2 simulation run-time of 24 min. Given the sizes of
the network, SPSA cannot be used to calibrate the DTA model. Additionally, historical estimates are not available as the network
has never been calibrated before. Therefore, we use the procedure explained in Section 2.2.2 combined with the PC-SPSA algorithm
to calibrate the network under the simplified problem formulation, described in Section 2.3.

3.1.2. Demand scenarios
To explore the effectiveness and efficiency of PC-SPSA on the DTA model calibration problem, we apply PC-SPSA to calibrate

the demand from 6 am to 10 am represented in 15-minute intervals, which contains characteristics of very low demand (6 am–7
am), normal off-peak (8 am–10 am) and peak traffic (7 am–8 am). To process the procedure, we specify the demand scenario
following the benchmarking framework standardized by Antoniou et al. (2016) for testing calibration algorithms. The method has
also been used in many recent works on developing calibration algorithms (Qurashi et al., 2019; Cantelmo et al., 2020). To create
the scenario, the target/true demand is synthetically perturbed with the latest previous estimate 𝑥 and its simulated outputs are
9
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Fig. 3. Network demand (6 am to 10 am).

Fig. 4. Used Munich Network overview.

taken as true outputs. Two coefficients of reduction (𝑅𝑒𝑑) and randomization (𝑅𝑎𝑛𝑑) are used for perturbation. Different values of
these two coefficients are used to create different types of true demands as in reality. The demand scenario generation is specifically
expressed as:

𝑥𝑐 = (𝑅𝑒𝑑 + 𝑅𝑎𝑛𝑑 × 𝛿) × 𝑥𝑝1 (18)

here 𝛿 is the random perturbation vector following Gaussian distribution. In this case study, we apply 𝑅𝑒𝑑 = 0.7 and 𝑅𝑎𝑛𝑑 = 0.15
(i.e., 𝑥𝑐 = (0.7 + 0.15𝛿) × 𝑥𝑝1 ), and 𝛿 ∼ 𝑁(0, 0.333) (99.7% of values located in [−1, 1]), resulting in the demand distribution shown
n Fig. 3 (aggregated into one hour for easy illustration).

.1.3. PC-SPSA algorithm settings
Recall Eq. (17), we need to update the gains for perturbation (𝑐𝑘) and minimization (𝑎𝑘) to control the step size and convergence

at each step. In all following experiments, 𝐴, 𝛼 and 𝛾 are set to be 25, 0.3 and 0.15, respectively. For the experiments within this
ection, 𝑐 and 𝑎 are set to be 0.15 and 1, respectively. Note that, 𝑐 and 𝛾 control the perturbation percentage of the PC-scores. For

example, at the first step, the PC-scores are perturbed with ±(15%). On the other hand, 𝑎, 𝐴 and 𝛼 control the actual moving step
n the searching space. All historical data-set generation methods introduced in Section 2.2 are applied for comparison, for which
𝑜𝑑 , 𝑅𝑡, and 𝑅𝑑 are set as 0.3, 0.4 and 1, respectively, while the Gaussian distributions  𝒐𝒅 ,  𝒕, and  𝒅 are generated using
𝑁(0, 0.333) setting. The demand of 100 historical days is thus generated. Furthermore, to reserve enough variance contained in

he historical data-set for tracking the patterns and achieve the goal for dimension reduction at the same time, the number of PCs
xpressing 95% of the total variance are used.

.1.4. Goodness of fit
Given that PC-SPSA is a non-assignment matrix based algorithm it requires the DTA model simulation to map the OD matrix into

easurable traffic measurements, such as vehicle counts recorded by detectors. These generated traffic counts are then compared
10
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Fig. 5. Comparison between generation methods for specific intervals.

with the observed traffic counts to evaluate their difference which is used as an indicator for DODE minimization (i.e., 𝑧1 in Eq. (14)).
In this study, we apply Root Mean Square Normalized error (RMSN) to measure the Gof of the simulated traffic counts and thus
evaluate the estimated OD matrix. RSMN is specifically used extensively for DODE problem (Qurashi et al., 2019; Antoniou et al.,
2015) because it finds the normalized root mean distance between all counts helpful to estimate closer patterns towards the target
solution. The calculation of RMSN is given by:

𝑅𝑀𝑆𝑁 =

√

𝑛
∑𝑛

𝑖=1(�̂�𝑖 − 𝑦𝑖)2
∑𝑛

𝑖=1 𝑦𝑖
(19)

where 𝑦 and �̂� are the observed traffic counts and simulated traffic counts, respectively. 𝑛 is the number of detectors.

