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ARTICLE INFO ABSTRACT

MSC: In material science, models are derived to predict emergent material properties (e.g. elasticity, strength,
68T05 conductivity) and their relations to processing conditions. A major drawback is the calibration of model
74-04 parameters that depend on processing conditions. Currently, these parameters must be optimized to fit
74-05 measured data since their relations to processing conditions (e.g. deformation temperature, strain rate) are
;2(31909 not fully understood. We present a new approach that identifies the functional dependency of calibration
Keywords: parameters from processing conditions based on genetic programming. We propose two (explicit and implicit)

methods to identify these dependencies and generate short interpretable expressions. The approach is used to
extend a physics-based constitutive model for deformation processes. This constitutive model operates with
internal material variables such as a dislocation density and contains a number of parameters, among them
three calibration parameters. The derived expressions extend the constitutive model and replace the calibration
parameters. Thus, interpolation between various processing parameters is enabled. Our results show that the
implicit method is computationally more expensive than the explicit approach but also produces significantly
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better results.

1. Introduction and motivation

Mathematical models are at the core of science and engineering and
allow us to predict physical phenomena without direct observations.
Only through modelling and simulation we are able to build extremely
complex and safe physical objects (such as air planes, space vehicles,
or power plants). In empirical modelling one can distinguish white-
box and black-box models with a whole spectrum of grey-box models
between these two extremes (Sjoberg et al., 1995; Von. Stosch et al.,
2014). White-box models can be derived from physical principles and
have interpretable parameters with a physical meaning (e.g. Planck’s
constant, Avogadro’s constant). The internals of white-box models are
known and can be understood. Black-box models establish a functional
mapping from inputs to outputs by fitting to observations whereby the
internals of the model are irrelevant or unknown. Therefore, the inter-
nal parameters of black-box models have no physical meaning (Sjoberg
et al., 1995). Examples of black-box models are non-parametric statisti-
cal models (i.e. all kernel-methods including support vector machines,
Gaussian processes, LOESS), neural networks, and tree ensemble meth-
ods (e.g. random forest, gradient boosted trees). Grey-box models also
establish a functional mapping from inputs to outputs by fitting to
observations but have only a few parameters and simple interpretable
equations.
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One possible approach for the identification of grey-box or poten-
tially even white-box models is symbolic regression (SR) with genetic
programming (GP). The main aim of SR is finding well fitting model
equations (structure) as well as their parameters (Koza et al., 1993).
SR offers the possibility of interpretability which can be achieved by
including model complexity as an optimization criterion additionally
to model fit. A popular approach for solving SR problems is GP,
which is an evolutionary algorithm that evolves computer programs.
It uses a population of solution candidates (programs) which is itera-
tively improved by mimicking processes observed in natural evolution,
namely survival of the fittest, recombination, and mutation (Koza,
1992). Programs that are better with respect to an objective function
(also called fitness function in GP) are selected with a higher probabil-
ity for recombination while bad programs have a low probability to be
selected.

SR models can be easily integrated into mathematical models re-
gardless of the modelling software environment because the commonly
used operators and functions are readily available in most standard
libraries.

SR is particularly suited for the integration of physical principles
and offers the possibility to produce interpretable models which can
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be integrated easily into existing software frameworks making it a
particularly interesting approach for scientific machine learning (Baker
et al., 2019) tasks.

In the present work, we apply SR and GP to extend a constitu-
tive model used to describe the materials response to applied forces,
which is a core of numerical metal forming simulations. The main re-
search question thereby is whether such an extended constitutive model
achieves accurate enough simulation performance when evaluated with
varying process conditions.

2. Objectives

The present study is a continuation of the work published in Kabli-
man et al. (2021) with a goal to improve the constitutive models
using GP and SR. The used constitutive model (Kabliman et al., 2019)
is white-box and is based on physical laws. It describes the material
flow behaviour in terms of internal state variables such as dislocation
density. Among the physical values, it contains a number of calibration
parameters, which depend on processing conditions (e.g. deformation
temperature and strain rate) and are normally fitted to experimental
data. To overcome the required regular fitting, the expressions which
correlate the calibration parameters to processing parameters should
be derived. This task can be addressed using GP and SR. In Kabliman
et al. (2021) we have used the following approach: the calibration
parameters were first optimized using a global optimizer, and then the
formulas were identified for predicting the optimized values using SR.
We call this approach the explicit method.

Recently, Asadzadeh et al. (2021) have described a hybrid mod-
elling approach based on symbolic regression whereby the model struc-
ture is partially fixed. They have used the approach to extend a physics-
based model for a sheet bending process whereby symbolic regression
was used to evolve additional terms for the model. They found that
partially fixing the structure leads to more consistent symbolic re-
gression results (higher repeatability) and lower model complexity.
Additionally, the hybrid modelling approach required only few data
points.

In the present paper, we propose an approach similar to Asadzadeh
et al. (2021), which can evolve the required formulas (extensions) to
the constitutive model directly. This may improve the knowledge of
the modelled system or process since the functional dependency of
calibration parameter values from processing conditions is explicitly
established and may be interpreted. We call this approach the implicit
method. The difference to Asadzadeh et al. (2021) is that we use the
approach for a constitutive model which requires simulation to fit
stress-strain curves. In the implicit approach the fixed physics-based
part is hard-coded in the simulation model and extensions are evolved
using multi-tree genetic programming. Additionally, we demonstrate
the approach on measured stress—strain curves instead of generated
data.

