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a b s t r a c t

We study a mechanism design problem where a community of agents wishes to fund public projects
via voluntary monetary contributions by the community members. This serves as a model for public
expenditure without an exogenously available budget, such as participatory budgeting or voluntary tax
programs, as well as donor coordination when interpreting charities as public projects and donations as
contributions. Our aim is to identify a mutually beneficial distribution of the individual contributions.
In the preference aggregation problem that we study, agents with linear utility functions over projects
report the amount of their contribution, and the mechanism determines a socially optimal distribution
of the money. We identify a specific mechanism—the Nash product rule—which picks the distribution
that maximizes the product of the agents’ utilities. This rule is Pareto efficient and incentivizes agents
to contribute their entire budget while spending each agent’s contribution only on projects the agent
finds acceptable.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Italian tax payers have the option, under the cinque per mille
rogram, to redirect 0.5% of their personal income tax to a non-
rofit organization of their choice. To participate, tax payers enter
n organization’s tax code into their tax return, choosing from a
atalog of about 600 research organizations, 10,000 sports orga-
izations, or 47,000 voluntary organizations.1 Participating in this
rogram is a good choice for anyone who believes that funding for
t least one of these organizations would do more good than ad-
itional tax income to the Italian government. In 2017, more than
0 million tax payers participated, for a total payout of more than
00 million euros.2 However, one might worry that the allocation
f funding to the organizations is inefficient because too little
nformation about the participants’ preferences is elicited. Each
erson only indicates a single organization, but presumably they
ould be happy to support any of several organizations. If we

∗ Corresponding author.
E-mail addresses: florian.brandl@uni-bonn.de (F. Brandl), brandt@tum.de

F. Brandt), matthias.greger@tum.de (M. Greger), dominik@cs.toronto.edu
D. Peters), stricker@in.tum.de (C. Stricker), warut@comp.nus.edu.sg
W. Suksompong).
1 https://www.agenziaentrate.gov.it/portale/web/guest/elenchi-versione-
recedenti.
2 http://www.vita.it/it/article/2019/03/27/5-per-mille-2017-ecco-gli-elenchi-
-un-passo-dai-500-mln/151058/.
ttps://doi.org/10.1016/j.jmateco.2021.102585
304-4068/© 2021 The Author(s). Published by Elsevier B.V. This is an open access a
knew this approval information, we would likely be able to find
an allocation that everyone prefers, in the sense that the money
directed to approved organizations would be larger for each tax
payer.

Suppose we convinced the Italian government to allow tax
returns to indicate a list of organizations rather than just one.
Given this information, how should we decide on the allocation
of funds? A simple way to ensure a Pareto efficient outcome
would be to maximize utilitarian welfare: one could define an in-
dividual’s welfare as the amount of money disbursed to approved
organizations and then maximize the sum of the welfare of each
participating tax payer. The result would be that all the available
funds would be disbursed to the (usually unique) organization
that received the most ‘‘votes’’. While this is efficient, it fails to
provide the participation incentives of the current system: one
additional vote is unlikely to change which organization is most
popular, and those who do not think that this organization is
worth funding will choose to not participate.

It is in fact quite difficult to find an allocation mechanism that
retains the strong participation incentives of the naive system
(where each agent chooses just one organization) and also se-
lects an efficient outcome. Mechanisms that spend each voter’s
contribution only on approved organizations tend to fail effi-
ciency. To narrow down the search, we can observe that any
mechanism that incentivizes participation must also satisfy some
natural group fairness axioms: for example, if a group of voters
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ll approve the same list of organizations, then the mechanism
ust spend the accumulated tax contribution of the group on
rganizations on this list. A result by Bogomolnaia et al. (2002)
bout group fairness implies that among separable social welfare
unctions, there is only a single candidate that might work: maxi-
izing the Nash product, which selects the allocation of funds that
aximizes the product (rather than the sum) of utilities. In this
aper, we prove that the Nash product rule indeed incentivizes
articipation at least as much as the naive rule. In particular, if a
ax payer chooses to participate by submitting a list of approved
rganizations, we can guarantee that the money allocated to
hose organizations grows by at least her individual tax contri-
ution. In fact, it can grow by more than that, because the Nash
roduct rule may choose to redirect others’ contributions to these
rganizations.
This result makes the Nash product rule an attractive choice

n many other contexts, where we wish to incentivize voluntary
onetary contributions to a common pool which is to be spent on
ublic projects in an efficient manner. Examples of communities
hat face this problem might include residents of an apartment
omplex (who want to coordinate spending on gardening in a
ourtyard, or on cleaning services), homeowners on a city street
to coordinate tree care, snow removal, or security patrols), or
tudent clubs in a university (to coordinate funding for events and
eet-ups).
Charitable donations provide another important application.

ypically, these are undertaken independently without coordina-
ion among donors. As a consequence, mutual interest in the same
harities goes unnoticed, even though the utility of all donors
ould be increased through coordination. For any given commu-
ity of donors, such as the employees of a company running
n annual charity matching program3 or donors using charitable
iving mechanisms like so-called ‘‘donor-advised funds’’ offered
y the same asset manager,4 introducing a voting system based
n the Nash product rule could produce better outcomes. The
ame conclusion holds in higher-stakes applications involving
ajor philanthropic foundations. Notably, the Open Philanthropy
roject, which grants more than $100 million a year to various
rganizations, has called on academics to develop mechanisms
o combine different staff members’ views on the most effective
iving opportunities, and also to help coordinate the giving of
ifferent philanthropic organizations (Muehlhauser, 2017). Inter-
st in donor coordination mechanisms has also been expressed in
he effective altruism community (Peters, 2019), many of whose
embers have pledged to donate 10% of their income to effective
harities.
While our full model allows agents to specify fine-grained

tilities, for ease of exposition, we will start by assuming that
ach agent only submits a list of approved projects and that the
gent is indifferent among these. We also ask each agent i to
ommit a monetary amount Ci ∈ [0, Bi] to contribute to the
unding system within her own personal budget Bi. The approvals
re interpreted as dichotomous utility functions, so that ui(x) ∈

0, 1} is the utility per unit of money that agent i assigns to
roject x. For a distribution δ of the overall collected contributions
o projects, agent i’s utility of distribution δ is defined as ui(δ) :=

3 For example, Microsoft and Apple run such programs. In 2020, Mi-
rosoft employees donated over $110 million to charities, which the
ompany doubled to over $220 million. (https://www.microsoft.com/en-us/
orporate-responsibility/philanthropies/employee-engagement). Since its incep-
ion in 2011, Apple’s charity matching program raised nearly $600 million in
otal donations for more than 34,000 organizations (https://www.apple.com/
ewsroom/2020/12/a-landmark-year-of-giving-from-apple/).
4 For example, the asset manager Fidelity Charitable made over $9 billion in
onor-recommended grants in 2020 to 170,000 organization via donor-advised
unds (https://www.fidelitycharitable.org/insights/2021-giving-report.html).
2

∑
x ui(x)δ(x), where δ(x) is the amount spent on project x. With

dichotomous utilities, ui(δ) is just the total amount of money that
spends on projects approved by i.
Our main result concerns contribution incentives. We wish to

assure agents that it is beneficial for them to contribute their
whole budget to the mechanism. In other words, if i contributes
n additional amount ε > 0 of money, then the total amount
pent on projects approved by i needs to increase by at least
. Formally, if the mechanism selects distribution δ when i con-

tributes Ci ∈ [0, Bi − ε], and selects distribution δ′ when i con-
tributes Ci + ε with ε > 0, then we must guarantee that ui(δ′) ≥

ui(δ)+ε. We call this property contribution incentive-compatibility.
While this property may seem mild on first sight, it is difficult

o satisfy together with efficiency. A naive procedure where
ach agent’s contribution is split uniformly between her ap-
roved projects, violates efficiency. Maximizing utilitarian wel-
are among all distributions is efficient, but severely violates
ontribution incentive-compatibility, because the mechanismmay
pend agent i’s contribution on projects that are not acceptable to
i. If we constrain the welfare maximization to distributions where
each agent’s contribution is only spent on acceptable projects
(aka the ‘‘conditional utilitarian rule’’), contribution incentive-
compatibility is satisfied but we lose efficiency. Replacing the
utilitarian objective with a Rawlsian leximin objective does not
work either, and mechanisms based on serial dictatorships fail,
too.

Remarkably, the Nash product rule described above combines
efficiency and contribution incentives. The Nash product rule
selects the distribution δ that maximizes

∏
i∈N ui(δ)Ci , where Ci

s the size of i’s contribution and N is the set of agents. Since
his rule maximizes a monotonic function of agents’ utilities,
ts outcome is guaranteed to be efficient. While it is easy to
ee that the Nash product rule satisfies ui(δ′) ≥ ui(δ) when i
ontributes an additional amount ε, it is more difficult to establish
hat we have ui(δ′) ≥ ui(δ) + ε as required by contribution
ncentive-compatibility. Our main result, Theorem 3, shows that
his property is satisfied by the Nash product rule. The proof rea-
ons about the trajectory of the maximizer of the Nash product as
function of agent i’s contribution. We derive a lower bound for
he derivative of agent i’s utility along this trajectory. Integrating
his bound yields the result.

