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ABSTRACT1
This paper presents an open-source simulation framework for evaluating static and dynamic oc-2
clusions in urban environments, focusing on the challenges faced by Connected and Automated3
Vehicles (CAVs). It utilizes SUMO for traffic simulation and Python for ray tracing, enabling4
detailed analyses of occlusion effects without the need for complex co-simulation frameworks.5
Additionally, the framework introduces the observer vehicle type Floating Bike Observer (FBO),6
accounting for the increasing diversity of sensor-equipped vehicles in urban environments and en-7
abling the investigation of further concepts for cooperative perception of CAVs in urban scenarios.8
A case study aimed at providing insights for the accurate calibration of the recently introduced9
Level of Visibility (LoV) metric by exploring further infrastructural and traffic-related influencing10
factors. The results reveal a strong sensitivity of the LoV metric towards traffic volumes and ob-11
server speed. Based on these findings, methodological adaptions of the LoV metric are proposed12
and discussed, such as a demand-dependent adjustment of the LoV scale and the inclusion of fur-13
ther influencing factors into the ray tracing method and subsequent assessment of visibility scores.14
Future work will deal with the optimization of the existing framework and the implementation of15
further applications. Furthermore, the calibration of the LoV metric will be further investigated by16
considering additional relevant infrastructural and traffic-related influencing factors.17

18
Keywords: Floating Car Observer, Floating Bike Observer, Cooperative Perception, Level of Visi-19
bility, Open-Source Framework20
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INTRODUCTION1
Connected and Automated Vehicles (CAVs) have earned substantial research attention over the2
past decade, predominantly focusing on their deployment and performance in highway scenarios.3
The controlled nature of highways, characterized by predictable vehicular behavior and structured4
environments, has provided an ideal testing ground for developing CAV technologies. (1) However,5
the translation of these advancements to urban environments presents a unique set of challenges6
that increase the complexity of the operational design domain and demand further research (2). A7
substantial prerequisite for public acceptance and the deployment of CAVs in urban areas is the8
safe operation and continuous avoidance of accidents involving CAVs and other road users (3).9

Urban scenarios are inherently more complex than highway scenarios due to several fac-10
tors. Firstly, the intricate layout of urban intersections and the dense, chaotic nature of city traffic11
contribute to a significantly more challenging environment for CAVs. Unlike highways, urban ar-12
eas are teeming with static and dynamic occlusions caused by buildings, parked vehicles, and other13
physical barriers. (4) These occlusions obstruct the CAVs’ field of view (FoV) and complicate nav-14
igation and decision-making processes (5).15

Moreover, urban settings involve a high density of vulnerable road users (VRUs), such as16
pedestrians and cyclists, whose behaviors are harder to predict compared to vehicular traffic. The17
presence of these VRUs, along with frequent and complex interactions at intersections, adds an-18
other layer of complexity to the operation of CAVs in urban environments. The chaotic nature of19
urban traffic, combined with the limited predictability of VRU movements, increases the likelihood20
of accidents, making urban scenarios a critical area of focus for further CAV research. (2) Occlu-21
sion, particularly, stands out as a major contributing factor to accidents in urban areas. It poses a22
significant impediment to the safety and efficiency of CAVs by blocking their sensors’ FoV with23
static objects such as buildings and parked cars, as well as dynamic elements like other road users.24
Addressing the challenges posed by occlusion is essential for improving the safety and reliability25
of CAVs in urban contexts. (4, 6)26

The concept of cooperative perception, facilitated by Vehicle-to-Everything (V2X) com-27
munication, has been proposed as concept of mitigating these issues (4, 7, 8). By enabling vehicles28
to share information about their surroundings with other CAVs (Vehicle-to-Vehicle, V2V) and29
the roadside infrastructure (Vehicle-to-Infrastructure, V2I), cooperative perception promises to en-30
hance situational awareness and improve motion planning and decision-making of CAVs in urban31
areas. Furthermore, the use of CAVs and their detection and V2X capabilities has gained attention32
in the field of intelligent transportation systems research. In traffic engineering, this concept is33
commonly referred to as floating car observer (FCO) method and describes the use of extended34
floating car data (xFCD) for urban traffic safety and control applications. (9–11).35

To address the previously mentioned challenges in CAV motion planning and decision-36
making and evaluate solutions such as cooperative perception and further applications such as37
the FCO method, robust simulation frameworks are required since real-world testing of CAVs in38
complex urban environments is still limited. Furthermore, simulation allows for the precise testing39
of various applications and a broad variety of scenarios. When it comes to the use and availability40
of simulation frameworks that take into consideration the previously described influencing factors41
of (cooperative) perception of CAVs, there is a lack of sophisticated open-source solutions that42
eliminate the need for complex co-simulation frameworks.43