3.2. Results

3.2.1. Convergence analysis and calibration quality
Fig. 5 displays PC-SPSA’s convergence results for calibrating 15-minute demand intervals of the peak hour from 7 am to 8 am

as shown in Fig. 3. The results include convergence plots for all six historical OD generation methods described in Section 2.2.2.
Despite the large study area, PC-SPSA is able to converge to a low RMSN error values within the first few iterations, confirming the
improved application scalability of PC-SPSA on large scale DTA models. Fig. 6 illustrates the quality of model calibration comparing
observed and simulated traffic counts at all detector locations using a 45◦ plot. The results depicted are only for method 6 (Fig. 5).
We refer to Section 3.2.2 for the discussion on the differences between the six method. Since all points are aligned closer to the 45◦

line, it is confirmed that the low error convergence is achieved at all detector locations. Fig. 5 also shows that, while all generation
methods perform fairly well, some of the proposed methods obtain drastic improvements in only one or two iterations.

Figs. 7 and 8 are also plotted for method 6 and depict the quality of calibrated OD matrices by comparing it with the target and
initial OD matrices on 45◦ plots. Overall, PC-SPSA is able to find a good quality solution and as per the property of PCA application
(i.e., confining search space in historical OD variance) all OD pairs are close to the 45◦ line. Note that PC-SPSA is able to calibrate
the reduction change of the target demand (i.e., plots in figure Fig. 7 are around the 45%) but it is not able to entirely converge the
error due to random fluctuations (𝑅𝑎𝑛𝑑 in Eq. (18)). This is an expected result when using PCA, as the PCs constraint the search
space allowing for limited structural changes in the OD demand matrix. To understand better this behaviour, we conduct a sensitivity
analysis for different demand scenarios in Section 4.2), and also compare the results from different historical OD generation methods
11

which actually do behave differently for converging the random fluctuations (Section 3.2.2).
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Fig. 6. Comparison of target and calibrated traffic counts.

Fig. 7. Comparison of target and calibrated OD matrices.

Fig. 8. Comparison of initial and calibrated OD matrices.

3.2.2. Comparing different historical OD generation methods
Fig. 5 deploys PC-SPSA’s convergence results using all historical OD generation methods and despite that all methods show

different converging speed, they can converge to almost the same level of error. This indicates restricted requirements and robustness
of PC-SPSA on the historical OD estimates with respect to final error convergence. However, in terms of the converging speed, the
method capturing most correlations (method 6) and the methods considering only one-dimension correlation (method 1 and 2)
outperform the others. For the latter, it is easy to understand as searching the pattern in a single correlated direction would be
faster because the defined search space have more noise and randomness (local minimums). In contrary, when the correlations
of two of three dimensions are fused (method 3, 4 and 5), they construct the search space with more accurate and sufficient
information. Although the noise and randomness is reduced, now its presence probably hinders the SPSA algorithm to struggle
finding the minimized solution. Surprisingly, method 6 which combines three dimension information, however, also leads to a
fast convergence as method 1 and 2. This behaviour may be due to the expectation that the space constructed by this method is
more comprehensive and thus it directs the algorithm to find a faster direction compared with the ones with only two-dimensional
information.

To better understand the above stated comparison, we further compare all the historical OD generation methods by their
calibration quality. Fig. 9 illustrates the quality of calibration for all generation methods with Fig. 9(a) showing the quality of
calibrated OD (RMSNs comparing with target OD) and Fig. 9(b) showing the final convergence error achieved for the whole demand
period. Moreover, as mentioned previously, literature efforts only considered temporal correlations for historical OD generation
i.e., method 2, and hence we also show comparison of its calibrated OD with the target OD in Fig. 10. By analysing Fig. 9(a),
we can validate the above mentioned arguments about the effects of using more correlated information in generation methods.
In general, considering multiple correlations leads to a reduction in the demand error (Fig. 9(a)) and a similar error in term of
traffic counts (Fig. 9(a)). Method 6, the one considering the highest number of spatio/temporal correlations, not only shows a faster
12
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Fig. 9. Comparison between all generation methods.

Fig. 10. Comparison of target and calibrated OD matrices (method 2).

convergence but it is also the most consistent in terms of OD calibration quality (i.e., least RMSN error from target OD). At the
other end of the scale, the methods considering only one correlation dimension (method 1 and 2) are the most inconsistent with
poor quality OD estimates (see time intervals from 7 to 9 am), meaning that the faster convergence is mostly due to the model over
fitting the data. Especially, Fig. 10 shows that the calibrated OD from method 2 is more scattered as compared to Fig. 7 for method
6 (further comparison of the calibrated OD quality for method 2 and 6 is shown in Section 4.2). The methods with two correlations
(method 4 and 5) have a medium range of OD quality. Perceiving these results, it can be established that creating the OD estimates
with more correlation information helps in better calibration quality and having lesser random perturbation or noise also pushes
towards faster convergence. Lastly, analysing Fig. 9(b), it can be seen that all different historical OD generation methods are able to
eventually converge on very similar RMSN errors, validating the robustness of PC-SPSA algorithm convergence performance with
different methods.

