
Contents lists available at ScienceDirect

Computers in Industry

journal homepage: www.elsevier.com/locate/compind

A framework for merging ontologies in the context of smart factories

Felix Ockera,⁎, Birgit Vogel-Heusera,b, Christiaan J.J. Paredisc

a Institute of Automation and Information Systems, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstr. 15, Garching, Germany
b Core Member of TUM's MDSI and Member of TUM's MIRMI
c BMW Chair in Systems Integration, Clemson University, 4 Research Drive, Greenville, USA

a r t i c l e i n f o

Article history:
Received 24 June 2021
Received in revised form 8 October 2021
Accepted 7 November 2021
Available online 9 December 2021

Keywords:
Ontology merging
Knowledge representation
Smart factories

a b s t r a c t

Current trends, such as individualization, increasing complexity, and specialization, require digitization in
engineering and production. However, digitization by itself often leads to so-called data silos, which cannot
be leveraged effectively when designing and operating smart factories due to the heterogeneity of the
information available. This paper presents a framework for (semi-)automatically merging the highly reu-
sable terminological components of production ontologies in an a posteriori way. The framework combines
translations, domain-specific vocabularies, and inconsistency checks with syntactic, terminological, and
structural analyses to integrate knowledge representations formalized in the Web Ontology Language.
Integrating heterogeneous knowledge representations in the production domain can improve support
systems for engineers, increase awareness of interdependencies, and enable unambiguous communication
in smart factories.

© 2021 The Author(s). Published by Elsevier B.V.
CC_BY_4.0

1. Motivation

Engineering and production have to cope with demands re-
garding individualization and short times to market. At the same
time, the complexity of products and production resources in-
creases, requiring a high degree of specialization and cooperation
among domain specialists. Advances in digitization, computational
power, and Knowledge Representation (KR) provide a sound basis for
support systems. For both engineering and production, the appli-
cations of ontologies are manifold, ranging from inconsistency
management (Feldmann et al., 2015) to Multi Agent Systems (MASs)
initialization (Ocker et al., 2019a). Here, a common understanding of
key notions, e.g., production processes, is crucial to avoid falsely
identified inconsistencies and false negatives during the match-
making of agents.

Even though the development of KR technologies is promising,
these applications are mostly stand-alone endeavors. The semantic
interoperability of information is still a major challenge involving
several causes. The increasing complexity of production systems and
advances in the technologies used require increasing specialization
of the engineers. Their different backgrounds and ways of thinking in
combination with time pressure lead to parallel development of
heterogeneous KRs. In addition, companies may standardize how

information is represented, but these standards are usually not
shared across companies. However, all these KRs are still strongly
interdependent because they describe the same systems.

There are two different approaches to coping with heterogeneous
KRs. A priori approaches aim to standardize KRs, but require uni-
versal adoption. This may result in tremendous effort in the case of
legacy systems. In contrast, a posteriori approaches aim to combine
existing KRs. Hence, a posteriori approaches may also reduce the
effort needed for legacy KRs to migrate. In the case of ontologies,
Terminological Components (TBoxes) formalize the classes and
properties used to describe the engineers’ domains of interest.
Merging the ontologies’ reusable parts is the foundation for merging
the Assertional Components (ABoxes), i.e., the instance level, and
supports a more holistic design process and interoperability within
smart factories.

A framework for ontology merging should fulfill the following
aims, denoted (Ax). The primary function is to merge heterogeneous
ontologies (A1). This comprises heterogeneity regarding the ontol-
ogies’ domains of interest (A1.1) and their degrees of axiomatization
(A1.2). The matching quality of the automated process must be
sufficient to provide a benefit to engineers (A2). Additionally, the
framework should be modularly designed (A3), ensuring the rever-
sibility of the merging process. Finally, the framework should be
adaptable (A4). This allows engineers to fine-tune the merging
process according to their specific needs. The remainder of this
paper is structured as follows. Section 2 gives an overview of

https://doi.org/10.1016/j.compind.2021.103571
0166-3615/© 2021 The Author(s). Published by Elsevier B.V.
CC_BY_4.0

]]]]
]]]]]]

⁎ Corresponding author.
E-mail address: felix.ocker@tum.de (F. Ocker).

Computers in Industry 135 (2022) 103571

http://www.sciencedirect.com/science/journal/01663615
www.elsevier.com/locate/compind
https://doi.org/10.1016/j.compind.2021.103571
https://doi.org/10.1016/j.compind.2021.103571
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2021.103571&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2021.103571&domain=pdf
mailto:felix.ocker@tum.de
https://doi.org/10.1016/j.compind.2021.103571

selected production ontologies and ontology merging approaches.
Next, we describe two application examples highlighting the chal-
lenges of merging ontologies. Section 4 presents Production On-
tology Merging Framework (PrOM), while Section 5 describes
implementation details and discusses results. The paper concludes
with a summary and an outlook.

2. Related Work

2.1. Ontologies for Smart Factories

Knowledge extensive domains require methods to manage in-
creasing complexity and support interdisciplinary cooperation.
Ontologies provide an “explicit specification of a conceptualization”
(Gruber, 1993) that is “formal and shared” across perspectives
(Studer et al., 1998). Being formal, ontologies allow reasoning, and
support interoperability as they build on the Open World Assump-
tion (OWA) (Atkinson et al., 2006). Ontologies can be described using
the Web Ontology Language (OWL). OWL 2 Description Logic (DL)
corresponds to ()SROIQ D (Hitzler et al., 2010) and provides
“maximum expressiveness without losing computational com-
pleteness” (Smith et al., 2004). While an ontology’s ABox includes
individuals, its TBox comprises the classes and properties.

Engineering and production are affected by increasing com-
plexity and specialization. Accordingly, researchers have developed
various ontology-based applications. For instance, inconsistency
management approaches (Feldmann et al., 2015; Herzig et al., 2011)
address interdependencies between different viewpoints involved in
technical system designs. Similarly, feasibility feedback approaches
(Ocker et al., 2019b) identify potential conflicts to reduce late, costly
changes. Specifications can also be compared with capabilities to
identify suitable suppliers (Ameri and McArthur, 2014). Further ap-
plications of production ontologies include skill descriptions (Köcher
et al., 2020), service matchmaking (Zhao et al., 2017), management
of production processes (Puttonen et al., 2013), and the initialization
of MASs (Ocker et al., 2019a).

This variety of applications shows the usefulness of ontologies for
smart factories. However, these ontologies are mostly stand-alone
solutions despite their overlap. For instance, ontologies created for
providing feasibility feedback could also be leveraged to create MASs
and enable their automated decision making. Hence, ontology
merging has the potential to facilitate ontology creation, support
cooperation, and increase semantic interoperability.

2.2. Ontology Merging Approaches

Stakeholders with different viewpoints cooperating leads to
heterogeneity in KRs (Euzenat and Shvaiko, 2013). The KRs may
differ in syntax, terminology, concepts, and semiotics. A priori ap-
proaches, especially standardization and Top Level Ontologies (TLOs)
such as Basic Formal Ontology (BFO) (Arp et al., 2015), aim to sup-
port KR combination from their creation on. Their impact is limited
either by their complexity and overhead or their focus, though, re-
ducing their applicability. This is indicated by the variety of TLOs
available, which require alignments themselves (Schmidt et al.,
2019), and the fact that aligning domain ontologies to TLOs is still
challenging (Stevens et al., 2019). Hence, there is a need for a pos-
teriori approaches, which merge ontologies after their creation.

These range from taxonomy matching (Maedche and Staab, 2002) to
the matching of full-fledged axiomatized ontologies (Euzenat and
Shvaiko, 2013). Ontology merging is “the creation of a new ontology
from two, possibly overlapping, input ontologies” (Euzenat and
Shvaiko, 2013), whereby the original ontologies remain unchanged,
and the resulting ontology contains the knowledge of both inputs
(Euzenat and Shvaiko, 2013). The matching process is key to on-
tology merging and aims to align two input ontologies (Euzenat and
Shvaiko, 2013), cp. Equation (1).

=A f o o A p r* (, , , ,)1 2 (1)

where:

=
=
=
=
=

A

o

A

p

r

* resulting alignment

input ontology i

input alignment

set of parameters

set of oracles and resources

i

An alignment is a set of correspondences c, each describing
the relation between two entities (Euzenat and Shvaiko, 2013),
cp. Equation (2).

=c e e r
s t
e Q o e Q o r

(, ,)
. .