The Nash product rule is the only mechanism known to us
hat is both efficient and contribution incentive-compatible for
n arbitrary number of projects. It is plausible that the mech-
nism is characterized by these properties, but we could not
stablish this. However, as discussed in Section 2, two charac-
erizations by Bogomolnaia et al. (2002) and Guerdjikova and
ehring (2014) imply that, at least when imposing further strong
ssumptions, the Nash product rule is characterized by contribu-
ion incentive-compatibility. The Nash product rule satisfies an
dditional property that is important in our model: it spends the
ontribution of user i only on projects that are approved by i.
ormally, we say that a distribution δ is decomposable if we can
ecompose it as δ = δ1 + · · · + δn such that δi spends exactly
i, and spends it only on projects acceptable to i. In Theorem 1,
e prove that the distribution selected by the Nash product is
lways decomposable. This provides an intuitive justification of
he chosen distribution to agents. Decomposability can also be
nterpreted as an incentive property: in some applications, the
oney is not distributed to projects by a central clearinghouse,
ut the mechanism’s output is just used as a recommendation to
gents where to direct their contribution. In this case, decompos-
bility becomes essential, since a recommendation to send money
o an unacceptable project is likely to be ignored. There do exist
rtificial mechanisms other than the Nash product rule that are

https://www.microsoft.com/en-us/corporate-responsibility/philanthropies/employee-engagement
https://www.microsoft.com/en-us/corporate-responsibility/philanthropies/employee-engagement
https://www.apple.com/newsroom/2020/12/a-landmark-year-of-giving-from-apple/
https://www.apple.com/newsroom/2020/12/a-landmark-year-of-giving-from-apple/
https://www.fidelitycharitable.org/insights/2021-giving-report.html
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fficient and decomposable,5 but the Nash product rule is the
only such mechanism known to us that arises naturally from the
maximization of a social welfare function. The Nash product rule
not only satisfies decomposability, but, moreover, the fraction of
agent i’s contribution to project x is directly proportional to the
utility δ(x)ui(x) she derives from x in the Nash product distri-
ution δ. Thus, agents can then easily compute their individual

distributions δi once they know δ. We leverage this observation to
construct a simple, dynamic procedure in which agents iteratively
revise their contributions to projects in proportion to the utility
they receive from the distribution of the previous round. A result
of Cover (1984) from the theory of optimal portfolio selection
implies that this procedure approximates a Nash product distri-
bution arbitrarily well as the number of rounds goes to infinity. In
Theorem 2, we state this result and give a compact proof tailored
to our setting. Hence, the Nash product rule arises naturally from
a simple decentralized spending dynamic.

Our results generalize beyond the case of dichotomous util-
ities. In our formal treatment, we allow agents to indicate ar-
bitrary utility values ui(x) ≥ 0 for the projects, and extend
these to distributions as linear utilities as before, so ui(δ) =

x ui(x)δ(x). The Nash product rule works for this more general
lass of utilities, and in particular it retains efficiency. It also
ontinues to satisfy contribution incentive-compatibility and de-
omposability, but these two properties hold in a weak sense
hat only distinguishes acceptable projects with strictly positive
tility ui(x) > 0 from unacceptable ones with ui(x) = 0. Contri-
ution incentive-compatibility guarantees that the amount spent
n acceptable project grows by ε when an extra amount of ε
s contributed, and decomposability guarantees that an agent’s
ontribution is only spent on acceptable projects. In Section 5,
e discuss strengthened versions of decomposability and contri-
ution incentive-compatibility that use fine-grained utilities and
rovide guarantees based on an agent’s most-preferred project
for example, strong decomposability requires that an agent’s
ontribution is only spent on most-preferred projects). These two
tronger properties may be desirable, but we prove impossibility
heorems that show that each of the two strengthened axioms is
ncompatible with efficiency.

While the Nash product rule is incentive-compatible in the
ense that it is decomposable and incentivizes contribution, it still
llows for other strategic behavior. In particular, agents may have
n incentive to misrepresent their utility functions. Because the
ash product penalizes distributions in which some agents obtain
ery low utility, it can be beneficial for agents to pretend to like
opular projects less, or even to mark them as unacceptable. This
ill make the Nash product rule worry that those agents will
e underserved, and thus increase the funding of other projects
cceptable to them. Unfortunately, by a result due to Hylland
1980, Thm. 2), every efficient mechanism will be vulnerable to
isrepresentation of preferences, except for dictatorships. This

mpossibility is robust, and analogues hold even for dichotomous
tilities (Bogomolnaia et al., 2005; Duddy, 2015; Brandl et al.,
021). Since efficiency is our main objective, we ignore possible
isrepresentation of preferences in our discussion.
Overall, our discussion suggests that the Nash product rule is

prime candidate for funding public projects through voluntary
ndividual contributions. It combines efficiency with strong in-
entive properties, and as detailed in Section 2, it also satisfies
mportant fairness and proportionality properties. Finally, the rule

5 To construct such mechanisms, note that we can modify an efficient
istribution and retain efficiency as long as we do not increase its support (see,
.g., Aziz et al., 2015). So we can, for example, take the support of the Nash
roduct distribution and let every agent assign her entire contribution to one
f her most preferred projects within the support. The resulting distribution is
fficient and decomposable.
 f

3

is simple to define, can be easily approximated, and because it is
decomposable, its distribution decisions can be easily understood
by users. We are excited for the possibility of implementing a
system based on the Nash product rule in the real world.

2. Related work

The classic literature on private provision of public goods (e.g.,
Samuelson, 1954; Bergstrom et al., 1986) studies Nash equilibria
in the non-cooperative setting where each agent decides how
much to contribute to funding a public good. The main conclusion
is that public goods will be underprovided in equilibrium, leading
to inefficiency. In our model, we study cases where underpro-
vision is less of a problem, for example because a company’s
matching program makes contributing a dominant strategy, or
because the outside option is unattractive, such as paying more
taxes. Similarly, in the context of donor coordination, agents may
have set aside a part of their income as a budget for charita-
ble activities. The inefficiency that we are worried about is an
inefficient allocation among different public goods.

In contrast to the above literature, we study a setting where
there is an explicit coordinating infrastructure or mechanism that
aggregates preferences. Our model can thus be said to fall within
the area of collective decision making where the set of alterna-
tives is some subset of the Euclidean space, modeling divisible
public goods or lotteries over indivisible public goods (see, e.g.,
Le Breton and Weymark, 2011). Two concrete applications in this
context that have recently gained a lot of attention are those of
participatory budgeting (e.g., Aziz and Shah, 2020) and probabilistic
social choice (e.g., Brandt, 2017).

Participatory budgeting is a paradigm that allows citizens to
collectively decide how a portion of a public budget ought to be
spent (Cabannes, 2004). It has mostly been studied under the as-
sumption that the budget is provided by an outside source (such
as the city government). In the most common model, projects
come with a fixed cost, and they can either be fully funded
or not at all. Probabilistic social choice studies the aggregation
of individual preferences into a lottery over alternatives. Both
settings are interrelated because a division of a fixed endow-
ment among projects is equivalent to a probability distribution
over alternatives. The social choice literature typically focusses
on ordinal preferences. Bogomolnaia et al. (2005) have initiated
the study of probabilistic social choice for dichotomous utility
functions, where cardinal and ordinal preferences coincide.

The idea of maximizing the product of agents’ utilities orig-
inates in the Nash bargaining solution and the corresponding
mechanism is therefore often referred to as the Nash product
rule (Nash, 1950).6 The Nash product rule has recently become
popular in various fields, including the allocation of indivisi-
ble private items (Caragiannis et al., 2019), committee elections
(Lackner and Skowron, 2018), and participatory budgeting (Fain
et al., 2016, 2018). For all these settings, the Nash product rule
satisfies strong fairness and proportionality properties.

In the context of dichotomous preferences, Aziz et al. (2019)
showed that the Nash product rule guarantees average fair share:
for any group of α% of the agents which is cohesive (there is a
roject that they all approve), for an average group member, the
ash product spends at least α% of the endowment on approved
rojects. They also proved that the Nash product rule satisfies
trict participation. This property, which was introduced by Brandl

6 In the context of asset allocation, this rule is known as the Kelly crite-
ion (Kelly, 1956). When interpreting the utility vectors of the agents as a
ultidimensional random variable which takes the value of agent i’s utility
ector with probability Ci , the Kelly criterion maximizes the same objective
unction as the Nash product rule.
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t al. (2015), makes sense for the fixed-endowment setting, but it
s relatively weak in our setting with variable contributions.7 Our
ain result showing that the Nash product rule is contribution

ncentive-compatible implies Aziz et al.’s (2019) result.
Two axiomatic characterizations of the Nash product rule are

f particular interest in our context. First, Bogomolnaia et al.
2002, Prop. 6) have shown that the Nash product rule is the
nly rule that satisfies unanimous fair share (a condition weaker
han decomposability and significantly weaker than contribution
ncentive-compatibility) among rules that maximize a quantity
f the form

∑
i∈N Cif (ui(δ)) for some function f (see also Aziz

t al., 2019, p. 768). Their result was shown for the domain of
ichotomous preferences, but easily extends to our more general
omain due to the restricted form of mechanisms considered.
econdly, Guerdjikova and Nehring (2014) have characterized a
olution concept called the diversity value for weighting different
nformation sources based on their reliability. Their result can be
ranslated into a characterization of the Nash product rule for
ichotomous preferences using conditions such as convexity, con-
inuity, reinforcement, and a core condition that is again weaker
han decomposability and significantly weaker than contribution
ncentive-compatibility.