To compare the results from both (explicit and implicit) approaches,
we use the same formulation of the used constitutive material model
and the same experimental data as in Kabliman et al. (2021). For better
understanding, we also give a detailed description of the (explicit)
modelling method used before.

3. Background
3.1. Data collection

To generate a data set, a series of hot compression tests was con-
ducted for the aluminium alloy AA6082 as described in Kabliman
et al. (2019) and Kabliman et al. (2021). The cylindrical samples
(5 mm diameter by 10 mm) were compressed using a deformation and
quenching dilatometer DIL805/A from TA Instruments. Compression
tests were performed up to a strain of 0.7 at various temperatures
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Table 1

Assignment of hot compression tests to training and testing sets. The training data set is
split into four partitions for four-fold cross-validation. The values in each cell indicate
the assignment to the partitions.

ol1/s]

0.001 0.01 0.1 1 10
350 Test 4 3 Test 2
375 1 Test 4 3 Test
400 2 1 Test 4 3

Temperature [°C] 425 Test 2 1 Test 4

450 3 Test 2 1 Test
475 4 3 Test 2 1
500 1 4 3 Test

and average strain rates as summarized in Table 1. Invalid measure-
ments at the beginning and end of a test, when the machine resets,
were removed. The specimens were induction-heated inside of the
dilatometer to the prescribed temperature and afterwards compressed
at an average constant strain rate and controlled temperature. For each
set of deformation parameters (T" and ¢), two identical tests were
performed and the average values were calculated. Measurements from
hot compression tests are assigned to training and testing sets as shown
in Table 1. The training set is itself partitioned into four parts for
four-fold cross-validation.

The stress and strain values were derived during the measurement
using the following calculation formulas:

F. ﬂdgLo L, do

kf = —L, A% = Lo ==, g, = —, 1
= e A L, %= €))

i

where i indexes subsequent measurements, kf; is the stress, F; is the

measured force, A{* is the actual cross section of the sample, ¢; is the

strain, L is the initial length at the start of the deformation segment, L;

is the actual sample length, ¢ is the strain rate, dt is the time difference

between two measurement points, and d,, is the initial sample diameter.
Fig. 1 shows the processed stress—strain data.

3.2. Constitutive model

Typically, a constitutive model is represented by a sum of an initial
yield (threshold) stress, ¢, and a strain-dependent part, ¢,. While the
threshold stress is usually a guess value, the strain-dependent stress
might be written as a power law-form or in terms of material internal
state variables. The latter approach is based on physical laws and,
therefore, easily interpretable. The model used in present work is based
on the evolution of mean dislocation density, p, and is called Mean
Dislocation Density Material Model (MD2M) (Kabliman et al., 2019).

P
UIGy+MGb [\/T_+l]

3 (2

Here M is the Taylor factor, G is the shear modulus, b is the norm
of the Burgers vector and § is a mean sub-grain size. By deformation
at a temperature, 7, and a strain rate, ¢, the dislocation density will
change according to the following equation:

M 3
dp = %—p(pdt - ZBMd“—b""er'pdt - 2CDfTbT [p2 - pﬁq] di &)

The first term describes the increase of dislocations and the next
two terms correspond to the dislocations reduction. The first recovery
process happens when two antiparallel dislocations come to a critical
distance, d,,,. The second recovery process is thermally-activated and
controlled by a self-diffusion along the dislocations, D. When the
processing conditions allow, the material can recover down to an
equilibrium state described by the equilibrium dislocation density, p,,.

The model contains several physical parameters (e.g. the Boltzmann
constant, k), which can be found in Kabliman et al. (2021). Besides
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Fig. 1. Stress-strain curves acquired from the hot compression tests. Only measurements up to the maximum stress value are used for modelling.

them, there are three calibration parameters A, B and C. Their values
depend on the material, its state and deformation conditions, but these
dependencies are not fully understood. Therefore, these parameters are
normally tuned using the experimental stress—strain curves.

From inspection of the white-box model, it can be determined
that A, B, and C must be positive, because, otherwise, Eq. (3) has no
physical meaning. Furthermore, B and C depend on the scale of A,
since the relative contributions of the terms must be of similar size.
To simplify the optimization and prediction of the parameters, we use
an alternative parameterization u, v and w with

A~ = exp(u), B = exp()A~!, C = exp(w)A~!, 4)

and limit the search space to u € [-15,0], v € [-15,15]w € [-15,0].
The transformation stretches the search space non-linearly, whereby
the space becomes exponentially larger as A, B or C approach zero.
The value for A cannot reach zero. This guarantees a physically feasible
solution. The domain for u, v and w is set based on the range of values,
which are plausible for the computation material scientists.

4. Methods
4.1. Quantification of the model accuracy

To measure the accuracy of developed model extensions, we use the
sum of mean of squared errors (SMSE) over all tests for the training
and testing sets separately. The measurement frequency is the same for
tests with different strain rates, which implies that the data set has
a variable number of measurements for each test. A simulation run
produces outputs Kf(¢p) with a much higher resolution for ¢. From these
values we keep only the points with matching measurements kf(¢) and
sum up the squared errors. The metric for model accuracy is the sum
over all tests of the mean of squared errors (SMSE). This puts equal
weight on each test even when the number of measurements differs
over the tests.

