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Abstract

Open quantum systems have received significant attention recently due to their rich
non-equilibrium phenomena and experimental advancements in quantum engineer-
ing. By engineering the coupling between the system and its environment, interesting
quantum many-body states can be prepared. However, there are limited analytical
results available in this field, and numerical simulations pose significant challenges
due to the exponential increase in complexity with system size. In this thesis, we
present a tensor network method for simulating the dynamics of open quantum sys-
tems governed by the Lindblad master equation. We represent the density matrix as
a locally purified density operator and variationally compute its updates. By exploit-
ing the degrees of freedom in the auxiliary space of the purification, we significantly
reduced the complexity of the computations. To exemplify our method, we study a
driven-dissipative Bose-Hubbard model with strong interactions— a parameter re-
gime that was previously intractable. The model exhibits mean-field bistability. By
simulating the Gutzwiller ansatz, we find that the system exhibits a first-order phase
transition. The hysteresis area decays according to a power law in the fast sweep
regime, while it shows an exponential decay in the slow sweep regime. In contrast,
the simulation of the full density operator shows no first-order phase transition, and
the dynamical hysteresis area decays exponentially only.
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Chapter 1

Introduction

Since the advent of the density matrix renormalization group (DMRG) algorithm [1],
tensor network methods have become state-of-the-art for studying low-dimensional
quantum many-body systems. In one dimension, matrix product states effectively
capture the area-law entanglement of ground states in gapped and local Hamiltoni-
ans. Algorithms like time evolution block decimation (TEBD) [2, 3] and the time-
dependent variational principle (TDVP) [4] are widely used to simulate the time
evolution of matrix product states governed by Schrödinger’s equation. However,
these methods are limited to pure states in a closed system. In reality, a system
is never truly closed and continually interacts with its environment. Many efforts
have been made to generalize tensor network techniques to simulate the evolution of
mixed states for open quantum systems [5–7].

This task is particularly challenging for two main reasons. First, representing a
density matrix for mixed states is computationally more demanding than simply
using a state vector. Second, while numerous ansatzes have been proposed for pure
states that are tailored to the area-law entanglement of underlying systems—allowing
for efficient parameterization of the Hilbert space—certain laws governing mixed
states do not exist, making it difficult to develop an efficient tensor network ansatz
based on first principles.

One straightforward approach to represent the density matrix is to use a matrix
product operator [5]. However, this method does not ensure that the density op-
erator remains positive semi-definite under the time evolution. Another strategy
involves purifying the density operator by extending it to a larger Hilbert space. In
this context, a locally purified density operator has been proposed [6]. However, sim-
ulating this can become costly, as the dimension of the auxiliary Hilbert space may
grow exponentially over time. In this work, we address this problem by exploiting
the unitary degrees of freedom in the auxiliary space [8]. We demonstrate that this
approach effectively mitigates the exponential growth of the auxiliary Hilbert space
dimension, allowing for accurate simulations of the long-time dynamics of an open
quantum system.
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Chapter 1 Introduction

The thesis is organized as follows: In the first part, we will introduce key concepts
related to quantum entanglement for both pure and mixed systems. We will also
review essential elements of one-dimensional tensor networks.

In the second part, we will develop a numerical method to simulate the Markovian
dynamics of an open quantum system using the locally purified density operator.
This algorithm ensures that the density operator maintains unit trace and semi-
definite positivity at all times. By employing a variational update of the tensor
network, we can directly control the Frobenius norm error at each time step.

We demonstrate that we can achieve comparable results using significantly smaller
bond dimensions by optimizing the basis for the auxiliary Hilbert space. Finally,
we apply this method to investigate a driven-dissipative Bose-Hubbard model that
exhibits mean-field bistability, revealing that bistability is disrupted due to quantum
correlations.
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Chapter 2

Fundamentals

In this chapter, we will review the key concepts of quantum entanglement and one-
dimensional tensor networks, focusing on the difference between pure and mixed
states.

2.1 Entanglement

Entanglement is one of the most peculiar characteristics of quantum mechanics,
and it has no counterpart in classical mechanics. Measurements performed on a
pair of entangled particles are correlated, even when the particles are separated by
large distances. In the field of quantum information, entanglement is considered a
valuable resource for information processing [9], with quantum teleportation being
a notable example. On the other hand, entanglement also makes simulating many-
body systems on classical computers very challenging.

In this section, we will introduce several key concepts related to quantum entangle-
ment and relevant measures of entanglement for both pure states and mixed states.
For a complete framework, see books [9, 10].

2.1.1 Pure states

Consider a composite quantum system |ψ⟩ defined on the tensor product of two
Hilbert spaces HA and HB, that is

|ψ⟩ ∈ HA ⊗HB. (2.1)

Given the orthonormal basis |i⟩A and |i⟩B for HA and HB, respectively, the tensor
products |i⟩A ⊗ |i⟩B form a basis for the tensor product space. A general quantum
state can be expanded as

3



Chapter 2 Fundamentals

|ψ⟩ =
∑
i,j

ci,j |i⟩A|j⟩B, (2.2)

where ci,j is a complex state vector with combined indices i, j. |i⟩A|j⟩B is a short
notation for |i⟩A ⊗ |i⟩B, which we will repeatly use throughout the text.

By using Choi isomorphism |i⟩A|j⟩B → |i⟩A B⟨j|, we can naturally interpret the state
vector ci,j as a matrix, such that ci,j = A⟨i|c|j⟩B is the matrix element of some com-
plex matrix M ∈ CdimHA×dimHB and has the following singular value decomposition,

ci,j = uikskkvkj , (2.3)

where
∑

k u
iku∗kj = δij and

∑
j v

kjv∗ji = δki are isometries and skl = δklsk is a
diagonal matrix with non-negative real entries.

If we define a new basis |k̃⟩A = uik|i⟩A, ⟨k̃| = v∗jk⟨j|, we can write the bipartite
state in Eq. (2.2) under this new basis as

|ψ⟩ =
kmax∑
k

sk|k̃⟩A|k̃⟩B, (2.4)

where kmax = min(dim(HA), dim(HB)).
We have expressed our state in a diagonal form by changing to a different basis in
each subspace. This is known as the Schmidt decomposition. The orthonormal basis
|k̃⟩A and |k̃⟩B are called Schmidt bases, sk are called Schmidt values and are real
and non-negative by the virtue of singular value decomposition. The normalization
of the state |ψ⟩ ensures that

∑
k s

2
k = 1. The Schmidt rank is defined as the number

of non-zero Schmidt values in Eq. (2.4).