3.2.3. Conventional versus simplified problem formulation
Simplified problem formulation removes the error term 𝑧2 (between the calibrated and prior OD) from the conventional problem

formulation Eq. (13). This is similar as setting the 𝑤2 weight as 0% in Eq. (13), which otherwise if set as 𝑤2 > 0 is following the
conventional problem formulation. Fig. 11 shows the convergence performance of PC-SPSA at different weight settings (i.e., 0%,
20%, 40% and 60% weight 𝑤𝑜𝑑 for 𝑧2). Similarly, Fig. 12(b) shows the least RMSN error achieved for traffic counts and Fig. 12(a)
shows the OD solutions’ quality for all different weight settings. It is clearly evident that the simplified problem formulation
outperforms all other weight settings for much faster convergence towards the least RMSN error. Another surprising outcome is
from Fig. 12(a) where the simplified problem formulation also results good OD solution quality consistently. Only 20% 𝑤𝑜𝑑 gives
better solution quality for some intervals but this comes at the cost of an increased error in the traffic counts.

Note that, all the mentioned results confirm that we can utilize the benefits of using PCA application (i.e., limiting SPSA search
space within the variance of historical OD estimates) for simplifying the DODE objective function. Since PCA application adds
the required demand information in the PCs, further constraining the calibrated OD with prior/starting OD will have a double
restraining effect adding unnecessary burden in the objective function. Moreover, even adding the weight 𝑤𝑜𝑑 does not result in
better OD solution quality indicating that PCA includes the OD information in a more structural way. Note that, as we increase
the 𝑤𝑜𝑑 weight for OD error term, the performance of the algorithm deteriorates either it is in terms of convergence (Fig. 11), the
least RMSN error (Fig. 12(b)) or the OD solution quality (Fig. 12(a)). Lastly, Figs. 7 and 8 (plotted for method 6) also provide
supplementary results for simplified problem formulation (showing the quality of calibrated OD matrices by comparisons with the
target and initial OD matrices on 45◦ plots), where both plots show that the patterns of calibrated OD estimates are well estimated
and are close to the target solution.
13
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Fig. 11. Comparison between objective weights for specific intervals.

Fig. 12. Comparison between different weights combination in the objective function.

4. Sensitivity analysis

In this section, we perform sensitivity analysis on PC-SPSA with respect to SPSA parameters, demand conditions, and quality of
historical estimates, respectively. The historical estimates are generated using method 6 (as per our analysis in Section 3.2.2). Note
that, the other parameters not specifically mentioned here remain the same as that in the previous section.

4.1. Robustness against SPSA parameters definition

In this section, we analyse the robustness of PC-SPSA against definition of SPSA hyper-parameters. SPSA is a random search
stochastic algorithm and requires an appropriate definition of its hyper-parameters. These hyper-parameters can vary significantly
for different problems and do not have any universally identified set of values (guidelines are given by Spall (1998)). Since SPSA
parameters are only defined by trial-and-error method during implementation, we observe its sensitivity for the PC-SPSA algorithm.
Fig. 13 shows the convergence plots for calibrating the Munich network case study with different set of 𝑐 and 𝑎 hyper-parameters. 𝑐
is used for defining the perturbation step size, while 𝑎 is used for minimization step (Eq. (17)). Analysing the results from Fig. 13, PC-
SPSA appears to be significantly less sensitive to varying SPSA hyper-parameters. The values used for both c and a vary significantly
since they act as a percentage change instead of an absolute change. Although, the convergence rate is different among these
hyper-parameter settings, all experiments converge to the similar RMSN error value within a few iterations.

We consider two reasons for PC-SPSA robust behaviour, (1) the hyper-parameters act as the percentage change in perturbation
and minimization (Eq. (15)); and (2) faster convergence of PC-SPSA and properties of PC scores vector (i.e., very few estimation
14
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Fig. 13. Comparison of using different SPSA parameter values (c and a).

Fig. 14. Demand scenarios sensitivity (method 6).

variables with even lesser being more significant). Also, since the rest of SPSA hyper-parameters i.e., 𝛾, 𝛼 and 𝐴 are used for evolving
the gain sequence parameters over the number of iterations, we do not add their sensitivity analysis as PC-SPSA converges in a
handful number of iterations; making it insensitive to their definition (we use the default values given by Spall (1998)). Overall,
we can establish that PC-SPSA being robust, requires significantly less manual input or trail-and-error method for setup.

