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There is a great need for high-quality and comprehensive data in the energy
sector. This data is collected and preprocessed at considerable expense and
is not only required for research, but also by planning offices and other
industries in connection with planning activities, such as the creation of
municipal heat planning. The NEED ecosystem will accelerate these pro-
cesses establishing an efficient, robust, and scalable energy data ecosystem.
Heterogeneous energy-related data sources will be brought together and
automatically linked consistently across different sectors as well as temporal
and spatial levels. In this context, existing data sources will not be replaced
but rather integrated into the NEED ecosystem as dedicated sources includ-
ing a semantic description on how to utilize them. In addition to conventional
data sources from the various planning levels, we envision a quality assess-
ment scheme based on the FAIR criteria. In reality, we are often faced with
missing data, too. To close this gap we explore data-driven, model-driven,
AI-based, and tool-driven generation of synthetic data. These heterogeneous
data sources will be interlinked using ontology modules which will be repre-
sented in a knowledge graph. Via a semantic API, queries will be generated
to identify the required data sources, which will be orchestrated to provide
the data needed. This will enable researchers, planners, and others including
their tools to interact with the NEED ecosystem, while a tool proxy will
be able to translate the resulting data into proprietary formats, required
by some tools to operate. The NEED ecosystem is planned to be a robust,
easy-to-maintain, and flexible infrastructure to enhance planning energy
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measures at different spatial levels and with different time horizons. We en-
vision to evaluate our NEED approach for the transparent provision of data
by integrating relevant data sources as microservices, definition and analysis
of application scenarios in the planning domain, as well as the integration
of various tools for different planning purposes. With these elements, we
will be able to quantify the efficiency of data procurement and demonstrate
the functionality of the approach using practical use cases.

1 INTRODUCTION
The procurement and provision of data is still a very time-consuming
and cost-intensive part of planning energy technology systems
and is estimated by the project partners to account for 30% of the
total costs. Depending on requirements and use cases, different
data—such as LoD2 data1, information on existing infrastructures,
geodata and cadastral data, consumption curves, primary energy
requirements, plant data, information on mobility or geothermal
potential—have to be procured and preprocessed accordingly for
dedicated applications or tools. This process of obtaining and prepar-
ing data and information of a sufficient quality and up-to-dateness
for the application must be repeated for each and every planning
case. Additionally, in order to advance the energy transition, cross-
connections must also be taken into account. Consequently, both,
the heat and electricity side must be considered in all planning per-
spectives, e.g., from the perspective of a building or with regard to
the infrastructure. This also applies to other energy vectors such as
gas, mobility, or water. In many areas, however, hardly any data of
sufficient quality is available in machine-readable form and the ori-
gin and transparency of data generation and quality are not reliable.
With this in mind, the publicly funded NEED research project2 was
launched in September 2023 to develop an energy data ecosystem
for future energy planning with numerous research institutions and
industrial partners.

With the help of the NEED ecosystem, the planning basis will be
made digitally available in the form of data from different levels and
domains and linked with each other by the application of ontologies

13D building models for Germany from Federal Agency for Cartography and Geodesy
2https://enargus.de/pub/bscw.cgi/?op=enargus.eps2&q=%2201256602/1%22&v=10&s=
13, accessed 10.05.2024
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Fig. 1. Multilayered NEED ecosystem: The NEED-platform aims to provide
a communication interface for energy data. To provide the interface, un-
derlying ontologies link heterogeneous data sources. The ecosystem will
increase accessibility and coherence of data of different aggregation levels,
using conventional data sources complemented by synthetic data.

resulting in a knowledge graph. This will create a modular system
for end-to-end planning tasks from the building to the infrastruc-
ture, which enables automated, model-based analyses across system
boundaries. In addition to an improvement in quality through trans-
parent, digital, and verified data, the costs and time required for
data acquisition and preparation may be significantly reduced.

In this context, the aim is not to replace existing data sources, but
rather to integrate them into the ecosystem as dedicated sources. In
addition to conventional data sources (such as energy atlases, state
offices, grid operators, building data, geothermal energy deposits,
weather data, census data) at the various planning levels (e.g., build-
ings, districts, regions), we aim to explore ways of closing existing
data gaps with synthetic data. By integrating conventional data and
deriving synthetic data, the NEED ecosystem may provide a robust,
easy-to-maintain, and flexible tool for deriving energy measures at
different spatial levels without losing sight of the overall picture.

Finally, the partners’ tools and models should access the required
data via semantic queries and suitable interfaces in order to fulfill
the respective (planning) tasks. This illustrates the NEED approach
to the transparent provision of current data, particularly in the ex-
amples of heat management planning and the creation of a dynamic
energy usage plan. The following subgoals are pursued:

• Subgoal 1: Supplement and integrate existing data sources
and data formats, such as the energy atlas of Bavaria3 or the
energy atlas of Thuringia4, LoD2 data of Bavaria5, etc., to
integrate different conventional data sources.

• Subgoal 2: Provide and validate synthetic data created through
derivation and aggregation.

• Subgoal 3: Bringing together different sources and levels on
the topic of energy in a knowledge graph to realize semantic

3https://energieatlas.bayern.de/, accessed on 10.05.2024
4https://karte.energieatlas-thueringen.de/, accessed on 10.05.2024
5https://geodaten.bayern.de/opengeodata/OpenDataDetail.html?pn=lod2, accessed on
10.05.2024

queries and, based on this, to set up monitoring, if possi-
ble in real time, and to run knowledge-augmented ’what-if
scenarios’.

• Subgoal 4: Validation and verification by means of practical
applications for energy planning based on conventional and
synthetic data using real examples in order to demonstrate
the benefits and applicability with the aim of stabilization.