A pure state |ψ⟩ is called separable or unentangled if the Schmidt rank is 1. In other
words, it can be written in the form of a product state

|ψ⟩S = |0⟩A ⊗ |0⟩B. (2.5)

The Schmidt decomposition also gives us a good handle to calculate the reduced
density matrix, which is obtained by performing a partial trace over part of the
system. Let ρA be the reduced density matrix on subsystem A,

4



2.1 Entanglement

ρA = TrB (|ψ⟩⟨ψ|) (2.6)

= TrB

∑
j

∑
k

sjsk
(
|j̃⟩A ⊗ |j̃⟩B

) (
⟨k̃|A ⊗ ⟨k̃|B

)
=
∑
j

∑
k

sjsk|j̃⟩A,A⟨k̃| · B⟨k̃|j̃⟩B

=
∑
j

∑
k

sjsk|j̃⟩A,A⟨k̃| · δk,j

=
∑
j

s2j |j̃⟩A,A⟨j̃|. (2.7)

If we measure some observable ÔA which only acts on subsystem A, the result is
given by

⟨ÔA⟩ = Tr
(
ρ
(
ÔA ⊗ ÎB

))
(2.8)

= TrATrB

∑
j

∑
k

sjsk

(
ÔA|j̃⟩A ⊗ ÎB|j̃⟩B

)(
⟨k̃|A ⊗ ⟨k̃|B

)
=
∑
j

∑
k

sjskA⟨k̃|Ô|j̃⟩A · B⟨k̃|Î|j̃⟩B

=
∑
j

s2jA⟨j̃|Ô|j̃⟩A

= TrA
(
ρAÔA

)
, (2.9)

where ÎA denotes the identity operator on subsystem B.

This indicates that the measurements on part of the system are fully captured by
its reduced density matrix. Furthermore, it enables us to quantify the amount of
entanglement in our bipartite system, which can be expressed using the Rényi entropy
as follows:

Sα(ρ) =
1

1− α logTrραA =
1

1− α logTrραB (2.10)

with 0 < α < ∞ and α ̸= 1. If we have obtained the Schmidt decomposition in
Eq. (2.4), the equation above can be associated with the Schmidt values as:
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Chapter 2 Fundamentals

Sα =
1

1− α log

(∑
k

(
s2k
)α)

. (2.11)

The two widely used entropy measures are the von Neumann entropy, which is ob-
tained in the limit as α→ 1:

SvN = −Tr (ρA log ρA)

= −Tr (ρB log ρB)

= −
∑
k

s2k log(s
2
k), (2.12)

and the second Rényi entropy S2, which takes the simpler form of the sum of quartic
Schmidt values:

S2 = −
∑
k

log(s4k). (2.13)

For the case of a separable state as in Eq. (2.5), both SvN and S2 are equal to zero.

Recall that the entropy defined in thermodynamics is an extensive quantity. This
also holds true for a general quantum state, meaning that the entropy scales with
the system’s size (volume) V . As shown in Ref. [11], a random state of a N -site
system with local Hilbert space dimension d exhibits an entanglement entropy SvN ≈
N/2 log d− 1/2, which scales with the system size N . This behavior is known as the
volume-law.

Interestingly, a wide class of quantum states, specifically the ground states of local
and gapped Hamiltonians, is conjectured to comply with the so-called area law of
entanglement [12]:

S ∼ A,

where A represents the area of the boundary when the system is divided into two
parts. This phenomenon can be understood intuitively: when the Hamiltonian in-
volves only local interactions, only the degrees of freedom near the boundary are
entangled. For a one-dimensional system, this results in a constant bipartite en-
tropy, S ∼ const, provided the system size exceeds the correlation length. The
rigorous proof is given in Ref. [13].

6



2.1 Entanglement

We demonstrated the area law for the one-dimensional transverse field Ising model,
given by the Hamiltonian:

ĤIsing = −J
∑
i

σzi σ
z
i+1 − g

∑
i

σxi , (2.14)

where σzi and σxi are Pauli operators acting on site i, J is the interaction strength
between neighboring sites, and g is the strength of the transverse field. This model
is known for exhibiting a quantum phase transition that occurs at g/J = 1.

In the thermodynamic limit for g/J < 1, the interaction terms dominate, and the sys-
tem is in a symmetry-breaking phase with a magnetization of ⟨σz⟩ > 0. Conversely,
for g/J > 1, the system enters a symmetric phase where ⟨σz⟩ = 0.

In Figure 2.1a, we present the von Neumann entropy SvN for the ground states of
the Hamiltonian in Eq. (2.14) for different values of g. These ground states are
obtained using the DMRG algorithm [1]. As observed, for g = 0.5 and g = 1.5,
SvN exhibits a constant scaling with respect to system size. The jump in the g =
0.5 line occurs because symmetry breaking only manifests in the thermodynamic
limit. Therefore, for finite systems, the ground state exists in a superposition of two
symmetry-breaking states, resulting in an entropy of approximately S ≈ log 2 ≈ 0.69.
This is the case for N < 40 in Figure 2.1a. However, the entropy approaches zero
for N ≥ 40. This behavior is due to the two symmetry-breaking phases becoming
degenerate at higher orders of g, causing the DMRG algorithm to identify either
phase as the true ground state, leading to zero entanglement entropy.

At g = 1, the Hamiltonian in Eq. (2.14) becomes gapless, and the area law no longer
applies; instead, it scales logarithmically with system size: S ∼ logN .

In Figure 2.1b, we present the Schmidt values at the boundary of the bipartite system.
We observe a rapid decay in these values, which suggests that we can approximate
the state in Eq. (2.4) by discarding the smaller Schmidt values:

|ψ⟩ =
D∑
k=1

sk|k̃⟩A|k̃⟩B. (2.15)

Here, D represents the number of Schmidt values retained in the approximation. As
shown in Eq. (2.8), the measurement error resulting from the truncation is propor-
tional to
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Chapter 2 Fundamentals
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Figure 2.1: (a) The von Neumann entanglement entropy of ground states in a trans-
verse field Ising model Eq. (2.14) with respect to the system size N , for different
values of g. The system is split into two parts at its center. The interaction strength
J is set to 1. For the case where g = 0.5, the entropy suddenly declines to almost 0
as the system size increases beyond 40. This occurs because the DMRG algorithm
recognizes one of the symmetry-breaking states as the ground state, while the true
ground state is actually a superposition of both states. The system becomes gapless
at g = 1, and the entropy exhibits a logarithmic instead of constant scaling with the
chain length. (b) The Schmidt values at the boundary exhibit rapid decay, making
it possible to perform a truncation.
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2.1 Entanglement

kmax∑
k=D+1

s2k.