This paper is organized into five main sections. While the first one deals with the theo-44
retical background, the second section introduces the methodology of the presented open-source45
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simulation framework. Afterwards, a case study for the evaluation of the simulation framework is1
introduced before the results of the case study are presented and discussed. Finally, a conclusion2
of this work is provided.3

LITERATURE REVIEW4
The theoretical background for this study is presented in the following section. First, related work5
on FCO simulation studies and frameworks is discussed, before further elaborating on the con-6
sideration of occlusion effects in existing FCO studies. Finally, the contribution of this paper is7
presented.8

Related Work9
Wardrop and Charlesworth (12) first proposed the Moving Observer (MO) method in the 1950s,10
which estimated traffic speed and traffic flow based on manual observations of surrounding traffic11
in both driving directions. With sensor technologies allowing vehicles nowadays to gather infor-12
mation about their surrounding, including xFCD with information about the ego vehicle and other13
road users, the originally proposed MO method is now commonly referred to as FCO method. For14
the evaluation of the FCO method, a variety of simulation studies with different methods, frame-15
works and applications of the FCO method have been conducted in the last years. The following16
Table 1 gives an overview of the related work.17

When it comes to the observer vehicle considered in previous work, all studies have focused18
on vehicular traffic modes with private passenger cars being the predominating observer vehicle.19
Czogalla and Naumann (13) and Kühnel et al. (14) furthermore explored the potential of public20
transport vehicles as FCOs. Similarly, the detection of vehicular traffic modes has been considered21
in the majority of previous studies, while Gerner et al. (10) additionally considered the detection22
of VRUs (cyclists and pedestrians).23

In regard to the simulation frameworks themselves, previous studies have proposed differ-24
ent solutions, each varying in complexity and functionalities depending on the application and the25
scope of the study. While microscopic traffic simulators provide information on each road user26
that can be used to further model the data-gathering process of a FCO, they are only capable of27
a 2D representation of the simulated scene. Co-simulation frameworks, on the other hand, offer28
a 3D representation of the simulated scene while introducing additional computational load and29
more effort in setting up the simulation (10). Furthermore, the use of commercial or open-source30
software tools differs between previous studies. While most co-simulation frameworks use SUMO31
as an open-source microscopic traffic simulation, CARLA is used as an open-source 3D simulation32
tool (8, 18). Pechinger et al. (19) presented hardware in the loop simulation framework with the33
microscopic traffic simulation AIMSUN, Simcenter Prescan as a 3D simulation tool, and a vehicle34
computer performing an AV’s perception and motion planning. Frameworks utilizing microscopic35
traffic simulations without co-simulation also use SUMO as main open-source tool, while com-36
mercial software like VISSIM was used by Kühnel et al. (14) or AIMSUN used by Pechinger et al.37
(22).38

Application-wise, the simulation frameworks have been proposed for different use cases.39
With the FCO method originally proposed by Wardrop and Charlesworth (12) for the assessment40
of traffic flows and speeds, it is often applied for traffic state estimation to obtain link-level traffic41
parameters (9, 14, 16, 20) and assess network-wide traffic states (17, 21). Object detection and42
classification is traditionally a computer vision problem, but at the same time a prerequisite for43
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TABLE 1: Literature overview of simulation studies on the floating car observer (FCO) method
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the real-world deployment of the FCO method for traffic efficiency and traffic safety applications.1
Therefore, simulation frameworks that generate a 3D representation of a FCO’s surroundings,2
either as a camera image or a 3D point cloud, are often proposed for this task to eventually be used3
for more vehicle-related applications like motion planning (8, 10, 18, 19). Recently, Pechinger4
et al. (22) introduced a simulation framework for the visibility evaluation of urban intersections to5
investigate the occlusion effect of static and dynamic objects in a FCO vicinity and to evaluate the6
collective perception capabilities of CAV fleets in a broad and general manner.7
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Occlusion Effects1
The occlusion of a FCO’s FoV by sight-obstructing objects limits its ability to detect, classify,2
and track other road users and provide reliable xFCD for further applications. Different studies3
distinguish occlusion into static and dynamic occlusions. While static occlusion represents static4
objects, such as buildings, road signs, urban greenery (trees, bushes), and parked vehicles, dy-5
namic occlusion represents temporary or moving objects such as cars, busses, trucks, bicycles, or6
pedestrians. (11, 22–24) In order to increase the validity of simulation studies that incorporate the7
FCO method, it is therefore important to account for these occlusion effects.8