Fain et al. (2016) have initiated the study of a participatory
udgeting setting where projects can receive an arbitrary amount
f funding (like in our paper) but the budget is still exogenous
nd of fixed size. Fain et al. argued that allocations in Lindahl
quilibrium (Foley, 1970) are particularly desirable. The Lindahl
quilibrium is a market equilibrium in an artificial market for
ublic goods. In these markets, each agent faces personalized
rices (usually interpreted as taxes) for the public goods, and
n equilibrium each agent demands the same bundle of public
oods. Under standard assumptions, Foley (1970) showed that
Lindahl equilibrium exists (by reducing to the Arrow–Debreu
rivate goods case), and is efficient. He also showed that equi-
ibrium allocations are in the core: no coalition of agents can
fford (using only a fraction of the budget proportional to their
ize) an allocation that each coalition member prefers to the
quilibrium. For the case of additive linear utilities, Fain et al.
2016) proved that the Nash product rule yields an allocation in
indahl equilibrium, and hence is in the core.8 The core can be
nterpreted as guaranteeing agents proportional representation:
f a fraction of α% of agents assign positive utility only to some
et A′ of projects, then the Nash product rule will spend at least
% of the budget on projects in A′.
Gul and Pesendorfer (2020) study Lindahl equilibrium as a

ollective choice rule. They characterize the set of all Lindahl
quilibrium utility profiles as the outcomes of a bargaining so-
ution they call the equitable solution. Every outcome of the
quitable solution can be justified by being the Nash bargaining
utcome of a simple related bargaining problem.
The key difference between all of the above literature and

ur model is that in our model, the individual contributions to
he pool are owned by the agents. This suggests the definitions

7 For dichotomous preferences, strict participation implies that if before
ontributing, β% of others’ money was spent on i’s approved projects, then
trictly more than β% of i’s additional contribution will be spent on i’s approved
rojects, while others’ money is not spent in a worse way for i. On the other
and, contribution incentive-compatibility ensures that if agent i contributes
oney, all of it will be spent on i’s approved projects, while again others’ money

s not spent in a worse way for i. Aziz et al. (2019, p. 768) mention that a large
lass of additive welfarist rules satisfy strict participation. Out of these only the
ash product rule satisfies contribution incentive-compatibility.
8 This mirrors the canonical result that the Nash product yields an equilib-

ium in Fisher markets for private goods under additive valuations (Eisenberg
nd Gale, 1959).
4

of the axioms of decomposability and contribution incentive-
compatibility, which—to the best of our knowledge—have not
been considered in previous work.

Since we study a model of public goods provision with di-
rect monetary contributions, one could assume quasilinear utili-
ties and try to use the Vickrey–Clarke–Groves (VCG) mechanism.
However, since the VCG mechanism implements the utilitarian
rule, it will not incentivize contributions in our sense. It will also
not be budget-balanced and generally run a deficit. Thus, the VCG
mechanism does not seem useful for our purposes.

3. Model and axioms

Let A be a finite set of m projects (e.g., charities or joint
activities). A distribution δ is a function that describes how some
amount V is distributed among the projects, so δ : A → R≥0 with

x∈A δ(x) = V . For convenience, we write distributions as linear
ombinations of projects, so that a+ 2 b denotes the distribution
with δ(a) = 1 and δ(b) = 2. The set of all distributions of value
is denoted by ∆(V ).
There is a finite set N of n agents. Each agent i ∈ N has a budget

i ∈ R>0 and a utility function ui : A → R≥0, where ui(a) ≥ 0 is
gent i’s utility for every unit of money that goes to project a. So
gent i’s utility for a distribution δ ∈ ∆(V ) is

i(δ) =

∑
x∈A

δ(x) · ui(x).

project is said to be acceptable by an agent if it gives her positive
tility, and unacceptable it gives her utility 0. In the special case
hat an agent assigns the same utility to all projects, we label all
rojects as acceptable and set all utilities to 1. For convenience,
e rescale utility functions such that the utility assigned to least-
referred acceptable projects is 1, i.e., min{ui(x) : ui(x) > 0} = 1.
We will explain in a footnote to Definition 3 below how to
dapt the model to work without this normalization.) A utility
unction ui is dichotomous if ui(x) ∈ {0, 1} for all x ∈ A, so that
gent i only distinguishes between acceptable and unacceptable
rojects without discriminating between the acceptable ones. In
his context, we refer to the set of acceptable projects of an agent
s her approval set.
Each agent chooses a non-negative contribution Ci ∈ [0, Bi] no

arger than her budget that she contributes to a common pool.
(contribution) profile is a tuple of contributions C = (Ci)i∈N .

et C = Πi∈N [0, Bi] denote the set of all profiles, and let C>0 =

i∈N (0, Bi] be the set of profiles where every agent has a positive
ontribution. The sum of all agents’ contributions in a profile is
C | =

∑
i∈N Ci and is called the pool. A mechanism f maps a profile

to a distribution of the pool f (C) ∈ ∆(|C |). Hence, we take the
gents’ budgets and utility functions to be fixed and known and
onsider the game induced by a mechanism that asks the agents
or their contributions.

We now discuss the main properties of distribution mecha-
isms that we are interested in: efficiency, decomposability, and
ontribution incentive-compatibility.
A mechanism that yields high-quality distributions should,

t minimum, satisfy Pareto efficiency. Indeed, if a mechanism
roduces a distribution so that we could redistribute the pool
etween projects and thereby increase the utility of every agent
ho contributes to the mechanism, then the mechanism has
ot made full use of the potential for mutual gains. We intend
echanisms to ignore agents with zero contributions, and there-

ore define efficiency only with respect to agents with positive
ontributions. Thus, a Pareto improvement may be worse for an
gent who has chosen not to contribute to the mechanism.
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efinition 1 (Efficiency). Given a contribution profile C ∈ C, a
istribution δ′

∈ ∆(|C |) dominates another distribution δ ∈ ∆(|C |)
f ui(δ′) ≥ ui(δ) for all i ∈ N with Ci > 0 and ui(δ′) > ui(δ) for
ome i ∈ N with Ci > 0. A mechanism f is efficient if for every
rofile C , no distribution dominates f (C).

In applications, the mechanism might operate in a decentral-
zed setting and not be able to directly control the use of the
gents’ contributions (for example, when a donor coordination
ervice does not actually collect money from its participants). In
uch cases, the mechanism’s output δ is better understood as a
ecommendation to the agents about how they should use their
esources. We would then need to decompose δ into individual
istributions δi ∈ ∆(Ci), so that if every agent spends her re-
orted contribution according to δi, we recover δ. A distribution
s decomposable if δi spends agent i’s contribution exclusively on
rojects acceptable by i.

efinition 2 (Decomposability). Let C be a profile. A distribution
∈ ∆(|C |) is decomposable if it can be divided into individual

istributions (δi)i∈N with δi ∈ ∆(Ci) for all i ∈ N and δ =
∑

i∈N δi
uch that for all i ∈ N , we have δi(x) > 0 only if ui(x) > 0.

We say that a mechanism f is decomposable if f (C) is decom-
osable for all profiles C .
In Section 5, we discuss a strengthening of decomposability

hich requires that δi(x) > 0 only if i has assigned maximum
tility to x, i.e., only if ui(x) ≥ ui(y) for all y ∈ A. However,
his requirement turns out to be too strong; it clashes with
fficiency. Alternative characterizations of decomposability and
trong decomposability are given in Appendix B.
We want to incentivize agents to contribute their entire bud-

et since this increases the potential gains from coordination.
uppose each agent i aims to maximize ui(f (C)) − Ci, i.e., her
tility for the distribution of the pool minus her own contribution.
his objective is well-motivated if agent i could spend money
utside the mechanism so as to obtain one unit of utility per
nit of money. Given our normalization of utility functions, this
s equivalent to agent i valuing one unit of money as much as
ne unit of money going to a least-preferred acceptable project.
mechanism then incentivizes agent i to contribute her entire

budget if choosing Ci = Bi is a weakly dominant strategy for agent
i. If this property holds independently of the agents’ budgets, it is
equivalent to ui(f (C)) − Ci being weakly increasing in Ci. We call
uch a mechanism contribution incentive-compatible.9

efinition 3 (Contribution Incentive-Compatibility). A mechanism
f is contribution incentive-compatible if for each i ∈ N and all
profiles C , we have

ui(f (C−i, C ′

i ))−C ′

i ≤ ui(f (C−i, Ci))−Ci for all C ′

i with 0 ≤ C ′

i ≤ Ci.

In particular, not participating (C ′

i = 0) is at least weakly
ominated by contributing any positive amount of one’s own
udget. We can re-write the definition as

i(f (C−i, Ci)) − ui(f (C−i, Ci − ε)) ≥ ε

or all 0 ≤ ε ≤ Ci. Thus, increasing one’s contribution by ε causes
n increase of at least ε in the utility derived from the distribution
elected by f .
In Section 5, we discuss a strengthening of contribution

ncentive-compatibility that requires ui(f (C)) − Ci · maxy∈A ui(y)
o be weakly increasing in Ci. This corresponds to the assumption
hat an agent values one unit of money as much as one unit of

9 We normalized utility functions so that min{ui(x) : ui(x) > 0} = 1. Without
normalization, the definition of contribution incentive-compatibility would read
u (f (C , C ′)) − C ′ min{u (x) : u (x) > 0} ≤ u (f (C , C )) − C min{u (x) : u (x) > 0}.
i −i i i i i i −i i i i i

5

Table 1
Profile C = (1, 1) with Bi = Ci for i ∈ {1, 2} and NASH(C) = 1.5 a + 0.5 b.

ui(a) ui(b) Ci

Agent 1 1 0 1
Agent 2 1 3 1

money going to her highest utility project. Again, this stronger
version is incompatible with efficiency.

Decomposability and contribution incentive-compatibility are
logically independent properties, even when utilities are dichoto-
mous. Appendix C gives two mechanisms that satisfy only one of
these axioms at a time. Nevertheless, the two properties seem
to be related as together with efficiency, contribution incentive-
compatibility is likely to imply decomposability since the Nash
product rule always returns a decomposable distribution.