(), (),L L

1 2

1 1 1 2 2 2 (2)

where:

=
=

=
=

e

r e e

Q

element from ontology i

relation holding between and

entity language of ontology i

set of alignment relations

i

Li

1 2

To create alignments, engineers can apply several techniques.
These include terminological analyses based on string and term
comparisons, structural analyses that leverage relations between
notions, extensional analysis, which compares the instances of
classes, and semantic analyses based on external ontologies (Ardjani
et al., 2015). So far, established tools like the ontology editor Pro-
tégé do not support automated ontology merging (Pawełoszek and
Korczak, 2018).

Most ontology merging approaches rely on terminological ana-
lyses, often leveraging the lexical database WordNet (Miller, 1995).
WordNet can also be combined with string analyses (Chatterjee
et al., 2018). Various frameworks combine terminological and
structural analyses, e.g., COMA+ + (Aumueller et al., 2005), PROMPT
(Noy and Musen, 2000), and AgreementMaker (Cruz et al., 2009).
FALCON-AO (Hu and Qu, 2008) relies on linguistic analyses via vir-
tual documents and a structure matcher (Hu et al., 2005) which
iteratively increases thresholds. Risk Minimization based Ontology
Mapping (RiMOM) (Tang et al., 2006) employs Bayesian reasoning,
while S-Match (Giunchiglia et al., 2012) uses semantic matching and
rephrases ontology matching as a satisfiability problem. Stumme
and Maedche (2001) presented an example for extensional
matching, relying on linguistic processing of domain-specific docu-
ments. Further frameworks use fuzzy Formal Concept Analysis (FCA)
(Chen et al., 2011), heuristic functions (Robin and Uma, 2010), or
non-deterministic approaches (Lv and Peng, 2020). Furthermore,

F. Ocker, B. Vogel-Heuser and C.J.J. Paredis Computers in Industry 135 (2022) 103571

2

there is research regarding multilingual ontology matching (Fu et al.,
2012; Ibrahim et al., 2019). Since coverage of automated translations
is lower for domain-specific notions, manually mapped wordnets are
helpful (Helou et al., 2016). Detailed comparisons of generic on-
tology merging approaches are provided by Ardjani et al. (2015),
Shvaiko and Euzenat (2013), and by the Ontology Alignment Eva-
luation Initiative (OAEI) (Algergawy et al., 2019). Note that the OAEI
does not include ontologies from the engineering domain.

2.3. Semantic Interoperability in the Context of Smart Factories

The multitude of heterogeneous metamodels in production sys-
tems engineering shows the need for KR, but interoperability is still
a challenge (Cha et al., 2020). Domain-specific a priori approaches
include information models, e.g., the one provided by the OPC Uni-
fied Architecture (OPC Foundation, 2017). Furthermore, there are
metamodels for Digital Twins (Plattform Industrie 4.0, 2020) and
data exchange, e.g., AutomationML (AutomationML Consortium,
2014), and ontologies, e.g., for integrating design and manufacturing
in an a priori way (Chungoora et al., 2013). A set of well-formed
production ontologies based on BFO is provided by the Industrial
Ontologies Foundry (IOF) (Industrial Ontologies Foundry, 2020). Also
pursuing a modular approach, Hildebrandt et al. (2020) formalized
standards and aligned them manually. Similarly, Witherell et al.
(2013) derived an “upper-tier ontology” focusing on product
knowledge. These standardization approaches are valuable as a re-
ference, but their success requires adoption by all stakeholders.
Thus, some authors have suggested a posteriori approaches for en-
suring semantic interoperability. Kumar and Harding (2013) pre-
sented an approach for ontology mapping that leverages synonyms
and axioms. Even though the lexical analysis relies on WordNet, they
do not mention advanced Natural Language Processing (NLP) tech-
niques such as Part of Speech (POS) tagging or lemmatization. Anjum
et al. (2012) used a TLO to combine domain ontologies from design
and production, but this requires aligning the input ontologies with
a common TLO. Adamczyk et al. (2020) presented a process for en-
suring semantic interoperability using reference ontologies. How-
ever, they rely on manually created rules for semantic reconciliation.
Creating a virtual single underlying metamodel via synchronization
transformations (Kramer et al., 2013) seems promising, but has not
yet been realized for ontologies. TRAILS (Wolfenstetter et al., 2018)
leverages customized model mappers to support traceability, in-
tegration, and visualization of knowledge in Product Service
Systems.

2.4. Research Gap

Although valuable for designing and operating smart factories,
available ontologies are very heterogeneous despite their inter-
dependecies. Engineers may leverage partial overlaps to reduce the
effort required to create ontologies and improve their semantic in-
teroperability. A priori approaches for ontology merging are helpful,
but not easily applicable if there are legacy systems to be combined.
Most approaches to improving semantic interoperability in the
context of smart factories fall into this category. In contrast, a pos-
teriori approaches merge ontologies after their creation. There exist
advanced generic frameworks and a few domain-specific ap-
proaches, but ontology merging is still an open issue for the pro-
duction domain. Here, the heterogeneity in content and
axiomatization, varying overlaps between ontologies, domain-spe-
cific terminology, and different languages in use are especially
challenging. The production domain can benefit from combining
syntactic, terminological, and structural analysis with domain-spe-
cific information. Table 1 gives an overview of selected frameworks
regarding matching techniques (Euzenat and Shvaiko, 2013), trans-
lations, consistency checks, and the use of domain-specific in-
formation. It is based on the original papers as well as a
comprehensive survey (Ardjani et al., 2015), and indicates the need
for an integrated ontology merging pipeline tailored to the produc-
tion domain. PrOM aims to address this need by combining ad-
vanced preprocessing, specifically debugging, translations, and spell-
checking, with terminological and structural analyses into an itera-
tive approach that ensures consistency of the merged ontology. To
increase matching quality, PrOM leverages domain-specific in-
formation, namely translations scraped from the web and pre-
defined vocabularies, which enable low-level semantic analysis.
Compared to existing ontology merging approaches, PrOM also le-
verages recent developments in NLP.

3. Application Example

This paper uses two application examples. The first is a minimal
example created to illustrate the framework’s potential. The second
uses excerpts of two ontologies from the production domain to de-
monstrate the framework’s practical applicability. Fig. 1 shows ex-
cerpts of the minimal example’s TBoxes.

The ontology depicted on the left includes elements with
English-language Internationalized Resource Identifiers (IRIs), while
the one on the right uses random IRIs, but includes French labels.
The labels can be leveraged for terminological analyses. For instance,

Table 1
Comparison of selected ontology merging frameworks (+ supported; o partially supported; - not supported).

Translations Syntactic and
terminolo-
gical analysis

Structural
analysis

Extensional
analysis

Semantic
analysis

Consistency
checks

Domain-
specific
information

Agreement Maker (Cruz et al., 2009) – + + – – o –
FCA-MERGE (Stumme and Maedche, 2001) – + – + – – +
OECM (Ibrahim et al., 2019) + + – – – + –
Ontology mapping method

(Kumar and Harding, 2013)
– + o – o + –

PROMPT (Noy and Musen, 2000) – + + – o + o
S-Match (Giunchiglia et al., 2012) + + – – + o –
PrOM + + + – o + +

F. Ocker, B. Vogel-Heuser and C.J.J. Paredis Computers in Industry 135 (2022) 103571

3

synonymous labels such as transfer and transport indicate equiva-
lence. Structural analyses on the other hand leverage the ontologies’
axioms. For example, transfer and transport are both axiomatized
using properties for distance and duration, also indicating equiva-
lence. Interoperability of such process descriptions is essential, e.g.,
to avoid false negatives during matchmaking between intelligent
agents. If a product agent requests a transfer process but the resource
agents available only offer transport processes, valuable resource
capabilities remain unused and the product may even seem im-
possible to produce. However, the example also shows that struc-
tural heterogeneity, as in the case of the resource classes, impedes
the merging. We added further notions, including domain-specific
terms such as engrenage à vis sans fin, with and without ax-
iomatization to test features of the merging framework. The typo in
merhcandise was induced to demonstrate the spellchecker.

The second application example relies on two sound ontologies,
namely MAnufacturing’s Semantics ONtology (MASON)1 (Lemaignan
et al., 2006) and the IOF process planning ontology2 (Sarkar and
Šormaz, 2019). They include partially overlapping descriptions of
production processes. Both ontologies include approximately 200
classes. While MASON comprises 37 object properties and 18 data-
type properties, the process planning ontology uses 15 different
object properties, but no datatype properties.