N 1 <& /n 2

MSE(kf, kf,, @)= ”_z Z (kf((p,,,-) - kfr(@r,i)) 5)

i=1
SMSE= )’ MSE(Kf,kf,, ¢,) (6)

tEtests
Kf(p) are the filtered points from the simulation and ¢, and kf, the
measurements from test ¢. All vectors have n, elements. We do not
normalize the MSE values for the tests because the target values are
all on the same scale (see Fig. 1) and we aim to reduce absolute not

relative errors of predictions.

Training data T, ¢, ¢, kf
(Egn. 1)

Formulas for u, v, w

———————— » Combine
Hybrid MD2M
Test data T', o, 0 - -» Simulate

Predictions kf(¢)

Test data kf(p) - - Assess Error

(Egn. 5)

Table 5, Figure 5

Fig. 2. Workflow of the explicit method for extending the constitutive model (MD2M).
CMAES is used to optimize parameters u,v and w for each test set from Table 1 and
GP is used to find the expressions for optimized u,v and w depending on T and ¢.

4.2. Explicit method: Parameter optimization and symbolic regression

Fig. 2 shows the workflow of the explicit method. A single simu-
lation run produces a stress-strain curve kf(p), which is returned as a
table.

First, we use covariance matrix adaptation evolution strategy
(CMAES) (Hansen et al., 2003) to optimize the calibration parameters
for each test in the training set. The parameters may depend on
each other, and we cannot assume that the optimization problem is
convex. This makes parameter fitting difficult (Domkin, 2005). Thus,
a derivative-free global optimization method such as CMAES or differ-
ential evolution can be an appropriate choice. Still, the optimizer may
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Training data T, ¢, ¢, kf
(Egn. 1)

Physics-based MD2M GP

(Sec. 3.2) (Fig. 4, Tab. 4)
Hybrid model
/%
Test data T, 9,0 --- - Simulate

Lﬁ—)

Predictions kf

Assess Error

Test data kf ------ > (Eqn. 5)

Table 5, Figure 5

Fig. 3. Workflow of the implicit method for extending the constitutive model (MD2M).
The extensions are encoded as multi-tree GP individuals and fitness evaluation uses
simulations of the hybridized model.

converge to different solutions. Thus, multiple repetitions for the same
data set are required. Our goal is to find a function mapping values
of the known (processing) parameters to values of the calibration pa-
rameters. Therefore, it is important that the global optimizer converges
reliably to the same or similar solutions. Otherwise, we will fail to find
the solution in the subsequent step. At the end of the optimization, the
found solutions are collected into a data set with best values for (u, v, w)
for each test.

Next, we use the data set of the optimized (u, v, w) values for SR with
GP to produce three formulas for the calculation of u, v, and w from the
known parameters (T, ¢). At this stage, we recommend to use cross-
validation to tune GP parameters (see Table 1). It is essential to find
a GP parameterization that reliably produces a good solution, because
we must select only a single formula for each of u, v, and w. After grid-
search for good GP parameters, we execute a GP run with the whole
training set for each of the three calibration parameters and combine
the three formulas with the considered constitutive model (MD2M) to
produce the hybrid model. The hybrid MD2M is then used to produce
simulation results Kf(¢) for the tests in the testing set.

4.3. Implicit method: Evolutionary extension

Fig. 3 shows the workflow for the implicit method. In contrast to the
explicit method we do not fit the model to training data by parameter
optimization, but instead use tree-based GP to directly evolve the
three expression trees representing the formulas for the calculation of
(u, v, w). It is important to note that the output of the MD2M model
depends on all three calibration parameters. The quality of the ex-
tended MD2M model can be quantified via the SMSE between simulated
and the measured stress-strain curves. However, we cannot attribute
changes in the SMSE (Eq. (6)) to each of the formulas for (u,v,w).
Therefore, we use a multi-tree GP for the implicit method.

Each GP individual consists of three separate trees for the three
formulas. For fitness evaluation the three formulas are used to calculate
the (u,v,w) values for each test. The SMSE between simulation and
measurement over all tests is used to determine fitness, whereby in-
dividuals with smaller error are assigned a higher fitness value. There-
fore, individuals with three formulas that work well in combination
have a higher fitness and are more likely to be selected.

To highlight how recombination and mutation operations act in-
dependently on the components of the model, we give a pseudo-code
for GP algorithm in Fig. 4. Crossover between two parent individuals

Applications in Engineering Science 9 (2022) 100080

Table 2
CMAES parameters.

Parameter Value

Search space u € [-10..0] xv € [-15..15] x w € [-15,0]

Generations 500

Pop. size 100

Initialization Uniform

Fitness SMSE (Eq. (6)) for a simulated stress-strain curve

Recombination Log-weighted

acts on the three components independently. To produce a child we
need to compose three trees from the parents. For each of the three
components, we first choose randomly whether a crossover operation
should be performed using the crossover probability parameter. The
choice is made independently for each component. Without crossover
we simply select one of the two trees for this component from the
parents randomly. Otherwise a new tree is created using a sub-tree
crossover. This crossover scheme does not allow exchange of genetic
material between separate components. We recommend a crossover
rate smaller than 100% to allow combination of already well working
formulas. Mutation acts on the three components independently using
the mutation probability parameter.

