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Highlights
Current diseases are defined by a
phenotype rather than by a disease
mechanism. Thus, we hardly under-
stand any disease mechanistically
and treat symptoms chronically with
low precision.

When a mechanism is described, it often
involves single targets (e.g., rare, typically
monogenic diseases).

In the case of complex diseases, the
current ‘one disease–one target–one
drug’ dogma will hardly yield any result
For complex diseases, most drugs are highly ineffective, and the success rate
of drug discovery is in constant decline. While low quality, reproducibility
issues, and translational irrelevance of most basic and preclinical research have
contributed to this, the current organ-centricity of medicine and the ‘one
disease–one target–one drug’ dogma obstruct innovation in the most profound
manner. Systems and network medicine and their therapeutic arm, network phar-
macology, revolutionize howwe define, diagnose, treat, and, ideally, cure diseases.
Descriptive disease phenotypes are replaced by endotypes defined by causal,
multitarget signaling modules that also explain respective comorbidities. Precise
and effective therapeutic intervention is achieved by synergistic multicompound
network pharmacology anddrug repurposing, obviating the need for drugdiscovery
and speeding up clinical translation.
when in fact, their causes are small
signaling networks.

Signaling pathways are currently de-
fined by highly curated mind maps
capturing our current understanding
of (patho)biology. However, many
pathophysiologically relevant signaling
mechanisms are likely unknown and
can be revealed by unbiased de novo
interactome modules.

These knowledge gapswill be overcome
by systems and network medicine,
redefining what we call disease, how
we diagnose it, and how we cure, not
treat, it.
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The one symptom–one target–one drug problem
For several drugs already on the market, population-based studies fail to show patient-relevant
benefits [1]. In fact, the ten highest-grossing drugs in the USA fail to improve the conditions for
most patients, leading to high numbers needed to treat (NNT) [2]. In high-risk patients, the
NNTs are smaller, but the problem persists [3]. Thus, a move from chronically treating
symptoms towards a more precise and ideally curative therapy, effective for almost every patient,
is of utmost importance.

Since the 1950s, we have observed a constant decline in our efficacy to translate biomedical
research into successful drug discovery, coined as Eroom’s law [4–6]. Overcoming this requires
entirely new approaches to medicine and the acknowledgment of at least two key factors
contributing to this innovation roadblock. One factor is the irreproducibility of preclinical and
basic research [7], where poor study quality, such as lack of statistical power and positive
publication bias by scientific journals, are the main contributors [8,9]. The second factor is
our conceptual knowledge gap concerning most current disease definitions. Except for infec-
tious and rare diseases, chronic disease definitions are based on phenotypes (i.e., symptoms
manifesting in an organ). In fact, medicine is currently structured primarily in an organ-by-organ
manner. Moreover, our preclinical animal models of disease can often only mimic these symptoms,
without any evidence that the mechanism causing the symptoms in the animal model matches the
human disease [10–15]. Therefore, we lack a mechanistic understanding of the causes of disease
and hence we chronically treat symptoms but do not cure the disease.

For example, high blood pressure is, in 95% of the cases, diagnosed as primary hypertension,
meaning that the blood pressure is elevated, but we do not knowwhy. These patients are treated
with blood vessel-dilating drugs, such as thiazide-type diuretics or calcium channel blockers,
targeting mechanistically unrelated proteins until the symptom, elevated blood pressure,
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disappears. However, the molecular cause of hypertension remains unknown; thus, we do not
treat high blood pressure but aim to prevent myocardial infarctions and strokes. Nevertheless,
although most patients at risk are successfully treated with antihypertensives, they will still
experience these adverse outcomes. Thus, our current treatment options for complex diseases
are neither curative nor precise and require chronic treatment [16]. Noteworthy exceptions
to these limitations and shortcomings are, again, rare diseases, where a precise, typically
monogenetic, mechanism is known.

From phenotype and symptom to endotype and cause
The fundamental and conceptual breakthrough to redefine diseases is to move from symptom
and organ to mechanism and cause, as conceptually shown in the network of all human
diseases, the diseasome (see Glossary) (Figure 1) [17,18]. In the first version, diseases were
linked by joint risk genes in a scale-free network and clustered by several shared risk genes.
These clusters of diseases thus hinted towards a common causal mechanism [17]. Later, other
multiscale disease networks were formed based on shared symptoms, drugs, or comorbidities
[19]. Interestingly, most disease clusters contain disease phenotypes of different organs,
which substantiates the notion that organ- and symptom-based disease classifications are
obsolete and rather obstruct innovation.