The matrix product states, which we will introduce later, effectively capture this
behavior and offer an efficient parametrization for them.

2.1.2 Mixed states

In this section, we consider a mixed state for a bipartite system, which is described
by a density operator defined on the tensor product space HA ⊗HB. Following the
same notation used for the case of pure states, a general density operator can be
written as

ρ =
∑
i

wi

∑
j

ci,j |i⟩A|j⟩B

(∑
k

c∗i,k⟨i|A⟨k|B
)
, (2.16)

where wi are classical probabilities which satisfy
∑

iwi = 1 and ci,j are the complex
coefficients that satisfy

∑
j c
i,jc∗i,j = 1.

A mixed state is called sparable if it can be written as a statistical mixture of
unentangled pure states

ρS =
∑
i

wiρ
i
A ⊗ ρiB. (2.17)

For pure states, we have seen the von Neumann entanglement entropy SvN in
Eq. (2.12) provides a straightforward measure for the entanglement in the system,
namely that the state is separable if and only if SvN = 0. However, determining
whether a mixed state is separable is a challenging task. In fact, solving the separ-
ability of a general bipartite state is proven to be NP-hard [14, 15].

One of the available entanglement measures for mixed states is the entanglement of
formation [16, 17], which is defined as the average entropy of the pure states

Ef = min
∑
i

piSvN (ψi), (2.18)

where the minimization is over all the possible decompositions of ρ

9



Chapter 2 Fundamentals

ρ =
∑
i

pi|ψi⟩⟨ψi|. (2.19)

Such minimization problems are hard to solve analytically. For the special case of
two qubits, the entanglement of formation can be given as an explicit function of ρ
[17].

A similar quantity is entanglement of purification [18], which is defined through the
purification of the density matrix ρ

Ep(ρ) = min
ψ:TrB |ψ⟩⟨ψ|=ρ

Ef (|ψ⟩⟨ψ|), (2.20)

while the minimization is over all the possible purifications. If ρ has a spectral
decomposition ρ =

∑
i λi|ψi⟩⟨ψi|, a general purification on a bipartite system defined

on the Hilbert space HA ⊗HB can be written as

|ψ⟩ =
∑
i

√
λi|ψi⟩AB ⊗ |0⟩A′ |i⟩B′ , (2.21)

where |i⟩A′ and |i⟩B′ being the basis of the auxiliary Hilbert space HA′ and HB′ ,
respectively. The state ψ is a pure state in the extended Hilbert space (HA ⊗HA′)⊗
(HB ⊗HB′).

The density matrix is invariant under the unitary transforms ÛA′B′ acting on the
auxiliary system A′ and B′. Therefore, Eq. (2.20) can be rephrased as a minimization
problem over all the unitary transformations

Ep(ρ) = min
ÛA′B′

SvN

((
ÎAB ⊗ ÛA′B′

)
|ψ⟩⟨ψ|

(
ÎAB ⊗ Û †

A′B′

))
. (2.22)

In Section 3.4, we will use an iterative algorithm to find such unitaries. We must
note that the entanglement of purification Eq. (2.20) is indeed a correlation measure
instead of an entanglement measure. It is proven in Ref. [19] that every correlated
state will have a nonzero entanglement of purification, including those only having
classical correlations. Since "the amount of quantum correlation in a state is smaller
or equal to the total amount of correlation", the entanglement of purification is lower
bounded by the entanglement of formation Ef .

10



2.2 Matrix product states

2.2 Matrix product states

A quantum state describing a composite system containing L sites, is a vector |ψ⟩ ∈
H⊗L, where H⊗L is defined as the tensor product of the single site Hilbert space Hk
for n = 1, 2, . . . , L

H⊗L := H1 ⊗H2 ⊗ · · · ⊗ HL.

Like in the bipartite case described in Section 2.1.1, we can construct a basis for this
product Hilbert space by first specifying a local basis {|in⟩} for each site n, with
in ranging from 1 to dn, where dn = dim(Hn) is the dimension of the local Hilbert
space. The tensor product |i1⟩ ⊗ |i2⟩ ⊗ . . . ⊗ |iL⟩ then constitutes a basis for the
Hilbert space of the full system. This is abbreviated as |i1, i2, . . . , iL⟩. Therefore, a
general quantum state can be written down as

|ψ⟩ =
∑

i1,i2,...,iL

ci1,i2,...,iL |i1, i2, . . . , iL⟩, (2.23)

where ci1,i2,...,iL ∈ C⊗L is a rank-L tensor.

Matrix product states (MPS) are a special class of variational ansatz for quantum
states, where the amplitudes in this tensor product basis are written as the contrac-
tion of the following local tensors

|ψ⟩ =
∑

i1,i2,...,iL

Ai1[1]A
i2
[2] · · ·A

iL
[L]|i1, i2, . . . , iL⟩, (2.24)

Ain[n] are matrices of dimensions Dn × Dn+1. Dk are called bond dimensions. If an
open boundary condition is imposed, D1 = DL+1 = 1. The subscript [n] is the site
index and indicates the matrices A[k] can be in general different. A graphic notation
for a MPS is shown in Figure 2.2a, where each node is a tensor. The legs denote the
indices of a tensor. Therefore, the number of the legs equals the rank of the tensor.
The connected legs are contracted.

For any given quantum state Eq. (2.23), it is always possible to transform it into
an MPS representation via successive singular value decomposition or QR decom-
position. Following this procedure, a homogeneous system with local Hilbert space
dimension d will result in a bond dimension dL/2, which grows exponentially with the
system size. However, as we have seen in Figure 2.1b, the Schmidt values of ground
states of local and gapped Hamiltonians exhibit a fast decay. By discarding the small

11
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Figure 2.2: (a) A matrix product state (MPS). (b) A matrix product operator (MPO).

singular values, the bond dimensions can be significantly reduced, rendering MPS
an efficient parametrization of the area law states.

2.3 Matrix product operators

A matrix product operator (MPO) for a one-dimensional system with L sites is given
by:

Ô =
∑

{in,jn}
W i1j1

[1] W i2j2
[2] · · ·W

iLjL
[L] |i1, i2, . . . , iL⟩⟨j1, j2, . . . , jL|, (2.25)

where W injn
[n] are matrices associated with the site k and the physical indices in, jn.