4.2. Performance in different traffic conditions and demand fluctuations

In this section, we analyse the performance of PC-SPSA in different traffic conditions and demand fluctuations. More specifically,
we define different demand scenarios using Eq. (18) and analyse PC-SPSA convergence. Here its noteworthy to mention that, the
historical demand matrix 𝐷 is created using method 6 (Section 2.2.2) with 𝑅𝑚𝑖𝑛 as 0.3 and 𝛥𝑜𝑑,𝑡,𝑑 ∼ 𝑁(0, 0.333).

Fig. 14(a) shows the PC-SPSA performance under different network conditions, where 𝑅𝑒𝑑 coefficient (from Eq. (18)) are set to
0.7 (70%), 0.9 (90%) and 1.2 (120%) in reference to starting/current OD matrix while keeping the 𝑅𝑎𝑛𝑑 coefficient constant as 0.15
(15%). These set of variables result in target demands with three different traffic conditions i.e., less-congested, normal/congested,
highly congested. Analysing Fig. 14(a), PC-SPSA converges well for the first two scenarios converging to a low RMSN error, but
struggles to calibrate the highly congested scenario. The zig-zag behaviour of its convergence is due to the use of traffic counts in
congested state, which adds more noise in the objective function. This is a known result for demand calibration and this is why, for
practical implementation, it is suggested to always use a matrix that is less congested than the target one. This can be easily done
by comparing the simulated and observed traffic data. Still overall, PC-SPSA is able to converge the RMSN errors for all different
traffic conditions.

Similarly, Fig. 14(b) shows PC-SPSA performance while calibrating against different magnitudes of random fluctuations in target
demand generated using multiple 𝑅𝑎𝑛𝑑 values in (18), while Fig. 15(a) illustrates the subsequent OD solution quality for all scenarios.
As mentioned above the 𝐷 historical data-set is generated with 𝑅𝑚𝑖𝑛 as 0.3, hence the target demand generated equal or above
𝑅𝑎𝑛𝑑 = 0.3 should contain more significant demand fluctuations than what are present in 𝐷 data-set. Analysing the results from
Fig. 14(b) and Fig. 15(a), PC-SPSA using method 6 with 30% 𝑅𝑚𝑖𝑛 is able to converge all demand fluctuations scenarios resulting
n a low RMSN error but with varying solution quality (i.e., RMSN between calibrated and target OD). Comparing the scenarios
esults individually, 𝑅𝑎𝑛𝑑 = 0 scenario has the target demand without any pattern changes and gets the best OD solution quality but
C-SPSA convergence is quite slower because the algorithm is still directly perturbing the OD patterns hence it also requires a few
terations to get back to closer solution (a reduced clone of initial OD). A similar convergence trend can been seen in 𝑅𝑎𝑛𝑑 = 0.5

scenario, since the target demand patterns are highly fluctuated and is even more than the variance within historical demand 𝐷,
15
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Fig. 15. Best OD RMSN of scenarios with different randomness.

ence it requires more time for converging to a low RMSN error and with poor OD solution quality (i.e., the possible solution within
he variance of historical estimates satisfying the traffic measurements).

Note that, with the increase in 𝑅𝑎𝑛𝑑 values both the OD solution quality and algorithm convergence performance deteriorates
ecause the target solution has more demand fluctuations (i.e., higher 𝑅𝑎𝑛𝑑 component) from initial OD. Hence, we can say that

overall PCA-based methods have limited performance against estimating higher random demand fluctuations especially because the
OD solution quality deteriorates significantly. Furthermore, Fig. 15 also compares the OD solutions’ quality for method 2 and 6,
where the latter is able to result better OD solutions consistently against all scenarios. This comparison validates the argument that
using all three correlations dimensions (method 6) helps in establishing the search space more structurally around the initial OD. It
is also noteworthy to mention that, the fact that PC-SPSA has limited performance against random demand fluctuations also signifies
the importance of the proposed data-assimilation framework which allows derivation of the correlations from other data sources to
form more realistic search space for PCA-based calibration.

4.3. Historical estimates setup

As already established, all PCA-based methods heavily rely on the quality of historical estimates. Previously, in Section 2.2, we
proposed a data assimilation framework to create estimates from an initial historical matrix for scenarios where they are unavailable
or irrelevant. These established generation methods should also allow to control the quality of historical estimates and calibrated OD
solution (in reference to starting/available OD estimates). In this section, we explore the effects of historical data-set 𝐷 generation
variables i.e., 𝑛𝑑 the number of days historical data-set contains, 𝑅𝑚𝑖𝑛 for resizing the variance within historical estimates and 𝜎
(standard deviation) for 𝛥 (i.e. the correlated random matrix) defining the shape of variance.