Thus, these phenotypes are no longer considered the disease definitions but rather the symptoms
of their underlying common causal molecular mechanisms. Once elucidated, these mechanisms
will become the new disease definitions, the endotypes. These endotypes are constructed from
associated risk, driver genes, proteins, and drug targets to form a de novo disease signaling
network ordiseasemodule [19]. One disease phenotype or symptommay be caused by different
mechanisms that may be acting together (Figure 2).

The validity of these disease modules is essential for precision medicine because they represent
new targets for both: (i) diagnostic strategies for patients-at-risk identification and subsequent
mechanistic stratification, and (ii) therapeutic strategies to modulate the disease module by
network pharmacology. Once all current disease phenotypes are fully endotyped and mecha-
nistically understood, they will segregate into several distinct molecular disease mechanisms and
endotypes [20]. Consequently, many common or complex disease phenotypes will split up into
several rarer and less complex endotypes.

Unlike in monogenetic rare diseases, endotypes are caused by a signaling network’s dys-
regulation rather than a single protein [19]. Given the redundancy and resilience of signaling
networks [21], the current practice of modulating a single target per disease explains why
the ‘one disease–one target–one drug’ approach has been insufficient. Even combination
therapy with drugs targeting single, mechanistically unrelated, and noncausal proteins is
no exception to this. Instead, concerted network modulation with multiple mechanistically
related drugs will be much more effective [22].

Defining these signaling modules is not trivial, despite the availability of extensive literature and
highly curated signaling pathway databases such as Kyoto Encyclopedia of Genes and Genomes
(KEGG)i [23] orWikiPathwaysii [24] (see Outstanding questions). These databases are primarily
collections of manually curated pathway maps that represent our current knowledge of molecular
interactions. Importantly, they fail to reflect that biological pathways are not isolated but are
connected in different functional contexts. Moreover, curated pathways imply that all its compo-
nents are in direct contact, which is not the case. Instead, signaling elements such as cAMP and
calcium are typically distributed in different parts over several subcellular compartments. Indeed,
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Glossary
Basket trials: clinical trials that focus
on patients with a single genomic
alteration or type of alterations in
multiple, organ-independent, or
so-called ‘histology-independent’ tumor
types, allowing the inclusion of rare
cancer types for precision intervention
[112]. Umbrella and basket trials are
novel examples of mechanism-based,
genomically driven therapeutic
interventions, mainly used for cancer.
Umbrella trials still adhere to an
organ-based focus but stratify patients
and their therapy according to predicted
responses using genomic markers
[113].
Combination therapy:
pharmacological treatment where drugs
acting symptomatically on unrelated
targets are combined, independently of
the causal disease mechanism.
Combination therapies are at best
additive and will not show
pharmacological synergy.
CUSP9v3 Treatment Protocol:
clinical trial assessing the safety of nine
repurposed drugs combined with
temozolomide to increase its efficacy in
glioblastoma patients.
Disease cluster: in the diseasome,
diseases cluster based on shared risk
genes. Disease clusters are
mechanistically defined or endotyped by
genes and proteins, creating a disease
signaling network.
Disease module: localized
perturbations in a protein–protein
interaction network that characterize
diseases. In the disease module,
proteins mechanistically define
pathological signaling by their
neighborhood in the interactome.
Diseasome: the human disease
network where nodes represent
diseases and are linked to each other if
they share a common genetic
component. The size of the nodes is
proportional to the number of
disease-associated genes.
Driver mutation: a mutation that
provides a growth advantage on the
carrying cells and has been positively
selected during the evolution of the
cancer tumor.
DrugBank: database resource
containing information about drugs and
drug targets.
Endotype: new disease definition,
defined by a causal disease mechanism
or disease module rather than simply by
symptoms.
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Figure 1. Illustration of mechanistic disease clusters in the human disease network. The upper half of the figure
shows the human disease network, adapted from [17]. In the human disease network (i.e., the diseasome), diseases are repre-
sented by nodes and connected by edges when they share disease-associated risk genes [17,18]. The size of the disease
nodes is proportional to the number of disease-associated genes. Nodes are colored according to their primary disease phenotype
shaping mechanism-based disease clusters, defined by shared risk genes such as a cluster of oncological diseases (light blue)
or a cluster of retinal diseases (purple). Moreover, disease-heterogenous clusters can also be appreciated, such as the reactive
oxygen species (ROS)/cGMP (ROCG) cluster of metabolic-cerebro-cardiovascular disease phenotypes [76].
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recent developments in cAMP signaling have highlighted the existence of nanodomains, although
still from a canonical signaling pathway point of view [25,26]. Moreover, these signaling elements also
interact with different pathways (e.g., the cAMP–cGMP crosstalk) and form hybrid domains
138 Trends in Pharmacological Sciences, February 2022, Vol. 43, No. 2
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Interactome: complete set of
molecular interactions within a cell
(i.e., gene–gene, gene–protein,
protein–protein, etc.).
I-PREDICT study: personalized
cancer therapy study that uses genomic
testing on primary tumor tissue to
determine the best therapy for the
patients.
KEGG: database resource for biological
interactions. The data available range
frommolecular and cell-level interactions
to ecosystems.
Network pharmacology:
pharmacological treatment where two or
more drugsmechanistically targeting the
same causal disease module or
signaling network are combined,
synergistically acting on key network
proteins.
PISCES: server tool for culling protein
sequences from the Protein Data Bank
that provides the longest list of the
highest resolution structures according
to sequence identity and structural
quality criteria.
Retinal dystrophies (RD): a class of
retinal diseases that cause degeneration
of the outer retina.
Seed nodes: clinically validated, that is,
disease-relevant genes or proteins used
as a guided search for modules in
gene–gene and protein–protein
interaction networks.
STRING: database of known and
predicted protein–protein interaction.
WikiPathways: open scientific
database of biological pathways and
interactions.
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Figure 2. Endotyping disease clusters for common mechanism identification guides precision medicine.
Schematic representation of the principle by which multiscale disease networks and the clusters therein lead to the
identification of common mechanisms. In the illustrated example, a cluster of disease phenotypes (pie charts), that is, the
current organ-based disease definition, is formed by shared risk genes, shared drugs, shared symptoms or comorbidity,
or several of these (multiscale). These shared features form connections (‘edges’) between the diseases (‘nodes’). Each
phenotype is then endotyped through genes and drug targets, leading to different endotypes. Eventually, these endotypes
will replace the previous phenotypic disease definition, allowing for precision diagnosis and intervention.
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composed of elements fromdistinct signaling principles. Nevertheless, subcellular compartmentaliza-
tion and even their transition over time matter in defining disease modules [19].