When it comes to the related work of this study, presented in Table 1, co-simulation frame-9
works allow for the consideration of occlusion effects due to their capability of representing a10
FCO’s vicinity as a 3D scene, which can be used as input to object detection and classification11
algorithms (8, 18, 19). Microscopic traffic simulation frameworks, on the other hand, often only12
consider the effect of occlusions through simplistic assumptions (14) or do not consider it at all13
(15, 17, 21). Gerner et al. (10) consider occlusion effects in their simulation framework by creating14
an artificial 3D point cloud of a scene obtained from a microscopic traffic simulation and using the15
FCO’s perspective of this scene as input for computer vision algorithms to detect other road users.16
Pechinger et al. (22), on the other hand, follows a ray tracing approach based on a microscopic17
traffic simulation to obtain a FCO’s final FoV after considering static and dynamic occluding ob-18
jects. The ray tracing approach generates rays from the center point of a FCO up to a distance of 3019
meters, representing the non-occluded FoV of the FCO. If a ray intersects with a static or dynamic20
object, this intersection is used as the endpoint of the ray. Lastly, connecting the endpoints of all21
rays results in the final FoV of a FCO.22

Furthermore, Gilroy et al. (7) shows that a FCO’s detection rate depends on the level of23
occlusion, reflected in lower detection rates for objects that are visually more obstructed than24
others. They show that detection rates for partially and heavily occluded objects are substantially25
higher for the detection of passenger cars compared to that of VRUs (cyclists and pedestrians).26
This further highlights the necessity of incorporating VRUs in FCO simulation frameworks for the27
evaluation of urban traffic control and traffic safety applications.28

Own Contribution29
The simulation framework presented in this work is based on the previous work of Pechinger30
et al. (22) and has been adapted to address further identified needs and functions. Based on the31
literature review conducted for this study, requirements for the introduced simulation framework32
have been derived and considered during the development of the simulation framework. Four key33
requirements have been identified that reflect the contributions to the research field intended with34
this study:35

As mentioned in the previous section, accounting for both static and dynamic occlusions36
in FCO simulation frameworks is crucial for ensuring the validity of study results. The ray trac-37
ing approach proposed by Pechinger et al. (22) has been recognized as an effective visualization38
method for the final FoV of a FCO, enhancing the clarity of the obtained results.39

Furthermore, the proposed simulation framework emphasizes the consideration of VRUs40
in FCO simulations for evaluating urban traffic control and safety applications. By using a micro-41
scopic traffic simulation, the framework can model various road users, leveraging the capabilities42
of the utilized traffic simulation tool. Additionally, it introduces the observer vehicle type Floating43
Bike Observer (FBO) alongside the FCO. With the availability of sensor-equipped bicycles on the44
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market (25), the proposed simulation framework aims to facilitate simulation studies involving this1
new observer vehicle type.2

Another advantage of the proposed simulation framework is that it eliminates the need for3
a co-simulation framework, thereby reducing the effort required for simulation configuration and4
decreasing the computational load.5

Lastly, the proposed simulation framework relies entirely on open-source tools, utilizing6
SUMO for microscopic traffic simulation and a Python framework for subsequent steps. Addition-7
ally, the simulation framework is available on GitHub1.8

SIMULATION FRAMEWORK9
As described in the previous section, the proposed simulation framework builds upon the work10
of Pechinger et al. (22) and extends this to an open-source simulation framework with additional11
functionalities. While this study focuses on the application of the introduced simulation framework12
as originally proposed, further applications of the framework will be developed and incorporated13
into the framework in the future. The following sub-chapters elaborate on the different modules14
and functionalities of the framework, summarized in Figure 1.15

Input Data16
The proposed simulation framework communicates with a microscopic traffic simulation through17
the use of SUMO and its interface TraCI (Traffic Control Interface) to retrieve the location of every18
static and dynamic road user for each time step of the simulation. Parked vehicles are considered19
static road users, while vehicular traffic, as well as VRUs (cyclists and pedestrians), are considered20
dynamic road users. Additionally, the simulation framework loads shapes and locations of static21
infrastructure elements from Open Street Map (OSM), such as buildings. Furthermore, shapes and22
locations of urban greenery, such as parks and trees, can be obtained from OSM.23

If available, the framework can make use of a GeoJSON file containing information on the24
road space distribution of the considered scene. Used for visualization purposes only, it provides25
information on the locations and shapes of vehicular carriageways, parking areas, bicycle infras-26
tructure as well as pedestrian sidewalks. The additional visualization of the road space has been27
shown to enable a faster understanding of the simulated scene.28

The considered input data is often represented in different coordinate systems, which is why29
a transformation into a common coordinate reference system is performed to ensure the correct30
representation of all utilized geospatial data.31