A graphical representation is given in Figure 2.2b. From now on, we will drop the
subscript [n] for simplicity.

MPO can be used to represent a large class of many-body operators, mostly known
for local Hamiltonians. In the following, we will use MPO for other purposes, namely
to represent the density operator and the time-evolution operator.

12



2.4 Locally purified density operator

2.4 Locally purified density operator

Matrix product states discussed in Section 2.2 represent pure states in the many-
particle Hilbert space. For a system that interacts with an environment, the quantum
state is essentially a statistical mixture of pure states and is described by the density
operator. One can represent the density operator as an MPO like in Eq. (2.25), often
called a matrix product density operator (MPDO).

An MPDO must satisfy two conditions: it is positive semi-definite (P.S.D.) and
has unit trace. However, positive semi-definiteness is a global property of the Her-
mitian operator. For a matrix product operator, it cannot be verified locally without
contracting all components together [20]. Since truncations are necessary for most
algorithms, maintaining positive semi-definiteness becomes challenging, even if the
initial MPDO is constructed as a P.S.D. operator.

To address this issue, we can construct ρ as a Hermitian product, defined as

ρ =MM † (2.26)

with

M =
∑

{in,jn}
Xi1j1Xi2j2 · · ·XiLjL |i1, i2, . . . , iL⟩⟨j1, j2, . . . , jL|, (2.27)

and M resembles a matrix product operator. |i1, i2, . . . , iL⟩ is the basis for the
physical Hilbert space with 1 ≤ in ≤ dn and |j1, j2, . . . , jL⟩ is the basis for the
auxiliary Hilbert space with 1 ≤ jn ≤ Kn . Note that their dimensions dn and Kn

can differ from each other, though it is always sufficient to purify a density operator
with Kn = dn. This ansatz Eq. (2.26) is called a locally purified density operator
(LPDO) [5, 6] and M is called the purification operator. An illustration of LPDO is
provided in Figure 2.3.

In the following, we will refer to in as the physical indices and jn as the Kraus or
auxiliary indices, dn as the physical dimensions, and Kn as the Kraus or auxiliary
dimensions. The term "Kraus" is derived from the Kraus representation of the
quantum channel, which we will introduce later.

The density matrix operator can thus be written as

ρ =
∑

{ik,i′k}
Ai1i

′
1Ai2i

′
2 · · ·AiLi′L |i1, i2, . . . , iL⟩⟨i′1, i′2, . . . , i′L| (2.28)

13



Chapter 2 Fundamentals
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Figure 2.3: A locally purified density operator (LPDO)

with

Ain,i
′
n =

∑
jn

Xinjn ⊗Xi′njn , (2.29)

as shown in Figure 2.3. X denotes the complex conjugate of X.

If we define an unnormalized MPS as

|ψj1,··· ,jL⟩ =
∑

i1,··· ,iL
Xi1j1Xi2j2 · · ·XiLjL |i1, i2, . . . , iL⟩, (2.30)

the density operator in Eq. (2.28) can also be rephrased as

ρ =
∑

j1,··· ,jL
|ψj1,··· ,jL⟩⟨ψj1,··· ,jL |

=
∑
k

pk|ψ̃k⟩⟨ψ̃k|, (2.31)

where k = j1, · · · , jL is a collective index, pk = ⟨ψk|ψk⟩ is the squared norm of |ψk⟩
and |ψ̃k⟩ = |ψ⟩/

√
pk.

In this form, the density operator represents an ensemble of pure MPS |ψ̃k⟩ with the
corresponding probability pk. If all the Krauss dimensions are trivial, Eq. (2.31) is
reduced to a density matrix for a pure ensemble.
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2.5 Canonical forms

2.5 Canonical forms

In fact, the local tensors in MPS Eq. (2.24) and MPO Eq. (2.25) are not unique.
The state or the operator remains the same if one inserts the identity I = B−1B
between any pair of neighboring tensors. In this case, the B matrices only need to
be left invertible and hence can be rectangular to increase the bond dimensions.

This gauge freedom allows us to define the canonical forms of MPS and MPO, which
are essential for variational algorithms like DMRG and the algorithm we develop in
the next chapter. An MPS is called is called left or right canonical, if all its local
tensors satisfy the corresponding orthogonality conditions:∑

ik

(Aik)†Aik = I left canonical; (2.32a)

∑
ik

Aik(Aik)† = I right canonical. (2.32b)

Similarly, we can define the canonical form for MPO by replacing the single sum
with a double sum over both basis indices∑

ik,jk

(W ik,jk)†W ik,jk = I left canonical; (2.33a)

∑
ik,jk

W ik,jk(W ik,jk)† = I right canonical. (2.33b)

We note that the canonical forms in Eq. (2.32) automatically ensure that the MPS
has unit norm ⟨ψ|ψ⟩ = 1 and for a purification operator, Eq. (2.33) gives to

Tr
(
MM †

)
= 1. (2.34)

Thus, the canonical forms enforce the unit trace condition of the density operator.
If we define the inner product ⟨⟨·|·⟩⟩ on the operator space as

⟨⟨A|B⟩⟩ := Tr
(
A†B

)
, (2.35)

the induced norm is called the Frobenius norm, denoted by || · ||

||M || :=
√
⟨⟨M |M⟩⟩. (2.36)
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= =

= =

Figure 2.4: Top panel: left (right) orthonormal conditions Eq. (2.32) for MPS tensors
on the left (right). Lower panel: left (right) orthonormal conditions Eq. (2.33) for
MPO tensors on the left (right). The lines on the right-hand side of the equations
represent the δ tensor.

The unit-trace condition in Eq. (2.34) for the density operator is then equivalent to
the following unit norm condition of its purification operator

||M || = 1. (2.37)

Note the Frobenius norm coincides with the usual 2-norm for vectors when the op-
erator is vectorized. Therefore, |M⟩⟩ is also used to denote the vectorized form of an
operator M .

The canonical forms are only a partial gauge fix of our MPS/MPO. There still exists
a unitary degree of freedom on virtual connections. Eq. (2.32) and Eq. (2.33) still
hold true if we insert UU † between any neighboring matrices, where U is a unitary
matrix. For the purification operator Eq. (2.27), this unitary degree of freedom also
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2.5 Canonical forms

exists on the auxiliary legs by noting that Eq. (2.29) is invariant if we apply a unitary
transform on |jn⟩

W in,j′n = Uj′n,jnW
in,jn . (2.38)

This fact will become important for us later when we use this degree of freedom to
remove entanglement from the locally purified density operator. We sometimes also
refer to the Kraus indices (legs) as Kraus bonds, similar to the matrix bonds, to infer
their artificial nature.