4. Framework for Ontology Merging

This section presents PrOM, a framework for ontology merging
targeted to the production domain. PrOM combines syntactic and
terminological analyses with a structural analysis of OWL 2 DL ax-
ioms and interactive ontology debugging.

4.1. Overview of the Framework

The merging process, cp. Fig. 2, consists of the preprocessing
phase, the matching phase, and the postprocessing phase.

During the preprocessing, the input ontologies are checked for
spelling errors and are translated. The matching phase combines the
syntactic and terminological analysis with the structural analysis.
The former extracts the essential parts of the elements’ names and
compares them. Since the framework’s terminological analysis
builds on the syntactic one, we refer to their combination as ter-
minological analysis. The structural analysis aims to find graph iso-
morphisms, which indicate correspondences. The analysis results
are combined using weightings and then compared to thresholds.
Both the weightings and thresholds may be adapted by the user.
Leveraging terminological and structural analyses allows us to
match ontologies that differ in language, domain of interest, and
degree of axiomatization (A1).

4.2. Assumptions and Available Information

As inputs, the framework takes OWL 2 DL ontologies such as the
ones presented in Section 3. OWL allows us to make explicit which

Fig. 1. Excerpt of the minimal example.

Fig. 2. Process for merging the TBoxes of two ontologies.

1 https://sourceforge.net/projects/mason-onto/, last accessed: November 19, 2021
2 https://github.com/kbserm/ProcessPlanningOntology-IOF, last accessed:

November 19, 2021

F. Ocker, B. Vogel-Heuser and C.J.J. Paredis Computers in Industry 135 (2022) 103571

4

https://sourceforge.net/projects/mason-onto/
https://github.com/kbserm/ProcessPlanningOntology-IOF

information is available in the ontologies to be merged. Terminology is
the meaning of the notions intended by the ontology’s author, which is
indicated by the elements’ names. We assume that the ontologies
include meaningful names, e.g., transfer for a process, which are either
encoded into the IRIs or made explicit via labels. For IRIs, we assume
that CamelCase, dromedaryCase, or snake_case are used as notations.
Words in labels should be separated using spaces. As we focus on the
ontologies’ TBoxes, we standardize all names to lowercase to facilitate
the comparison. To enable terminological analysis, we translate all
names to English. We assume that similar elements can also be
identified via similar structures expressed as axioms. These OWL re-
strictions are expected to be defined in the Disjunctive Normal Form
(DNF) for easier analysis. In DNF, the amount of nesting levels in OWL
restrictions to be parsed is limited to two. For instance, the definition
of a product via relations to a machine, a length, and a volume is as-
sumed to be expressed in DNF as indicated in Equation (3), not in the
shorter form presented in Equation (4). This assumption is reasonable,
as a transformation to DNF could be automated.

product Inverse produces machine length float

Inverse produces machine volume float

()
() (3)

product Inverse produces machine

length float volume float

()
() (4)

Even though reification is useful for expressing complex relations,
matching reified and non-reified properties is a challenge that is out of
the scope of this contribution. We also assume that roles and classes
are used appropriately by the engineers who initially created the
ontologies.

4.3. Cases of Correspondence

We consider four alignment relations that may hold between the
two ontologies’ elements. These are equivalence, subsumption, dis-
jointness, and, specifically for object properties, inversion. The relations
can be represented using standardized object properties, cp. Table 2.

In order to represent a correspondence c, the triple described in
Equation (2) can be extended by a confidence rating cr ∈ [0,1] (Lv and
Peng, 2020), cp. Equation (5). The ontologies’ elements ei are un-
ambiguously identifiable via their IRIs.

=c e e r cr(, , ,)1 2 (5)

For instance, this allows us to describe the correspondence be-
tween the notions resource and b from the minimal example, cp.
Fig. 1, as shown in Equation (6).

a resource fr b equivalence(“ : , “ : , “ , 0.7) (6)

where the prefixes are defined as follows:

a=http:∕∕example.org∕onto-a.owl#
fr=http:∕∕example.org∕onto-fr.owl#

4.4. Preprocessing

In a first step, PrOM ensures that each input ontology is consistent
and provides interactive debugging support. OWL DL reasoners can
identify inconsistent classes and provide respective explanations. If the
reasoner detects inconsistencies in the link ontology, PrOM extracts
potentially problematic notions and their axioms. PrOM iterates
through these axioms and prompts the engineer in an interactive way
which of them should be removed. This process is repeated until the
reasoner does not detect any more inconsistencies.

To enable a terminological analysis, all the elements’ names must be
available in a common language. By default, we choose English because
of its prevalence and availability of translators. Engineers may override
this choice though. If no labels are available, we extract the elements’
names from the IRIs by tokenizing them. In case the language of a name
is unknown, a language detector is used. This is relevant if the names are
encoded in the IRIs or if the label does not specify a language.
Additionally, the engineers may specify a language for each input on-
tology, e.g., French for the ontology “onto-fr” in the minimal example.
This yields better results because language detectors do not work re-
liably for short text snippets. For the translation, we try a domain-spe-
cific vocabulary first, e.g., the International Electrotechnical Vocabulary
provided by the International Electrotechnical Commission (IEC)
(International Electrotechnical Commission, 2020). If the expression to
be translated is not listed in this vocabulary, we rely on a generic
translator. The translation is then added to the original element as a
label, including a language tag. If the language of an input ontology is
specified to be English, a spell checker is used to correct typing errors,
such as merhcandise, cp. Fig. 1. Since we assume that all axioms are
expressed using the DNF, the ontology does not have to be preprocessed
for structural analyses.

4.5. Terminological Matching

The terminological matching revolves around the linguistic
analysis of the labels. We speak of an explicit match if two labels use
the exact same words, called tokens. Otherwise, we compare the
tokens’ abstractions, possibly resulting in implicit matches. All labels
consist of mandatory and optional parts, cp. Table 3, which can be
retrieved via a POS tagger. Comparing only words with the same POS
tags increases the matching quality and efficiency. To standardize
the tokens to their base form, we use a lemmatizer that leverages the
POS tags. If an object property’s label is reified, i.e., a noun is used
instead of the verb, we extract its derivational related form from a
lexical database. Note that precedes is equivalent to is predecessor of,
which indicates the role and can be identified by the adposition, but

Table 2
Alignment relations by element type.

Classes Object properties Datatype
properties

Equivalence owl:equivalentClass owl:equivalentProperty
Subsumption rdfs:subClassOf rdfs:subPropertyOf
Disjointness owl:disjointWith owl:propertyDisjointWith
Inversion – owl:inverseOf –

Table 3
Parts Of Speech usually available in labels by type (* optional; + mandatory; ! not
applicable; ∣∣ alternative).

Adverb Adjective Verb Noun Adposition

Class * * (*) + !
Object property * ! + ∣∣ *
Datatype property * * ! + !

F. Ocker, B. Vogel-Heuser and C.J.J. Paredis Computers in Industry 135 (2022) 103571

5

inverse to has predecessor. Also, in the case of classes, there may be
adjectives or parts of compound nouns that are tagged as verbs as in
the case of boring tool.

For explicit terminological matching, we compare the tokens of
two labels. To be considered equivalent, the set of tokens Ti must be
the same for both labels, cp. Equation (7).

=T T1 2 (7)

Explicit hyponyms can be identified by checking whether the
first label’s token set, T1, is subsumed by the second, T2, cp. Equation
(8). For instance, the notion width can be assumed to be a general-
ization of large width as (width) ⊂ (large, width). In order to identify
hypernyms, Equation (8) can be inverted.

T T1 2 (8)

Disjoint and inverse elements cannot be identified by simply
comparing the labels’ tokens. Also, independently created ontologies
may differ in vocabulary. Such implicit relations between tokens are
analyzed using a lexical database. Synonyms indicate equivalent
elements, antonyms disjoints, and hyponyms and hypernyms tax-
onomical relations. In line with the WordNet vocabulary, a set of
cognitive synonyms is denoted synset. Leveraging the synonyms for
all tokens in the labels, we assess their implicit equivalence, cp.
Equation (9). That way, PrOM can infer that, e.g., the notions product
and merchandise are equivalent.

=

t synset t t T

T T

()
t T

1 2 1 1

1 2

2 2

(9)

We check subsumption of classes based on their labels analo-
gously, cp. Equation (10). That way, the framework can identify
specializations.