4. The Nash product rule

The Nash product, which refers to the product of agent utilities,
s often seen as a compromise between utilitarian and egalitarian
elfare (Moulin, 1988). Maximizing the Nash product has been

ound to yield fair and proportional outcomes in many preference
ggregation settings, and it also turns out to be attractive in our
ontext.10 Formally,

ASH(C) = argmax
δ∈∆(|C |)

∏
i∈N

(ui(δ))Ci = argmax
δ∈∆(|C |)

∑
i∈N

Ci log (ui(δ)) .

Note that NASH weights agents by their contribution. (As a
convention, we let 00

= 1 and 0 log 0 = 0, so that NASH ignores
agents with zero contribution.) An unweighted Nash rule where
each agent gets assigned the same weight would violate decom-
posability and contribution incentive-compatibility. Indeed, that
mechanism would not take into account the individual contri-
butions at all, and thus agents with large contributions would
have the same influence as agents with very small (or even zero)
contributions. This shows the need to weight agents.

There can be several distributions that maximize the Nash
product.11 However, all of these distributions yield the same
amount of utility to each agent (due to the strict convexity of the
objective function, see Lemma 1). Thus, we can arbitrarily break
ties in these cases without affecting any of the axioms considered
here.

We now show that NASH is efficient, decomposable, and in-
entivizes contribution. The first of these is easy: The distribution
ASH(C) maximizes a sum of functions, namely Ci log(·), that are
trictly increasing in the agents’ utilities provided that Ci > 0.
Thus, NASH is efficient (see, e.g., Moulin, 1988). We will prove
that NASH satisfies the other two axioms later in this section.
First, we verify these claims for a small example.

Example 1.
A simple example of NASH for a profile C with two agents and

wo projects is shown in Table 1. We have

= NASH(C) = argmax
δ∈∆(2)

δ(a) · (δ(a) + 3 δ(b)) = 1.5 a + 0.5 b.

he collective distribution δ can be decomposed into individual
istributions

1 = a and δ2 = 0.5 (a + b).

10 NASH is invariant to rescaling utility functions. Hence, the normalization
min{ui(x) : ui(x) > 0} = 1 does not affect NASH .
11 Consider the following example (which notably does not contain any ‘clone’
projects). There are four agents with approval sets {a, c}, {a, d}, {b, c}, and {b, d}
and each agent contributes 1. Then, the set of NASH distributions consists of all
convex combinations of 2a + 2b and 2c + 2d.
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ontribution incentive-compatibility is satisfied in this example
ecause

1(NASH((1 − ε1, 1))) + ε1 = 1.5 − 0.5ε1 and

2(NASH((1, 1 − ε2))) + ε2 = 6 − 2ε2 − 2min {1.5, 2 − ε2} .

re (weakly) decreasing for increasing ε1 = B1 − C1 and ε2 =

2 − C2, respectively. On the other hand, simply maximizing
he sum of individual utilities in this example would result in
′
= 2 b, which is not decomposable, as project b is unacceptable

or agent 1, and violates contribution incentive-compatibility be-
ause agent 1 would prefer an outside option to participating in
he mechanism. □

.1. Decomposability

The Nash product distribution is the solution of an optimiza-
ion problem, and thus satisfies the first-order conditions of op-
imality. By manipulating these conditions, we can show that the
ash product distribution is always decomposable.12

heorem 1. NASH is decomposable.

roof. We have to show that there is a decomposition of NASH(C)
nto δi ∈ ∆(Ci), i ∈ N , such that

∑
i∈N δi(x) = δ(x) for all x.

We consider the Karush–Kuhn–Tucker (KKT) conditions and
rite the Lagrangian L(δ, λ, µ1, . . . , µm) as

i∈N

Ci log (ui(δ))+ λ

(
|C | −

∑
x∈A

δ(x)

)
+

∑
x∈A

µxδ(x),

here λ ∈ R is the Lagrange multiplier for the constraint
x∈A δ(x) = |C | and µx ≥ 0 is the multiplier for the constraint

(x) ≥ 0.
Suppose δ is an optimal solution. By complementary slackness,

e must have µx = 0 whenever δ(x) > 0. Also, we must have
L/∂δ(x) = 0, that is,

∑
i∈N Ciui(x)/ui(δ) − λ + µx = 0. By case

istinction based on whether δ(x) > 0, it follows that λδ(x) =

i∈N Ciδ(x)ui(x)/ui(δ) for all x ∈ A. Hence,

· |C | =

∑
x∈A

λδ(x) =

∑
x∈A

∑
i∈N

Ci
δ(x)ui(x)
ui(δ)

=

∑
i∈N

Ci
ui(δ)
ui(δ)

=

∑
i∈N

Ci = |C |.

o λ = 1, and hence
∑

i∈N Ciui(x)/ui(δ) = 1 for all x ∈ A such that
δ(x) > 0.

Now, for each i ∈ N , define an individual distribution δi ∈

∆(Ci) with δi(x) = Ciδ(x)ui(x)/ui(δ) for all x ∈ A. Clearly,
supp(δi) ⊆ {a ∈ A : ui(a) > 0} and δi ∈ ∆(Ci), since∑

x∈A δ(x)ui(x) = ui(δ). To see that δ =
∑

i∈N δi, note that for
x ∈ A with δ(x) = 0 we have δi(x) = 0 for all i ∈ N , and for x ∈ A
with δ(x) > 0, we have∑
i∈N

δi(x) =

∑
i∈N

Ciδ(x)
ui(x)
ui(δ)

= δ(x)
∑
i∈N

Ci
ui(x)
ui(δ)

= δ(x). □

By inspecting the proof, we see that the distribution δi of
agent i satisfies a stronger notion of decomposability: the fraction
of her contribution that she gives to project x is proportional to
the utility δ(x)ui(x) she derives from x in the Nash product distri-
bution δ (see also Guerdjikova and Nehring, 2014). For example,
if half of agent i’s utility ui(δ) is due to the amount δ(x) spent on
x, then she transfers half of her contribution to x. Thus, it suffices
that a central clearinghouse announces the overall distribution δ.
Agents can then easily compute their individual distributions δi
without needing to know the other agents’ utility functions or
contributions.

12 This proof is similar to a result by Guerdjikova and Nehring (2014) who
onsider NASH with dichotomous preferences, and establish an equivalent
roperty in this restricted setting.
6

Table 2
Profile C = (1, 1, 1, 1) with approval sets {ab}, {ac}, {bc}, {c}. Let δ = NASH(C).
lternatives a and b are symmetric, so δ(a) = δ(b). Thus δ(c) = 4−2δ(a). So we
an write the Nash objective as 2δ(a)(4− δ(a))2(4− 2δ(a)), which is maximized
for δ(a) = (7 −

√
17)/4.

ui(a) ui(b) ui(c) Ci

Agent 1 1 1 0 1
Agent 2 1 0 1 1
Agent 3 0 1 1 1
Agent 4 0 0 1 1

4.2. Computation

In general, NASH can be computed to arbitrary precision us-
ng convex programming (see, e.g., Bogomolnaia et al., 2005).
owever, NASH cannot be computed exactly (in the standard
inary representation) because it may return distributions with
rrational values. An example is given in Table 2.

We observed after the proof of Theorem 1 that the distribution
elected by NASH is a fixed point of a process where agents
spend their contribution on a project in proportion to the utility
they receive from that project under the NASH distribution. This
observation, due to Guerdjikova and Nehring (2014), gives rise to
a simple, dynamic procedure for approximating NASH , similar to
the proportional response dynamic that converges to equilibrium
in Fisher markets for private goods (Zhang, 2011).

For C ∈ C>0, consider the mapping f :∆(|C |) → ∆(|C |) defined
by

(f (δ))(x) =

∑
i∈N

Ci
ui(x)
ui(δ)

δ(x) for all δ ∈ ∆(|C |).

ote that f is well-defined only if ui(δ) > 0 for all i ∈ N , but this
ill always hold in our analysis. The ith summand is called the

ndividual distribution of agent i. Hence, given a distribution δ,
he fraction of the contribution agent i assigns to project x in f (δ)
quals the fraction of the utility agent i derives from the overall
ontribution δ(x) to x. The proof of Theorem 1 shows that we have
(δ) = δ for δ = NASH(C). The mapping f induces a dynamic
rocedure: For any initial distribution δ0, we obtain a sequence
δk)k∈N by setting δk = f (δk−1) for each k ≥ 1.

It turns out that this dynamic procedure has been studied
n the literature on optimal portfolios, where projects corre-
pond to stocks and utilities encode stock performance.13 In
his context, Cover (1984) showed that the Nash product of δk
onverges to the optimum Nash product if δ0 has full support,
nd the sequence (δk)k∈N converges to a Nash distribution un-
er additional assumptions. Thus, by simply computing terms of
he sequence (δk)k∈N, one can approximate a Nash distribution
ithout resorting to convex programming.
For convenience, we give a compact proof of this result. It is

ased on Cover’s proof, which features a clever use of Jensen’s in-
quality. Our proof is adapted to our setting and is more compact
ince our model assumes the number of agents to be finite. We
mphasize that whenever the Nash distribution is unique (which
t is for a generic profile), the sequence (δk)k∈N converges to it.

We write F (δ) =
∑

i∈N Ci log(ui(δ)) for the (log) Nash product
f δ ∈ ∆(|C |).

heorem 2. Let C ∈ C>0 and δ0 ∈ ∆(|C |) be a distribution with
ull support. Denote by (δk)k∈N its induced sequence. Then, (F (δk))k∈N

13 That literature has argued that a portfolio of stocks maximizing expected log
returns (which corresponds to the Nash product) produces optimal earnings in
the long run (Cover and Thomas, 2006, Chapter 16). The formal analysis focusses
on stock returns over time and thus does not seem relevant to the study of NASH
as an aggregation rule.