4.3.1. Size of historical data-set
The number of historical observations 𝑛𝑑 is an additional parameter to be calibrated when using PCA in the context of the

DODE. Fig. 16 illustrates the PC-SPSA performance upon using three different sizes of 𝐷 data-set. Analysing these results, it is
evident that the size of 𝐷 data-set influences the convergence plots (Fig. 16a) as if the 𝑛𝑑 is too small or large, the convergence gets
lower. Comparing the OD solution qualities for different 𝐷 data-set sizes (Fig. 16b), the increase in size seems to improve both
he consistency and quality of estimated OD solution. The convergence results can be explained such that the size of 𝐷 data-set
efines the amount of variance which if is too small or large the algorithm needs more iterations for convergence, while given
n appropriate set of 𝑛𝑑 historical estimates, the algorithm performs faster. This is proven by the fact that for 𝑛𝑑 = 10 both the

convergence results and OD solution quality show larger fluctuations while on the other hand, a larger number of observations
(𝑛𝑑 = 200) shows a much more consistent quality, which is explained by capability of the model to better incorporate the structure
of the demand. Overall, it can be established that small size of 𝐷 data-set contains less variance directing the algorithm to converge
lower and with random OD estimate quality, while as the number of observations in 𝐷 data-set increase the amount of variance
enerated also increases which till a certain optimum value improves convergence but later with further increase the convergence
equires more time due to larger search space. But enlarging the variance or search space always helps to improve the consistency
n OD solution quality.

.3.2. Variance within historical data-set
Next, we perform the sensitivity analysis on defining the variance of historical data-set 𝐷. Different set of values are used for

𝑚𝑖𝑛 and 𝜎 (i.e., the standard deviation for the Gaussian distributions defining 𝛥𝑇 correlation) to generate historical data-set using
ethod 6. Note that, the effect of changing both 𝑅𝑚𝑖𝑛 and 𝜎 is quite similar with a minor difference, where 𝑅𝑚𝑖𝑛 widens/shrinks

he shape of Gaussian distribution with increasing/decreasing the values of random distribution, 𝜎 directly effects the distribution
f random numbers. We also perform the analysis for calibrating two different target demand fluctuations, setting 𝑅𝑎𝑛𝑑 in Eq. (18)

as 0.15 and 0.3, while the 𝜎 is set to 0.333 (i.e., 𝛿 ∼ 𝑁(0, 0333). Figs. 17 and 18 illustrates the convergence plots for both demand
16
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Fig. 16. Historical data matrices size sensitivity.

Fig. 17. Demand scenarios sensitivity (scenario: 𝑅𝑒𝑑 = 0.7, 𝑅𝑎𝑛𝑑 = 0.15).

Fig. 18. Demand scenarios sensitivity (scenario: 𝑅𝑒𝑑 = 0.7, 𝑅𝑎𝑛𝑑 = 0.3).

First analysing the effect of varying 𝑅𝑚𝑖𝑛 values, the calibration convergence plots are similar to the demand fluctuation
xperiment from Fig. 14(b) i.e., for scenarios where 𝑅𝑚𝑖𝑛 > 𝑅𝑎𝑛𝑑 the convergence is much faster (see 𝑅𝑚𝑖𝑛 = 0.5) and for 𝑅𝑚𝑖𝑛 ≤ 𝑅𝑎𝑛𝑑,
he convergence is slower (see 𝑅𝑚𝑖𝑛 = 0.3 for 𝑅𝑎𝑛𝑑 = 0.3 scenario). While Fig. 19 illustrates that lower 𝑅𝑚𝑖𝑛 setting results in better OD
olution quality and as we increase 𝑅𝑚𝑖𝑛, the error between target and calibrated OD also increase. The performance for varying 𝑅𝑚𝑖𝑛

s consistent with the previous results from Section 4.2, i.e., if we use larger values, the variance space increases and the algorithm
onverges faster but to a poor quality solution (see Fig. 19). Hence, given the results it can be said that the use of lower values for

𝑚𝑖𝑛 is more efficient unless either the solution is not converging and more variance space is required or a faster convergence is
esired.
17
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Fig. 19. OD RMSN with different 𝑅𝑚𝑖𝑛.

Fig. 20. OD RMSN with different 𝜎𝑜𝑑 and 𝜎𝑡.