<

t synset t t T

T T

()
t T

1 2 1 1

1 2

2 2

(10)

Leveraging a corpus, we also extract antonyms for each token. If
two elements’ labels include antonyms, e.g., lower and souleve
(French for raise), we assume that they are disjoint, cp. Equation (11)
for object properties.

v antonyms v v VERB

a synset a a A

s t a adv adp A ADV ADP

()

()

. . { , }, { , }

v VERB

a A

1 2 1 1

1 2 1 1

2 2

2 2

(11)

In order to detect inverse object properties, the algorithm iden-
tifies passive constructs, such as is created by, instead of creates. For
this, it searches for two patterns using a rule-based matcher.3 Such
patterns may include dependency labels (DEP), quantifiers (OP), and
simple (POS) or extended (TAG) POS tags. The first pattern accepts all
constructs that include an arbitrary number of auxiliary tokens
(aux), an auxiliary token indicating a passive structure (auxpass), and
a past participle verb (VBN):

DEP aux OP DEP auxpass TAG VBN[: , : * , : , :]
The second pattern catches exceptions that only consist of a verb

(VERB) and an adposition (ADP), e.g., created by:
POS VERB POS ADP[: , :]

To improve reliability, the framework leverages domain-specific
vocabularies. If various notions have been matched for a specific
domain, engineers can use them as domain-specific synsets. For
instance, analyses for the production domain identified synonyms

such as process, operation, and activity (Ocker et al., 2019b). Non-
overlapping synsets, e.g., for process and resource imply disjoints.

Note that all equations in this section can be adapted for object
properties and datatype properties according to Table 3.

4.6. Structural Matching

Structural ontology matching distinguishes the types of ele-
ments, namely classes, object properties, and datatype properties.
Depending on the type, the information available differs greatly, as
does the matching algorithm. Since classes are axiomatized using
properties, equivalent properties should be identified before classes
are matched. Properties, though, are formalized via their domains
and ranges. Hence, the framework relies on terminological matches
for structurally comparing properties.

The axiomatization of datatype properties includes a class as a
domain and a literal as a range. Numeric datatypes may be restricted
using lower and upper bounds. Additionally, datatype properties can be
specified as functional. For example, the range of the notion width may
be restricted to exactly one value larger than zero. For two datatype
properties, our confidence in an equivalence or subsumption corre-
spondence increases, if any of these three pieces of information
overlap. The similarity rating can thus be calculated as shown in
Equation (12). The boolean variables DM and FM indicate whether the
two properties have the same domain and are functional. If the range is
not restricted, RM is also boolean. If one of the ranges is half-bounded, a
dedicated rating can be assigned. Otherwise RM is calculated as the
relative overlap of the two properties’ ranges, cp. Equation (13). Here,
ub denotes the upper bound and lb the lower bound.

=
+ +

+ +
rating

w DM w RM w FM

w w w

* * *
dp

d r f

d r f (12)

=RM
max min ub ub max lb lb

max ub lb ub lb
(0, (,) (,))

(,)
1 2 1 2

1 1 2 2 (13)

If their domains or ranges are disjoint, two datatype properties
are also disjoint.

For structurally comparing object properties, the framework relies on
their domains, ranges, and attributes. The domains and ranges of object
properties can be compared analogously to the domains of datatype
properties. Other than datatype properties, object properties are char-
acterized by various axioms, i.e., they can be functional, inverse func-
tional, symmetric, asymmetric, transitive, reflexive, or irreflexive. If one
of two object properties is symmetric or reflexive, while the other is
asymmetric or irreflexive, respectively, these two properties are disjoint.
Also, if a property is functional or inverse functional, it is disjoint with all
transitive properties. This is reflected by the disjoint indicator di.
Otherwise, we can assess their similarity based on their attributes using
cosine similarity, cp. Equation (14).

= =

=

vec vec
vec vec

vec

cosine similarity cos

with attribute attribute attribute

- ()

[, ...,], {0, 1}n i

1 2

1 2

i 1
T (14)

Equation (15) shows the accumulated similarity rating for
equivalent object properties.

=
+ +

+ +
rating di

w DM w RM w cosine similarity
w w w

with di

* * * -

{0, 1}

op
d r a axioms

d r a

(15)

Equation (15) can be applied analogously to assess the similarity
of hyponyms, while domain and range must be inverted for inverse
relations. Relations are said to be disjoint for disjoint domains or
ranges, or for contradictions in the properties’ axioms, as indicated
by the parameter di. 3 https://spacy.io/usage/rule-based-matching, last accessed: November 19, 2021

F. Ocker, B. Vogel-Heuser and C.J.J. Paredis Computers in Industry 135 (2022) 103571

6

https://spacy.io/usage/rule-based-matching

Classes are axiomatized using object and datatype properties.
Hence, a class can be represented using a property vector pv, with each
entry representing a property, cp. Equation (16). The property vector
includes only the properties identified as equivalent or hyponyms in
the terminological matching phase. For the example in Fig. 1, pv would
include the properties length and width. This allows PrOM to infer that
the notions merchandise and produit are likely to be equivalent as they
are both axiomatized using these properties.

=pv op op op op

dp dp dp dp

[1 2 , ..., 1 2 ,

1 2 , ..., 1 2]

T
a b m n

a b m n (16)

We use binary values for a property vector’s entries, i.e., when-
ever a property is used to formalize a class, the respective entry is 1;
otherwise 0. Analogously, we encode into the property vector that
classes are used as objects in other classes’ axiomatizations.

For comparing vectors, cosine similarity and context similarity are
established measures. However, with many properties being shared
between ontologies, the similarity ratings usually converge to 1 for
cosine similarity. This is because most classes are likely to be ax-
iomatized with only a small subset of all properties, yielding property
vectors consisting primarily of zeros. Due to the OWA, this does not
mean that the properties are not used, but simply that there is no in-
formation regarding their relevance for a class, resulting in a high false
positive rate. In contrast, context similarity considers the nodes to
which a class is connected. This results in a more accurate assessment
of the node’s neighborhood, but requires information about the sur-
rounding classes. To cope, we use a simplified similarity measure based
on cosine similarity. This measure assesses how many properties two
classes have in common, compared to the number of all properties
used in the classes’ axioms, cp. Equation (17).

=sim
a b

a b
i i i

i i i (17)

4.7. Weightings and Thresholds

Engineers may configure the framework via various parameters.
Providing the files and the IRIs of the ontologies to be matched is
mandatory. Optionally, engineers may specify the languages used,
the default language, a domain-specific dictionary, spellchecker ac-
tivation, and two similarity thresholds. Additionally, the evaluation
mode can be activated to assess the matching quality, requiring a
reference alignment. Matches that have ratings above the accep-
tance threshold are automatically accepted, while those below the
rejection threshold are rejected. All other matches require con-
firmation. If both thresholds are set to the same value no user in-
teraction is required.

The framework also relies on various relative weighting factors. By
default, we consider terminological and structural matching equally
important and set both weights to 1. Engineers may change these
weights. For instance, if an ontology does not include any axioms, the
relevance of structural similarity is 0. The rating for a terminological
correspondence can take one of four values. For an explicit match, the
rating is set to .9, matches identified via the domain-specific vocabulary
are rated .8, implicit synonyms .7, and implicit antonyms .6. These rat-
ings represent the reliability of the terminological match, which de-
creases, as the match becomes less explicit. For structural matching, we
distinguish the weights for classes, object properties, and datatype

properties. The structural similarity rating for datatype properties is
influenced by the domain, the range datatype, the exact range specifi-
cation (i.e., the interval for numerical values), and the functional attri-
bute. The first three are equally rated .3, while the functional attribute is
rated .1. Since the OWA holds, the absence of the functional attribute
does not mean the attribute is not functional. Hence, a discrepancy does
not indicate disjoint properties, but our belief in the equivalence of two
datatype properties increases if both are specified as functional. The
rating of object property matches is influenced by the domain, the range,
and several attributes, such as the property being functional. Due to a
lack of statistical insights, we assign equal relative ratings of 1 to these
three factors. The structural analysis of classes leverages property vec-
tors, which depend on the property matches. To avoid faulty property
vectors, we only include correspondences with a rating higher than .6.