The individual with highest fitness for the tests in the training set is
selected as the solution. The solution is then used to produce simulation
results kf(g) for the tests in the test set.

4.4. Algorithm configuration

4.4.1. Explicit approach

For the explicit approach, we execute 30 independent CMAES runs
with the parameter settings given in Table 2. We choose the best
values for each of the three parameters (u, v, w), which are then back-
transformed to produce values for (4, B,C). The back-transformed
variables are used as target for SR.! The resulting data set has 35 rows,
two input variables, and three target variables. We use two subsets of
the data for training and testing of models, and assign data from one
test completely either to the training set or to the testing set using a
systematic partitioning scheme from Schiitzeneder (2020) (see Table 1).

The maximum length of symbolic expression trees is selected using
30 independent repetitions of cross-validation (CV) with four folds
on 24 training samples using the partitions shown in Table 1. The
setting with the smallest median cross-validated root mean squared
error (CV-RMSE) is used to train models on the full training set. The
maximum limit for the number of tree nodes is chosen from the set
{5,7,10,15,20,25,30,35,40}. The settings with best CV-RMSE are 25
nodes for A, 35 nodes for B, and 20 nodes for C. These are relatively
tight limits for GP, but the grid-search showed that GP started to overfit
with larger models. This can be explained by the small number of data
points for training. Models with 20 to 35 nodes (before simplification)
are relatively easy to interpret.>

For each of the three targets, we execute 30 GP runs and return the
individual with highest fitness as the solution. The outputs of all GP
models are clamped using target-specific limits as shown in Tables 3
and 4. This ensures that the calibration parameter values produced by
GP models are physically plausible. For instance, negative parameter
values are physically impossible and the maximum values depend on
the material. We generate 30 hybrid MD2M by combining the three
models from the ith SR run for each target and calculate the SMSE for
training and testing sets.

1 We also ran SR experiments to instead predict the transformed parameters
u, v, w but found that the results were significantly worse.

2 In this context it is important to point out that the variable nodes in the
leaves of trees implicitly contain a scaling coefficient (¢; * x;). This is counted
as only one node in this work while it would be counted as three nodes in
most other GP systems.
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// x: vector of inputs

(x_t) // t = 1..tests
(y_t) // t = 1..tests
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parameter vector of length dim

// each y_t is a time series of measurements

Inputs: Model: MD2M(x, theta)
// theta:
Matrix of inputs: X =
List of targets: y =
Output: Hybridized model g(x) = MD2M(x, theta: f(x))

P = Init(popSize)

for g =1
fitness =

for k = 2

// each individual is a vector
// of expressions encoded as trees

. maxGenerations

[ Evaluate(MD2M, y, X, individual))
for each individual in P]

P = order P by descending fitness

P_next[1] = P[1];

. popSize

pl = Select(P)

p2 = Select(P)

child = new empty vector of dim expressions

for treelndex = 1
if rand() < crossoverProbability

child[treeIndex] = Crossover(pl[treeIndex], p2[treeIndex])

else

// copy best individual

// select two parents with tournament selection

. dim

child[treeIndex] = rand() < 0.5 ? pl[treelIndex]

if rand() < mutationProbability
Mutate(child[treeIndex])

end // for all components
P_next[k] = child

end // for population

P = P_next

end
return P[1];

// return individual with best fitness

: p2[treeIndex]

Fig. 4. Pseudo-code for the multi-tree GP algorithm to evolve the extensions for the MD2M model. Individuals contain multiple expression trees, one for each element of the
parameter vector 6. The crossover and mutation act independently on the components of individuals.

Table 3

GP parameters for SR as part of the explicit approach.
Parameter Value

Pop. size 300

Generations 250

Max. length A:25B:35C:20
Max. depth 8

Initialization PTC2 (Luke, 2000)
Selection Tournament (size 3)
Recombination Sub-tree crossover (90% internal nodes)
Mutation Probability 15%

Clamp predictions
Fitness
Replacement
Function set
Terminals

Select randomly:

For a random parameter: x < x + N (0, 1)

For all parameters: x « x + N(0,1)

Change the symbol of a random node

Change a random variable node

A :[0..150], B : [0..150],C : [0..1]

Sum of squared errors (for A, B,C predictions)
Generational with one elite.

{+, —, X, +, exp(x), log(x)}

50% variables, 50% numeric parameters

Variables: {temp, ¢, log,,(¢)}
Numeric parameters ~ U(-20,20)

4.4.2. Implicit approach

We use tree-based GP with generational replacement with elitism.
As described above, each individual contains three trees (u, v, w). Trees
are limited to 25 nodes and a maximum depth of 10 for each compo-
nent. Our GP system initializes trees randomly using PTC2, whereby
for each leaf it first randomly determines the leaf type: variable or
parameter. All variable nodes always include a scaling factor sampled
randomly from N(0,1).> The parameters are sampled randomly from

3 This is the default of the GP system used. This increases the number of
parameters in the SR models and can be helpful or detrimental for fitting. We
have not analysed the effects of removing scaling parameters for variables.

Table 4
GP parameter settings for the implicit approach.
Parameter Value
Pop. size 5000
Generations 250
Max. length 25
Max. depth 10
Initialization PTC2
Selection Tournament (size 7)
Recombination Probability 30% for each tree of an individual
Sub-tree crossover (90% internal nodes)
Mutation Probability 15% for each tree of an individual

Clamp predictions
Fitness
Replacement
Function set

Select randomly:

For a random parameter: x « x + N(0, 1)
For all parameters: x < x + N(0,1)
Change the symbol of a random node
Change a random variable node

u: [-15.0],0 : [-15.15],w : [-15..0]
SMSE (Eq. (6))

Generational with one elite.