Thus, for pharmaco-therapeutic purposes, not only the present concept of disease but also of cellular
signaling must be revised. Classical, canonical, or curated pathways are close to meaningless if we
want to define disease modules. Leveraging the power of networks in the context of complex dis-
eases requires conceptually novel experimental and, above all, computational approaches that
have been uncommon to pharmacology.

How to construct disease modules
To construct de novo disease modules, we need to discern between methods using existing
molecular interaction networks, such as, for instance, protein–protein interaction (PPI) or gene-
regulatory networks, and methods that infer context-specific networks directly from disease-
specific data. Such networks can be dissected using community detection or network module
Trends in Pharmacological Sciences, February 2022, Vol. 43, No. 2 139
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identificationmethods. Recently, the DREAMchallenge has demonstrated that suchmethods are
generally suited to discover disease modules [27]. Alternatively, de novo network enrichment is a
popular strategy in which omics data such as gene expression or single-nucleotide variants are
projected onto a network for extracting disease modules enriched with genes or proteins for
some physiologically relevant measure, such as differential gene expression or high somatic
mutation load [28]. Although these methods hold great promise for disease module detection,
context-specific networks are urgently needed to improve their performance [29]. Network
inference methods use bulk or single-cell transcriptomics together with other omics data to
determine associations between genes, typically using a (partial) correlation, (conditional) mutual
information, or machine learning approaches [30]. The inferred networks offer insights into
disturbed gene regulation within signaling pathways in diseases and lead to the identification of
putative drug targets and experimentally testable hypotheses. In the context of complex age-
related diseases, experimental approaches need to focus on the study of homeostasis processes
and the identification of key ubiquitous signaling proteins that are sensitive to protein activity or
abundance changes. Manipulation of protein abundance at those ‘tipping points’ may steer
networks to a more physiologically effective state and slow disease emergence [31]. For instance,
computational models assisted in determining large-scale network behavior in complex retinal
degeneration [32]. Notably, disease modules require clinical proof-of-concept and pharmacological
validation.