F. Brandl, F. Brandt, M. Greger et al. Journal of Mathematical Economics 99 (2022) 102585

c
u

P
i
c
u
p
s
b
t

S

F

w
p
c

t

S

N
t∑

t

w

p

S
f
a
v
S
a
u
t
p
t

4

i
b
a
a
g
o
u
d
t

T

P
a
t
t

u

S
f
u

onverges to the optimum Nash product. If the Nash distribution is
nique, (δk)k∈N converges to NASH.

roof. Note that if δ has full support, then ui(δ) > 0 for all
∈ N . Moreover, in the next iterate f (δ), every agent assigns her
ontribution only to projects for which she has strictly positive
tility. Hence, ui(δk) > 0 for all i and k, and δk(x) = 0 for a
roject x implies ui(x) = 0 for all agents i. We can thus ignore
uch projects and assume δk(x) > 0 for all x and k. Normalizing
y dividing by |C | if necessary, we may assume that |C | = 1, so
hat δk ∈ ∆(1) for all k.

The proof proceeds in two steps.

1. The sequence (F (δk))k∈N converges.
2. Every accumulation point of (δk)k∈N is a Nash product dis-

tribution.

tep 1. For k ≥ 1, we get

(δk+1) − F (δk) =

∑
i∈N

Ci log
(
ui(δk+1)
ui(δk)

)

=

∑
i∈N

Ci log

(∑
x∈A

δk+1(x)
ui(x)
ui(δk)

)

(1)
=

∑
i∈N

Ci log

⎛⎝∑
x∈A

⎛⎝∑
j∈N

Cj
uj(x)
uj(δk)

⎞⎠ δk(x) ui(x)
ui(δk)

⎞⎠
(2)
≥

∑
i∈N

Ci

∑
x∈A

δk(x)
ui(x)
ui(δk)

log

⎛⎝∑
j∈N

Cj
uj(x)
uj(δk)

⎞⎠
(3)
=

∑
x∈A

δk(x)
∑
i∈N

Ci
ui(x)
ui(δk)

log

⎛⎝∑
j∈N

Cj
uj(x)
uj(δk)

δk(x)
δk(x)

⎞⎠
(4)
=

∑
x∈A

δk+1 log
(
δk+1

δk

)
(5)
≥

1
2 log(2)

∥δk+1
− δk∥2

1 ≥ 0,

here (1) and (4) follow from the definition of the dynamic
rocedure, (2) is an application of Jensen’s inequality for con-
ave functions (notice that

∑
x∈A δ

k(x) ui(x)
ui(δk)

= 1), (3) changes
the summation order, and (5) uses Lemma 11.6.1 of Cover and
Thomas (2006), where the left-hand side is the Kullback–Leibler
divergence of δk+1 and δk.

Hence, (F (δk))k∈N is a weakly increasing sequence. As it is
bounded from above by F (δ∗) where δ∗ is a Nash product dis-
ribution, it converges.

tep 2. The KKT-conditions for this concave optimization prob-
lem are sufficient, i.e. every δ∗

∈ ∆(1) that satisfies them is a
ash product distribution. As shown in the proof of Theorem 1,
he KKT-conditions are given for every x ∈ A with µx ≥ 0 by

i∈N

Ci
ui(x)
ui(δ∗)

+ µx = 1 and
[
δ∗(x) > 0 implies µx = 0

]
.

Assume that the dynamic procedure terminates, i.e., for some k,
δk(x) = δk+1(x) = δk(x)

∑
i∈N Ci

ui(x)
ui(δk)

for all x ∈ A. Recalling that
δk(x) > 0 for all projects x ∈ A and k ∈ N, δk satisfies the
KKT-conditions and is a Nash product distribution.

In all other cases, let δ′ be an accumulation point of (δk)k∈N
and (δkl )l∈N be a subsequence converging to it. We show that δ′

is a fixed-point of f . The sequence (F (f (δkl ))−F (δkl ))l∈N converges
o 0 by Theorem 2. Continuity of F implies 0 = F (f (δ′)) −
 c

7

F (δ′) ≥
1

2 log(2)∥f (δ
′) − δ′

∥
2
1, and so f (δ′) = δ′. Therefore,

δ′(x) = δ′(x)
∑

i∈N Ci
ui(x)
ui(δ′)

, which shows that δ′ satisfies the
KKT-conditions for all x with δ′(x) > 0.

Denote by S the set of all accumulation points. S is connected
as the step size of the dynamics converges to 0 by Theorem 2. As
(F (δk))k∈N converges, F (δ′) = F (δ′′) for any two δ′, δ′′

∈ S. If there
exists a δ′

∈ S that has full support, then δ′ and consequently,
all accumulation points are Nash distributions as (F (δk))k∈N is
increasing.

In the remaining cases, every accumulation δ′ point is located
in a face Tδ′ = {δ ∈ ∆(1) : δ′(x) = 0 ⇒ δ(x) = 0} of ∆(1) and
maximizes F on this face by the fact that δ′ has full support in Tδ′ .
Therefore, ui(δ′) = ui(δ′′) for all i ∈ N and δ′, δ′′

∈ Tδ′ and even
for general δ′, δ′′

∈ S by connectivity of S.
Assume now that there exist δ′

∈ S and x ∈ A with δ′(x) = 0
but

∑
i∈N Ci

ui(x)
ui(δ′)

> 1. This implies limk→∞

∑
i∈N Ci

ui(x)
ui(δk)

> 1
hich contradicts δ′(x) = 0.

Combining both steps, we conclude that every accumulation
oint of (δk)k∈N is a Nash product distribution and (F (δk))k∈N con-

verges to the optimum Nash product as it is weakly increasing.
If the Nash product distribution is unique, (δk)k∈N thus has a
unique accumulation point and converges (to the Nash product
distribution). □

We mention some additional properties of this dynamic pro-
cedure. First, as noted by Cover (1984), one can bound the ap-
proximation error via F (δ∗) − F (δk) ≤ maxx∈A log

(∑
i∈N Ci

ui(x)
ui(δk)

)
.

econd, every distribution δk appearing in the sequence (apart
rom δ0) is decomposable, which is important when stopping
fter a finite number of steps. Finally, the procedure also con-
erges to a Nash distribution in some cases where it is not unique.
uppose there are two ‘clone’ projects x and y (such that all agents
re indifferent between x and y) but that the Nash distribution is
nique if we were to merge these projects. Notice that if we start
he dynamic procedure with the uniform distribution over all
rojects, then we have δk(x) = δk(y) at each step k, which implies
hat the dynamic procedure does converge to a Nash distribution.

.3. Contribution incentive-compatibility

We now turn to our main result that NASH is contribution
ncentive-compatible. The proof is technical and requires a num-
er of lemmas, which are stated and proved in the appendix. At
high level, we estimate the rate of change of an agent’s utility
s her contribution increases, and integrate this quantity as she
oes from not participating to participating in the mechanism to
btain the desired result. We are not aware of a simpler proof
sing the first-order conditions. Attempts to prove Theorem 3 by
ifferentiating the first-order conditions with respect to Ci (as in
he proof of Theorem 1) were unsuccessful.

heorem 3. NASH is contribution incentive-compatible.

roof. Recall that we normalized utilities so that the utility
ssigned to least-preferred acceptable projects is 1 and so that
he utility assigned to unacceptable projects is 0. We must show
hat for all C ∈ C and i ∈ N ,

i(NASH(C−i, Ci)) − Ci ≥ ui(NASH(C−i, C ′

i )) − C ′

i

for all C ′

i with 0 ≤ C ′

i ≤ Ci.

ince NASH is invariant under replacing an agent with utility
unction ui and contribution Ci by two agents with utility function
i and contributions C ′

i and Ci − C ′

i , respectively, it suffices to
′
onsider the case Ci = 0. Abusing notation, we write C−i for the
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rofile with (C−i)i = 0 and (C−i)j = Cj for j ̸= i. Consider the
function g : C → ∆(1) with g(C) = NASH(C)/|C | for all C ∈ C. We
will show that

ui(g(C)) ≥
1
|C |

((|C | − Ci)ui(g(C−i)) + Ci), (1)

which is equivalent to the inequality above for NASH with C ′

i = 0.
We prove (1) with i = 1 as the focal agent. For the remainder of
the proof, fix the contributions Cj of all agents j ̸= 1, and assume
that Cj > 0 for all j ̸= 1. This is without loss of generality because
NASH ignores agents with zero contribution.

Denote by P1 ⊆ Rn the polytope of feasible utility profiles
scaled by 1/|C |, i.e., P1 = {u(δ) : δ ∈ ∆(1)}. Since utility functions
are linear, P1 is convex. For U ∈ P1, let FC (U) =

∑
i∈N Ci logUi.

ince by Lemma 1, FC has a unique maximizer for all C ∈ C>0,
we can define the function U : C>0 → P1 that returns this unique
maximizer for these profiles.