The paper is structured as follows. Section 2 will introduce the
stakeholders addressed in our work including the main application
scenarios. Section 3 deals with conventional data sources and the
corresponding investigations. In Section 4, synthetic data for closing
existing gaps in the conventional data or to validate the developed
data-driven approaches is introduced. To interconnect the available
and existing data sources with actual planning tools, in Section 5,
we present the concept of ontology models resulting in a knowledge
graph to query relevant information. To combine the so far presented
building blocks we propose a distributed service-based architecture
in Section 6 before we summarize the work conducted and give a
brief outlook.

2 USE CASES AND CASE STUDIES
In order to develop the NEED ecosystem addressing actual chal-
lenges and problems of practice, use cases and case studies are
defined. The use cases describe what methods, tools, and data are
used, as well as the respective customers addressed. One or two
specific questions for each use case are elaborated, which are then
used as guidance. Based on the questions, the necessary analysis
methods, tools, and data are identified.

The description of used methods and tools provides information
about the interfaces to the NEED ecosystem. That also includes the
data requirements for providing information (e.g., population devel-
opment, spatial development, time series for forecasts, geographical
allocation, defined units). As a result, the overall requirements re-
garding data and interfaces to the NEED ecosystem can be specified.
Within the research project, the partners agreed on focusing on the
following customers:

• Homeowners, housing associations, energy consultants
• SMEs (small and medium-sized enterprises)
• Network operators
• Municipalities, communities

The first two types of users reflect the point of view from an individ-
ual perspective either at residential or industrial level. The third and
fourth types of users represent the supply side and are responsible
for operating energy networks and ensuring energy supply.

The scientific partners and especially the industry partners have
a variety of tools available for this purpose. With regard to the
different tools, the resulting use cases are summarized in application
scenarios, which represent a thematic cluster. The following four
application scenarios were developed by the project partners to take
energy planning requirements into account:

• Energy utilization and municipal heat planning
• Network planning (electricity and heat)
• District planning
• Energy consulting (renovation/transformation/electrification)
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The creation of these four application scenarios covers both the
expertise of the consortium partners and the demand of the above-
mentioned customers. In addition, we have ensured that a set of
suitable case studies exist for each of the application scenarios to
validate the benefits of the proposed NEED ecosystem over the
course of the project.

2.1 Case Studies
A case study is defined as a real project carried out by the consortium
partners in collaboration with local stakeholders. The case studies
are intended to demonstrate and validate the benefits of the NEED
ecosystem at a later stage of the project. Each case study is assigned
to a previously defined use case with an associated customer. There
is at least one case study for each use case.
Various industrial partners in the NEED consortium are already

working on projects that can be assigned to a specific application
scenario. Some of these projects will be converted into case studies
and then reworked with the help of the NEED ecosystem. The aim is
to show how the planning process for the various use cases changes
through the use of the NEED ecosystem. The aim is to significantly
reduce the time and effort required to record and preprocess the
input data, as the relevant information may be efficiently retrieved
in the desired spatial and temporal resolution and in the desired
format via suitable NEED interfaces and proxies.
In addition to relying on projects already being worked on by

industry partners, new methods for processing the planning tasks
of the various use cases are also being investigated. This also in-
cludes investigations into new efficiency potentials made possible
by the NEED ecosystem. The possibility of querying data in different
temporal and spatial resolutions should facilitate the inclusion of
synergy effects of neighboring units in a variety of planning tasks.
In addition, research is being carried out into the automated provi-
sion of data, e.g., for energy consulting for residential buildings or
for municipal heat planning.
A selection of case studies is presented below:

• Municipal heat planning for a city in southern Hesse
• Detailed heat grid planning in a city in southern Hesse and

in a city in Bavaria
• Generation of synthetic electricity distribution networks in

a city in northern Bavaria
• Automated data provision for energy efficiency consulting

of (residential) buildings

Within these case studies, we aim to increase the level of automa-
tion in the planning processes. For example, for heat grid planning,
we intend to develop a method to handle the (computational) com-
plexity of topology design to make automated heat grid planning
applicable in real planning processes. However, the executions of
the case studies and the integration of automated processes rely
on a wide range of different data sources at the various planning
levels. Some data are publicly available, others are provided by gov-
ernment institutions, others are not available at all. Nevertheless,
it is no trivial task to collect and preprocess the right data in the
right quality and up-to-dateness. In this context, the project aims to
analyze and process existing, so-called conventional data sources to
integrate them into the NEED ecosystem.

3 CONVENTIONAL DATA SOURCES
In the context of the NEED project, conventional data refers to data
that is already accessible and typically published by the authors
of the data in different data sources, e.g., web-based map services
such as the Energieatlanten (energy atlases) or online registries such
as the Markstammdatenregister (master data on the electricity and
gas market)6. Usually, these data sources serve specific purposes,
resulting in limited connections between sources. Even though in
some instances the data of different sources overlap (for example
some of the energy atlases include data about global sun radiation
which is a dataset released by the Deutscher Wetterdienst, Germany’s
institution for meteorological services7), sources like energy atlases
only include data for a specific time frame or a specific spatial extent
instead of holistic datasets.

Given the broad spectrum of data sources with ready-to-use data,
it is necessary to gain an overview of the data in order to integrate
them into the NEED ecosystem.We are therefore working on finding
a uniform characterization for all data in order to assess data quality
and characterize further criteria in the variety of data sources and
authors of the data. Testing our characterization approach requires
the use of a range of data sources with comparable datasets, which
led to the decision to use the Energy Atlases.