4.8. Link Ontology Creation and Consistency Checks

To merge two ontologies, a link ontology is created, including only
the correspondences. For this, an algorithm iterates over all the corre-
spondences identified and checks whether their similarity rating is
sufficiently high to accept them automatically or low enough to reject
them. Every element in between must be reviewed manually. To ensure
consistency of the alignment, PrOM only allows one correspondence of
the types equivalence, hyponym, and hypernym per notion. In addition
to one equivalent, subordinate, or superordinate notion, object proper-
ties may also have one inverse property, while the number of disjoints is
unlimited for all notions. If an input ontology includes equivalent no-
tions, the respective correspondences can be inferred using an OWL DL
reasoner. PrOM provides two algorithms for selecting correspondences.
The greedy one selects the correspondences with the highest confidence
ratings first, while limiting the number of correspondences a notion
appears in. Additionally, PrOM provides an optimal selection algorithm,
which maximizes the sum of the confidence ratings of the corre-
spondences included in the alignment. By default, PrOM uses the greedy
selection for two reasons. It provides better performance, as the worst
case computational complexity of the optimal selection is n(!)O as op-
posed to a worst case of n()2O for the greedy selection. Additionally,

Fig. 3. Overview of the framework’s implementation.

F. Ocker, B. Vogel-Heuser and C.J.J. Paredis Computers in Industry 135 (2022) 103571

7

optimizing for the highest overall similarity score is not necessarily
beneficial in case of partially overlapping ontologies. Instead, the cor-
respondences with the highest scores may be rejected in favor of several
correspondences with lower ratings, possibly resulting in a flawed
alignment.

For all correspondences accepted, two elements are created in the
link ontology. These two elements are linked via the correspondence’s
relation, and also to the respective elements in the original ontologies.
The input ontologies are referenced as imports from the link ontology.

Lastly, the framework checks the link ontology and the two input
ontologies for inconsistencies. PrOM uses an OWL DL reasoner and
provides interactive debugging support analogously to the pre-
processing phase, cp. Section 4.4. Note that the input ontologies are
assumed to be consistent after the preprocessing and handled as
ontology imports. Hence, only axioms from the link ontology can be
removed in this phase. The explanations provided by the reasoner
may help finding inconsistencies in the input ontologies that can be
identified only when combining them, though.

5. Implementation and Discussion

5.1. Implementation Details

Fig. 3 shows an overview of the framework’s architecture. The
prototype is implemented in Python and available online.4

The framework’s modules were built to be exchangeable and
adaptable (A4). This enables engineers to adapt the weightings and
thresholds and provide additional resources. As inputs, the framework
takes two OWL ontologies, a domain-specific vocabulary, and a con-
figuration file. The paths to the ontology files and additional resources
are specified in the configuration file, which also sets all parameters,
cp. Section 4.7. For managing the ontologies, we rely on Owlready2
(Lamy, 2017). Algorithm 1 shows the recursive function developed for
debugging ontologies. In case of simple inconsistencies, Owlready2
returns a list of inconsistent classes. However, more complex incon-
sistencies may lead to an exception. Then, the analyzeExplanation()
function uses regular expressions to extract the explanation generated
by the reasoner Pellet from the traceback and identifies potentially
inconsistent notions. PrOM iterates through all axioms associated to
potentially inconsistent notions and prompts the user whether the
axiom should be deleted via the getUserDecision() function.
Algorithm 1. Interactive ontology debugging.

1: procedure DEBUGONTO(onto)
2: inconsistentElements ← runReasoner()
3: if exception then
4: inconsistentElements ← analyzeExplanation(traceback)
5: if =inconsistentElements then
6: onto. save()
7: break
8: for ie ∈ inconsistentElements do
9: axioms ← extractAxioms(ie)

10: for ax ∈ axioms do
11: if getUserDecision() = ⊤ then
12: deleteAxiom(ax)
13: DEBUGONTO(onto)

The information extractor uses Owlready2 to extract the classes,
object properties, and datatype properties, including their labels and
the labels’ languages, from the source ontologies. To extract axioms, we
use SPARQL Protocol And RDF Query Language (SPARQL) queries. For
domain-specific translations, we scrape the IEC’s International
Electrotechnical Vocabulary (International Electrotechnical
Commission, 2020). If this fails, we use huggingface transformers (Wolf

et al., 2020), but also support Google Translate. Note that using the
domain-specific dictionary increases translation quality but decreases
performance due to the scraping process. If a label is English and
English is the default language, we use a spellchecker. The terminolo-
gical analysis, cp. Algorithm 2, including lemmatization, uses spaCy
(Honnibal et al., 2020) and NLTK (Bird et al., 2009). Here, ti refer to
individual tokens of a label, while ∣Ti∣ refer to a label’s token set. The
semantic matching is based on WordNet and domain-specific voca-
bularies stored in a CSV file. spaCy is also used to identify passive object
properties via patterns.
Algorithm 2. Terminological matching functions.

1: function EXPLICITLABELMATCHING(label1, label2)
2: if t1. lemma ∈ [t2. lemma ∀ t2 ∈ label2] ∀ t1 ∈ label1 then
3: if ∣T1∣ = ∣T2∣ then
4: return equivalence(label1, label2)
5: else if ∣T1∣ < ∣T2∣ then
6: return hypernym(label1, label2)
7: else if t2. lemma ∈ [t1. lemma ∀ t1 ∈ label1] ∀ t2 ∈ label2 ∧ ∣T2∣ < ∣T1∣

then
8: return hyponym(label1, label2)
9: function IMPLICITLABELMATCHING(label1, label2, typeelem)

10: for i ∈ (1, 2) do
11: synsi ← getSynonyms(labeli)
12: antsi ← getAntonyms(labeli)
13: if t2. lemma ∈ syns1 ∀ t2 ∈ label2 and ∣T1∣ = ∣T2∣ then
14: return equivalence(label1, label2)
15: else if t2. lemma ∈ syns1 ∀ t2 ∈ label2 then
16: return hyponym(label1, label2)
17: else if t1 ∈ syns2 ∀ t1 ∈ label1 then
18: return hypernym(label1, label2)
19: else if ∃ t2 ∈ label2 ∋ t2 ∈ ants1 then
20: return disjoint(label1, label2)

Regarding structural matching, cp. Algorithm 3, engineers may
choose to limit the search space to matches identified via termino-
logical matching, or to analyze all possible combinations of classes
for structural similarity. Note that we use the abbreviations op, dp, di,
and pv for object properties, datatype properties, the disjoint in-
dicator, and the property vector analogously to Section 4. The for-
mulas for the individual similarity ratings are implemented
according to Section 4, and each matching function is run for all
combinations of respective elements.
Algorithm 3. Structural matching functions.

1: function OPSTRUCTUREMATCHING(op1, op2, alignmentclasses, relation)
2: ratingdomain ← compareDomain(op1, op2, alignmentclasses, relation)
3: ratingrange ← compareRange(op1, op2, alignmentclasses, relation)
4: di ← checkIfDisjoint(op1. attributes, op2. attributes)
5: ratingattributes ← cosSim(op1. attributes, op2. attributes, relation)
6: rating calculateRating rating rating di rating(, , ,)op op domain range attributes1, 2
7: return ratingop op1, 2
8: function DPSTRUCTUREMATCHING(dp1, dp2, alignmentclasses, relation)
9: ratingdomain ← compareDomain(dp1, dp2, alignmentclasses, relation)

10: ratingrange ← compareRange(dp1, dp2, relation)
11: ratingattribute ← cosSim(dp1. functional, dp2. functional, relation)
12: rating calculateRating rating rating rating(, ,)dp dp domain range attribute1, 2
13: return ratingdp dp1, 2
14: function CLASSSTRUCTUREMATCHING(axiomsclass1, axiomsclass2, alignmentproperties)

15: pv ← checkThresholdAndCorrespondenceType(alignmentproperties)
16: for i ∈ (1, 2) do
17: pvi ← 0
18: for counter, p ∈ enumerate(pv) do
19: for a axiomsclassi do

20: if p ∈ a.properties then
21: pvi[counter] ← 1
22: pv pvrating relSim (,)1 2class class1, 2
23: return ratingclass class1, 2

PrOM combines terminological and structural analysis results in
a preliminary alignment, which is then assessed using the ratings. 4 https://github.com/felixocker/prom, last accessed: November 19, 2021

F. Ocker, B. Vogel-Heuser and C.J.J. Paredis Computers in Industry 135 (2022) 103571

8

https://github.com/felixocker/prom

For creating the final alignment from the correspondences
identified, cp. Section 4.8, the engineer may choose from a greedy,
cp. Algorithm 4, and an optimal selection algorithm via the config-
uration file. The optimal selection algorithm, including a multi-
processing implementation for improved performance, is available
as a part of the implementation. However, PrOM uses the greedy
selection by default, cp. Section 4.8.
Algorithm 4. Greedy correspondence selection.