Consider the function U1(C1) = u1(g(C1, C−1)) of agent 1’s
scaled utility as a function of C1. If U1(C1) ≥ 1, then since U1(C1)
is monotonically increasing in C1 by Lemma 2,

U1(C1) =
1
|C |

((|C | − C1)U1(C1) + C1U1(C1))

≥
1
|C |

((|C | − C1)U1(0) + C1) ,

which proves (1) in this case. The bulk of the proof is to derive a
lower bound on the derivative of U1(C1) whenever U1(C1) < 1.
Then, integrating this derivative and using monotonicity of U1
ives (1).

tep 1. Assume that C1 > 0 and U1(C1) < 1, and let U = U(C).
oreover, let µ ∈ (0, 2) be arbitrary and let ε∗ be such that the
onclusion of Lemma 7 holds; let ε ∈ (0, ε∗). Considering the
aylor expansion of the logarithm, there exists ε′ > 0 such that
or all i ∈ N and |r| < ε′,

log(Ui + r) − logUi −
r
Ui

+
1
2

(
r
Ui

)2
⏐⏐⏐⏐⏐ ≤

ε

4

(
r
Ui

)2

. (2)

Now let C ′
∈ C>0 be such that C ′

1 = C1 + dC1 with 0 < dC1 <

in{ε′, ε
(2+ε) C1} and C ′

i = Ci for all i ∈ N \ {1}. Consider the
unction φ :Rn

→ R defined on dU with |dU | < ε∗, such that

(dU) := FC ′ (U + dU) − FC (U) − dC1 logU1

=

∑
i∈N

Ci
dUi

Ui
+ dC1

dU1

U1
− ψ(dU),

or some ψ :Rn
→ R with

(1 − ε)
1
2

∑
i∈N

Ci

(
dUi

Ui

)2

≤ ψ(dU) ≤ (1 + ε)
1
2

∑
i∈N

Ci

(
dUi

Ui

)2

.

he existence of ψ is guaranteed by (2) and the bound on dC1.
Now let U ′

= U(C ′) and dU ′
= U ′

−U . Note that, since the only
term in φ(dU) that depends on dU is FC ′ (U+dU), dU ′ maximizes φ
among all dU ∈ Rn with U+dU ∈ P1. By Lemma 3, there is ε′′ > 0
such that, for all dU ∈ Rn with |dU | ≤ ε′′ and U + dU ∈ P1, we
ave U + rdU ∈ P1 for all r ∈ [0, 2]. Since U is continuous in C by

Lemma 2, |dU ′
| will be small if dC1 is small and we can choose dC1

to be even smaller if necessary so that 2|dU ′
| ≤ min(ε′, ε′′). Then,

the function Φ : [0, 2] → R with Φ(r) = φ(rdU ′) is well-defined
and satisfies the prerequisites of Lemma 7 with

α =

∑
Ci
dU ′

i

U
+ dC1

dU ′

1

U
and β =

1
2

∑
Ci

(
dU ′

i

U

)2

.

i∈N i 1 i∈N i

8

Hence, it follows from Lemma 7 that∑
i∈N

Ci
dU ′

i

Ui
+ dC1

dU ′

1

U1
≥ µΦ(1).

Since U maximizes FC , by Lemma 4,
∑

i∈N Ci
dU ′

i
Ui

≤ 0. It follows
that

dC1
dU ′

1

U1
≥ µΦ(1). (3)

Next, let δ = g(C). Let H1 =
∑

a∈A:u1(a)>0 δ(a) be the fraction
pent on agent 1’s acceptable projects, i.e., those that agent 1
ssigns positive utility. Recall that U1 < 1, and so H1 < 1. Since
ASH gives agents with positive contribution positive utility, we
ave H1 > 0. From 0 < H1 < 1, we get that δ(a) < 1 for all a ∈ A.
hus, for |t| > 0 small enough, take the distribution δt with

t (a) =

{
(1 + t)δ(a) for all a ∈ A with u1(a) > 0,
(1 −

H1
1−H1

t)δ(a) for all a ∈ A with u1(a) = 0.

ne can check that δt ∈ ∆(1):

a∈A

δt (a) =

∑
a∈A

u1(a)>0

(1 + t)δ(a) +

∑
a∈A

u1(a)=0

(1 −
H1

1−H1
t)δ(a)

= (1 + t)
∑
a∈A

u1(a)>0

δ(a) + (1 −
H1

1−H1
t)
∑
a∈A

u1(a)=0

δ(a)

= (1 + t)H1 + (1 −
H1

1−H1
t)(1 − H1) = 1.

Let dU t
= u(δt )−U . For |t| small enough, we have that U+dU t

∈

P1 and U − dU t
∈ P1. Indeed, U + dU t

= u(δt ), and for the
second statement we can perturb δ infinitesimally in the opposite
irection. This is a valid perturbation because δ(a) < 1 for all
∈ A, and for a ∈ A such that δ(a) = 0 we have δt (a) = δ(a).
hus, by Lemma 4, we have

i∈N

Ci
dU t

i

Ui
= 0.

So for sufficiently small |t|, we have

φ(dU t ) = dC1
dU t

1

U1
−ψ(dU t ) ≥ dC1

dU t
1

U1
− (1+ε)

1
2

∑
i∈N

Ci

(
dU t

i

Ui

)2

.

Since dU t
1 = u1(δt ) − U1 = (1 + t)U1 − U1, we have that dU t

1
U1

= t .

imilarly, it follows that −
H1

1−H1
t ≤

dU t
i

Ui
≤ t for all i ∈ N .

Now, by definition of H1, we have U1 ≥ H1. Thus 1 − U1 ≤

1 − H1. Hence −
U1

1−U1
≤ −

H1
1−H1

. Thus, applying Lemma 5 with

α =
U1

(1−U1)
t , β = t , and xi =

dU t
i

Ui
, it follows that

φ(dU t ) ≥ dC1t − (1 + ε)
1
2

U1|C |

1 − U1
t2.

Now let t :=
1−U1
U1|C |

dC1. If dC1 is small enough, then t is also small
nough and, recalling that dU ′ maximizes φ among all dU ∈ Rn

with U + dU ∈ P1, we get

(1) = φ(dU ′) ≥ φ(dU t ) ≥
1
2
(1 − ε)

1 − U1

U1|C |
(dC1)2.

hus, by (3), we get

C1
dU ′

1

U1
≥
µ

2
(1 − ε)

1 − U1

U1|C |
(dC1)2,

from which it follows from dC1 > 0 that

dU ′

1 ≥
µ
(1 − ε)

1 − U1 dC1.
2 |C |
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able 3
rofile with 0 < ε < 1 showing the incompatibility of strong decomposability
nd efficiency.

ui(a) ui(b) ui(x) Ci

Agent 1 1 + ε 0 1 1
Agent 2 0 1 + ε 1 1

Since µ ∈ (0, 2) was arbitrary and ε > 0 can be chosen arbitrarily
mall, it follows that

U ′

1 ≥
1 − U1

|C |
dC1.

tep 2. We show (1) for C1 > 0. (The case C1 = 0 is trivial.)
y Lemma 2, U1(s) is monotonically increasing in s ∈ [0, B1]. We
ave already proved (1) in the case U1(C1) ≥ 1. Hence, we may
ssume U1(s) < 1 for all s ∈ [0, C1].
Let ε ∈ (0, C1) be arbitrary. By Theorem 3, the lower right

erivative of U1 at s ∈ (ε, C1) is at least 1−U1(s)
|C |−C1+s . Integrating this

estimate from ε to C1 yields

−

∫ C1

ε

∂U1(s)
∂s

1 − U1(s)
ds ≤ −

∫ C1

ε

1
|C | − C1 + s

ds

from which we get

log(1 − U1(C1)) − log(1 − U1(ε)) ≤ −(log |C | − log(|C | − C1 + ε)).

Exponentiation yields 1−U1(C1)
1−U1(ε)

≤
|C |−C1+ε

|C |
. Since ε was arbitrary

nd U1 is monotonic, we get 1−U1(C1)
1−U1(0)

≤
|C |−C1

|C |
. Rewriting this

equation gives us

U1(C1) ≥
1
|C |

((|C | − C1)U1(0) + C1) ,

which is (1). □

5. Limits of efficient mechanisms

In this section, we discuss the limits that we run into if we
try to strengthen our notions of decomposability and contribution
incentive-compatibility as described in Section 3. Specifically, we
show that these strengthenings are incompatible with efficiency.

First, we consider strong decomposability, which requires that δ
can be divided into individual distributions (δi)i∈N where for each
i ∈ N , we have δi(x) > 0 only if i has assigned maximum utility to
x, i.e., only if ui(x) ≥ ui(y) for all y ∈ A. In other words, each agent
s only asked to spend her contributions on her favorite projects.

roposition 1. No efficient mechanism satisfies strong decompos-
bility when m ≥ 3 and n ≥ 2.

Proof. To see that strong decomposability is in conflict with
efficiency, consider the example in Table 3. Here, both agents 1
and 2 have a pet project a and b, respectively, which the other
agent dislikes; there is also a compromise project x, which is close
to optimal for both. It is best for an agent to spend her entire
contribution on her pet project independently of what the other
agent is doing. So the only allocation we can implement in the
above sense is a + b, which gives utility 1 + ε for both. But this
fails to make use of the mutual interest in x: if they spent the
whole pool of 2 on x, they could achieve utility 2 each. □

One can interpret the situation in Table 3 as a prisoner’s
dilemma in which agents cooperate by spending on x or defect
(free-ride) by spending on a and b.

The strengthening of contribution incentive-compatibility we
discussed in Section 3 requires that u (f (C)) ≥ u (f (C ))+C umax,
i i −i i i

9

Table 4
Profile with 0 < ε < 0.5 used in the proof of Proposition 2.

ui(a) ui(b) ui(c) ui(x) Ci

Agent 1 2 − ε 0 0 1 1
Agent 2 0 2 − ε 0 1 1
Agent 3 0 0 2 − ε 1 1

where umax
i = maxy∈A ui(y). This strong contribution incentive-

ompatibility cannot be satisfied in conjunction with efficiency.
he strong version makes sense if agents can use their money
o fund public projects without going through the aggregation
echanism. This is typically the case for charities, but may be less
pplicable for some of the other scenarios discussed in Section 1,
uch as residents of an apartment complex.

roposition 2. No efficient mechanism is strongly contribution
ncentive-compatible when m ≥ 4 and n ≥ 3.

roof. Assume for contradiction that there exists a mechanism f
hat is strongly contribution incentive-compatible and efficient.