{+, —, X, +, exp(x), log(x)}

Terminals 50% variables, 50% numeric parameters
Variables: {temp, ¢,/0g,(¢)}

Numeric parameters ~ U(-20,20)

U(-20,20). The GP parameter settings used for the implicit approach
are given in Table 4.

5. Results

Fig. 5 visualizes the simulation outputs when A, B, C are calculated
via interpolation, the implicit, and the explicit model. Only the 11 hot
compression tests from the testing set are shown. For the implicit and
the explicit model, the model with best training SMSE from the 30
runs is used. A systematic deviation for small kf values is apparent for
all methods, which is due to a systematic bias of the MD2M. It is not
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Fig. 5. Scatter plots for predictions over measurements for interpolation (left), the explicit (middle), and the implicit (right) approach. The implicit approach produces a better fit

for high stress values.
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Fig. 6. Box-plots for the average MSE over 30 repetitions for training and testing sets. Not shown: twelve outliers for the explicit method (training: 2, test: 10).

possible to calibrate the MD2M to improve the simulation results for
small kf values even with CMAES.

Fig. 6 illustrates box-plots for the average training and test MSE val-
ues achieved by both methods over 30 repetitions. The implicit method
has smaller MSE values on average on the training and testing sets. Ad-
ditionally, the variance for the implicit method is much smaller than for
the explicit method. The non-parametric Brown-Mood median test (for
samples with different variances) indicates to reject the null-hypothesis
of equal medians for the training set (p-value = 0.0001792) and for the
testing set (p-value = 1.183-10~%7). For the optimized parameter values
(CMAES) the average test MSE is 13.58 MPa? (RMSE=3.69 MPa), for the
interpolated values it is 14.35 MPa? (RMSE=3.79 MPa).

The median MSE values for each test for the hybrid models pro-
duced by 30 independent runs of the explicit and implicit method are
collected in Table 5. The implicit method has smaller MSE values than
the explicit method for the training and the testing sets. For com-
parison, the median MSE values achieved with optimized parameters
(CMAES) and with interpolation are given as a reference. The CMAES
runs reliably converged to the same solutions and give an indication
of the best possible MSE values that can be achieved when using the
MD2M.

Instead of learning a model we can also interpolate A,B,C from the
optimized parameters for the compression tests in the training set. We
found the best results with linear interpolation along the temperature
dimension. For this we calculate the parameters for each test from the
values found for lower and higher temperatures. The results of linear
interpolation are shown in the interpolation column in Table 5.

Summarizing the results, we found a better model (with on average
a smaller SMSE) using the implicit method, than with the explicit
method. With increasing strain rate, the fit achieved with the explicit
method gets better. For the highest strain rate, the explicit method
produces a better fit for 5 of 7 tests. Linear interpolation works well
and produces even better results than the implicit method. However,
interpolation does not give us a simple formula to calculate A,B,C.

Egs. (7)-(9) show the resulting set of expressions for u,v and w
produced using the implicit method and having the best performance
on the test set after algebraic simplification. To determine A, B and
C, the back-transformation as shown in Egs. (10)-(12) is required,

whereby clamp(x,/,u) returns min(u, max(/, x)). The models identified
by GP are non-linear in the input variables (T',¢) and very short.
Most of the parameters are linear which facilitates interpretation of
the formula. The formulas identified by the explicit approach found
in Kabliman et al. (2019) had a similar complexity, because the tree
size restrictions for both algorithms were similar.

u(T, @) = —1og(0.11 T + 3.734 ¢ — 17.34) — 0.069 log(¢) )

o(T) = — 4.35 log(T) + 4.938 (8
w(T, @) = —13.708 log(¢) T~! — 10205 log(¢) T2 + 13675T 2

+ 0.777 log(¢) — 0.8657 9

A(T, ¢) =exp (—clamp(u(T’, ¢), —15,0)) (10)

B(T, ¢) =exp (clamp(v(T), 15, 15)) A(T, @)~ 1)

C(T, ¢) =exp (clamp(u(T, ¢), ~15,0)) AT, ¢)”' (12)

Finally, the predicted (A, B, C) values for the tested range of temper-
atures and strain rates are shown in Fig. 7 to visualize the correlation
with the processing parameters.

6. Discussion

The goal of the present study was to extend the physics-based
constitutive model using GP and SR for predicting of unknown relations
of the calibration parameters to the processing conditions. We showed
that it is possible to evolve short formulas using two (explicit and
implicit) methods. However, there are several caveats that we want to
discuss below and plan to address in future work.

6.1. Comparison to classical interpolation methods

Instead of finding a model for the calculation of the calibration
parameters it is possible to use linear or cubic spline interpolation.
In fact, linear interpolation along the temperature dimension produced
better fitting results than the model. However, the equations produced
by GP are more attractive compared to interpolation, since they have
only a few parameters and are easily interpretable. For example the



G. Kronberger et al.

Table 5
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Median MSE values over 30 runs for the explicit and implicit method for the training and testing sets. The MSE
values for CMAES and interpolation are shown as a reference value as they are indicative of the best achievable

value for the MD2M.