Opportunities for rational drug repurposing
Networks provide a broader selection of pharmacologically relevant targets. If a preferred target is
not druggable, a neighboring target protein may compensate for this. Moreover, with 4196
approved drugs (of which 2700 are small molecule drugs; DrugBankiii [33]), it is quite likely
that at least one drug is already available for any given causal disease module, obviating the
need for time-consuming drug discovery and development. Based on the PISCESiv dataset,
registered drugs bind with high affinity to conserved binding pockets of, on average, 39 proteins
[34,35]. Thus, small-molecule drugs are highly promiscuous and can even be repurposed from
one to many other target proteins with similar binding sites. Repurposing registered drugs with
a known safety profile may be so powerful that it may rapidly address therapeutic needs in
many different causal disease modules and outcompete classical drug discovery. Thus, we
may already have almost all the drugs we need [36,37]. Rather than relying on serendipitous
drug repurposing or high-throughput screening of small compounds to identify candidates,
computational approaches leverage molecular networks and known drug–target interactions.
Such methods first need to identify suitable drug targets that lie in one or several disease modules.
Here, prior knowledge of a disease can be incorporated to guide the search (i.e., in the form of
seed nodes) [38]. Subsequently, drugs targeting the disease module can be extracted. For exam-
ple, the web application CoVexv integrates drug–target interaction and PPI data to facilitate drug
target discovery as well as the search for repurposable drug candidates for severe acute respira-
tory syndrome coronavirus 1 (SARS-CoV-1) and SARS-CoV-2 using known virus–host PPIs, as
well as transcriptomics data [39]. An advantage of identifying disease modules is that multiple
actionable drug targets can often be identified and leveraged for the development of network
pharmacology therapy [40].

Curative network pharmacology
Network pharmacology approaches use two or more drugs acting mechanistically on the same
causal signaling disease module, thus targeting key network proteins in a synergistic manner
(Figure 3). This allows network pharmacology-based treatments to substantially lower the dose
of each drug as compared with monotherapy and still achieve the same or even amore significant
therapeutic effect while reducing: (i) side effects of each individual drug, and (ii) possible unwanted
140 Trends in Pharmacological Sciences, February 2022, Vol. 43, No. 2
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Figure 3. Differences between a
mechanistic network pharmacology
and a symptomatic combination
therapy drug intervention. In symptom-
based combination therapy (upper panel),
different drugs are combined targeting
symptom phenotypes, independently of
the causal disease mechanism. On the
contrary, in curative mechanism-based
network pharmacology approaches (lower
panel), low-dose drug combinations target
the causal disease mechanism and
reach a synergy effect. The network
pharmacology example shows how in a
protein–protein (gray nodes) interaction
network, drugs are combined targeting
proteins (pink) that are causal of the
disease mechanism. The triple drug
therapy shown thus interacts with key
components within the same disease
module or signaling network.
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drug–drug interactions [41–43]. Notably, the concept of network pharmacology must not
be confused with combination therapy (Figure 3), where drugs acting symptomatically on
unrelated targets are combined, but none of them acts on a causal disease mechanism.
Such combination therapies are, at best, additive and will not show any pharmacological
synergy. Moreover, drug combinations can easily get out of control when polypharmacy
results in four or more drugs being prescribed with unwanted drug–drug interactions and
side effects [44]. In complex diseases that harbor robust biological networks, such as
cancer, single target intervention has been proved ineffective and insufficient [45,46]. In
these cases, network pharmacology approaches are instrumental, since they can simulta-
neously target two ormore proteins within disease signalingmodule(s) [47]. In the clinical pharmaco-
logical workflow of network pharmacology, the reliable detection of a disease-relevant dysfunction in
the signaling module is essential.

Biomarkers for molecular pathology and patient stratification
The challenge for successful therapy is not to select the right treatment but rather the right pa-
tients (i.e., a subset of patients that present both the phenotype and the endotype). Only those
will most likely benefit from a specific network pharmacological intervention. Biomarkers thus be-
come a critical diagnostic tool in disease identification, indicating a biological state and resulting in
precision medicine [48–50]. Currently, biomarkers are mainly used as correlative surrogates or
omics-based indicators. Less frequently do current biomarkers represent validated risk factors.
Trends in Pharmacological Sciences, February 2022, Vol. 43, No. 2 141
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Moreover, a complete functional analysis of a patient’s activity state of a causal disease module
has so far not been reported [48]. Thus, predictive biomarkers that guide precision medicine,
and accurately predict the response to a given treatment, represent a crucial knowledge gap be-
tween mechanism-based disease definition and clinical intervention [51,52]. Currently, this gap
causes inefficient or imprecise drug therapy and clinical trials with a high failure rate.

Early adopters and proof-of-concept
The precision medicine approach reviewed earlier incorporates, to different degrees, signaling
modules as disease definition and a low-dose multidrug therapeutic approach to synergistically
target several proteins within these modules [41,53–56]. Ideally, this strategy will be implemented
in patients stratified not only based on symptoms but also based on the diagnosis of a dysfunc-
tion of the defining disease module (i.e., the patient’s disease endotype).