1: function GREEDYSELECTION(correspondences)
2: selection
3: correspondences.sortByRating(reverse = ⊤)
4: for c ∈ correspondences do
5: overlap ← set(e ∀ e ∈ selection if ∃ e.notion = c.notion)
6: if =overlap then
7: alignment. append(c)
8: return alignment

Depending on the thresholds specified, the engineer is prompted
to confirm matches via a Command Line Interface (CLI). Owlready2
is used to create the link ontology. The framework generates a
random IRI and adds a description that refers to the original ontol-
ogies, respective imports, and all correspondences from the
alignment.

5.2. Evaluation

For evaluating PrOM’s automatic and interactive mode, we im-
plemented a string matcher based on Levenshtein distance as a

naive but sound baseline. Additionally, we used AgreementMaker5

as a representative ontology merging framework, cp. Section 2.4. The
matching algorithms used with AgreementMaker are the “Base Si-
milarity Matcher” (AM1), the “Vector Based Multi-Words Matcher”
(AM2), and the “Basic Structural Selector Matcher” (AM3), which is a
second layer matcher we operated on the results of AM1. All
matchers worked out of the box and we did not tune them in any
way. We used several data sets for the benchmark. The minimal
example introduced in Section 3 was designed to test PrOM’s fea-
tures, including translations. Since AgreementMaker does not pro-
vide translations, we used this data set without (MEXO) and with
translations (MEXT). The alignment of excerpts of MASON and the
IOF process planning ontology (MVSP) is a larger example also re-
presenting the production domain. We created reference alignments
for these data sets manually and provide them as a part of the im-
plementation. For better comparability, we also used three data sets
including reference alignments from the OAEI 2012 campaign6 re-
ferenced in the AgreementMaker GitHub repository. The data sets
OAEI 1, 2, and 3 correspond to the matching tasks “101 vs. 103″, “101
vs. 207″, and “101 vs. 301″, respectively. The benchmark results re-
garding precision, recall, and F-measure (Ochieng and Kyanda, 2018)
are presented in Fig. 4. Table 4 shows the number of user

Fig. 4. Benchmark using several frameworks (String matcher implemented as a baseline; PrOM (automatic) without any user interaction, acceptanceThreshold = .6; PrOM (inter-
active) with user interaction, interactiveCorridor = [.3, .6]; AM1 - AgreementMaker with the “Base Similarity Matcher”; AM2 - AgreementMaker with the “Vector Based Multi-Words
Matcher”, and AM3 - AgreementMaker with the “Basic Structural Selector Matcher” that also leverages AM1) and several data sets (minimal example without (MEXO) and with
(MEXT) English translations; MASON vs. IOF process planning ontology (MVSP); and three examples from the 2012 OAEI benchmark set, namely the combinations 101 vs. 103 (OAEI
103), 101 vs. 207 (OAEI 207), and 101 vs. 301 (OAEI 301).

Table 4
Number of user interactions PrOM requires in interactive mode by data set compared to the number of notions per input ontology. Notions include classes, object properties, and
datatype properties.

Data set MEXO MEXT MVSP OAEI 103 OAEI 207 OAEI 301

interactions 13 13 8 33 19 14
notions ontology 1 17 17 135 122 122 122
notions ontology 2 20 20 100 122 121 55

5 https://github.com/agreementmaker/agreementmaker, last accessed: November
19, 2021, run using Java 11.0.11

6 http://oaei.ontologymatching.org/2012/benchmarks/index.html#datasets, last
accessed: November 19, 2021

F. Ocker, B. Vogel-Heuser and C.J.J. Paredis Computers in Industry 135 (2022) 103571

9

https://github.com/agreementmaker/agreementmaker
http://oaei.ontologymatching.org/2012/benchmarks/index.html#datasets

interactions required by PrOM’s interactive mode compared to the
number of notions included in the respective input ontologies.

MEXO showed that PrOM is capable of handling the spelling er-
rors induced and correctly translating domain-specific terms. In in-
teractive mode, critical matches with ratings between the default
thresholds .3 and .6 were presented to the user for assessment.
When fully automating the process using a threshold of .6, PrOM
rejects correspondences that were found solely based on a termi-
nological analysis, thus significantly reducing recall. Note that PrOM
identified a disjoint between the notions first name and last name in
the “101 vs. 103″ scenario. Even though correct, this correspondence
was not included in the official reference alignment. In the case of
MSVP, PrOM erronously identified the correspondence (mason:u-
ses_tool, ppo:uses_equation_type, equivalence), which can be ex-
plained by the tokenization process during terminological matching,
which focused on the verb “use”.

The benchmark shows that PrOM works especially well with ax-
iomatized ontologies from the production domain, such as MEXO, and
performs decent on other data sets such as the ones included in OAEI,
even when defaulting to the terminological analysis. The low recall in
PrOM’s automatic mode compared to the interactive one is due to the
high acceptance threshold of .6 in combination with a lack of ax-
iomatization. This also highlights the benefit of the interactive mode
regarding alignment quality, while keeping the effort for engineers at a
reasonable level. Performance for these application examples was ac-
ceptable as ontology merging is not a time critical task and the merging
processes were completed within seconds using a regular computer.7

5.3. Discussion

Even though production ontologies are intrinsically hetero-
geneous (A1), the framework copes via a combination of pre-
processing, including spellchecks and translations, and
terminological and structural analyses as well as consistency checks.
Domain-specific knowledge in the form of dictionaries and voca-
bularies is integrated, and engineers may confirm or reject arguable
matches. Due to the combination of terminological and structural
analyses with domain-specific knowledge, the framework is fit to
merge ontologies with partially overlapping domains of interest
(A1.1). Additionally, ontologies that differ in their degrees of ax-
iomatization can also be analyzed (A1.2), e.g., if one ontology in-
cludes no axioms. This is a case for purely terminological matching.
However, the matching quality greatly increases if an axiomatization
can be leveraged. This was confirmed by the benchmark, cp. Section
5.2, which also showed that the matching quality (A2) is promising.
The framework was implemented modularly (A3) regarding the
implementation and the reversibility of the merging process, which
is ensured by creating a link ontology. Lastly, we designed the fra-
mework to be adaptable (A4). While engineers may adapt relevant
weightings and thresholds, software engineers can adapt the fra-
mework due to its modular architecture. Overall, PrOM’s perfor-
mance seemed reasonable, even when run on a regular personal
computer.

To further automate the merging of two ontologies, reification as
a design choice should be considered. As another source of in-
formation, the comments may be analyzed and alignments with
common TLOs could be leveraged (Anjum et al., 2012). Additionally,
more advanced algorithms for structural matching and combina-
torial optimization (Euzenat and Shvaiko, 2013) should be included,
and the framework’s computational performance improved, which is
beneficial for merging large ontologies. Also, an n-ary matching
approach (Babalou and König-Ries, 2020) may be beneficial if large
numbers of ontologies need to be merged.

Even though we included debugging support using an OWL DL
reasoner, the automated resolution of inconsistencies remains
challenging. Explanations provided by reasoners may be hard to
interpret, complicating both a manual and an automated resolution.

The quality of the resulting alignments strongly depends on the
choice of weightings and thresholds. Since choosing these is a major
challenge for engineers due to the high number of dimensions to be
considered, an automated parameterization is desirable. If a large
amount of labeled data were available, a model with the weighting
factors could be trained. Also, there is related work regarding au-
tomated parameterization (Ritze and Paulheim, 2011) that may be
adopted in future work. In addition, a rigorous statistical analysis of
the use of OWL axioms, cp. Section 4.7, could help with identifying
appropriate weighting factors.

6. Summary and Outlook

We presented PrOM for merging the TBoxes of production
ontologies. The framework leverages spellchecks, translations, and
analyses regarding syntax, terminology, and structure. The match-
ing’s reliability is increased by using domain-specific dictionaries
and vocabularies and the results are validated using consistency
checks. The resulting alignment is stored in a link ontology that
imports the source ontologies, thus realizing a modular architecture.
We provide an adaptable implementation regarding the software
and input data such as thresholds and domain-specific information.
As discussed in Section 5.3, the framework merges heterogeneous
ontologies, while addressing matching quality, modularity, and
adaptability. Its applicability was shown in a benchmark. A dedi-
cated minimal example demonstrates the capabilities of the fra-
mework, while excerpts from two established production ontologies
were merged to show real-life applicability.