3.1 Evaluation of Energy Atlases
An energy atlas typically refers to a web-based map service hosted
by a federal state of Germany. Generally, the hosted data relates
to the field of energy planning in the broad sense and ranges from
simple geometric data used to describe the visualized area to the
global sun radiation over the course of one year. As of now, not every
state has an energy atlas and those that do, all have their own instead
of one energy atlas for the whole country (see Figure 2). The atlases
differ regarding the hosted content and data quality. Since all these
atlases were probably created with similar intentions, working with
them would be much more efficient if they all followed the same
standards. In order to realize a common standard, it is necessary to
gain an understanding of what data is contained in the individual
energy atlases and in what quality. To this end, the energy atlases
are analysed and two matrices are introduced to characterize and
evaluate the individual data sets and their metadata. The first step is
to develop the columns of the two matrices. The data to be analyzed
in the matrices consists mainly of geodata. While most of the data
comes from the field of energy planning, there is a focus on the
inclusion of basic geodata, as this represents an essential basis in
any planning process. The matrices must therefore be designed in
such a way that they allow data from different areas to be analyzed.
This led to the columns being strongly oriented towards the way in
which data is analyzed in the geoinformation sciences. To ensure the
reusability of the data and to allow users to easily assess the quality
of the data, a strong focus is placed on the spatial and temporal
aspects of the datasets and their metadata.

6https://www.marktstammdatenregister.de/MaStR, accessed on 10.05.2024
7https://www.dwd.de/DE/leistungen/solarenergie/solarenergie.html;jsessionid=
2A01EAA2CFC9627F02AC72EF3D5DDDD9.live21074?nn=16102, accessed on
29.04.2024
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Fig. 2. Information included in the energy atlases of Germany’s federal
states.

The first matrix focuses on the metadata to gain a basic under-
standing of the corresponding energy atlas and its quality. It includes
the following aspects:

• The name of the dataset as it is shown in the energy atlas,
• Contact information of the dataset’s author,
• Information about when the metadata was updated last,
• The data’s usage license,
• The hyperlink to the metadata, and
• The option to evaluate the data regarding the FAIR principles

with certain indicators for each principle.

The above-mentioned ’FAIR principles’ evaluate the findability,
accessibility, interoperability and reusability of data and serve as a
benchmark for data quality and applicability [Wilkinson et al. 2016].
For the NEED ecosystem, we pre-select FAIR principles that are
relevant in the context of energy planning processes and evaluate
them for the datasets under consideration according to [Bahim et al.
2020]. We plan to make the evaluation of these principles together
with the datasets available to the users of the platform in order to
enable an individual evaluation of the relevance of the individual
principles in specific planning processes.
The secondmatrix focuses on the specific datasets and their contents,
and the following aspects are included in the matrix:

• The name of the dataset as it is shown in the energy atlas,

• The topic the dataset that it can be associated with, such as
electricity, mobility, or heat energy,

• Information about the dataset’s source, e.g., if it is commer-
cial data or open data,

• The classification in spatial data with or without references
to a specific subject or research field,

• The geometric dimension and whether the dataset includes
temporal information,

• The specific content of the data such as buildings, different
kinds of infrastructure, etc.,

• The data’s spatial extent, ranging from single georeferenced
locations to a whole country,

• The data’s resolution or scale,
• Information about how often the data is updated,
• Information about when the dataset was initially released,
• Information about when the data was updated last,
• Information about the data format,
• Information whether the data can be downloaded,
• Contact information of the dataset’s author,
• A hyperlink to the dataset in the energy atlas, and
• The option to evaluate the data regarding the FAIR principles

with certain indicators for each principle.

Each of these aspects serves as one of the columns of the matrix and
all information must be added to the matrix for each relevant dataset.
Once all information on the datasets of all energy atlases has been
collected in the matrix, it is possible to compare the different atlases.
The comparison can be used to make a proposal to the institutions
responsible for the atlases in order to identify possible weaknesses
and deficiencies and to establish a nationwide standard. In addition,
the matrix can also be used to characterize data from other data
sources. Since all data is characterized in the same way, it can be
more easily implemented into the NEED ecosystem for future use
without the need to implement different parsers for each data source.
The data itself is not necessarily included in the same way as it is
usually retrieved, e.g. on an energy atlas website. Instead, the data
can be mapped to specific areas based on the geographical infor-
mation about the datasets. When information about these areas is
retrieved, the datasets and their respective entries from the matrices
can be displayed and accessed via hyperlinks or other references
to where they were originally published. In this way, additional
datasets can be added to the ecosystem, even if not all data can
be downloaded or accessed in the form of a Web Map Service. In
the following, we describe the Marktstammdatenregister (MaStR) as
another example of conventional data.

3.2 Open-MaStR
Germany’s publicly available Marktstammdatenregister is a register
that keeps track of energy units (including power and gas). It is pro-
vided by the German Federal Network Agency (Bundesnetzagentur /
BNetzA) and is updated on a daily basis. The MaStR open dataset
can be browsed online on the website of the BNetzA. To facilitate
access to the database, a Python package called open-mastr has been
developed by the RLI and fortiss to provide an interface to improve
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the usability of the register. The package includes methods to clean
and write the data into a local database8.
The package provides a Python interface for accessing data via

the bulk download and the web service API, and methods to clean
the data. Through the bulk method, one can download all units
(e.g., all solar farms in Germany) and through the API method, one
can retrieve specific information regarding single units (requires
registration for an API token). The cleaned data is then written into
a database. The open-mastr package hence provides easy access to
the dataset, which is especially useful in the community of energy
system researchers.

Fig. 3. Installed capacity in Germany per district in 2024 extracted from the
Marktstammdatenregister using open-mastr.

Easy and direct analysis of various energy sources installed na-
tionwide, in every state, district, and municipality can be tracked
through this package. Figure 3 illustrates the capacity provided from
wind, PV, and biomass in 2024 in Germany per district. The data
found in the Marktstammdatenregister are manually entered, result-
ing in a large potential of errors and data gaps. The latter issue will
be tackled in the next section, where we introduce synthetic data
generation and its importance in filling the gaps of conventional
data sources.