Configuration Settings32
The Python-enabled simulation framework offers users a wide range of functionalities that can be33
individually configured before initializing the framework. This enables a customized use of the34
offered functionalities, depending on the needs of individual users.35

Within the general settings, users can activate the live visualization of the ray tracing which36
will animate the ray tracing performed by FCOs and FBOs. If the ray tracing visualization is acti-37
vated, users can furthermore decide if the generated rays themselves or only the resulting visibility38
polygon of FCOs and FBOs should be visualized. Additionally, a manual forwarding option is39
integrated, which, when activated, requests a user’s input to proceed to the calculation of the next40

1https://github.com/TUM-VT/FTO-Sim
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FIGURE 1: Methodological Overview of the Proposed Simulation Framework

frame. Furthermore, users can choose to save the animation after the simulation has been per-1
formed.2

Through the bounding box settings users specify the extent of input data loading and the3
spatial boundaries of all further visualizations, enabling the simulation of scenarios with different4
spatial scopes.5

The location of the SUMO simulation’s configuration file and, optionally, a GeoJSON file6
for the visualization of the scenes road space to be utilized by the simulation framework are defined7
in the path settings.8

The warm-up settings ensure an initial warm-up of the microscopic traffic simulation to9
allow for the generation of a reasonable traffic demand within the simulated traffic network before10
activating the ray tracing method.11
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The penetration rates of both FCOs and FBOs can be set individually within the FCO / FBO1
settings. Every generated vehicle and / or bicycle of the microscopic traffic simulation is assigned2
a random number of a uniform distribution ranging between [0,1] and if this number is below the3
defined FCO / FBO penetration rate, the vehicle or bicycle is assigned the vehicle type ’floating4
car observer’ or ’floating bike observer’, respectively. Furthermore the number of rays5
that a FCO / FBO will generate during the ray tracing can be defined.6

Ray Tracing and Relative Visibility7
Based on the provided input data and configuration settings, the simulation framework is initiated8
and performs the ray tracing method for every FCO and FBO. In parallel to the ray tracing, a9
binning map approach is followed to update the visibility count of every bin that is included within10
the FoV of a FCO / FBO for every time step of the simulation. An overview of the working11
principle of the ray tracing method and the relative visibility analysis is given in Figure 2.12

During the initialization phase, the simulation framework obtains the necessary input pa-13
rameters from the loaded input data and configuration settings. Furthermore, a binning map is14
initialized that divides the simulated scene into equivalently sized squares and sets the visibility15
count of each bin to zero. The size of the bins and, with that, the resolution of the following vis-16
ibility analyses (relative visibility and level of visibility) can be individually set by users of the17
simulation framework.18

Once the simulation loop is initiated, the simulation framework will check the vehicle type19
of every vehicle and bicycle within the previously defined bounding box for each time step of20
the simulation. After the initially defined warm-up phase and depending on the defined FCO /21
FBO penetration rates, vehicles or bicycles with the vehicle type ‘floating car observer’ or22
‘floating bike observer’ will be randomly generated and thus activating the ray tracing.23

The ray tracing module will generate the previously defined number of rays descending24
from every observer’s center point up to a distance of 30 meters. The angle between the rays25
will be equivalently sized to generate a non-occluded FoV in a circular form around an observer.26
Subsequently, the rays that intersect with static or dynamic objects are cut to obtain an observer’s27
occluded FoV. Lastly, the endpoints of all rays are connected to create the visibility polygon rep-28
resenting the area within an observer’s total FoV.29

The relative visibility module updates the initialized binning map by increasing the vis-30
ibility count of each cell within an observer’s total FoV by one. In case of overlapping FoV’s31
of multiple observers, the visibility count is still increased by one, thus following the methodol-32
ogy proposed by Pechinger et al. (22). The simulation loop is repeated until the simulation end33
is reached after which the final binning map and visibility counts are obtained. Additionally, the34
visibility counts are normalized by dividing each bin value by the maximum observed visibility35
count. Both resulting binning maps (raw visibility counts and LoV) are saved for further process-36
ing. Finally, a normalized visibility heat map is generated providing a visual representation of the37
spatiotemporal characteristics of the potential data collection process of FCOs / FBOs.38

Level of Visibility39
The Level of Visibility (LoV), as introduced by Pechinger et al. (22), provides a metric for com-40
paring visibility across different scenarios under varying conditions. By converting the raw obser-41
vation counts into an observation rate, defined as the frequency of observations of a bin over time,42
obtained from the observer’s final FoVs, it provides a time-dependent scale for the comparison43
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FIGURE 2: Working Principle of Ray Tracing and Relative Visibility

of different scenarios. Subsequently, the observation rate is categorized into one of five discrete1
LoVs offering a simplified representation of an observer’s visibility conditions. Figure 3 gives an2
overview of the working principle of the LoV assessment.3