Even though PrOM has been shown to be applicable as is, there is
room for further improvements. First, ontology merging requires for-
malized knowledge representations. These have been investigated for a
long time (Sowa, 1999), but formal knowledge representation should be
pursued further and engineers should be enabled to apply these tech-
nologies. Second, we propose to investigate two approaches for choosing
weightings and thresholds. Engineers can be expected to benefit from an
easy-to-use graphical user interface, rather than the currently im-
plemented CLI, which would allow them to navigate and possibly adapt
the weightings and thresholds. Additionally, the parameters could be
continuously improved as the framework is used. For creating labeled
data sets, engineers would need to assess whether a specific alignment
was correct. To further improve the overall quality, the inconsistency
check would benefit from an automated analysis. Hereby, the explana-
tions provided by the reasoner are promising and approaches for OWL
restriction conciliation (Grygorova et al., 2020) may be helpful. Third, the
framework should be extended to be able to merge ABoxes. This aspect
was intentionally neglected in this paper, as the boundary conditions
differ from the merging process of TBoxes.

The framework presented is a step towards automatically mer-
ging production ontologies. Together with advances in digitization
and ontology creation, this has the potential to integrate the
knowledge of various viewpoints, which can be expected to shorten
development times and facilitate integration of production resources
across vendors and countries.

CRediT authorship contribution statement

Felix Ocker, M.Sc.: Conceptualization; Data curation; Formal ana-
lysis; Investigation; Methodology; Project administration; Software;
Validation; Visualization; Roles/Writing - original draft; Writing - re-
view & editing. Prof. Birgit Vogel-Heuser: Conceptualization; Funding
acquisition; Investigation; Methodology; Project administration;
Resources; Supervision; Validation; Writing - review & editing. Prof. 7 Intel Core i7–10510 U CPU, 16 GB RAM

F. Ocker, B. Vogel-Heuser and C.J.J. Paredis Computers in Industry 135 (2022) 103571

10

Christiaan J. J. Paredis: Conceptualization; Investigation; Methodology;
Supervision; Validation; Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing fi-
nancial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment

We kindly thank the German Research Foundation for funding
the project SFB 768 T5 and the Bavarian Ministry of Economic
Affairs, Regional Development, and Energy for funding the project
MEvoDiP (grant no. DIK0246/04).

REFERENCES

Feldmann, S., Herzig, S.J., Kernschmidt, K., Wolfenstetter, T., Kammerl, D., Qamar, A.,
Lindemann, U., Krcmar, H., Paredis, C.J., Vogel-Heuser, B., 2015. Towards effective
management of inconsistencies in model-based engineering of automated pro-
duction systems. IFAC-Pap. 28 (3), 916–923.

Ocker, F., Kovalenko, I., Barton, K., Tilbury, D., Vogel-Heuser, B., 2019a. A framework for
automatic initialization of multi-agent production systems using semantic web
technologies. IEEE RA-L 4 (4), 4330–4337.

Gruber, T.R., 1993. A translation approach to portable ontology specifications. Knowl.
Acquis. 5 (2), 199–220.

Studer, R., Benjamins, V., Fensel, D., 1998. Knowledge engineering: Principles and
methods. DKE 25 (1–2), 161–197.

Atkinson, C., Gutheil, M., Kiko, K., 2006. On the relationship of Ontologies and Models.
Int. Workshop Meta-Model., Vol. 96, Ges. für Inform., Karlsr., Ger. 47–60.

Hitzler, P., Krötzsch, M., Rudolph, S., 2010. Foundations of Semantic Web Technologies.
Chapman & Hall/CRC,, Boca Raton, USA.

Smith, M.K., Welty, C., McGuinness, D.L., 2004. W3C OWL Web Ontology Language
Guide. Tech. rep.

Herzig, S.J.I., Qamar, A., Reichwein, A., Paredis, C.J.J., 2011. A conceptual framework for
consistency management in model-based systems engineering. IDETC/CIE
1329–1339.

Ocker, F., Vogel-Heuser, B., Paredis, C.J.J., 2019b. Applying semantic web technologies
to provide feasibility feedback in early design phases. JCISE 19 (4), 041016.

Ameri, F., McArthur, C., 2014. Semantic rule modelling for intelligent supplier dis-
covery. IJCIM 27 (6), 570–590.

Köcher, A., Hildebrandt, C., VieiradaSilva, L.M., Fay, A., 2020. A Formal Capability
and Skill Model for use in Plug and Produce Scenarios. In: ETFA. IEEE, pp.
1663–1670.

Zhao, Y., Liu, Q., Xu, W., 2017. Open Industrial Knowledge Graph Development for
Intelligent Manufacturing Service Matchmaking. In: INDIN. IEEE, pp. 194–198.

Puttonen, J., Lobov, A., Lastra, J.L., 2013. Semantics-based composition of factory au-
tomation processes encapsulated by web services. TII 9 (4), 2349–2359.

Euzenat, J., Shvaiko, P., 2013. Ontology Matching. Springer,, Heidelberg, New York.
Arp, R., Smith, B., Spear, A.D., 2015. Building Ontologies with Basic Formal Ontology.

MIT Press,.
Schmidt, D., Trojahn, C., Viera, R., 2019. Matching BFO, DOLCE, GFO and SUMO: an eva-

luation of OAEI 2018 matching systems. Semin. De. Pesqui. em Ontol. no Bras., CEUR.
Stevens, R., Lord, P., Malone, J., Matentzoglu, N., 2019. Measuring expert performance

at manually classifying domain entities under upper ontology classes. JoWS 57,
100469.

Maedche, A., Staab, S., 2002. Measuring similarity between ontologies. In: EKAW 2473.
Springer, pp. 251–263.

Ardjani, F., Bouchiha, D., Malki, M., 2015. Ontology-Alignment Techniques: Survey and
Analysis. IJMECS 7 (11), 67–78.

Pawełoszek, I., Korczak, J., 2018. Merging of ontologies – Conceptual design issues. In:
ACM International Conference Proceeding Series. Association for Computing
Machinery, pp. 59–63.

Miller, G.A., 1995. WordNet: a lexical database for English. Commun. ACM 38 (11),
39–41.

Chatterjee, N., Kaushik, N., Gupta, D., Bhatia, R., 2018. Ontology merging: a practical
perspective. In: Smart Innovation, Systems and Technologies 84. Springer, pp.
136–145.

Aumueller, D., Do, H.-H., Massmann, S., Rahm, E., 2005. Schema and ontology
matching with COMA. ACM SIGMOD Int. Conf. Manag. Data.

Noy, N.F., Musen, M.A., 2000. Algorithm and Tool for Automated Ontology Merging
and Alignment. In: IAAI-00. AAAI Press, pp. 450–455.

Cruz, I.F., Antonelli, F.P., Stroe, C., 2009. AgreementMaker: efficient matching for large
real-world schemas and ontologies. Proc. VLDB Endow. 2 (2), 1586–1589.

Hu, W., Qu, Y., 2008. Falcon-AO: a practical ontology matching system. JWS 6 (3),
237–239.

Hu, W., Jian, N., Qu, Y., Wang, Y., 2005. GMO: a graph matching for ontologies. K. -CAP
Workshop Integr. Ontol., CEUR.

Tang, J., Li, J., Liang, B., Huang, X., Li, Y., Wang, K., 2006. Using Bayesian decision for
ontology mapping. JoWS 4 (4), 243–262.

Giunchiglia, F., Autayeu, A., Pane, J., 2012. S-match: an open source framework for
matching lightweight ontologies. Semant. Web 3 (3), 307–317.

Stumme, G., Maedche, A., 2001. FCA-MERGE: bottom-up merging of ontologies. IJCAI
225–230.

Chen, R.C., Bau, C.T., Yeh, C.J., 2011. Merging domain ontologies based on the WordNet
system and fuzzy formal concept analysis techniques. Appl. Soft Comput. 11 (2),
1908–1923.

Robin, C.R.R., Uma, G.V., 2010. A novel algorithm for fully automated ontology merging
using hybrid strategy. Eur 47 (1), 74–081.

Lv, Z., Peng, R., 2020. A novel meta-matching approach for ontology alignment using
grasshopper optimization. KBS, 106050.

Fu, B., Brennan, R., O’Sullivan, D., 2012. A configurable translation-based cross-lingual
ontology mapping system to adjust mapping outcomes. JWS 15, 15–36.

Ibrahim, S., Fathalla, S., ShariatYazdi, H., Lehmann, J., Jabeen, H., 2019. From Monolingual
to Multilingual Ontologies: The Role of Cross-Lingual Ontology Enrichment. In:
International Conference on Semantic Systems. Springer, pp. 215–230.