4 SYNTHETIC DATA
Despite the considerable amount of conventional data presented in
Section 3, there are also significant data gaps. In some cases, needed
datasets are not available at all, in other cases the necessary temporal
or spatial resolution is lacking, or existing datasets cannot be used
or have to be modified for data protection reasons, for example.
In addition, datasets from different sources often have different

technical and semantic representations, which is why it is necessary
to map, link, and harmonize datasets. It therefore makes sense not
only to think about generating data, but also to create, provide, and
use metadata for all (both conventional and synthetic) datasets to
ensure data can be (automatically) converted, mapped, linked, etc.

Metadata for both synthetic datasets and processed conventional
datasets should contain traceability of their origin and all processing
steps applied (so-called provenance data). This is essential for the

8https://github.com/OpenEnergyPlatform/open-MaStR/, accessed on 10.05.2024

reproducibility and transparency of the models, simulations, and
plans created along the data.

4.1 Strategy for the Creation and Use of Synthetic Data
The lack of reliable data and the need for preserving the privacy of
the data are major concerns, e.g., when working with low-voltage
networks or residential data, particularly when such data is un-
available to the general public or cannot be measured, recorded, or
documented. However, reliable outputs can be achieved and gaps
can be filled with synthetic data created using the characteristics of
conventional data.
Our primary goal is to create an ecosystem that provides and

integrates conventional and synthetic data necessary for energy
planning. In this section, we focus on exploring the current ideas
related to synthetic data generation, with a particular focus on ex-
ploring variousmethodologies.We introducemethods such as image
processing, data fusion, and AI, ensuring validation and verification
of the generated data [Dankar and Ibrahim 2021].

The project partners will focus on three strategies in particular:

• Disaggregation of data that is available at a lower temporal
or spatial resolution

• Reconstruction of data using established planning principles
• The utilization of unconventional data sources, such as aerial

and satellite photos

First and foremost, we examine methodologies used in diverse
fields for synthetic data creation. We explore methods from geoin-
formatics to be implemented for energy planning purposes. We
identify gaps and challenges in current conventional data sources
in the energy sector, and use synthetic data generation approaches
to fill these gaps.
Our proposed methodologies for generating synthetic data en-

compass a range of approaches. Starting from the use of image
data to extract information and characteristics relevant to energy
systems. Additionally, we tackle methodologies that harness data
sources to derive information, particularly in the context of build-
ing sectors and regional analysis, through aggregation and fusion
techniques.

4.2 Methods for the Generation of Synthetic Data
We will also explore both the standard methods, such as Random
Oversampling (ROS), Cluster-Based Oversampling, and Gaussian
Mixture Models, as well as deep learning methods such as Genera-
tive Adversarial Networks (GAN) used for generating synthetic data
(see Figure 4). Deep learning has led to the emergence of several
promising techniques for creating synthetic data, most notably the
GAN. Furthermore, GAN can produce new synthetic samples that
closely resemble the original dataset’s underlying data distribution.
Since the time it was proposed, the architecture of GAN has been
modified based on the use case or field of application. Hence, we
will delve into finding the most suitable architecture for generating
synthetic data.

4.2.1 Random Oversampling (ROS).
Oversampling is a method in which the minority classes are du-
plicated. ROS is one of the classical approaches to oversampling,

ACM SIGENERGY Energy Informatics Review Volume 4 Issue 4, October 2024

https://github.com/OpenEnergyPlatform/open-MaStR/


Fig. 4. Different methods for generating synthetic data [Figueira and Vaz
2022].

which expands the dataset with new observations by randomly se-
lecting a replacement sample from the minority class. Although
this is the most direct approach to growing a dataset, this method
merely replicates the existing samples rather than generating new
ones [Batuwita and Palade 2010].

4.2.2 Synthetic Minority Oversampling Technique (SMOTE).
SMOTE is an oversampling technique in which new instances are
generated for each training observation by selecting points at ran-
dom. There are two components to the SMOTE algorithm: the se-
lection mechanism and data generation mechanism [Chawla et al.
2002]. In the selection mechanism, a minority class observation and
its nearest neighbors are selected at random. The data generation
mechanism is responsible for generating synthetic data. Despite its
advantages, SMOTE has certain limitations, such as generating noisy
data. Hence, there are many variants to the classical SMOTEmethod
that address this issue, such as the Borderline-SMOTE, Safe-level
SMOTE, and Adaptive Synthetic Sampling approach (ADASYN).

4.2.3 Cluster-Based Oversampling.
Cluster-Based Oversampling, first proposed by [Jo and Japkowicz
2004], involves clustering the training data in the minority and
majority classes separately and then applying ROS to each cluster.
This method aims to improve the between-class and within-class
imbalances.

4.2.4 Gaussian Mixture Model (GMM).
In cases where the dataset displays multiple areas of elevated den-
sity, a single Gaussian model may struggle to adequately fit the
data. This is where GMM proves to be particularly useful. GMM
is a probabilistic model that assumes that the data is a mixture of
many Gaussian distributions, representing different subpopulations
within a dataset, each of which contributes a certain weight to the
whole distribution. The model learns these subpopulations through
training using the Expectation Maximization algorithm.

4.2.5 Bayesian Networks.
A Bayesian Network, also known as a belief network, is a type of
graphical model that represents the joint probability distribution for
a group of variables [Young et al. 2009]. The two main components
of the Bayesian model are a set of graphical structures and a set of
conditional probability distributions. The graphical structure is a set
of nodes. Each node in a Bayesian Network corresponds to a proba-
bility distribution that quantifies the likelihood of a variable taking

on different values given the values of its parent variables [Hecker-
man et al. 1995].