In practice, one can transform MPS (MPO) into right/left canonical form by per-
forming successive QR decomposition starting from the boundary of the system [1].
Two other canonical forms are derived from the left and right canonical forms: the
mixed canonical form and the bond canonical form. The first is particularly useful
for calculating expectation values and correlation functions, while the second gives
us back the Schmidt decomposition in the language of tensor networks.

As the name suggests, the mixed canonical form involves both the left and right
orthonormal tensors. An MPS is mix-canonical if it is written as

|ψ⟩ =
∑

i1,i2,...,iL

Ai1 · · ·Aij−1CijAij+1 · · ·AiL |i1, . . . , iL⟩, (2.39)

where Cij is called the orthogonality center. The matrices to the left of Cij are left
orthonormal; meanwhile, those to the right of Cij are right orthonormal.

Similarly, the bond canonical form for MPS reads

|ψ⟩ =
∑

i1,i2,...,iL

Ai1 · · ·Aij−1S[j]A
ij · · ·AiL |i1, . . . , iL⟩, (2.40)

where S[j] is a diagonal matrix of dimension Dj×Dj and is called a bond tensor. Ain
are left canonical for n < j and right canonical for n ≥ j. We write out the subscript
explicitly here to emphasize that C[j] sits between site j − 1 and j. We see that the
bond canonical is exactly the Schmidt decomposition we have seen in Eq. (2.4), and
the bond tensor (matrix) S[j] contains the Schmidt values.

The mixed canonical form and the bond canonical form can be defined similarly for
the locally purified density operator. As shown in Figure 2.5, the bond canonical
allows us to write down the following decomposition similar to the Schmidt decom-
position
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Sj

S[j]

k

l

k′

l′

· · · · · ·

· · · · · ·

Figure 2.5: A LPDO in bond canonical form.

ρ =
∑
k,k′

∑
l,l′

(
sk,k′δ

k,k′
)(

sl,l′δ
l,l′
)(

ρk,lA ⊗ ρ
k′,l′

B

)
=
∑
k,l

sksl

(
ρk,lA ⊗ ρ

k,l
B

)
=
∑
k

s2kρ
k
A ⊗ ρkB +

∑
k ̸=l

skslρ
k,l
A ⊗ ρ

k,l
B ,

(2.41)

where sk,k′ is the matrix elements of the bond tensor S[j] and ρk,lA (ρk,lR ) corresponds
to the network left (right) to the bond tensor. In the last line, we have separated the
diagonal and off-diagonal terms. The orthonormal conditions in Eq. (2.33) translate
into

Tr
(
ρk,lA,B

)
= δk,l and

∑
k

s2k = 1. (2.42)

Therefore, the first term in Eq. (2.41) represents a physical separable state, while
the second term roughly tells us the entanglement in the system.

Last, we mention that even though we can follow the same recipe to define the
canonical form for the matrix product density operator, it does not process the
physical meanings we desire. In the "mixed canonical form", the MPDO reads

ρ =
∑
i

λiρA ⊗ ρB. (2.43)
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2.6 Lindblad Master equation

It might be attempting to interpret the singular values λi as probabilities and ρA, ρB
as density matrices on subsystems A and B. However, the orthogonality conditions
is Eq. (2.33) do not guarantee us ρA or ρB to be positive semidefinite.

2.6 Lindblad Master equation

The dynamics of a closed system is described by the unitary time evolution operator

Û(t) = exp
(
−iĤt

)
, (2.44)

where Ĥ is the Hamiltonian for the system. The density operator evolves according
to Schrodinger’s equation as

ρ(t) = Û(t)ρ(0)Û †(t). (2.45)

More generally, the dynamics of a density operator ρ can be described by a completely
positive trace preserving (CPTP) map E

E : H → H, ρ 7→ E (ρ) . (2.46)

Trace preserving means that Tr (E (ρ)) = Trρ, while completely positive means E⊗ÎE
is positive on any extension of the Hilbert space H⊗HE . This guarantees that when
we apply E to a reduced density matrix on a composite system, the result density
operator on the entire system remains a valid density operator. Furthermore, the
map E is also linear and preserves hermicity.

By Choi’s theorem [21], a CPTP map can always be expressed in the following form:

E(ρ) =
K∑
i

ViρV
†
i , (2.47)

where the following condition holds:

K∑
i

V †
i Vi = Î . (2.48)

Eq. (2.47) is also known as the Kraus representation of a quantum map. Vi are
referred to as Kraus operators, K denotes the Kraus rank or Kraus dimension, and
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it is important to note that K < (dim H)2. The same term, "Kraus dimension," was
used before for the locally purified density operator introduced in Section 2.4. As
we will see in the next chapter, these two quantities are related, which is why they
share the same name.

In Eq. (2.45), Û plays the role of the Kraus operators for the unitary dynamics,
which does not change the purity of the system

Trρ(t)2 = Tr
(
Û(t)ρ(0)Û †(t)Û(t)ρ(0)Û †(t)

)
= Tr

(
Û(t)ρ(0)2Û †(t)

)
= Trρ(0)2.

(2.49)

In the last line, we used the cyclic property of the trace. For an open quantum
system coupled to some environment, a pure state can evolve into a mixed state due
to the loss of information to the environment. We can ask if there exists a similar
equation describing such non-unitary dynamics by considering a quantum map of an
infinitesimal time δt

ρ(t+ δt) =
∑
i

Vi(t+ δt)ρ(t)V †
i (t+ δt), (2.50)

where we have made the assumption that ρ(t+δt) only depends on ρ(t), meaning the
dynamics is Markovian. This holds only if the correlation time between the system
and the environment is much shorter than δt. In the limit of δt → 0, the density
operator remains unchanged with probability 1 and therefore a meaningful ansatz
for the Kraus operators are

V0 = Î + (K̂ − iĤ)δt , Vi = L̂i
√
δt for i > 0. (2.51)

wher Ĥ and K̂ are Hermitian operators. Eq. (2.48) requires that 2K̂ +
∑

i L̂
†
i L̂i =

O(δt2)
Therefore, Equation 2.50 translates into

dρ

dt
= −i

[
Ĥ, ρ

]
+
∑
j

(
LjρL

†
j −

1

2

{
LjL

†
j , ρ
})

. (2.52)
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2.6 Lindblad Master equation

This is known as the Gorini–Kossakowski–Sudarshan–Lindblad equation (GKSL
equation [22–24], where Ĥ denotes the system Hamiltonian and L̂j are called
the Lindblad (jump) operators, which model the interaction with the environment.
{A,B} = AB +BA denotes the anti-commutator. In the following, we will refer to
Eq. (2.52) Lindblad master equation.