Cancer
Genomic profiling rather than anatomic or histologic staging of cancers has led to unprecedented
opportunities for precision oncology and targeted cancer therapies [57]. It matches patients to
mechanism-based cancer therapies, independent of the primary tumor location [58,59]. One
example is larotrectinib, approved for fusions in the neurotrophic receptor tyrosine kinase
(NTRK) gene but no longer for a specific tumor. In basket trials, larotrectinib demonstrated
significant efficacy indeed in both children and adults [60]. In general, precision oncology trials
first analyze patients’ genetic makeup for later designing personalized treatments based on
druggable variants. Typically, they still focus on single genetic variants [61,62], such as neratinib
in tumors with variants in the human epidermal growth factor receptors (HER) [63] and
capivasertib in AKT1-mutant breast cancers [64].

Recently, the molecular profile-related evidence to determine individualized therapy for advanced
or poor prognosis cancers (I-PREDICT) studyvi (NCT02534675) administered individualized
drug combinations targeting several molecular alterations, resulting in improved disease control
rates, more prolonged tumor-free survival, and overall survival rates in approximately half of the
patients [65]. Moreover, in the Phase I/II trial in patients with recurrent glioblastoma, the
CUSP9v3 Treatment Protocolvii (coordinated undermining of survival paths by nine
repurposed drugs combined with metronomic temozolomide; NCT02770378), temozolomide,
typically prescribed as maintenance therapy for glioblastoma patients [66], was safely combined
with low doses of nine repurposed drugs, which block survival paths known in glioblastoma to
render temozolomide more effective [67,68].

Tumors vary in complexity and exposure [69]. Breast and brain tumor tissues are probably
protected by blood–breast and blood–brain barriers, respectively, harboring only a few alterations
[70,71]. Others, such as colon and lung cancer, are presumably exposed tomore carcinogens and
presentmore variable biological networks,making themmore complex and resistant to pharmaco-
therapy [72]. A recent whole-exome analysis of somatic alterations of at least ten canonical mito-
genic pathways on more than 9000 patient samples profiled by The Cancer Genome Atlasviii

across 33 cancer types, observed significant over-representation of individual and co-occurring
actionable alterations in ten canonical pathways. In 89% of tumors, at least one driver mutation
within these pathways was reported, suggesting that all cancers could be defined by one or more
of these affected pathways. Of therapeutic relevance, 57% of samples had at least one alteration
potentially targetable by currently available drugs [55]. While the principle is highly innovative,
there were two limitations concerning the clinical translation of this approach. First, the analysis a
priori excluded several cancer-relevant pathways. Second, the highly curated canonical pathways
represent particular signaling principles and not experimentally validated PPI networks or functional
142 Trends in Pharmacological Sciences, February 2022, Vol. 43, No. 2
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disease modules. Validated disease modules, however, comprise only fragments and often
mixtures of two or more canonical pathways. Thus, classical pathways are misleading when
defining a disease module. When reanalyzing the ten selected mitogenic pathways based on the
interactome (Figure 4A), they are actually highly interconnected and do not represent distinct
entities (Figure 4B). Thus, complex tumors most likely contain more than ten disease modules
[55]. Assuming that each module is ideally treated with at least two synergistic drugs through
precision network pharmacotherapy, complex tumors will probably require at least combinations
of up to ten or more different drugs, depending on the cancer modules affected in each patient.
The use of the aforementioned combinations will not only control the perturbed modules, but
TrendsTrends inin PharmacologicalPharmacological SciencesSciences

Figure 4. Canonical cancer pathways are heavily interconnected. (A) Canonical cancer proteins, adapted from [55]
are mapped in the human protein–protein interactome and isolated [114]. Proteins are colored according to the classica
cancer pathway that they have traditionally been associated with (i.e., Notch, PI3K, TGFβ, RTK/RAS, Wnt, Nrf2, Cel
cyclase, Myc, Hippo, or p53). Although classically separated in ten different canonical cancer pathways [55], these cance
proteins appear to be heavily connected by protein–protein interactions. (B) Such interconnection between canonica
pathways is even more apparent when these proteins are mapped and grouped to their respective classical pathways.
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also prevent the activation of alternative survival pathways, hence, prevent emergence of resis-
tance [73]. Thus, interventions such as the CUSP9v3 trial will rather be the rule than the exemption
to cover all modules affected in a specific patient.