4.2.6 Autoencoders (AE).
An autoencoder is a type of artificial neural network used in unsu-
pervised learning. It consists of an encoder network and a decoder
network that work together to learn the diverse representation of
the input dataset [Ackley et al. 1985]. The encoder compresses the
input data into low-dimensional data, called ‘latent space’, and the
decoder then reconstructs the original input data from the low-
dimensional representation. Despite their advantages, autoencoders
also suffer from some disadvantages. They may struggle to capture
the full diversity of the input data and as a result the generated sam-
ples might lack diversity or fail to represent all possible instances in
the dataset. When trained on a limited dataset, autoencoders could
also suffer from overfitting. This can lead to samples being gener-
ated that are very similar to the training data, but do not accurately
capture the underlying distribution [Figueira and Vaz 2022].

4.2.7 Generative Adversarial Networks (GAN).
The idea behind GAN is to train two neural networks, a genera-

Fig. 5. Overview of GAN. Given a random noise, G generates a set of data-
points, the generated dataset. The generated dataset and the real dataset
are fed to D, which labels the output as a loss function. This is then fed back
to G and D to improve their performances [Figueira and Vaz 2022].

tor (G) and a discriminator (D), simultaneously (see Figure 5). The
generator model tries to imitate the underlying original distribution
of the data while the discriminator model tries to classify a given
observation as real (coming from the original dataset) or fake (gen-
erated by the generator model) [Goodfellow et al. 2020]. During the
training, the two models compete with each other. Based on the dis-
criminator’s feedback, also known as the loss function, the generator
attempts to improve its performance by generating more realistic
samples (see Figure 5). Through this process, both the generator
and discriminator models improve their performance, leading to the
generation of high-quality synthetic data.

4.3 Validation Metrics
To ensure the proper validation of synthetic data , we will consider
evaluation metrics tailored to our specific use case. Existing metrics
often fall short in capturing complex relationships and dependencies
within data, such as temporal correlations in time-series data. We
will address these limitations essential to ensure a more accurate
and rigorous validation process, ultimately leading to higher quality
and more reliable synthetic data.

ACM SIGENERGY Energy Informatics Review Volume 4 Issue 4, October 2024



Relying on the existing validation techniques, we will identify
key characteristics in conventional data, and design and test new
metrics through simulations and empirical analysis. We will employ
a combination of statistical tests, visual inspection, and domain-
specific criteria for comparison, such as Kolmogorov-Smirnov tests
for distributional comparison and Pearson correlation coefficients
for relationship assessment [Whitnall et al. 2011]. By providing
a comprehensive assessment, these new metrics will enhance the
reliability and applicability of synthetic data, ensuring it meets the
rigorous standards required for its intended use.

4.4 Ontology-Based Descriptions for Spatio-Temporal
Compliance

Ontology descriptions can guide synthetic data generation to pro-
duce data that complies with specific scales. For instance, if the on-
tology specifies that the data should have a specific resolution, the
synthetic data generation algorithm can be configured to produce
images at this resolution. This ensures consistency with real satellite
imagery, facilitating seamless integration into existing datasets. In
our initial work, we investigate high resolution aerial images and
lower resolution satellite images from Sentinel-2 [Spoto et al. 2012]
and use these immense monitoring tools to segment solar installa-
tions in Germany. Super-resolution images can be synthesized from
the widely available Sentinel-2 data, allowing a regular automated
update of the MaStR registry inputs.
By leveraging semantically rich annotations, we can generate

high-quality synthetic satellite imagery that aligns with specific
requirements. The generated data will enhance the robustness and
accuracy of machine learning models, fill the data gaps, support
comprehensive analysis, and provide valuable insights across vari-
ous applications, from environmental monitoring to urban planning
enriching further the NEED platform.

5 KNOWLEDGE GRAPH

5.1 Challenges of Data Integration in Energy System
Planning

Energy system planning is a multifaceted approach that requires
a holistic understanding of the systems and processes involved.
Numerous researchers have contributed to this field by proposing
energy system models and tools aimed at optimizing energy system
planning [Eveloy and Ahmed 2022; Henke et al. 2022; Metzger et al.
2021; Prina et al. 2018]. The accuracy and effectiveness of energy
system modeling and planning depends on the quantity and quality
of input data [Keirstead et al. 2012].

In the context of energy system planning, data availability stands
out as one of the fundamental challenges. These input data originate
from diverse databases, encompassing both conventional data dis-
cussed in Section 3 and synthetic data explored in Section 4. These
data span multiple energy domains, including electricity, heating,
and cooling, and cover a wide range of technological, economic,
social, and political aspects. Cross-regional cooperation, renewable
energy source integration, and environmental impact considera-
tions become more prevalent. Thus, the complexity of energy sys-
tem planning escalates, accompanied by a dramatic increase in data
requirements.

Moreover, data quality assumes critical significance in energy
system planning. Errors or inaccuracies within data sources can
lead to additional efforts, necessitating the use of proxy data or
calculation adjustments [Keirstead et al. 2012]. Such discrepancies
may ultimately result in flawed models and suboptimal planning
outcomes. In addition, ensuring that data aligns precisely with the
intended purpose and context is a foundational principle. Valid data
faithfully represent the phenomena under study and significantly
contribute to effective planning efforts.
Consequently, there is an urgent need for data integration to

enhance interoperability and ensure the availability of reliable data.

5.2 Ontology-Based Data Integration
In recent years, Semantic Web Technologies (SWT) and ontology-
based data integration (OBDI) have garnered increasing attention
as innovative and effective approaches for addressing challenges
related to data management in the energy domain [Sicilia and Costa
2017]. OBDI, as an information management system, comprises
three key components: an ontology, a set of data sources, and the
mapping between them [Liu and Özsu 2018]. The ontology serves as
a set of formal, explicit specifications of a common conceptualization
that captures a shared understanding of the matters involved [Lork
et al. 2019]. It maps the required terminological aspects within a
knowledge representation.