A nonequilibrium steady state (NESS), denoted by ρss, is defined as a fixed point of
the Lindblad master equation, which satisfies

d

dt
ρss = 0. (2.53)

It has been proven that for finite systems, there is always at least one steady state
[25]. However, only a few models have been solved analytically [26, 27]. As a result,
numerical methods are required to explore these systems further. In the next chapter,
we will present a tensor network method to simulate the time evolution of a density
operator governed by the Lindblad master equation.
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Algorithms

In this chapter, we will present a tensor network method to simulate the Lindblad
master equation. We use a second-order Trotter splitting to approximate the time
evolution operator. When the Lindblad operators only act on single sites, the unitary
and dissipative dynamics can be handled separately. This is explained in Section 3.1.
In Section 3.2, we will introduce a variational update scheme for the unitary dynam-
ics. Section 3.3 will cover the implementation of the dissipative dynamics. Finally, in
Section 3.4, we will present a disentanglement algorithm for the locally purified dens-
ity operator and show it is the key to simulating long-time dynamics for many-body
systems.

3.1 General Framework

The objective is to simulate the time evolution of the density operator according
to the Lindblad master equation Eq. (2.52): dρ

dt = L(ρ), where L is the Lindbla-
dian superoperator living in the Hilbert space H ⊗H and has the following matrix
representation

L = −i(Ĥ ⊗ Î − Î ⊗ ĤT ) +
∑
j

(
L̂j ⊗ L̂j − (L̂†

jL̂j ⊗ Î + Î ⊗ L̂Tj L̂j)
)

= H+ D.
(3.1)

Here, L̂j and L̂Tj denotes the complex conjugate and the transpose of an operator

L̂j , respectively. Therefore, the adjoint operator of L̂j , denoted by L̂†
j , equals to L̂Tj .

If L is time-independent, the time evolution of the density operator can be formally
solved as

|ρ(t)⟩⟩ = eLt|ρ(0)⟩⟩, (3.2)
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where |ρ⟩⟩ is the vectorized form of the density matrix ρ. For a small system, it
is possible to compute the matrix exponential on the right-hand side to obtain the
density matrix at any given time t. Consider a many-body system with N sites,
where each site has a local Hilbert space dimension d. In this case, the density
matrix will have a dimension of dN × dN , and the corresponding Lindbladian as a
matrix L will have a dimension of d2N×d2N . Therefore, we need a quadratic amount
of resources compared to the simulation of pure states.

Simulating the evolution of open quantum systems is an active area of research,
with many methods proposed in the literature [5, 7, 28, 29]. These methods can be
roughly divided into two categories. The first category includes ensemble (stochastic)
methods, which simulate the evolution of many pure states and average over them,
such as truncated Wigner approximation [30] and quantum jump method [31]. The
second category includes those that tackle the density operator directly, such as
simulating it as an MPO [5].

The choice of method depends on various factors related to the model, including
its size, lattice dimensionality, local Hilbert space dimension, etc. For instance,
the truncated Wigner method is particularly effective for large local Hilbert space
dimensions where quantum fluctuations are minor and can be applied to systems of
arbitrary lattice dimensions.

The tensor network method we develop in this work falls into the category of full
quantum integration methods and operates in a complementary regime, accounting
for full quantum fluctuations. We integrated Eq. (3.2) by representing the density
operator in its locally purified form and discretizing the time evolution operator
eLt =

(
eLτ
)N , where N is the total time steps, and τ = t/N is the time step.

We consider a typical scenario where the Hamiltonian consists exclusively of two-local
terms, given by:

Ĥ =
∑
n

ĥn,n+1

=
∑

n is even

ĥn,n+1 +
∑

n is odd

ĥn,n+1

= Ĥe + Ĥo

(3.3)

and the Lindblad jump operators L̂j act only on single sites. Ĥe (Ĥo) includes the
coupled terms between even-odd (odd-even) sites. The same notation follows below.
We can use second-order Trotter splitting to approximate the evolution operator eLτ

for a small time step τ as follows:
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3.2 Unitary dynamics

eLτ = eLeτ/2eLoτeLeτ/2 +O(τ3)
= eHeτ/2eHoτ/2eDτeHoτ/2eHeτ/2 +O(τ3).

(3.4)

The state evolution, thereby, is

|ρ(t+ τ)⟩⟩ ≈ eHeτ/2eHoτ/2eDτeHoτ/2eHeτ/2|ρ(t)⟩⟩. (3.5)

For simplicity, we will denote ρ(t+ τ) as ρ′ and omit explicit time arguments. This
notation will also apply to the relevant time-dependent quantities we encounter,
which should be clear from the context.

Since the operators in Eq. (3.5) are all completely positive, we can go to the Kraus
representation introduced in Eq.(2.47), which is repeated below

ρ′ =
∑
i

ViρV
†
i . (3.6)

3.2 Unitary dynamics

For unitary evolutions eHατ/2, the Kraus operators are just the unitary time evolution
operator Ûα = eiĤατ/2, here α = o, e. Eq. (3.6) becomes

eHατ/2|ρ⟩⟩ → ÛαρÛ
†
α

= ÛαMM †Û †
α

=
(
ÛαM

)(
ÛαM

)†
=M ′M ′†

(3.7)

with M ′ = ÛαM .

We have presented the density operator in its locally purified form, as established in
Section 2.4, using the purification operators M defined as follows:

M =
∑
in,jn

Xi1j1
m1,m2

Xi2j2
m2,m3

· · ·XiLjL
mL,mL+1

|i1, i2, . . . , iL⟩⟨j1, j2, . . . , jL|. (3.8)
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In the above expression, the local tensors are denoted by Xn. Each Xn contains
physical indices in, Kraus indices jn, left matrix indices mj , and right matrix indices
mj+1. Additionally, we can express the operator Ûα as a matrix product operator:

Ûα = ei
∑

n ĥn,n+1τ/2

=
∏
n

eiĥn,n+1τ/2

=
∏
n

ûn,n+1.