Immune diseases
Genome-wide association studies across autoimmune and immune-mediated diseases discovered
possible underlying causal mechanisms but also endotypes within classical disease phenotypes,
which also explains differential drug responses [74]. Rheumatoid arthritis is a typical case of
within-disease variation with respect to clinical manifestations and severity, age of onset, number
of affected joints, and their distribution or extra-articular complications. Some of this heterogeneity
correlates with rheumatoid factor, anticitrullinated antibody, or human leukocyte antigen associa-
tions. A typical example of convergence between different autoimmune diseases is the rate-
limiting tumor necrosis factor (TNF) expression and the success of anti-TNF therapy in rheumatoid
arthritis, Crohn’s disease, psoriasis, ulcerative colitis, and ankylosing spondylitis, but not in multiple
sclerosis, where it may worsen symptoms.

An analysis of associations across phenotypes revealed that comorbidities between different
immune diseases are best explained by biological pleiotropy [56,75]. When linking the gene- and
SNP set-derived PPI network of five chronic inflammatory diseases to drugs from DrugBank and
ranked these according to (pre)clinical evidence, nine drug target genes overlapped, forming a
loose network with possible subnetworks (modules) with opportunities for drug repurposing and
presumably synergistic, multitarget network pharmacology. Indeed, these nine druggable genes
are linked to several registered drugs allowing for direct clinical translation [56]. This highlights a
new evidence- or in silico-based approach to drug repurposing beyond the initial scope of immune
diseases. It further reaffirms the argument that disease endotyping, and not drug discovery, is the
limiting factor and knowledge gap in identifying new therapeutics for precision medicine.

ROCG cluster of metabolic-cerebro-cardiovascular disease phenotypes
The diseasome surprisingly revealed a heterogeneous cluster of cerebro-cardiovascular and
metabolic disease phenotypes sharing a common underlying pathomechanism [17] (Figure 5A).
Indeed, several genes related to reactive oxygen species (ROS) dysfunction [41] and cGMP sig-
naling [76] (ROCG), currently separated fields, linked these phenotypes in one joint signaling
network ideally suited as a test case for the mechanistic redefinition of diseases [77,78]. Four
disease phenotypes (i.e., ischemic stroke [8,41,76,79–81], hypertension [38,82], diabetes
[83,84], and atherosclerosis [85,86]) have already been validated within the ROCG endotype.
Moreover, heart failure [87,88], myocardial infarction [89], and asthma [90–92] appear to be
causally linked to ROCG dysfunction.

A recent approach built the ROCG network de novo, starting with seed proteins for which high-
quality clinical evidence was available and their first-neighbor PPI [38]. Surprisingly, the resulting
network was highly distinct from all currently curated ones and segregated into different, discon-
nected subnetworks, some of which are related to diseases other than those in the ROCG cluster
(Figure 5B,C). These results were further validated with the two top-performing algorithms in the
Module Identification DREAM Challenge [27]. With all three in silico methods yielding the same
result, the NADPH oxidase (NOX) 5, and not the other NOX enzymes, is a direct neighbor of
endothelial nitric oxide-cyclic GMP signaling. A similar de novo first-neighbor PPI approach has
been used to identify disease modules for ROS-associated disease states (i.e., ROSopathies)
[93]. Twelve distinct human interactome-based signaling modules were isolated, including
novel non-ROS-related proteins, forming functional hybrids. This has significant consequences
concerning which targets should be selected for network pharmacology and related diagnostic
144 Trends in Pharmacological Sciences, February 2022, Vol. 43, No. 2
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Figure 5. The reactive oxygen species/cGMP (ROCG) cluster of metabolic-cerebrovascular-pulmonary disease phenotypes. (A) The ROCG cluster of
metabolic-cerebrovascular-pulmonary disease phenotypes in the diseasome (i.e., atherosclerosis, hypertension, myocardial infarction, ischemic stroke, asthma, obesity,
Alzheimer’s disease, dementia, migraine, Parkinson’s disease, diabetes, heart failure, major affective disorder, and unipolar depression). Patients with one (or more) of the
13 phenotypes are depicted, of whom some (in green) carry the ROCG endotype, other patients have a different causal diseasemechanism (gray). ROCG positive patients
are endotyped with predictive biomarkers (Dx), stratified, and treated with curative mechanism-based network pharmacology (Rx). (B) In a previous study [38], clinically
validated seed proteins were used as seeds to build a first-neighbor protein–protein interaction (PPI) network that characterized the ROCG causal mechanism. The net-
work was pruned to remove highly connected proteins that are not relevant for the ROCGmodule and, thus, a disease-relevant module was isolated. (C) This network has
been rearranged in a classical pathway manner. Previous guilt-by-association analysis data [41] has shown that NADPH oxidase (NOX) 4 is linked to NOS3 and NOS1.
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biomarkers. Moreover, these results also most likely pertain to all disease mechanisms, requiring
a paradigm shift and efforts to be focused on reconstructing unbiased de novo networks that are
disease-specific (i.e., an entirely new approach to signaling and clinical pharmacology).