In the context of the OBDI, ontologies provide a high-level, con-
ceptual view of the set of data sources [Calvanese et al. 2011]. By
constructing a Knowledge Graph (KG) based on ontologies, this
framework enables the interlinking of information across diverse
domains at data level.
In the NEED project, most data sources initially provide only

tabular rows of information. Classification is necessary to integrate
these datasets into a larger framework. This will be achieved using a
taxonomy constructed from both existing and synthetic data exam-
ples. This taxonomy will delineate key concepts within each domain
of the NEED ecosystem, facilitating the clustering and extension of
these concepts. Additionally, it will enable data mapping into our
knowledge network without necessitating direct replication into
semantic triples.
The energy and buildings sectors already boast a substantial

collection of existing ontologies [Pritoni et al. 2021]. Therefore, the
goal of the NEED project is not to create a new standalone ontology,
but rather to utilize these existing resources by aligning with and
incorporating new concepts as needed.
Thus, the design of the NEED ontology will be modular. The

core module will amalgamate shared concepts and terms that are
fundamental across all domains considered, as well as recurring
attributes and relations among entities. These shared elements will
be identified during the initial data acquisition phase, which will
be followed by the dissemination and definition of key entities and
attributes.
Each domain within the project, such as buildings, electricity,

or heating, will have its own module enriched with specialized
classes and categories. These will be linked to the broader concepts
established in the core module. The configuration of these domain-
specific modules will be shaped by the systems they represent and
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the available data types, such as georeferenced data, potentially re-
quiring the integration of a common ontology module across differ-
ent system categories. Furthermore, these modules will be designed
to align with other domain-specific ontologies, enabling module-
to-module alignments without necessitating full-scale alignment
across the entire NEED ontology, which is known in the literature
as a hybrid approach.
The final design of the ontology will encompass all necessary

data sources and metrics, accurately reflecting the systems under
consideration. The modular setup will ensure that the ontology
stack can be flexibly instantiated based on the specific needs of each
use case and application, thus ensuring adaptability and relevance
across a variety of scenarios.

5.3 Implementation of OBDI via Knowledge Graph
After the ontology design phase, our focus will shift to ontology-
based data integration. This will involve mapping data sources to
the corresponding modules within the domain ontology. The cul-
mination of this process will be the creation of a comprehensive
knowledge graph. This graph will play a vital role in supporting
tools for planning and analysis within the application layer, enabling
them to perform queries and interact efficiently with the data. Such
functionality is crucial as it acts as a semantic bridge, seamlessly
linking diverse data sources and enabling the application’s features
without requiring users to know details of the underlying database
structures. A diagram of the envisioned framework is shown in
Figure 6.

Fig. 6. Possible structure of OBDI in the NEED project.

Implementation of knowledge graph in NEED can be done using
The World Avatar (TWA) Project. The World Avatar (TWA) project
uses knowledge models and technologies from the Semantic Web to
seamlessly integrate data and computational agents [Akroyd et al.
2021]. It offers a general and scalable way to connect heterogeneous
data sources to provide an aligned world view, provide up-to-date
insights, analyse complex what-if-scenarios, and provide robust
control functionalities as a bridge between the physical and the
digital worlds, supporting more effective and coordinated decision-
making processes.

What sets TWA apart from other approaches is its dynamic be-
haviour. Computational agents act as autonomous knowledge com-
ponents to manage and update data. Inputs and outputs from the
agents can be semantically annotated to form chains of dependent in-
formation. A provenance framework ensures that the consequences
of any changes to data are cascaded throughout TWA [Bai et al.
2024a]. This automation, together with input agents that continu-
ously assimilate data feeds into the system, allows TWA to remain
current and responsive to new information and scenarios. TWA
is scalable by design. The computational agents can wrap around
existing software, and new ontologies can be incorporated continu-
ously while maintaining connections to everything existing in real
world. The underlying knowledge models (i.e., ontologies) facilitate
interoperability and knowledge retention by explicitly codifying
domain expertise.
TWA has been applied in a wide variety of contexts includ-

ing representing molecular scale information to automate calcu-
lations [Farazi et al. 2020] [Pascazio et al. 2023], chemical experi-
ments [Bai et al. 2024b] and materials discovery [Kondinski et al.
2022], the development of natural language methods to query data
and trigger calculations [Zhou et al. 2021] [Zhou et al. 2022] [Tran
et al. 2024], the integration of data from Geographical Informa-
tion Systems (GIS), Building Information Models (BIM), Building
Management System (BMS) [Quek et al. 2024], digitalisation of city
planning processes in Singapore [Chadzynski et al. 2021] [Silven-
noinen et al. 2023], optimisation of district heating operations in
Germany [Hofmeister et al. 2024c], and evaluation of cascading risk
to improve the climate resilience of connected infrastructure net-
works in the UK [Hofmeister et al. 2024a] [Hofmeister et al. 2024b],
including the Climate Resilience Demonstrator.9 TWA separates
data and knowledge representation from technical implementation,
allowing it to exceed the capabilities of connected digital twins. It is
platform-agnostic and open-source, eliminating the risk of vendor
lock-in and fostering collaborative and transparent development.
It has a distributed architecture that supports safe data access, in-
cluding local hosting and access control, ensuring data security and
privacy. TWA is designed for agents to wrap around existing soft-
ware, facilitating seamless integration of both current and future
technologies. The ideas developed in TWA project will support the
development of the underlying knowledge models and technological
aspects of the NEED project.