Temp @ CMAES Interp. Explicit Implicit
[° Cl [s7] MSE [MPa?] MSE [MPa’] MSE [MPa’] MSE [MPa’]
375 0.001 9.44 9.71 22.23 11.48
400 0.001 12.70 12.95 21.11 14.63
450 0.001 14.99 15.81 28.55 18.31
475 0.001 14.04 14.46 33.87 17.19
500 0.001 14.94 16.69 26.34 21.54
350 0.01 7.76 11.79 10.44 10.58
400 0.01 6.23 6.20 10.70 8.33
425 0.01 8.38 8.66 12.02 9.64
475 0.01 10.71 10.96 13.92 12.22
500 0.01 13.37 13.87 23.63 16.20
350 0.1 7.88 8.13 10.41 9.79
Training 375 0.1 9.61 17.50 14.73 11.56
425 0.1 6.31 8.02 8.65 8.03
450 0.1 3.85 3.95 5.66 4.79
500 0.1 7.88 8.74 9.63 11.09
375 1 7.82 8.19 11.27 10.04
400 1 6.54 7.01 7.88 7.94
450 1 4.89 4.95 5.25 7.29
475 1 4.45 4.57 4.76 6.57
350 10 43.58 45.70 50.92 50.81
400 10 38.07 38.45 38.54 38.57
425 10 38.86 39.11 39.14 40.08
475 10 31.05 31.24 31.41 33.53
500 10 18.59 19.15 20.49 22.60
Avg 14.25 15.24 19.23 16.78
350 0.001 17.07 18.39 41.24 21.59
425 0.001 14.43 15.24 21.81 16.76
375 0.01 5.92 6.73 9.38 9.21
450 0.01 8.99 9.15 11.44 10.50
400 0.1 5.07 5.94 5.83 6.43
Test 450 0.1 2.38 2.51 2.86 3.53
350 1 9.94 12.42 81.95 15.11
425 1 6.12 7.00 8.52 7.66
500 1 3.78 4.00 4.68 6.22
375 10 42.98 43.50 45.62 44.47
450 10 32.77 32.93 32.95 34.65
Avg 13.59 14.35 24.21 16.01

interpolation map for parameter A has 24 coefficients while the best
model (Eq. (7)) has only four coefficients. The expressions for the three
calibration parameters can be combined easily with the expressions of
the M2DM.

6.2. Runtime and convergence

For the explicit method, the runtime for one CMAES run was
approximately 6 hours (10 min for each of the 35 tests) and the runtime
for SR was just a few minutes, as there were only 24 training points.
Linear interpolation is computationally very cheap therefore much
faster than SR, but it also requires the same optimization runs with
CMAES. The implicit method is computationally much more expensive
because each GP fitness evaluation requires a separate simulation run.
The runs took approximately 45 days on average single-threaded. Con-
cerning runtime the explicit method is therefore much better than the
implicit approach. The implicit method however provides more options
for the evaluation of the fit and led to significantly more accurate
models. The runtime can be reduced through parallelization of the
simulation runs. We cannot definitively state whether more runtime for
the explicit approach would improve the results, because longer runs
were not tested. However, we analysed the convergence of CMAES runs
and observed that it reliably converged to the same points with the
parameters that we have chosen. Therefore, we believe it is unlikely
that much larger population sizes or more generations would have
improved the results for CMAES. The runtime of CMAES is the main
contributor to the total runtime for the explicit approach so increasing
the number of generations for SR would increase total runtime only by
a small percentage.

6.3. Combination of models

The implicit approach directly evolves a set of models that pro-
duces a good prediction in combination, while the explicit approach
evolves each model independently. To create 30 hybrid models for
evaluation, we used the three models from the first run for the first
combined model, the three models from the second run for the second
combined model and so on. The finally selected combined model is the
combination with the best performance (SNMSE) on the training set.
However, from the 3*30 individual models, we could also create all 90
combinations with minor overhead. This could potentially increase the
chance to build and select a good combination of models, but might
also increase the chance for overfitting.

6.4. Choice of fitness function for SR

One potential reason for the worse performance of the explicit
method is that the chosen fitness function for SR could be inappro-
priate. The implicit method uses the fit for the simulated stress—strain
curve as a fitness criterion and therefore directly optimizes the error
that we measure for the test set. With the explicit method, we build
formulas to minimize the error to the (u,v,w) values produced by
CMAES. In our experiments, we used the sum of squared errors as the
fitness function for this SR step based on the assumption that a formula
with smaller squared error for (u, v, w) also leads to a better fit for the
simulated stress-strain curve Kf(p). Based on our results, we believe
that this assumption does not hold. For example, it may be necessary
to predict a value more accurately as it approaches zero, while for
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350°C 375°C 400°C 425°C 450°C 475°C 500°C