(3.9)

As before, the summation is over the odd indices n when α = o, and over the even
indices when α = e.

Since the operator ĥn,n+1 involves only two sites, ûn,n+1 can be evaluated directly
through Lanzcos algorithm or similar matrix exponential approximation algorithm.
We can transform the resulting operator into an MPO acting on two-neighboring
sites by singular value decomposition

û
[in,i′n],[in+1,i′n+1]

n,n+1 = U [in,i′n]
ωn+1

Sωn+1V
[in+1,i′n+1]
ωn+1

=W i′nn1
ωn,ωn+1

W
i′n+1in+1
ωn+1,ωn+2 .

(3.10)

In the second line, we have defined W
i′nn1
ωn,ωn+1 = U

[in,i′n]
ωn+1 by introducing a dummy

index ωn, and set W
i′n+1in+1
ωn+1,ωn+2 = Sωn+1V

[in+1,i′n+1]
ωn+1 by introducing another dummy

index ωn+2. The index ωn+1 takes values from 1 to at most d2 when the physical
dimension is d. The indices grouped together in the square bracket are treated as a
single index when performing the matrix decomposition.

This process is applied to every odd (even) number n for Ûo (Ûe). Consequently,
the matrix bond dimensions for Ûo are d2 between odd-even sites and 1 between
even-odd sites, and vice versa for Ûe. Therefore, in the context of time evolution as
per Eq. (3.5) and Eq. (3.7), it is typically recommended to first combine Ûo and Ûe

Ûo,e = ÛoÛe (3.11)

before multiplying the result Ûo,e with the purification operator M . For clarity, we
will omit the subscripts o, e and e, o when there is no risk of confusion. The unitary
MPO Û is written as
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Û =
∑
in,i′n

W
i′1i1
ω1,ω2W

i′2i2
ω2,ω3 · · ·W

i′LiL
ωL,ωL+1 |i′1, i′2, · · · , i′L⟩⟨i1, i2, · · · , in|. (3.12)

The local tensor Wn from the unitary MPO therefore has the indices: in and i′n for
the physical legs, ωj and ωj+1 for the matrix legs.

The time evolution is boiled down to multiplying the unitary operator Û and the
purification operator M . This can be done efficiently by using a variational approach
to update our purification operator at every step by minimizing the distance between
the M ′ and ÛM

M ′ = argmin
M ′

∥M ′ − ÛM∥

= argmin
M ′

⟨⟨M ′ − ÛM |M ′ − ÛM⟩⟩

= argmin
M ′

Tr
(
M ′†M ′ −M ′†ÛM −M †Û †M ′ +

(
ÛM

)† (
ÛM

))
,

(3.13)

where we have used the Frobenius norm defined Eq. (2.36). We can treat Eq. (3.13)
as a variational problem involving local tensors X ′

n. Therefore, we require that the
gradients with respect to X ′

n vanish, leading to the equation:

∂

∂X
′
n

(
M ′†M ′ −M ′†ÛM

)
= 0. (3.14)

The last two terms in Eq. (3.13) drop out because they do not depend on X ′
n. The

above expression is equivalent to

∂

∂X
′
n

(
M ′†M ′

)
=

∂

∂X
′
n

(
M ′†ÛM

)
. (3.15)

We can translate Eq. (3.15) into tensor networks. Since both M ′†M ′ and M ′†ÛM
are linear in X ′

n, the partial derivative effectively removes X ′
n from the graph. When

M ′ is in mixed canonical form with the orthogonality center at site n, the left-hand
side of Eq. (3.15) essentially corresponds to X ′

n.

The right-hand side is more complicated and is illustrated in Figure 3.1. We can
contract everything to the left of the site n into a left bond tensor Ln, and everything
to the right of the site n into a right bond tensor Rn. Consequently, the entire
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n− 1 n n+ 1

M ′†

M

Û =
Ln Rn

Figure 3.1: The right hand side of Eq. (3.15).

network consists of four components: the left bond tensor, the right bond tensor,
Wn from the unitary MPO, and Xn from the purification operator M . We can
optimize each X ′

n by sweeping through the system, which resembles the procedure
used in the DMRG algorithm.

It is important to note that the left and right bond tensors can be computed recurs-
ively. For example, we have Ln+1 = ((LnXn)Wn)X

′
n. This means we should store

the bond tensors in memory and update them along with X ′
n as we sweep through

the system. The algorithm is described in Algorithm 1. As before, multiple dimen-
sions are joined together when performing matrix decompositions for tensors with
a rank higher than 2. The joined dimensions are grouped in a square bracket [ ].
Parenthesis ( ) indicates the optimal contraction sequence.

Similar to the DMRG algorithm, we can choose to optimize two neighboring sites
together at each step, as outlined in Algorithm 2. A two-site tensor Θn,n+1 is created
by merging X

mj ,mj+1
n and X

mj+1,mj+2

n+1 . After contracting this tensor with the left
and right bond tensors, we perform a truncated singular value decomposition as done
in the one-site update. Singular values in S are truncated so that at most χ singular
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values greater than ϵ are retained. In order to keep the unit-norm of the purification
operator M ′, the truncation step is followed by renormalizing the singular values
such that

∑
k s̃

2 = 1. The corresponding columns and rows of U and V are then
discarded to obtain Ũ and Ṽ . The values of χ and ϵ need to be chosen such that the
results converge.

In practice, we start with two-site updates to allow for adjustments to the bond
dimensions. Once the maximum bond dimensions are reached, we switch to one-site
updates, significantly speeding up the program.