Through the initialization phase, the LoV assessment is provided with the relevant input4
parameters and initializes arrays for both the LoV as well as the observation rate.5
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FIGURE 3: Working Principle of Level of Visibility Assessment

The observation rate is then calculated for each bin by dividing the visibility count by the1
simulation time. The maximum possible observation rate is defined in this study as the inverse of2
the simulation step size and, therefore, provides the possibility to account for differences in step3
sizes between different simulations.4

Subsequently, the level of visibility for each bin is determined by assigning the observa-5
tion rate to one of the five discrete LoVs, with the thresholds between different LoVs distributed6
equidistantly based on the maximum possible observation rate. Finally, a heat map of the simulated7
scene representing the assessed LoV for each bin is provided as a visual representation of the used8
metric.9

CASE STUDY10
As suggested by Pechinger et al. (22) after proposing the LoV metric, further investigations are11
necessary for accurate calibration of the metric. On the one hand, the correlation between the LoV12
and the traffic volume is emphasized, since a larger number of observers navigating an area can13
obtain a greater number of observations. The authors anticipate that with increased demand, higher14
LoV categories may be attainable with lower penetration rates, whereas reduced demand might15
necessitate a considerably higher penetration rate. Furthermore, the LoV metric has only been16
investigated for non-signalized intersections so far. The substantial impact of traffic signalization17
on vehicle waiting times and queue formation is expected to have a significant influence on the18
LoV, making signalized intersections an interesting case for further calibration of the metric.19
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The goal of the case study of this work is to contribute to insights for the further calibra-1
tion of the LoV metric, by considering additional traffic-related and infrastructural circumstances.2
To this end, the previously mentioned factors of varying traffic flows, as well as traffic signaliza-3
tion, have been considered. Additionally, the influence of one-way streets leading away from an4
intersection has been identified as an interesting use case for further calibrating the LoV metric.5

Intersection Layout6
The traffic network considered in the case study of this work is an urban signalized four-arm7
intersection located in the city center of Munich, Germany. Figure 4 shows a satellite image as8
well as the corresponding SUMO network utilized for this case study.9

(a) Satellite Image (b) SUMO Network

FIGURE 4: Considered Intersection Layout

The considered urban intersection consists of a one-way street spanning from east to west,10
making the western intersection arm a one-way street leading away from the intersection. The11
northern and southern intersection arms feature one lane per driving direction. Bicycle lanes are12
available for all intersection arms and driving directions, while a row of parked vehicles is located13
between the vehicular carriageway and bicycle path in the northern approaching lane of the in-14
tersection. Further parking rows have been neglected for the SUMO network since they do not15
occlude the visibility between vehicular carriageways and bike paths as they are located between16
bike paths and pedestrian walkways. Pedestrians are not considered in this case study (see Fig-17
ure 4b).18

The considered traffic network, therefore, provides several infrastructural influences for the19
further calibration of the LoV metric: The investigation of a signalized intersection will reveal the20
impact of traffic signalization and its influence on vehicle waiting times and queue formations on21
the LoV metric. Considering a scenario with a one-way street allows for the investigation of a22
further element of urban intersection layouts, besides intersection arms providing lanes for both23
driving directions. Additionally, a one-way street leading away from the intersection (western24
intersection arm) provides further comparability for the evaluation of increased waiting times and25
queue formations at the remaining intersection arms by providing an intersection element where26
these effects do not occur.27
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Traffic Demand1
The traffic demand considered for this case study has been partially obtained from loop detector2
data of the city of Munich. Peak hour traffic on an average weekday (Tue, June 4th 2024) has been3
considered for the vehicular traffic demand, while a generic bicycle demand has been assumed4
due to the lack of data. The following Table 2 shows the peak hour traffic demand for an average5
weekday for the considered intersection of this case study.6

TABLE 2: Peak Hour Traffic Demand considered in this Case Study

vehicle traffic demand bicycle traffic demand
to to

[veh/h] N E S W N E S W

from

N - 198 89 - 70 40
E 43 - 84 358 22 - 38 95
S 56 - 51 23 - 25
W - -

The traffic demand reflects a typical scenario for an urban intersection outside the main7
traffic network. The relatively low traffic volumes result in large time gaps between vehicles and no8
significant queue formation. Additionally, the inflow varies among the intersection arms, indicating9
a main inflow from the eastern intersection approach with about 480 veh/h. The northern and10
southern intersection approach provide a total intersection inflow of 290 veh/h and 105 veh/h,11
respectively.12