-3 1316 1487 16.58 18.29 20.00 21.71 23.42
-25 1424 16.09 17.95 19.80 21.65 23.50 25.35
-2 1543 17.44 1944 2144 2345 2545 2745
-1.5 1676 1893 21.10 23.27 2544 27.60 29.77
1836 20.71 23.05 2540 27.75 30.09 3244
-0.5 20.62 23.16 25.70 2824 30.78 33.32 3586
0 2489 27.64 3038 33.13 35.88 3863 4137
0.5 3574 3871 4169 4466 47.63 50.61 53.58
1 6882 7203 7525 7847 8169 8490 88.12

log10(¢)
&

350°C 375°C 400°C 425°C 450°C 475°C 500°C

-3 4794 4545 4348 4187 40,55 3943 3847
-2.5 4428 41.99 40.17 38.69 3746 3642 3554
-2 40.87 3876 37.08 3572 3459 33.63 32.82
-1.5 37.62 3569 3416 3291 31.88 31.01 30.26
3435 32,63 31.27 30.15 29.23 2845 27.78
-0.5 3059 29.18 2805 27.12 2635 2569 25.13
0 2534 2445 2372 2312 2260 2216 21.78
05 1765 1746 1729 17.15 17.02 1691 16.82
1 9.17 9.38 9.58 9.76 9.93 10.08 10.22

log10(¢)
N

350°C 375°C  400°C 425°C 450°C  475°C 500 °C

-3 0.00039 0.00031 0.00025 0.00021 0.00018 0.00016 0.00014
-2.5 0.00076 0.00061 0.00051 0.00043 0.00038 0.00033 0.00030
-2 0.00149 0.00122 0.00103 0.00089 0.00078 0.00069 0.00062
-1.5 0.00292 0.00243 0.00208 0.00181 0.00160 0.00143 0.00129
0.00567 0.00480 0.00416 0.00366 0.00326 0.00294 0.00268
-0.5 0.01073 0.00927 0.00816 0.00727 0.00656 0.00597 0.00548
0 0.018%0 0.01678 0.01508 0.01370 0.01255 0.01157 0.01074
0.5 0.02798 0.02583 0.02399 0.02239 0.02099 0.01976 0.01866
1 0.01453 0.01388 0.01329 0.01274 0.01224 0.01178 0.01135

log10(¢)
N

Fig. 7. Predicted values for the calibration parameters A, B, and C.

larger target values we may also allow larger errors. In this case, it
could be better to minimize the relative error. This can be considered an
advantage of the implicit approach, because it frees us from the burden
to select an appropriate fitness function for the intermediate SR step.
It would be worthwhile to study different fitness functions in future
work to gain a better understanding about the effect of this choice on
the overall performance of the approach.

6.5. Implementation effort

The explicit method is easier to implement than the implicit method,
because the separate steps in the workflow only require to call readily
available and well-tuned software components (CMAES, SR tools). For
the implicit method, it is necessary to use a multi-tree GP system or to
adapt a GP system accordingly. Additionally, for the fitness evaluation,
the simulation model has to be implemented or connected to the GP
system. Most GP systems, however, allow this kind of extension.

7. Related studies

The well-maintained GP bibliography (Langdon, 2020) contains
many references to prior work, in which GP has been used for constitu-
tive modelling in particular for predicting stress for various materials.
GP for multi-scale material modelling is extensively discussed in Sastry
(2007). Two early works which describe the application of GP for
the identification of constitutive models are (Schoenauer et al., 1996;
Sebag et al., 1997). The approach described in Schoenauer et al. (1996)
is especially notable as it uses specific operators to ensure that the
resulting models have physical interpretation as elastic, plastic and
viscous components.

Since then GP has been used extensively for constitutive modelling
such as for modelling flow stress for various metallic materials (Bre-
zocnik et al., 2000, 2001, 2002) including aluminium alloys (Sastry
et al., 2004), for modelling stress distribution in cold-formed copper
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alloys (Brezocnik and Gusel, 2004) and X6Cr13 steel (Brezocnik et al.,
2005), for predicting impact toughness (Gusel and Brezocnik, 2006), for
the identification of visco-elastic models for rocks (Feng et al., 2006),
and stress-strain behaviour of sands under cyclic loading (Shahnazari
et al., 2010, 2015), for predicting material properties under hot defor-
mation, in particular for carbon silicon steel (Kovacic et al., 2005), and
a nickel-based alloy (Lin et al., 2017), for predicting the presence of
cracks in hot rolled steel (Kovacic et al., 2011), for modelling tensile
strength, electrical conductivity of cold-drawn copper alloys (Gusel
and Brezocnik, 2011), for prediction of shear strength of reinforced
concrete beams (Gandomi et al., 2013), for formulating the stress—
strain relationship of materials in Gandomi and Yun (2015), and for
predicting fatigue for 2024 T3 aluminium alloys under load (Mohanty
et al., 2015). GP has further been used for predicting non-linear stress—
strain curves (e.g. for aluminium and stainless steel alloys) (Kabliman
et al., 2019; Cevik and Guzelbey, 2007; Schiitzeneder, 2020), predicting
elastic distortional buckling stress of cold-formed steel C-sections (Pala,
2008), predicting residual stress in plasma-nitrided tool steel (Pod-
gornik et al., 2011), and modelling mechanical strength of austenitic
stainless steel alloys (SS304) as a function of temperature, strain and
strain rate (Vijayaraghavan et al., 2017).

An evolutionary method for polynomial regression and the com-
bination with finite element analysis has been used for constitutive
modelling and applied for instance to predict the behaviour of soils
under drained and undrained load conditions in Rezania (2008) and
Ahangarasr (2012). Furthermore, evolutionary algorithms have been
used for the optimization of calibration parameters of constitutive
models in Lin et al. (2015) and optimizing alloy composition using
Gaussian process surrogate models and constitutive models for simu-
lation (Tancret and thermodynamics, 2013). In Mulyadi et al. (2006),
different methods for parameter optimization of a constitutive model
for hot deformation of a titanium alloy have been tested and compared
with the predictions made by artificial neural networks.