For C = (1, 1, 1) as in Table 4, the distribution δ = f (C) should
nly allocate resources to at most one of a, b, and c. Otherwise,
f there is any subset {y, z} ⊂ {a, b, c}, y ̸= z with δ(y) > 0 and
δ(z) > 0, the distribution

(δ(y) − κ) y + (δ(z) − κ) z + (δ(x) + 2κ) x

ith κ = min(δ(y), δ(z)) is strictly preferred by all three agents.
hus, without loss of generality, we can assume that δ(c) = 0.
Starting with agent 1, we let the other agents join one after

nother and, using strong contribution incentive-compatibility,
erive lower bounds on the resources allocated to project x. It

will turn out that after agent 3 has joined, the mechanism would
have to allocate more than the whole pool of 3 to x in order to
ccommodate strong contribution incentive-compatibility, which
s a contradiction.

Let C ′
= (1, 1, 0) and δ′

= f (C ′). As above, efficiency implies
hat either δ′(a) = 0 or δ′(b) = 0. Otherwise, if δ′(a) > 0 and
′(b) > 0, the distribution

δ′(a) − κ ′) a + (δ′(b) − κ ′) b + (δ′(x) + 2κ ′) x

ith κ ′
= min(δ′(a), δ′(b)) is strictly preferred by both agents

ith a utility improvement of 2κ ′ε > 0. We assume that δ′(b) =

. Treating the case δ′(a) = 0 requires no more than switching
he order of agents 1 and 2.

By strong contribution incentive-compatibility, agent 2 must
et at least the same utility as if both agents acted in an uncoor-
inated manner: u2(δ′) ≥ u2(a)+C2umax

2 = u2(a)+ (2−ε) = 2−ε

nd with δ′(b) = 0, we have δ′(x) ≥
2−ε
u2(x)

= 2 − ε.
Thus the utility of agent 3 from δ′ can be bounded from below

by u3(δ′) ≥ δ′(x) u3(x) ≥ (2 − ε).
Applying strong contribution incentive-compatibility for agent

yields u3(δ) ≥ u3(δ′) + C3umax
3 ≥ (2 − ε) + 1 · (2 − ε) = 4 − 2ε.

s δ(c) = 0, agent 3 can only get positive utility from project x,
nd thus δ(x) =

u3(δ)
u3(x)

≥ 4 − 2ε > 3 for 0 < ε < 0.5, which is a
contradiction since this exceeds the pool of 3. □

The reason for this incompatibility is structurally similar to
that for decomposability: efficiency requires spending resources
on the compromise project x, but strong contribution incentive-
compatibility can only be satisfied if the pet projects a, b, and c
are funded.

In computational experiments, it appears that NASH satisfies
a version of contribution incentive-compatibility that is stronger
than the standard version but weaker than strong contribution
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ncentive-compatibility. This version is inspired by the propor-
ional spending property that we saw in the proof of Theorem 1
nd in the dynamic procedure that converges to NASH (Sec-
ion 4.2). Let C ∈ C be a contribution profile and write δ =

ASH(C). For an agent i ∈ N with Ci > 0 and for an amount ε > 0
of potential extra contribution, let δε ∈ ∆(ε) be the distribution
ith δε(x) = α · δ(x) · ui(x) for all x ∈ A, where α = ε/(|C | · ui(δ)).
hus, δε(x) is proportional to the utility that i derives from project
in distribution δ. We conjecture that NASH satisfies

i(NASH(C−i, Ci + ε)) ≥ ui(δ) + ui(δε).

his property lies between our two definitions of contribution
ncentive-compatibility because ε ≤ ui(δε) ≤ ε · umax

i .
When only allowing dichotomous utility functions, both de-

omposability and contribution incentive-compatibility coincide
ith their strong counterparts. Hence, Propositions 1 and 2 do not
pply. In this restricted setting, which has been well-studied (Bo-
omolnaia et al., 2005; Duddy, 2015; Aziz et al., 2019; Brandl
t al., 2021), NASH becomes an even stronger candidate mech-
nism, though Duddy’s (2015) conditional utilitarian rule, which
eturns the decomposable distribution with the highest utilitarian
elfare, constitutes an attractive alternative.
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ppendix A. Lemmas used for the proof of Theorem 3

emma 1. For all C ∈ C>0, FC has a unique maximizer U ∈ P1.
oreover, Ci ≤ Ui ≤ |C |umax

i for all i ∈ N.

roof. Assume for a contradiction that there are two distinct
′,U ′′

∈ P1 which maximize FC . As a positive linear combination
f strictly concave functions, FC is a strictly concave function.
ence, for U =

1
2 (U ′

+ U ′′) ∈ P1, by strict concavity of FC , we
ave

C (U) >
1
2

(
FC (U ′) + FC (U ′′)

)
= FC (U ′),

which contradicts the assumption that U ′ maximizes FC over P1.
Now let i ∈ N . Clearly, Ui is upper bounded by |C |umax

i .
For the lower bound on Ui, recall from Theorem 1 that NASH
is decomposable. Thus the distribution NASH(C) is the sum of
distributions δj, j ∈ N , such that δj ∈ ∆(Cj) and δj(x) > 0 only
if uj(x) > 0. In particular, ui(δi) ≥ Ci, since we have normalized
utility functions so that the lowest positive utility of each agent
is 1. □
10
Recall that U : C>0 → Rn
≥0 returns the unique maximizer of FC .

By Lemma 1, U is well-defined. We show that U(C) is continuous.
Moreover, the utility of every agent is weakly increasing in her
contribution.

Lemma 2. U(C) is continuous in C on C>0 and U1(C1) is weakly
ncreasing in C1.

roof. First we show that U is continuous in C on C>0. Let C ∈ C>0
nd consider a sequence (Ck)k∈N ⊆ Rn

>0 converging to C . Further,
let Uk

= U(Ck) and U = U(C). Observe that since Ck converges
to C , by Lemma 1, we have 0 < λ ≤ Uk

i ≤ Λ for all i and some
λ,Λ > 0 and large enough k. Hence, by passing to a subsequence
if necessary, we may assume that Uk converges to U∗ for some
U∗

∈ P1. Since the family of functions FC , FCk , k ∈ N, is uniformly
equicontinuous on [λ,Λ]

n, it follows that FCk (Uk) converges to
FC (U∗). Moreover, as Uk maximizes FCk , we have FCk (Uk) ≥ FCk (U),
which converges to FC (U). Hence, U∗ maximizes FC , which, since
FC has a unique maximizer by Lemma 1, implies that U∗

= U .
Hence, Uk converges to U .

We prove that U1(C1) = U(C1, C−1) is weakly increasing in C1.
Let s > 0, U = U(C1, C−1), and U ′

= U(C1 + s, C−1). Assume for
contradiction that U ′

1 = U1(C1 + s) < U1(C1) = U1. Then,

C ′ (U ′) =

∑
i∈N

Ci logU ′

i +s logU ′

1 <
∑
i∈N

Ci logUi+s logU1 = FC ′ (U),

here the inequality follows from the assumption that U ′

1 < U1
nd the fact that U is a maximizer of FC . This contradicts the
ssumption that U ′ maximizes FC ′ . □

emma 3. For every C ∈ C and U ∈ P1, there is ε > 0 such that for
ll dU ∈ Rn with |dU | ≤ ε and U+dU ∈ P1, we have U+tdU ∈ P1
or all t ∈ [0, 2].

roof. Since P1 is a polytope, it is an intersection of a finite
umber of closed half-spaces Hi. Observe that the desired prop-
rty holds for each Hi. Indeed, if the point U is in the interior
f Hi, we can take ε to be half of the distance from U to the
oundary of Hi, while if U is on the boundary of Hi, the entire
ay {U + tdU | t ≥ 0} is contained in Hi and we can take ε to be
ny positive real number. It follows that the desired property also
olds for the intersection of the half-spaces Hi, which is P1. □

The next three lemmas will be useful for analyzing error terms
btained in the main analysis.

emma 4. Let C ∈ C>0, U = U(C), and dU ∈ Rn such that
+ dU ∈ P1. Then,

i∈N

Ci
dUi

Ui
≤ 0.

If also U − dU ∈ P1, then equality holds.

Proof. Consider the function τ : [0, 1] → R with τ (t) = FC (U +

tdU) and observe that τ attains its maximum at 0. Since Ui > 0
or all i ∈ N by Lemma 1, τ is differentiable at 0. Hence, the right
erivative of τ at 0 is non-positive, i.e.,

∂τ

∂t

⏐⏐
t=0 =

∂

∂t

(∑
i∈N

Ci log(Ui + tdUi)

) ⏐⏐
t=0 =

∑
i∈N

Ci
dUi

Ui
≤ 0.

f additionally U − dU ∈ P1, the first part implies −
∑

i∈N Ci
dUi
Ui

≤

0, from which equality follows. □
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emma 5. Let C ∈ C, x ∈ Rn, and α, β > 0 such that
∑

i∈N Cixi =

and −α ≤ xi ≤ β for all i ∈ N. Then,∑
i∈N

Cix2i ≤ αβ
∑
i∈N

Ci.