The considered traffic demand, therefore, provides several traffic-related circumstances that13
allow for a more accurate calibration of the LoV metric. On the one hand, using real demand data14
allows for the application of the LoV metric to a realistic urban traffic scenario and provides a15
more profound basis for the calibration of the metric. On the other hand, the differences in the16
total intersection inflow of the different intersection arms provide a basis for the investigation of17
the correlation between the LoV and the traffic volume.18

Simulation Scenarios19
In order to obtain insights for the further calibration of the LoV metric, two different traffic demand20
scenarios are considered for this case study. Besides the previously described real traffic demand21
of the considered urban intersection, which is considered the low demand scenario, an additional22
high demand scenario is introduced to further investigate the performance of the LoV metric for23
extremely congested urban scenarios with signalized intersections. For the high-demand scenario,24
all traffic volumes are increased three-fold, leading to significantly lower time gaps between vehi-25
cles and the formation of extremely high queue lengths at the intersection.26

Furthermore, the scenarios were performed with different FCO penetration rates, increas-27
ing incrementally by 10% from 10% to 100%.28

For evaluating the case study, a scenario run time of 270 seconds has been chosen, includ-29
ing a 90-second warm-up phase, followed by a 180-second evaluation phase. For comparability to30
the obtained results of Pechinger et al. (22), the simulation time step has been set to 10 Hz and a31
number of 360 rays has been defined. The short simulation run time has been chosen in order to32
further evaluate the performance of the LoV metric in evaluating scenarios of different run times.33
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RESULTS AND DISCUSSION1
The following chapter presents the results of the case study. First, a visual representation of the2
ray tracing method is provided for both FCOs and FBOs. The results of the relative visibility and3
LoV evaluation are presented for examples of penetration rate scenarios illustrating the trends and4
patterns of the overall results. Based on those findings, proposals for the further calibration of the5
LoV metric will be discussed.6

Ray Tracing7
A visualization for the ray tracing method is provided with the following Figure 5. The rays8
emerging from the center point of an observer are colored in blue when they are unobstructed and9
in red when they intersect with objects. The endpoints of all (unobstructed and intersected) rays10
are then connected to obtain the observer’s visibility polygon, which represents the observer’s final11
FoV.12

(a) Floating Car Observer (FCO) (b) Floating Bike Observer (FBO)

FIGURE 5: Ray Tracing Visualization (red rays intersect objects, blue rays are unobstructed)

The main difference between FCOs and FBOs is the different use of traffic infrastructure.13
While FCOs are bound to vehicular carriageways, FBOs are usually free to use both bicycle paths14
and vehicular carriageways in urban areas. The considered traffic network provides an insight into15
the difference between FCOs and FBOs with its northern intersection approach. While the row of16
parked vehicles blocks the FCO’s view of the adjacent bicycle path, leading to occlusion effects17
and decreased visibility of the VRU infrastructure, the FBO is passing precisely this part of the18
VRU infrastructure. On the other hand, the row of parked vehicles is blocking the FBO’s view of19
the adjacent vehicular carriageway.20

Currently, the same FoV settings are considered for the different observer vehicles with an21
(unobstructed) ray length of 30 meters emerging from an observer’s center point. Future work will22
include a more precise representation of both observer type’s perception capabilities by adjusting23
the ray length depending on the observer type. By considering FBOs in the proposed simulation24
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framework, investigating a wide range of cooperative perception scenarios between different types1
of observer vehicles (in urban areas) is facilitated.2

Figure 6 shows the case of multiple observations of the same area by different FCOs, rep-3
resented by the overlapping visibility polygons of multiple observers. The borders of the visibility4
polygons are highlighted in green.5

FIGURE 6: Overlapping Visibility Polygons of two FCOs

The LoV metric currently considers the visibility as a boolean-type variable with each bin6
being observed or unobserved during a simulation time step. This assumption seems valid regard-7
ing visibility assessment as the goal is to investigate occlusion effects in cooperative perception8
scenarios. Considering the observer’s object classification capabilities, multiple simultaneous ob-9
servations of the same area (ideally from different perspectives) add additional semantic value10
for the correct classification of road users, which should be considered for implementing future11
applications of the ray tracing method incorporated in the proposed simulation framework.12

Relative Visibility13
Heat maps representing the investigated scenario’s relative visibility are created following the pre-14
viously described ray tracing method. Relative visibility means that the obtained visibility counts15
are normalized by the maximum observed visibility count within the investigated scenario. This16
representation of results helps better understand the performance of the LoV metric and thus con-17
tributes to the further calibration of the metric. On the other hand, a comparison between different18
scenarios is not possible with the relative visibility assessment since every scenario yields different19
conditions for normalization. The following Figure 7 shows the relative visibility analysis for a20
single FCO as well as the high-demand scenario with a FCO penetration rate of 50 %.21