All of the papers discussed above describe a from of regression
modelling. In those papers, GP is used for supervised learning to
establish a free-form constitutive model using SR (e.g. Sastry, 2007;
Schoenauer et al., 1996) or alternatively the model structure is fixed
and parameters are optimized using evolutionary algorithms. We are,
however, mainly interested in combining or extending physics-based
models with machine learning models and found only a few papers with
a similar focus in the material science domain.

A hybrid modelling approach using a physics-based model and
neuro-fuzzy evolution has been described and applied for modelling
thermo-mechanical processing of aluminium alloys in Abbod et al.
(2002). The same authors later sketch a similar GP-based approach
in Abbod et al. (2006). This work is similar to the present study, but
there are several important differences. Abbod et al. (2006) used a
simpler physics-based model for flow stress and predicted only three
relevant points in the stress—strain curves (steady-state flow stress, the
relaxation stress, and the relaxation strain) instead of the full curve. The
authors first fit neuro-fuzzy models to the data and only later used GP to
find short equations that predict the output of those models. In contrast
to our approach proposed in the present work, the resulting GP models
are not directly linked to the physics-based constitutive model. Instead,
the pre-calculated features and sub-expressions were derived from the
physics-based model within GP to produce similar expressions.

Versino et al. (2017) have described different methods for physics-
informed SR for modelling of the stress—strain curves. The methods
include addition of artificial data points to improve extrapolation,
constraints (e.g. to force models to be non-negative), seeding of a
GP population with initial solutions based on the physics-based mod-
els, and user-defined features using building blocks derived from the
physics-based models (e.g. non-linear transformations of input vari-
ables). Seeding GP with the physics-based model is similar to our
approach but does not guarantee that the evolved model has the same
structure as the physics-based model. In the conclusions Versino et al.
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(2017) state: [...] model development can [again] be expertly guided by
choosing appropriate building blocks, avoiding functions that might intro-
duce excessive numerical issues. At the same time [...] symbolic regression
presents clear limits. When no experimental data or expert knowledge is
available, the behaviour of obtained models is highly unpredictable, and
unlikely to be rooted in solid physics. [...] Moreover, symbolic regression will
probably return completely different models for different materials, limiting
the re-usability of a result. Additionally, as EAs are stochastic in nature,
there is no guarantee that two runs of the algorithm on the same dataset
will provide exactly the same results, introducing reproducibility problems.
We try to partially alleviate these issues by extending the physics-based
model with GP. This ensures that at least the core of the model remains
unchanged.

Sedighiani et al. (2020) have described a computationally effi-
cient method for the identification of constitutive parameters from
stress—strain curves and demonstrated the method for a number of
models including a dislocation-density-based crystal plasticity model
for steel. They use a genetic algorithm to fit the parameters and
response surface models as surrogate models to save simulations and
reduce runtime. In contrast to the method proposed in this paper, the
method does not produce formulas which relate the constitutive param-
eters to the load parameters. Instead it produces the parameter values
directly. The method could be used to speed-up the first step (parameter
identification) within the explicit approach described below.

8. Conclusions

We used machine learning for extending a physics-based consti-
tutive model, which describes the materials behaviour in terms of
internal state variables. Using GP and SR, we could derive three short
expressions for the unknown dependencies of the model calibration pa-
rameters to known impact variables such as the processing conditions.
As a result, hybrid physics-based and data-driven constitutive models
were formulated. We compared two, explicit and implicit, methods for
derivation of required formulas.

The critical step in the explicit method is the combination of the SR
models for the calibration parameters with the physics-based model.
Even though the individual SR models were able to predict the calibra-
tion parameters accurately for training and testing partitions, they did
not perform well in combination. The implicit method instead directly
optimizes the fit of the hybrid material model, and is able to evolve
a combination of short formulas. Thus, the results have shown that
the hybrid material models produced by the implicit method have
significantly better predictive accuracy on average than the models
produced by the explicit method. Additionally, the implicit method
has a smaller variance. However, the results achieved with traditional
linear interpolation are better than the results obtained by the two
model-based approaches.

We recommend the implicit approach over the explicit approach
for finding formulas. It allows the end-to-end fitting of the simulation
model and does not have multiple intermediate steps of model selec-
tion, where an appropriate fitness function has to be chosen. However,
the implicit approach comes at a significantly greater computational ex-
pense, because more evaluations of the simulation model are required.
In particular, the computational demand is much higher compared to
traditional interpolation methods. To improve the runtime, future work
could try to either improve the explicit approach or try to incorporate
surrogate models instead of the simulation model. However, even with
those improvements it will not be possible to reach similar runtimes as
traditional interpolation methods.

The use of the formulas instead of the calibration parameters might
help to overcome the required regular fitting and reduce the amount
of necessary measurements. Moreover, the main advantage of the pro-
posed approach is that parameters A, B, and C directly depend on the
processing conditions which gives a higher resolution of the calibration
parameter values. The accuracy of the calculated local flow stress is
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therefore higher compared to fixed calibration values. The proposed
approach is of a general purpose and can be applied in other areas,
when the relation of model parameters to impact factors is not well
understood.
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