In the oxidative stress arm of the ROCG network, the field has drifted from antioxidant therapy,
now proven to be clinically without benefit, to identifying and inhibiting disease-relevant enzymatic
sources of ROS [94–96]. Pharmacological inhibition of NADPH oxidases in ischemic stroke
has been shown to be neuroprotective, leading to a significant reduction of infarct volume
Trends in Pharmacological Sciences, February 2022, Vol. 43, No. 2 145
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[79–81,97]. Similar observations have been made in diabetic nephropathy [83,84], atherosclerosis
[85], and ischemic retinopathy [98]. Additionally, NOS1knockout or inhibition appears to be protective
against ischemic damage of the brain [8]. In combination, a recent network pharmacology
approach in ischemic stroke targeted both enzymes, moving away from the current ‘one disease–
one target–one drug’ paradigm of drug discovery that is becoming increasingly inefficient [41].
Indeed, NOX4 and NOS inhibitors at subthreshold concentrations showed pharmacological synergy,
resulting in supra-additive improvement of all neuroprotection markers [76]. Such therapies have
also been explored in preclinical models of other disease phenotypes of the cluster [99].

Cystic fibrosis (CF)
Prior to newer cystic fibrosis transmembrane receptor (CFTR) modulating small molecules,
CF therapies have exclusively focused on managing the disease symptoms and controlling the
infections. Ivacaftor is the first small molecule approved targeting the pathomechanism of CF.
However, ivacaftor monotherapy has not shown any improvement in patients with the most
common F508del-CFTR mutation [100], present in roughly 85% of CF patients [101] and
resulting in the transcription of a truncated protein. Newly developed corrector drugs facilitate the
folding of the truncated channel and its transport to the cell membrane [102,103]. In fact, a triple
combination CFTR modulating therapy has been recently approved composed of two corrector
drugs, elexacaftor and tezacaftor, and the potentiator ivacaftor [104,105]. Altogether, these drugs
rescued the chloride ion transport function [54] acting on different sites of the mutated CFTR
protein and stabilizing the folding and presentation to the cell surface, where the potentiator
increases chloride ion flow [54]. Even though network pharmacology conventionally employs
multiple drugs to modulate different proteins within the same network synergistically, the triple-
drug combination and the recent evolution of CF therapies greatly illustrate the necessary shift in
medicine towards targeting causal disease modules. The three-drug network pharmacotherapy
increased eligibility for CFTR modulating drugs to up to 90% of all CF patients. In cases where the
diseasemechanism is due to a single protein variant, gene therapywill be amuch better and curative
therapeutic option [106] than chronically treating patients with CFTR drugs.

Retinopathies
Retinopathies, also termed retinal dystrophies (RD), are a class of retinal diseases that cause
degeneration of the outer retina. Simple (monogenic) RD develop due to rare genetic mutations
and tend to manifest early in life. Complex RD, such as age-related macular degeneration (AMD),
become apparent later in life and emanate from a combination of genetic, aging, environmental,
and lifestyle risk factors. For both simple and complex retinopathies, disease–gene networks have
been identified [53]. Surprisingly, despite their similar manifestations in the same organ/tissue and
the presence of overlapping retinal phenotypes, the diseasome partitions RD into three distinct clus-
ters. Genes associated with the different forms of RD, in general, do not overlap to any great extent
[53]. Not all disease genes have an expression profile restricted to cell types in the outer retina [53]
and a large proportion of genes are expressed in all nonretinal tissues (see HPAix [107]). Thus, the
RD diseasome overlaps with genes associated with other nonretinal phenotypes/diseases. AMD
endotypes were characterized by generating a knowledge repository of PPI networks implicated in
AMD pathogenesis [108]. Interestingly, the network analysis revealed two clusters, one linked to
para-inflammation and the other to extracellular matrix homeostasis, which may each represent
different underlying molecular pathology mechanisms, possibly resulting in patient-specific pheno-
typicmanifestations. The network also demonstrated that bioenergetics (energymetabolism) is critical
for homeostasis and repair mechanisms in general.

Therapeutically, the application of single drugs may be appropriate for targets that tend to be
explicitly expressed in the retina linked to specific functions. By contrast, proteins expressed in
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Outstanding questions
How can we better select
pharmacological targets and design
precise pharmacological interventions?