The obtained results highlight the influence of traffic lights on the performance of the LoV22
metric. On the one hand, Figure 7a, including a single FCO crossing the intersection from north to23
west, highlights the influence of waiting times due to a signalized intersection. At very low veloc-24
ities vFCO ∼ 0km/h, the area around the observer gets observed for a relatively long time period25
compared to areas that the observer passes with higher velocities. Furthermore, Figure 7b shows26
the relative visibility result for the investigated high-demand scenario with a FCO penetration rate27
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(a) high demand, single FCO (b) high demand, 50% FCO penetration rate

FIGURE 7: Relative Visibility for different FCO configurations.

of 50 %. While the intersection approaches yield comparably high relative visibility scores, it can1
be observed that the visibility is significantly lower for the western intersection arm leading away2
from the intersection. This highlights the underestimation of visibility for one-way streets lead-3
ing away from an intersection. While all intersection approaches experience observer velocities4
vFCO ∼ 0km/h due to the previously described influence of traffic lights, no queues form at the5
western intersection arm during a red phase that would include observer vehicles with velocities6
vFCO ∼ 0km/h.7

Level of Visibility8
Figure 8 shows the obtained results for the LoV analysis. The figure highlights the difference9
between the low-demand and high-demand scenario exemplary for FCO penetration rates of 40 %10
and 90 %, respectively.11

The obtained results highlight the correlation between traffic volumes and the LoV metric.12
The LoV heat maps show, that increased traffic volumes lead to substantially higher LoV scores13
for the same intersection layout. While a penetration rate of 90 % for the low-demand scenario14
leads to most of the inner intersection area resulting in a LoV B, a penetration rate of only 40 %15
for the high-demand scenario already leads to a LoV A for most of the inner intersection area. The16
extreme difference between the considered demand scenarios reveals a high sensitivity of the LoV17
metric towards changes in traffic volume. Additionally, the occlusion effect due to the parking row18
at the northern intersection approach can be observed.19

Furthermore, the difference in total inflow from the different intersection approaches fur-20
ther reveals the correlation between traffic volumes and the LoV metric, which can be seen in21
particular in Figure 8d. While high queues form at the eastern intersection approach, leading to22
comparably low average velocities, a LoV A is obtained for most of the area. The northern and23
southern intersection approach, on the other hand, gain lower LoVs B and C, respectively, due to24
lower traffic volumes and higher average velocities.25

A summary of observation rates for all considered demand scenarios and FCO penetration26
rates is provided in Figure 9. For both demand scenarios, the maximum and the mean observa-27
tion rate have been obtained for the different penetration rates, before generating a sixth-grade28
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(a) low demand, 40 % FCO penetration rate (b) high demand, 40 % FCO penetration rate

(c) low demand, 90 % FCO penetration rate (d) high demand, 90 % FCO penetration rate

FIGURE 8: LoV Comparison for the considered Demand Scenarios

polynomial-fitted curve for each set of observations.1
The results of the high-demand scenario show a rapid increase in the maximum observation2

rate, leading to maximum LoVs A for very low penetration rates of less than 10%. The maximum3
LoV curve saturates as expected at an observation rate of 10 observations per second. In con-4
trast, the oscillation of the curve further signifies the rapid increase of maximum LoV observed5
for the high-demand scenario. With penetration rates of approximately 20%, an almost constant6
observation is achieved for single bins. On the other hand, the mean observation rate for the high-7
demand scenario shows a more steady increase with rising FCO penetration rates, resulting in a8
mean observation rate of approximately 6.5 observations per second for full penetration of FCOs.9

For the low-demand scenario, significant differences compared to the high-demand sce-10
nario can be observed. While the maximum observation rate increases steadily with rising FCO11
penetration rates, a LoV of A can be obtained only for a full penetration of FCOs. The mean obser-12
vation rate for the low-demand scenario generally remains on a comparably low level, increasing13
to a mean observation rate of approximately 3.0 observations per second for a full penetration of14
FCOs.15

The difference in the observed demand scenarios reveals the strong correlation between16
traffic volumes and the LoV metric. While extremely high traffic volumes lead to overly congested17
scenarios and the frequent occurrence of the previously described effect of overestimating the vis-18
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FIGURE 9: Summary of LoV results for the different considered scenarios