5.4 Semantic Georegistration of Data
As most of the data that are relevant to NEED cover aspects of
specific geographic regions or are obtained at specific locations,
we target to semantically annotate the data with their geographic
references. Ontologies can facilitate the creation of synthetic ge-
ographical data by providing a structured and semantically rich
framework that defines the entities, relationships, and constraints
specific to geographical domains. For this, a hierarchical approach
will be established that combines the various relevant scopes for
our planning domains from building layouts, to city districts, city
limits, administrative districts, states, and the overall country. A

9https://digitaltwinhub.co.uk/climate-resilience-demonstrator-credo/, accessed on
10.05.2024
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related approach using an OntoCityGML ontology that describes a
CityGML-based conceptual schema was used to create a semantic
model of the city of Berlin [Chadzynski et al. 2022].
A suitable approach is to rely on the Open Geospatial Consor-

tium’s GeoSPARQL 1.1 standard10, which on the one hand provides
a standardized vocabulary for describing geospatial linked data and
their corresponding geometric properties and on the other hand a set
of extensions to the SPARQL query language to properly interpret
the represented models. By employing this technique, represented
data in the NEED platform can be easily segmented along the de-
fined geospatial layers, as geospatial properties can be used in the
formulation of semantic queries for filtering the data. This will en-
able the extraction of required data and the structured comparison
of different regions.

6 SOFTWARE ARCHITECTURE
In order to supply the application scenarios with the data sources
mentioned in the previous sections and link them to a knowledge
graph using ontologies, a suitable infrastructure must be created.
This is intended to ensure flexible and efficient processing within
the framework of a platform ecosystem and requires a modular,
scalable, and robust software architecture. Since no existing sources
are to be replaced and we are therefore dealing with a highly dis-
tributed system, we do not rely on a monolithic architecture but
rather on a service-based architecture (SBA) using cloud computing
technologies. In this way, we eliminate vendor lock-in and interop-
erability issues. First, we will highlight the basic concept, and then
explain each component of the architecture, before we conclude
with a possible instantiation.

Service-Based Architecture (SBA): . SBA is an approach for devel-
oping an application as small services, so-called microservices. The
characteristics of SBA can be summarized as follows [Lyu et al. 2020;
Söylemez et al. 2024]:

• Modularity: The application is broken down intomultiplemi-
croservices. Each microservices can be developed, deployed,
andmanaged independently. Eachmicroservice is associated
with a specific business capability within a certain context
boundary, resulting in low complexity and small size.

• Lightweight communication mechanism: The microservices
communicate with lightweight mechanisms, often an HTTP
resource API.

• Decentralized governance: The scalability of a microservice-
based application can be significantly improved through
decentralized service governance and data management.

• Agility: SBA makes it easier to adapt to new requirements
and change management. In a monolithic architecture, any
changes require the whole system to be rebuilt and com-
pletely redeployed. However, with SBA, only the affected
services need to be rebuilt and deployed independently. Mi-
croservices are highly maintainable and testable, making
them a great choice for modern software development.

This will enable conventional and synthetic data sources to instan-
tiate their own microservices. These microservices will enable both

10https://docs.ogc.org/is/22-047r1/22-047r1.html, accessed on 10.05.2024

integration with the ontologies through corresponding API descrip-
tions and the actual, automated retrieval of the requested infor-
mation. The latter can be understood as wrappers that will offer
a NEED-compliant API and translate it into the often proprietary
interfaces or implement access to the raw data.

Container Technology: Containerization is a popular virtualiza-
tion approach where isolation of applications and services occurs at
the host level through containers. This provides several advantages
for users [Behravesh et al. 2019; Lyu et al. 2020]:

• Lightweight and efficient deployment: Deploying applica-
tions using lightweight container images offers practical
advantages since these images contain all the necessary
dependencies for the seamless operation of an application.

• Portability: A container provides a self-sufficient and exe-
cutable computational space, encompassing the code, run-
times, system tools, libraries, and configurations necessary
for an application.

• Scalability: Containers facilitate agile scaling of applications
in response to demand, ensuring optimal resource utilization.
This scalability empowers industrial organizations to repli-
cate and distribute cloud-native application instances across
various edge devices or servers. This distributed approach
enables workload balancing and efficient device utilization,
preventing specific infrastructure components from becom-
ing overloaded.

• Secure and reliable: Container platforms improve fault tol-
erance through robust mechanisms that isolate and manage
application failures effectively. In the event of a container
failure, it can be quickly restarted or substituted without dis-
rupting the functionality of other containers or the entirety
of the infrastructure.

Having a robust and flexible infrastructure is a result of the above
characteristics of SBA and container technology. The robustness of
a system is an important life-cycle attribute, since it is a strategic
attribute that supports business, development, and operation needs.
As a result, robust infrastructure uses some techniques in order to
detect faults (such as monitoring, heartbeat, condition monitoring,
voting, etc.) and recover from faults (such as redundant spares, roll-
backs, restarts, etc.), as well as to prevent faults (such as predictive
models) [Kazman et al. 2022; Paparistodimou et al. 2020].

A containerized infrastructure also means that NEED components
may be deployed relatively easily on other systems and therefore
will not necessarily have to be run on a central platform. Individual
process chains may be set up through suitable orchestration of the
data sources and the integration of preprocessing steps. A simple
preprocessing step could be, for example, changing the resolution
of time series data. The individual process chain, which will be
made up of containers of the data sources in combination with basic
functions, may then run locally on the respective client side and
thus enable the scaling of the overall system. Figure 7 highlights the
proposed NEED architecture, designed to address the shortcomings
present in a monolithic architecture. The figure highlights several
innovative features as outlined below.
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Fig. 7. NEED architecture.

Containerized Deployment Mode: In practice, the proposed NEED
architecture will be implemented within a cluster administered
by Kubernetes (K8s). This setup will manage various aspects like
deployment, maintenance, and scalability of containers, thereby
facilitating the management of microservice-oriented applications.
Several methods exist for establishing a Kubernetes cluster, with one
cost-effective approach being the design and deployment of Kuber-
netes nodes on predefined cloud infrastructure rather than physical
hardware resources. This deployment model typically utilizes In-
frastructure as a Service (IaaS). Moreover, to ensure continuous
availability of applications, strategies will be employed to enhance
the resilience and reliability of the Kubernetes cluster, as depicted
in Figure 7. These strategies may include employing multiple nodes
for data replication, implementing shared storage solutions, and so
forth.