Helou, M.A., Palmonari, M., Jarrar, M., 2016. Effectiveness of automatic translations for
cross-lingual ontology mapping. JAIR 55, 165–208.

Shvaiko, P., Euzenat, J., 2013. Ontology matching: State of the art and future chal-
lenges. TKDE 25 (1), 158–176.

Algergawy, A., Faria, D., Ferrara, A., Fundulaki, I., Harrow, I., Hertling, S., Jimenez-Ruiz,
E., Orcid-Karam, N., Khiat, A., Lambrix, P., Li, H., Montanelli, S., Paulheim, H.,
Pesquita, C., Saveta, T., Shvaiko, P., Splendiani, A., Thiéblin, E., Trojahn, C.,
Vataščinová, J., Zamazal, O., Zhou, L., 2019. Results of the Ontology Alignment
Evaluation Initiative 2019. Tech. rep.

Cha, S., Vogel-Heuser, B., Fischer, J., 2020. Analysis Of metamodels for model-based
production automation system engineering, collaborative Intell. Manuf 2 (2), 45–55.

OPC Foundation. OPC Unified Architecture - Part 5: Information Model, Tech. rep.
Plattform Industrie 4.0, Details of the Asset Administration Shell - Part 1, Tech. rep.,

German Federal Ministry for Economic Affairs and Energy (2020).
AutomationML Consortium, 2014. AutomationML Whitepaper Part 1- Architecture

and general requirements. Tech. rep.
Chungoora, N., Young, R.I., Gunendran, G., Palmer, C., Usman, Z., Anjum, N.A., Cutting-

Decelle, A.F., Harding, J.A., Case, K., 2013. A model-driven ontology approach for
manufacturing system interoperability and knowledge sharing. CII 64 (4),
392–401.

Industrial Ontologies Foundry, IOF Website (2020). 〈https://www.industrialontologies.
org/〉.

Hildebrandt, C., Kocher, A., Kustner, C., Lopez-Enriquez, C.M., Muller, A.W., Caesar, B.,
Gundlach, C.S., Fay, A., 2020. Ontology building for cyber-physical systems: ap-
plication in the manufacturing domain. TASE 17 (3), 1266–1282.

Witherell, P., Kulvatunyou, B., Rachuri, S., 2013. Towards the synthesis of product
knowledge across the lifecycle. In: IMECE 12 ASME.

Kumar, S.K., Harding, J.A., 2013. Ontology mapping using description logic and brid-
ging axioms. CII 64 (1), 19–28.

Anjum, N.A., Harding, J.A., Young, R.I., Case, K., 2012. Mediation of foundation ontology
based knowledge sources. CII 63 (5), 433–442.

Adamczyk, B.S., Szejka, A.L., Canciglieri, O., 2020. Knowledge-based expert system to
support the semantic interoperability in smart manufacturing. CII 115, 103161.

Kramer, M.E., Burger, E., Langhammer, M., 2013. View-centric engineering with syn-
chronized heterogeneous models. In: VAO. ACM Press, New York, USA.

Wolfenstetter, T., Basirati, M.R., Böhm, M., Krcmar, H., 2018. Introducing TRAILS: A tool
supporting traceability, integration and visualisation of engineering knowledge
for product service systems development. JSS 144, 342–355.

Lemaignan, S., Siadat, A., Dantan, J.-Y., Semenenko, A., 2006. MASON: A Proposal for an
Ontology of Manufacturing Domain. In: DIS. IEEE, Prague, Czech Republic, pp.
195–200.

Sarkar, A., Šormaz, D., 2019. Ontology model for process level capabilities of manu-
facturing resources. Procedia Manuf. 39, 1889–1898.

International Electrotechnical Commission, IEC 60050 - International Electrotechnical
Vocabulary (2020). 〈http://www.electropedia.org/〉.

Lamy, J.B., 2017. Owlready: ontology-oriented programming in Python with automatic
classification and high level constructs for biomedical ontologies. Artif. Intell.
Med. 80, 11–28.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf,
R., Funtowicz, M., Davison, J., Shleifer, S., vonPlaten, P., Ma, C., Jernite, Y., Plu, J., Xu,
C., Scao, T.L., Gugger, S., Drame, M., Lhoest, Q., Rush, A.M., 2020. Transformers:
State-of-the-art Natural Language Processing. EMNLP, Assoc. Comput. Linguist.

F. Ocker, B. Vogel-Heuser and C.J.J. Paredis Computers in Industry 135 (2022) 103571

11

http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref1
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref1
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref1
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref1
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref2
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref2
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref2
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref3
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref3
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref4
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref4
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref5
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref5
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref6
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref6
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref7
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref7
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref8
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref8
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref8
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref9
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref9
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref10
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref10
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref11
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref11
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref11
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref12
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref12
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref13
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref13
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref14
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref15
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref15
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref16
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref16
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref17
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref17
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref17
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref18
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref18
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref19
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref19
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref20
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref20
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref20
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref21
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref21
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref22
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref22
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref22
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref23
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref23
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref24
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref24
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref25
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref25
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref26
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref26
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref27
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref27
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref28
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref28
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref29
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref29
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref30
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref30
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref31
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref31
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref31
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref32
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref32
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref33
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref33
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref34
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref34
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref35
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref35
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref35
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref36
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref36
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref37
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref37
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref38
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref38
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref38
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref38
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref38
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref39
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref39
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref40
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref41
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref41
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref42
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref42
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref42
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref42
https://www.industrialontologies.org/
https://www.industrialontologies.org/
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref43
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref43
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref43
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref44
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref44
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref45
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref45
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref46
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref46
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref47
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref47
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref48
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref48
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref49
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref49
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref49
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref50
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref50
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref50
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref51
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref51
http://www.electropedia.org/
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref52
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref52
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref52
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref53
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref53
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref53
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref53

Babalou, S., König-Ries, B., 2020. Towards building knowledge by merging multiple
ontologies with CoMerger: A partitioning-based approach. Tech. rep.

Bird, S., Klein, E., Loper, E., 2009. Natural Language Processing with Python - Analyzing
Text with the Natural Language Toolkit, 1st edition.,. O’Reilly Media,.

Ochieng, P., Kyanda, S., 2018. Large-scale ontology matching: State-of-the-art analysis.
ACM Comput. Surv. 51 (4), 1–35.

Honnibal, M., Montani, I., Van Landeghem, S., Boyd, A., 2020. spaCy: Industrial-
strength Natural Language Processing in Python. DOI is: 10.5281/zenodo.1212303.

Ritze, D., Paulheim, H., 2011. Towards an automatic parameterization of ontology
matching tools based on example mappings. Int. Workshop Ontol. Matching, CEUR.

Sowa, J.F., 1999. Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Brooks Cole Publishing Co.,, Pacific Grove, USA.

Grygorova, E., Id, S.B., König, B., Id, R., 2020. Toward OWL Restriction Reconciliation in
Merging Knowledge. In: ESWC. Springer.

F. Ocker, B. Vogel-Heuser and C.J.J. Paredis Computers in Industry 135 (2022) 103571

12

http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref54
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref54
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref55
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref55
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref56
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref56
http://www.10.5281/zenodo.1212303
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref57
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref57
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref58
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref58
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref59
http://refhub.elsevier.com/S0166-3615(21)00178-0/sbref59

	A framework for merging ontologies in the context of smart factories
	1. Motivation
	2. Related Work
	2.1. Ontologies for Smart Factories
	2.2. Ontology Merging Approaches
	2.3. Semantic Interoperability in the Context of Smart Factories
	2.4. Research Gap

	3. Application Example
	4. Framework for Ontology Merging
	4.1. Overview of the Framework
	4.2. Assumptions and Available Information
	4.3. Cases of Correspondence
	4.4. Preprocessing
	4.5. Terminological Matching
	4.6. Structural Matching
	4.7. Weightings and Thresholds
	4.8. Link Ontology Creation and Consistency Checks

	5. Implementation and Discussion
	5.1. Implementation Details
	5.2. Evaluation
	5.3. Discussion

	6. Summary and Outlook
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	REFERENCES