ibility for velocities vFCO ∼ 0km/h, low traffic volumes result in a significantly lower LoV. Since1
the low-demand scenario in this case study was obtained from real-work peak-hour traffic data, it2
appears that the LoV metric is unsuitable for real-world cases of signalized intersections with rel-3
atively low traffic volumes without further calibration. Contrary to that, the influence of observer4
velocities vFCO ∼ 0km/h can lead to the metric assigning the best possible LoV A to scenarios5
with relatively low penetration rates, which is signalized by the curve for the maximum observa-6
tion rate for the high-demand scenario. In comparison to Pechinger et al. (22), who found for a7
non-signalized intersection scenario the threshold of the maximum penetration rate to be at ∼ 34%8
for reaching LoV A, the thresholds obtained for the discussed intersection layout and demand sce-9
narios deviate significantly from this threshold. For the high-demand scenario, this threshold is10
∼ 8%, whereas, for the low-demand scenario, the threshold moves to ∼ 98%. Especially consid-11
ering that the low-demand scenario represents a real-life peak-hour demand scenario of an urban12
signalized intersection, the sensitivity of the LoV metric towards traffic volumes q and observer13
velocities vFCO should be taken into consideration for the further calibration of the LoV metric.14

Proposals for Methodological Adaptions of the LoV Metric15
The main goal of the considered case study was to challenge the LoV metric to contribute to its16
further calibration and discuss proposals for methodological adaptions. The chosen intersection17
layout and demand scenarios have challenged the LoV metric as it is currently defined by investi-18
gating challenging scenarios giving new insights into the performance and sensitivity of the LoV19
metric.20

Firstly, the obtained results highlight the correlation between the LoV metric and the traffic21
volume and the need for its further calibration. To overcome the LoV metric’s extreme sensitivity22
to the traffic volume, the maximum possible observation rate and, with it, the LoV scale could be23
adjusted depending on the traffic volume. The maximum of the currently defined LoV scale is24
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represented as the constant observation of a bin, depending on the chosen simulation time step. In1
contrast, a demand-dependant adjustment of the LoV scale would inherently consider that it is not2
necessary to observe an area if no CAV is currently performing any actions in the considered area.3
Furthermore, the maximum of the LoV scale could be adjusted to represent the ideal frequency of4
observations that a CAV needs to perform its actions optimally, which would consider the technical5
needs of CAVs in the LoV assessment.6

Furthermore, the investigation of a signalized intersection scenario has revealed the influ-7
ence of observer velocities vFCO ∼ 0km/h and with it, the systematical underestimation of visibility8
for one-way streets leading away from an intersection. This could be counteracted by considering9
an observer’s velocity to assess the visibility score during the performed binning map approach.10
Instead of defining the visibility of each observed bin as a boolean variable, treating it as a float11
variable would enable the consideration of further influencing factors such as the observer’s ve-12
locity or the distance between the observer and the observed bin. To evaluate this proposal for the13
methodological adaption of the LoV metric, further infrastructural factors have to be investigated.14

Another factor that could be considered for the calibration of the LoV metric is the overlap15
of several visibility polygons. While an overlap does not influence a boolean type visibility count,16
the simultaneous detection of the same object by multiple observers can add semantic value to the17
detection of an object (e.g. for the classification of its type), which could be taken into account by18
treating the visibility count as a float variable.19

CONCLUSION20
This paper introduces an open-source simulation framework incorporating methods for evaluating21
static and dynamic occlusion in urban environments. The framework is designed to model both22
FCOs and the newly introduced FBOs, reflecting the growing diversity of sensor-equipped vehicles23
in urban areas. The framework’s SUMO and Python-based open-source architecture ensures the24
accessibility and adaptability for various applications. By not relying on complex co-simulation25
frameworks, but still considering complex occlusion effects, the framework ensures easier deploy-26
ment and handling. First applications of the considered ray tracing method have been implemented,27
such as relative visibility assessment and the LoV metric, proposed by Pechinger et al. (22).28

The performance and sensitivity of the LoV metric have been evaluated through a case29
study, contributing to further insights for its accurate calibration by highlighting its sensitivity30
to traffic volume and observer velocities. Potential methodological adaptions of the LoV metric31
have been discussed such as a demand-based adjustment of the LoV scale and the consideration32
of further influencing factors when assessing the visibility count. The discussed influencing fac-33
tors include observer velocity, detection distances, and the simultaneous detection of objects by34
multiple observers.35

Future work will include the further development and refinement of the introduced open-36
source simulation framework and the calibration of the LoV metric. Further applications of the37
ray tracing method, such as the provision of xFCD and use for traffic management applications38
or occlusion-aware motion planning for CAVs, will be developed and provided in the future. The39
calibration of the LoV metric will be achieved by investigating further infrastructural and demand-40
related sensitivities. Additionally, the framework will be extended to explore cooperative percep-41
tion scenarios between FCOs and FBOs. While the ray tracing method has been implemented for42
FBOs already, the framework’s applications do not consider it yet. Furthermore, other observer43
models besides the center point model will be integrated to better simulate real-world perception44
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capabilities.1
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