Next, analysing the effect of varying 𝜎 values, the algorithm convergence is slower for both the smaller and larger 𝜎 values and
is more optimum for middle value of 𝜎 = 0.3. Considering the OD solution qualities, note that similar to 𝑅𝑚𝑖𝑛, lowest value of 𝜎
result in the best calibrated ODs relative to the target solution. Hence, to achieve better calibration efficiency in solution quality,
lower amount of variance is desirable. The convergence behaviour of varying 𝜎 is similar as of varying sizes of 𝐷 data-set (Fig. 16)
which also control the amount of variance and the middle optimum size gave faster convergence. But, it is noteworthy to understand
that controlling the variance through 𝑅𝑚𝑖𝑛 or 𝜎 is more systematic which create a more restrictive search space around initial OD
estimate generating better OD solution qualities.

Comparing the results of varying 𝑅𝑚𝑖𝑛 and 𝜎 experiments, first it is interesting to see that lower values of both parameters can
converge much more fluctuating demand scenarios (i.e., with 𝑅𝑎𝑛𝑑 = 0.5 and 𝜎 =0.333). Then, also note that, in comparison to
the lower 𝜎 value of 0.1 (with 𝑅𝑚𝑖𝑛 = 0.3), the setting of 𝑅𝑚𝑖𝑛 = 0.1 and 𝜎 = 0.3 gives much faster convergence. Hence, we can
conclude that restricting the generated variance by directly reducing the random vector distribution is less efficient than keeping
the random vector generation more distributed using higher 𝜎 and than tuning down the amount of variance by use of smaller 𝑅𝑚𝑖𝑛
values.

4.4. Remarks

The combination of PCA’s dimension and complexity reduction with simplified problem formulation gives significant boost
to SPSA calibration performance. Also, the proposed framework for data-assimilation generation of historical estimates gives the
flexibility to control the size and quality of generation historical variance i.e., the algorithm search space or directions for PCA-
methods. Overall, the set of inputs required to use PC-SPSA in our proposed framework include: SPSA hyper-parameters (𝑐, 𝑎, 𝛼, 𝛾,
𝐴), historical data-set generation parameters (generation method, 𝑅𝑚𝑖𝑛, 𝑛𝑑 , 𝜎) and PCA application parameters (amount of dimension
reduction i.e., 𝑉 to 𝑉 , temporal limits for combined PCA application). In Sections 3.2 and 4, we performed a set of experiments
on different parameter inputs for PC-SPSA setup. Analysing the empirical outputs of these experiments, we enlist the guidelines in
18
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4.4.1. SPSA hyper-parameters
Although Spall (1998) gave guidelines for defining appropriate SPSA parameters, their definition remain problem specific with

o universal values for different DTA models. For PC-SPSA, the perturbation 𝑐𝑘 and minimization 𝑎𝑘 coefficient behave as percentage
change instead of absolute, hence they can be set similar for varying DTA models even having different magnitudes of the decision
variable. The results from Section 4.1 depict that PC-SPSA is even robust for significantly varying values of 𝑐 and 𝑎 but they still
effect the convergence speeds. Hence, for efficient performance of the algorithm, 𝑐 can be set in range of 0.1–0.2 resulting in 𝑐𝑘 with
10%–20% change at first iteration. Similarly, for setting 𝑎 parameter, a range between 0.8–1.2 is optimum for the current network
and using the RMSN as estimator but it depend on the resulting gradient values. Due to fast convergence, the other SPSA parameters
𝛼, 𝛾 and, 𝐴 are insignificant because they only control the evolution of gain sequence parameters (𝑐𝑘, 𝑎𝑘) over the increasing number
of iterations.

4.4.2. Historical data-set generation
The proposed data-assimilation framework generates historical OD data-sets using all different correlations present in time-

dependent ODs. The set of inputs given in these generation methods includes number of correlation dimensions or generation
method, size 𝑛𝑑 of the historical estimates, 𝑅𝑚𝑖𝑛 to control size of generated variance and 𝜎 to define the correlation distributions
used to generate 𝛥𝑇 perturbation matrices. In 4.3, sensitivity analysis on each of these stated parameters are performed to understand
their effect on calibration convergence and OD solution quality. Below are the stated guidelines to be followed for each parameter:

• Generation method: Given the results in Fig. 9, method 6 which generates 𝐷 data-set with all correlation dimensions
outperform because of its consistency in convergence speeds and OD solution quality. Hence, it is recommended to use method
6 for implementing PCA-methods with the proposed data-assimilation framework.

• Size of historical data-set: In Section 4.3.1, analysis upon different sizes of historical data-set is performed. For faster
convergence of DODE, the optimum size of generated 𝐷 data-set should be around 3–4 months (90–120 prior days). Further,
to improve the quality and consistency of OD solution quality 𝐷 data-set can be further extended to higher size but at an
expense of reducing convergence speed.