How dowe define and limit the number
of disease-associated seed and driver
genes?

What is the best bioinformatics/
network science method to identify
and define a disease module from
these seed and driver genes?

How will we name those modules
of polygenetic disease if no longer
by a leading symptom or group of
symptoms or comorbidities?

How many disease-relevant genes are
there? According to the Pareto princi-
ple, one can modulate every network
with about 20% of its components.
Will thus 20% of all 22 000 proteins
(i.e., 4400) suffice to regulate and
deregulate our interactome?

What is then the average size of a
module? If it is, for example, between
ten and 30 proteins, will we then have
4400/20 (i.e., only 220) polygenetic
diseases in total?

If classical homogenous pathways are
nothing but mind maps, what will
replace or best represent them;
heterogenous nanodomains?

Do current disease definitions block
innovation and precision medicine?
How do we redefine a disease from
symptom to mechanism?

How do we then identify these
disease mechanisms and modules,
ideally in a point-of-care setting, by
genetics, blood tests, biopsies, or all
of these? Are molecular disease
diagnostics the next big research
gap?? Would signaling modules
better reflect the complexity of
diseases? And, if so, what is the
average size of a module, from ten
to 30 proteins?

Will we need mainly new drugs to
cover those disease modules, or
can we, given also the promiscuity
of small molecules, repurpose a
sufficient number of registered
drugs obviating the need for drug
discovery?

TrendsTrends inin PharmacologicalPharmacological SciencesSciences

Figure 6. Suggested pharmacolo-
gical interventions in retinal dystro-
phies. Protein–protein interaction net-
work of gene products belonging to the
‘tissue-generic’ network. Interactions are
obtained from the STRINGxi database.
The data shown has been adapted from
[53,111]. Nodes are colored according to
their association to retinopathies and gray
colors correspond to first-neighbor
interactors. Registered drugs are added
from DrugBank and DrugCentralx.
Abbreviations: AMD, age-related macular
degeneration; NS-RD, non-syndromic
retinal dystrophy; S-RD, syndromic retinal
dystrophy.
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multiple cells (tissue-generic) are part of PPI networks involved in tissue homeostasis processes,
the function of which is an emerging property of the PPI network and might be better suited for
network pharmacology therapy (Figure 6). Taking advantage of a recent single-cell gene expres-
sion dataset of 17 cell types in the outer retina [109,110], a systems approach narrowed down
PPI networks in AMD to more specific protein drug targets [111].

Concluding remarks and future perspectives
We believe that a new era of pharmacology has commenced. While many molecular, structure–
activity, and chemical aspects of drug–target interactions are understood, the target choice and
definition prevents pharmacology and drug therapy from becoming an exact science. Thus, a
realistic and urgent task is to revisit and redefine our current concept of diseases. Similar to rare
diseases, which are mostly named after a causal gene or protein, the new disease definitions will
be molecular and cross current organ borders and scientific silos. Reflecting the complexity of
diseases, these mechanisms are, in most cases, not single proteins but small networks or
diseasemodules. Moreover, we observe that disease-related signaling networks often do not overlap
with our current concept of signaling pathways, possibly because these signaling networks comprise
elements of more than one canonical curated pathway. Because of their network structure and the
fact that they are better modulated by targeting it at several sites, we will increasingly see synergistic
network pharmacology, which is not to be confused with current combination therapy, characterized
by mechanistically unrelated drugs that do not target causal genes. Finally, such effective targeting
of causal disease modules will develop pharmacology and drug therapy from chronically treating
Trends in Pharmacological Sciences, February 2022, Vol. 43, No. 2 147
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Will we be then able to cure or prevent
diseases with high precision (i.e., NNTs
of close to 1) by treating causal
mechanisms rather than symptoms
as we do now?With only 4400 disease
genes and the average size of a
module being from ten to 50 proteins,
will we have only 150–440 diseases in
the end?

If we know the causal human disease
mechanism, but animal models mimic
only a symptom of the disease but not
the causal mechanism, will we then see
a profound shift in pharmacological
research from basic and preclinical
animal-based work to human big data
and rather Phase I and II clinical trials?

How do we then identify a therapeutic
strategy? Would a mechanism-based
network pharmacology approach
restore the healthy signaling of the
module?

The ultimate proof of this fairly radical
new concept has to come from
clinical evidence. Will we thus see a
profound shift in pharmacological
research from basic and preclinical
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disease symptoms to curing diseases, thereby complementing gene therapy ofmonogenic diseases.
Collectively, this will gradually lower theNNT towards the ultimate goal of reaching precisionmedicine.
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