ContainerizedMicroservices as Essential Components: EveryNEED
application will be housed within its own container, ensuring that
its operating environment is isolated from the host system. Con-
sequently, any errors within a container instance do not disrupt
the normal functioning of other services. Additionally, container
instances can be generated, updated, and terminated with ease and
speed, facilitating independent scaling of each microservice as re-
quired.

• Data Source Register: Here, the data source microservices
will register themselves, so that the platform services will
be aware of their data availability and what kind of data (see
Sections 3 and 4) will be provided.

• Application and Planning Tool Register: Similar to the Data
Source Register, the planning tools or their wrappers that
will enable interaction with the Semantic Rule Engine Pods
or the knowledge graph will register here.

• Semantic Rule Engine: These pods will hold the required
services and functionality for the ontology-based data inte-
gration as described in Section 5.2.

• Data Pipelining: The functionality of these pods will en-
able the orchestration and merging of different data sources,
whereby transformations and preprocessing steps may also

be inserted in substeps depending on the requirements of
the requesting entity.

• Base Utils: They will provide the necessary preprocessing
steps, transformations, and manipulations of the data in
order to realize seamless orchestration.

• Git and CI/CD Infrastructure Pods: These pods will enable
the continuous updating of client and server code through-
out the development process. By leveraging these tools, de-
velopment teams may maintain a streamlined workflow for
code integration, testing, and deployment, promoting agility
and efficiency in software development cycles.

• Network and Integration Pods: In a microservices archi-
tecture, client applications typically interact with various
microservices to access different functionalities. However,
direct consumption of these microservices necessitates man-
aging multiple calls to their endpoints, which can pose chal-
lenges as an application evolves by introducing new mi-
croservices or updating existing ones. Moreover, developers
may employ different technology stacks and communica-
tion protocols for each microservice within their application.
Additionally, the elastic nature of the cloud enables services
to horizontally scale in response to fluctuating demand, en-
hancing application resilience. Nonetheless, this scalability
necessitates load balancing, simplified service discovery, and
features like timeouts and retries for effective recovery. To
address these challenges, networking pods such as the API
Gateway container will be employed.

Shared Services (Monitoring, Logging, Authentication, and Automa-
tion): Logging and monitoring are indispensable components of
any containerized cluster, especially in a microservices architecture
where numerous services are distributed across multiple machines
or containers. The complexity of such deployments necessitates
robust logging and monitoring solutions to swiftly diagnose issues.
Additionally, each microservice requires its own security measures
to manage access for team members, making authentication and
authorization crucial considerations. Moreover, the implementation
and maintenance of large systems like these would be challenging
without automation tools. Automation mechanisms enable admin-
istrators to effectively implement and maintain the infrastructure,
mitigating the risk of operational disasters.

Fig. 8. Possible instantiation of the NEED ecosystem with API Proxy (light
gray), Ontology Mapper (dark gray), Tool Proxy (black), Core Services and
Base Utils (light green).
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Figure 8 illustrates a possible instantiation of three data source
providers (Marktstammdatenregister, LoD2 data, synthetic PV instal-
lations), which would register their capabilities at the Data Source
Register (dashed arrow). This way, the Semantic Rule Engine may
utilize the Ontology Mapper to integrate the new data sources. In
parallel, the resources (API Proxy and Ontology Mapper) would be
provided as Git projects. These may be deployed locally on the client
side to enable the data access. A similar process would be conducted
for tools. The requirements and data needs of the tools would be
extracted via the Ontology Mapper and processed with the help of
the knowledge graph. The result would provide the blueprint for
the orchestration and preprocessing steps to retrieve the required
data from the available data sources. The combined data records
may then be forwarded to the Tool Proxy and finally processed by
the tool. In this example, we would collect the already installed
PV systems, update and crosscheck the result with synthetic PV
installations, and calculate the still available roof area out of the
LoD2 data to estimate the PV potential for a certain area.

7 SUMMARY AND OUTLOOK
In this work, we have emphasized the importance and need for
energy-related and up-to-date data in order to perform reliable and
repeatable planning tasks. In order to reduce the considerable effort
required to collect and preprocess the necessary data, we will create
an efficient, robust, and scalable infrastructure as part of the NEED
research project. The project analyzed typical planning tasks and
identified the requirements, stakeholders, and processes. The use
cases developed for this were summarized in application scenarios
and suitable case studies, which have already been implemented by
the industry partners involved in the project, were documented for
evaluation.

The idea of the project is to make numerous data sources available
without replacing them, but rather integrating them. On the one
hand, various conventional data sources were examined and their
data and metadata evaluated with regard to the FAIR criteria. On
the other hand, we want to close existing data gaps with the help of
synthetic data generation approaches. In this context, we will also
validate the quality of the developed methods, for example with
available conventional data, in order to assess the transferability of
the data. This will make it possible to transfer such data collection
and provision to other countries that do not have corresponding
data sources.
A major difficulty lies in combining different data for the differ-

ent planning levels. Here the NEED project relies on ontologies or
a knowledge graph. We believe that creating interoperability by
using these technologies makes more sense and is more efficient
than establishing a standard for data provision. Ultimately, the mod-
ules presented must be combined so that existing planning tools
can access the required datasets. In some cases, further processing
steps are required before the data can be merged and orchestrated.
For this purpose, the project is developing a distributed service-
based architecture, the essential components of which have been
presented.

In the further course of the research project, the application sce-
narios presented will be implemented using conventional and syn-
thetic data sources, which will be linked to the requirements of the
planning tools using a knowledge graph, and the added value of
the NEED ecosystem will be presented using the case studies. In
this context, we will also evaluate the availability, scalability, and
performance of the NEED platform. Overall, we are trying to make
planning tasks more transparent, efficient, and uniform in order to
further advance the energy transition.
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