• Variance of historical data-set: Section 4.3.2 gives the analysis on defining different variance characteristics within generated
𝐷 data-set. Two parameters (i.e., 𝑅𝑚𝑖𝑛 and 𝜎) are set to control the variance. Individually, smaller values of both parameters
(around 0.1) result in optimum OD solution qualities as they restrict the generated variance closer to the seed OD matrix.
In terms of convergence, higher values of 𝑅𝑚𝑖𝑛 always result in faster convergence but at an expense of more nosier/poor
OD estimate, while very low or high 𝜎 values show slower convergence, hence optimum value of 𝜎 = 0.3 can result in faster
convergence.
For combined set of values for both 𝑅𝑚𝑖𝑛 and 𝜎, it is recommended to use larger 𝜎 value in range 0.3 − 0.5 with smaller value
of 𝑅𝑚𝑖𝑛 in range 0.1 − 0.15. This helps to generate a more distributed variance with higher 𝜎 but with a much smaller size
contained by lower values of 𝑅𝑚𝑖𝑛. If convergence error results are not satisfactory, gradually increasing the 𝑅𝑚𝑖𝑛 value is
recommended due to probabilities of larger fluctuations in target demand. Note that higher value of 𝑅𝑚𝑖𝑛 in such case with
always reduce the OD solution quality.

4.4.3. PCA application
The application of PCA on DODE has been covered previously in literature. Djukic et al. (2012) showed the detailed concept

of PCA application on OD estimation. Later many other approaches followed the use of PCA to develop variants of conventional
approaches (Prakash et al., 2017, 2018; Qurashi et al., 2019). Once the historical OD estimates are available, two main inputs
are required for PCA application: (1) the amount of dimension reduction or the number of PCs retained (2) Temporal settings of
historical estimates to apply PCA.

The first input of PCs retained during dimension reduction (i.e, changes 𝑉 to 𝑉 in (2)) is commonly given in terms of the level of
variance explained by the retained PCs. Since mostly the first few PCs are the most significant, explaining the majority of variance,
a cumulative variance of 95% is set for reducing the PCs matrix 𝑉 . The second input about temporal settings of historical data-set
𝐷 is defined inside matrix 𝑥 of Eq. (6) in our proposed framework. This input is the number of 𝑛𝑡 time intervals set together for
application of PCA. It is recommended to apply PCA for the time intervals which have a single activity pattern (e.g., morning or
evening peak hours separately). It is also a work in progress for future research to do more systematic PCs extraction from discrete
activity patterns and then use the combination of these PC-directions to do more efficient OD estimation.

5. Conclusion

In this paper, practical implementation methods for PCA-based calibration approaches are proposed and evaluated. The results
suggest that these methods will facilitate the adoption of PCA-based methods for large-scale applications. PCA-based calibration
has become a standard for improving the scalability of conventional algorithms towards large-scale DTA models. However, PCA
implementation is based on the availability of historical estimates, which are usually not available in practise. This triggers a chicken
and egg problem. To use PCA-based models there is a need for historical estimates, which can be obtained by calibrating the network.
However, without PCA-based models it is not possible to calibrate large networks, therefore to have historical estimates. This is a
major limitation of current PCA-based methodologies, which is addressed in this paper. In addition, while current approaches mostly
focused on using PCA to reduce the number of variables in the problem, a significant gap still exists to exploit the properties of PCA
19
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based model calibration for simplifying the structure of the calibration process. Even when historical estimates are available, it is
not clear to which extent the quality of these estimates influences prediction accuracy. This paper answers this question, bringing
PCA-based algorithms one step closer to real-life applications.

The major contribution of this research is to propose a data-assimilation framework which allows to incorporate the structure of
he historical (seed) demand into the Principal Components (PCs) without the need for historical estimates. Such a framework allows
he use of all PC-based algorithms proposed in the literature when historical data is irrelevant or unavailable (a standard case for
arge-scale networks). Based on this data-set generation model, a simplified problem formulation for Dynamic Origin Destination
atrix Estimation (DODE) is also presented, which allows removing the demand from the objective function. These extensions
ave been tested using PC-SPSA, an algorithm that combines PCA with the well known Simultaneous Perturbation Stochastic
pproximation (SPSA) model. The paper shows that a better exploitation of the PCA properties leads to an enhanced algorithm that
chieves faster convergence and provide more robust results even on large urban networks. Different historical OD generation models
ave been proposed and tested in this paper, each of which accounts for different types of correlations between the variables. These
orrelations model spatial, temporal, and day to day changes in the demand. The results suggest that the method that uses all three
orrelations outperforms others for convergence speed, robustness of the results, and calibrated OD solution quality. Approaches
hat use only one of these correlations also provide very good results in terms of reproducing the traffic measurements. However, the
esults show that in this case PCA-models are more likely to over-fit the data, as the PCs cannot model correlations between the ODs
roperly. Although the proposed framework currently uses Gaussian distributions for presenting the correlations, it also provides the
lexibility to use data-driven spatial–temporal correlations extracted from other data sources, representing more realistic structure
f PCs which can better reflect the historical OD flows’ dynamics.