Proof. Since −α ≤ xi ≤ β , we have
⏐⏐xi − β−α

2

⏐⏐ ≤
β+α

2 . It follows
hat

i∈N

Cix2i =

∑
i∈N

Ci

(
xi −

β − α

2

)2

−

(
β − α

2

)2∑
i∈N

Ci

≤

(
β + α

2

)2∑
i∈N

Ci −

(
β − α

2

)2∑
i∈N

Ci

= αβ
∑
i∈N

Ci,

s claimed. □

For the proof of Lemma 7, we need the following auxiliary
emma.

emma 6. Let λ∗
∈ (0, 1

2 ). Then, there are ε∗
∈ (0, 1) and

t ∈ [1, 2] such that

t − λ
1 + ε

1 − ε
t2 > 1 − λ for all λ ∈ [0, λ∗

] and ε ∈ (0, ε∗).

roof. The inequality in the statement can be rewritten as λ <
t−1

1+ε
1−ε t

2−1
. Choose an arbitrary t ∈ (1, 1

λ∗ − 1). We have t ∈ [1, 2]

and λ∗ < 1
1+t . Since limε→0

t−1
1+ε
1−ε t

2−1
=

1
1+t , we can choose

ε∗
∈ (0, 1) such that λ∗ < t−1

1+ε
1−ε t

2−1
for all ε ∈ (0, ε∗). It follows

that λ < t−1
1+ε
1−ε t

2−1
for all λ ∈ [0, λ∗

] and ε ∈ (0, ε∗), as desired. □

emma 7. For all µ ∈ (0, 2) there is ε∗
∈ (0, 1) with the following

roperty. For any Φ : [0, 2] → R such that Φ(1) = maxt∈[0,2]Φ(t)
and such that there are α, β ≥ 0 and ε ∈ (0, ε∗) with

t − (1 + ε)βt2 ≤ Φ(t) ≤ αt − (1 − ε)βt2 (4)

for all t ∈ [0, 2], it holds that α ≥ µΦ(1).

Proof. If µ ≤ 1, then by choosing any ε∗
∈ (0, 1), we have

Φ(1) ≤ Φ(1) ≤ α by assumption. Assume henceforth that
> 1. Let λ∗

:= 1 −
1
µ
> 0 and choose ε∗ > 0 and t∗ ∈ [1, 2]

such that

t∗ − λ
1 + ε

1 − ε
(t∗)2 > 1 − λ

or all λ ∈ [0, λ∗
] and ε ∈ (0, ε∗), which is possible by Lemma 6.

Let Φ , α, β , and ε as in the statement of the lemma. If α = 0,
we get Φ(1) ≤ 0 by Eq. (4). Hence, α ≥ µΦ(1) holds. Now
consider the case α > 0. Let λ :=

α−Φ(1)
α

≥ 0. Assume for
ontradiction that the desired conclusion is not true, i.e., α <

µΦ(1). This is equivalent to λ < λ∗. The function Ψ (t) := αt −

(t) satisfies β(1 − ε)t2 ≤ Ψ (t) ≤ β(1 + ε)t2. By substituting
= t∗ and t = 1, we have Ψ (t∗) ≤ Ψ (1) 1+ε1−ε (t

∗)2. It follows that

(t∗) = αt∗ − Ψ (t∗) ≥ α

(
t∗ −

Ψ (1)
α

1 + ε

1 − ε
(t∗)2

)
= α

(
t∗ − λ

1 + ε

1 − ε
(t∗)2

)
> α(1 − λ)

= Φ(1).

This contradicts the assumption that Φ(1) = maxt∈[0,2]Φ(t). □
11
Appendix B. Characterization of decomposability

Recall that for i ∈ N , Ai = {a ∈ A : ui(a) > 0} denotes the
upport of ui. Moreover, let Āi = argmax{ui(a) : a ∈ A}.

Proposition 3. Let δ ∈ ∆(|C |) be a distribution. Then δ is
decomposable if and only if

∑
x∈
⋃

i∈N′ Ai
δ(x) ≥

∑
i∈N ′ Ci for every

′
⊆ N. Furthermore, δ is strongly decomposable if and only if

x∈
⋃

i∈N′ Āi
δ(x) ≥

∑
i∈N ′ Ci for every N ′

⊆ N.

roof. We first prove the statement about decomposability. It
s easy to see that the inequalities hold if δ is decomposable.
e prove the converse direction by an application of the strong
uality theorem. A distribution δ is decomposable if and only if
he following linear program P has a solution with value |C |.

primal (P)
max

∑
i∈N
∑

j∈A xij
s.t.

∑
j∈A xij ≤ Ci ∀i ∈ N∑
j/∈Ai

xij ≤ 0 ∀i ∈ N∑
i∈N xij ≤ δ(j) ∀j ∈ A

x ≥ 0

with x = (x1a, x1b, . . . , x2a, . . . ) ∈ Rn·m
≥0 where xij represents a

ossible contribution of agent i on project j.
The dual of the linear program P is

dual (D)
min

∑
i∈N Ciyi +

∑
j∈A δ(j)yj

s.t. yi + yj ≥ 1 ∀i ∈ N ∀j ∈ Ai
yi + yj ≥ 1 − yn+i ∀i ∈ N ∀j /∈ Ai
y ≥ 0

with y = (y1, . . . , y2n, ya, yb, . . . ) ∈ R2n+m
≥0 .

Assuming
∑

j∈
⋃

i∈N′ Ai
δ(j) ≥

∑
i∈N ′ Ci for every N ′

⊆ N , we
laim that there always exists an optimal solution y∗ to its dual D
uch that y∗

n+1 = · · · = y∗

2n = 0. This means that we can reduce D
o D′ where the second constraint simplifies to yi+yj ≥ 1. Looking
t the dual of D′ called P ′, we observe that compared to P , the
onstraint

∑
j/∈Ai

xij ≤ 0 for all i ∈ N is removed. Thus, the optimal
alue of P ′ is |C | as δ ∈ ∆(|C |). As all of the stated problems have
ptimal solutions, the strong duality theorem implies that all four
inear programs have the same optimal value |C | and thus, δ is
ecomposable as then, P has a solution with value |C |.
To prove the claim, let y be an optimal solution to D and A0 be

he set of all j ∈ A with yj = 0. Thus for all i with Ai ∩ A0 ̸= ∅, we
ave yi ≥ 1 and we can set yn+i = 0. Denote the set of all such
gents by N0. If N0 = N we are done.
Otherwise, let N ′

= N \ N0 and j′ = argminj∈
⋃

i∈N′ Ai yj. Define
′

i = yi + yj′ for all i ∈ N ′, y′

j = yj − yj′ for all j ∈
⋃

i∈N ′ Ai and
′

j = yj, otherwise. By construction, y′ is still feasible and∑
i∈N

Ciyi +
∑
j∈A

δ(j)yj∑
i∈N\N ′

Ciy′

i +
∑
i∈N ′

Ci(y′

i − yj′ )

+

∑
j∈
⋃

i∈N′ Ai

δ(j)(y′

j + yj′ ) +

∑
j/∈
⋃

i∈N′ Ai

δ(j)y′

j

≥

∑
i∈N

Ciy′

i −
∑
i∈N ′

Ciyj′ +

∑
i∈N ′

Ciyj′ +

∑
j∈A

δ(j)y′

j∑
i∈N

Ciy′

i +
∑
j∈A

δ(j)y′

j

s yj′
∑

j∈
⋃

i∈N′ Ai
δ(j) ≥ yj′

∑
i∈N ′ Ci by assumption. Thus, y′ is an

ptimal solution to D, and compared to y the set N is larger.
0
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herefore, iterating this procedure with y = y′ until N0 = N ,
e end in a solution y∗ to D with y∗

n+1 = · · · = y∗

2n = 0.
The proof for strong decomposability proceeds along the same

ines. The only difference is that now Āi is used instead of Ai. □

Proposition 3 implies that, for the special case of dichotomous
references, decomposability is equivalent to the fair group share
xiom introduced by Bogomolnaia et al. (2002) and later dubbed
roportional sharing by Duddy (2015).

ppendix C. Independence of contribution incentive-
ompatibility and decomposability

We first define a mechanism that satisfies decomposability
ut violates contribution incentive-compatibility. To this end,
e consider a rule that always returns the decomposable dis-
ribution with minimal utilitarian welfare and thus represents
n antipode to the conditional utilitarian rule CUT introduced
y Duddy (2015). Let Amin

i = {a ∈ A : ui(a) > 0 and
∑

x∈N ux(a) ≤∑
x∈N ux(b) for all b with ui(b) > 0}. Then,

ANTICUT (C) =

∑
i∈N

∑
x∈Amin

i

Ci

|Amin
i |

· x.

This mechanism is decomposable by construction but fails to
satisfy contribution incentive-compatibility. For example, let N =

1, 2}, A = {a, b}. Let u1 = 1{a,b} and u2 = 1{a}, and B1 = B2 = 1.14
Then, ANTICUT ((1, 1)) = a+b and ANTICUT ((1, 0)) = 0.5·a+0.5·b.
Since

u2(0.5 · a + 0.5 · b) − 0 = 0.5 > 0 = u2(a + b) − 1,

ANTICUT violates contribution incentive-compatibility.
Second, we construct a mechanism that violates decompos-

ability but satisfies contribution incentive-compatibility for N =

{1, 2, 3} and A = {a, b, c, d}. (This mechanism can be straightfor-
wardly extended to more agents and projects.) Let u1 = 1{a,b},
u2 = 1{a,c}, and u3 = 1{d}, and B1 = B2 = B3 = 1.

We define f (C) = min{C1, C2} ·a+ (C1 −min{C1, C2}) ·b+ (C2 −

min{C1, C2})·c+(min{C1, C2}+C3)·d. Then, f is not decomposable
since, for example, if C1 = C2 = C3 = 1, f (C) = a+ 2 · d, which is
not decomposable. On the other hand, one can (by distinguishing
the cases C1 < C2 and C1 ≥ C2) verify that f is contribution
incentive-compatible.
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