In this paper, we tested the model on the network of Munich, a large DTA model that consists of a complex road network with
large number of links, intersections, and routing options. Even on such a scale (more than 8000 links and 20.000 variables to be

alibrated), the results indicate that a very low number of iterations is required for convergence. Setting the model scale aside, the
equired number of simulations are still far less (around 10 simulation runs) when compared to conventional techniques like SPSA
almost 150–300 simulation runs) on much smaller networks. This is a crucial aspect, as a single simulation run for the Munich
egional network can take several hours on high performance computing platforms and that, due to the iterative nature of the DTA
alibration problem, opportunities for parallel computing are limited. Further, the PC-SPSA implementation used in this research
hows robustness towards the definition of SPSA hyper-parameters depicted through the empirical results of a conducted sensitivity
nalysis. The proposed approach allows to introduce domain specific knowledge within the PCA algorithm by using probability
istributions to describe spatial and temporal correlations. These distribution are characterized by a mean and a variance, which
ecomes additional hyper-parameters to be calibrated. While this allows for more control over the OD solution quality, it also
ncrease the number of hyper-parameters to be tuned. Tuning SPSA parameters is a trial and error procedure that can require
ignificant amount of time and additional simulations. These findings are summarized in Section Section 4.4, which introduces
mplementation guidelines for PC-SPSA. These guidelines can also be used to combine enhanced SPSA algorithms, such as the

-SPSA, and PCA.
The research presented in this paper introduces the first building block to move PCA-based calibration models proposed in the

iterature from theory to practise. Existing works in fact rely on historical estimates of the demand, which are not necessarily always
vailable. Based on the proposed concept of data-assimilation, many promising research directions are now opening up. In this
aper, the data-assimilation framework is used to incorporate historical information within the PCs of the problem. In the future,
e plan to use the same concept to incorporate synthetic populations, activity based models, and, in general, more information
bout the travel demand without increasing the complexity of the problem. A second interesting research direction is to incorporate
ifferent data sources, such as mobile phone network data, GPS trajectory data, and even social media data into the data-assimilation
ramework. Similarly to the historical demand, this procedure can allow to incorporate these data within the PCs, remove them from
he objective function, and therefore significantly improve model performances. Another advantage of the proposed framework is
hat, beside reducing the number of variables, the proposed model drastically reduces the number of simulation runs required
o calibrate the model. This is an important observation when the objective is to calibrate multimodal transport systems, where
he number of variables to be calibrated as well as the simulation time are prohibitive already for small sized systems. Finally,
raditional PCA-based are linear in their nature. However, there is not guarantee that data are linearly correlated, specifically when
sing different data sources or complex representations of travel behaviour, such as synthetic populations. Therefore, non linear
CA-based frameworks should also be investigated in the future.
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Appendix. PC-SPSA algorithm

Initialization at iteration 0
Estimate PCs: 𝐷 = 𝑈𝛴𝑉 𝑇

Definition SPSA hyper-parameters: c,a A, 𝛾, 𝛼
OD transformation to PC-scores: 𝑧0 = 𝑉 𝑇 𝑥0

Gain sequence update at iteration 𝑘
𝑐𝑘 = 𝑐∕𝑘𝛾

𝑎𝑘 = 𝑎∕(𝑘 + 𝐴)𝛼

Perturbation
𝒛±𝒌 = 𝒛𝒌 ± 𝒛𝒌 × 𝑐𝑘𝛥

OD approximation
𝒙±𝒌 ≈ 𝑉 𝒛±𝒌

Gradient evaluation

𝒈′𝒌(𝒙𝒌) =
𝑓 (𝒙+𝒌 ) − 𝑓 (𝒙−𝒌 )

2𝑐𝑘

[

𝛥1 𝛥2 . . 𝛥𝑝
]𝑇

Minimization
𝒛𝒌+𝟏 = 𝒛𝒌 − 𝑎𝑘𝒈′𝒌(𝒙𝒌)

OD approximation at convergence iteration 
𝒙 ≈ 𝑉 𝒛
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