Algorithm 1 One-Site Variational Update
1: Bring M into right canonical form.
2: Let the initial guess M ′ =M
3: Initialize the right bond tensors Rn.
4: for iter = 1 to max_iter do
5: for n = 1 to L− 1 do
6: Compute the contractions in Fig. X ′

n ← ((LnWn)Xn)Rn

7: Compute the QR decomposition of X ′
n:

8: X
′[σ′

n,µ
′
n,m

′
n],m

′
n+1

n = Q[σ′
n,µ

′
n,m

′
n]Rm

′
n+1

9: Move orthogonality center to n+ 1:
10: X ′

n ← Q[σ′,µ′,m′
n] and X ′

n+1 ← Rm
′
n+1X ′

n+1

11: Update the left bond tensors: Ln+1 ← ((LnXn)Wn)X
′
n

12: end for
13: for n = L to 2 do
14: Compute the contractions in Fig. X ′

n ← ((LnWn)Xn)Rn

15: Compute the RQ decomposition of X ′
n:

16: X
′m′

n,[σ
′
n,µ

′
n,m

′
n+1]

n = Rm
′
nQ[σ′

n,µ
′
n,m

′
n+1]

17: Move orthogonality center to n− 1:
18: X ′

n ← Q[σ′,µ′,m′
n] and X ′

n−1 ← X ′
n−1R

m′
n−1

19: Update the right bond tensors: Rn−1 ← RnWnXnX
′
n

20: end for
21: if convergence of the overlap M ′†ÛM is achieved then
22: break
23: end if
24: end for
25: Output the final overlap and M ′.
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Algorithm 2 Two-Site Variational Update
1: Bring M into right canonical form.
2: Let the initial guess M ′ =M
3: Initialize the right bond tensors Rn.
4: for iter = 1 to max_iter do
5: for n = 1 to L− 1 do
6: Compute the contractions Θn,n+1 = ((((LnWn)Xn)Xn+1)Wn+1)Rn+1

7: Compute the singular value decomposition of Θn,n+1:

8: Θ
[m′

n,σ
′
n,µ

′
n],[m

′
n+2,σ

′
n+2,µ

′
n+2]

n,n+1 = U [m′
n,σ

′
n,µ

′
n]SV [m′

n+2,σ
′
n+2,µ

′
n+2]

9: Truncate and move orthogonality center to n+ 1:
10: X ′

n ← Ũ [m′
n,σ

′
n,µ

′
n] and X ′

n+1 ← S̃Ṽ [m′
n+2,σ

′
n+2,µ

′
n+2]

11: Update the left bond tensors: Ln+1 ← ((LnXn)Wn)X
′
n

12: end for
13: for n = L to 2 do
14: Compute the contractions Θn−1,n = ((((LnWn)Xn)Xn+1)Wn+1)Rn

15: Compute the singular value decomposition of Θn,n+1:

16: Θ
[m′

n,σ
′
n,µ

′
n],[m

′
n+2,σ

′
n+2,µ

′
n+2]

n,n+1 = U [m′
n,σ

′
n,µ

′
n]SV [m′

n+2,σ
′
n+2,µ

′
n+2]

17: Truncate and move orthogonality center to n− 1:
18: X ′

n ← Ũ [m′
n,σ

′
n,µ

′
n]S̃ and X ′

n+1 ← Ṽ [m′
n+2,σ

′
n+2,µ

′
n+2]

19: Update the right bond tensors: Rn−1 ← RnWnXnX
′
n

20: end for
21: if convergence of the overlap M ′†ÛM is achieved then
22: break
23: end if
24: end for
25: Output the final overlap and M ′.

3.3 Dissipative Dynamics

Regarding the dissipative dynamics described by eτD in Equation 3.5, when the
Lindblad jump operators L̂j are all single-site operators, this term factorizes

eτD = ⊗neD[n]τ (3.16)

with

D[n] =
∑
j

(
L̂[n],j ⊗ L̂[n],j − (L̂†

[n],jL̂[n],j ⊗ Î + Î ⊗ L̂T[n],jL̂[n],j)
)
, (3.17)
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where L̂[n],j is the j-th Lindblad jump operator that acts on site n.

In the next step, we find the Kraus operators in Equation 3.6 using Cholesky de-
composition

eD[n]τ =

K̃n∑
qn=1

V[n],qn ⊗ V [n],qn , (3.18)

where K̃n ≤ d2 is the Kraus rank of the quantum map. It acts on site n as follows

eD[n]τ

 Kn∑
jn=1

X[n],jn ⊗X [n],jn


=

 K̃n∑
qn=1

V[n],qn ⊗ V [n],qn

 Kn∑
jn=1

X[n],jn ⊗X [n],jn


=

K̃n∑
qn=1

Kn∑
jn=1

(
V[n],qnX[n],jn

)
⊗
(
V [n],qnX [n],jn

)
=

K̃n·Kn∑
j′n=1

(
X ′

[n],j′n
⊗X ′

[n],j′n

)
, (3.19)

where qn, jn have been joined together to form a joint index j′n of the updated
local tensor X ′

[n]. Therefore, the dissipative dynamics for a time step τ , is given by
multiplying the Kraus operators V[n],qn with X[n],jn and joining the Kraus dimensions
jn and qn. Eq. (3.19) also tells us that after a small time step τ , the Kraus dimension
of the local tensors in the purification operator M are enlarged by a factor of K̃n.
Consequently, the Kraus bond dimensions will grow exponentially over time.

In Ref. [6], the Kraus dimensions are truncated through local basis transformation
on the auxiliary Hilbert space {|jn⟩} using the singular value decomposition

X
[in,mn,mn+1]
jn

= U
[in,mn,mn+1]
j′n

Sj
′
nV

j′n
jn
. (3.20)

Similar to the case of truncating the matrix bond dimension, the Kraus bond dimen-
sion can be truncated by discarding the small singular values and setting a maximum
Kraus bond dimension χK . The truncated matrices are Ũ , S̃ and Ṽ and we obtained
local tensor
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X
[in,mn,mn+1]
jn

= Ũ
[in,mn,mn+1]
j′n

S̃j
′
n , (3.21)

where we have left out the isometry Ṽ because the density operator only depends
on
∑

jn
Xin
jn
⊗Xi′n

jn
. Again, the truncated matrix S̃ must be renormalized to preserve

the unit trace of the density operator.

The truncation recipes described in Eq. (3.20) and Eq. (3.21) are equivalent to a
local basis transformation in the auxiliary Hilbert space on single sites, followed by
discarding the states in Eq. (2.31) that have the lowest weights. It is evident that
this approach is not optimal. A good purification ansatz should effectively consider
the entire basis of the auxiliary Hilbert space. As we will demonstrate, this can
result in large bond dimensions and/or significant truncation errors. An immediate
improvement can be achieved by transitioning to a global basis optimization. In the
next section, we will introduce a method to identify such a basis by minimizing the
entanglement of the LPDO.

3.4 Disentanglement

At first glance, the exponentially growing (Kraus) bond dimensions make it im-
possible to study long-term dynamics. However, if the focus is solely on steady
states, any errors that arise during the transient dynamics can be overlooked, as
these deviations can be treated as specifying a new initial state.

As demonstrated in Ref. [6], simulating the steady states of a LPDO through time
evolution requires large bond dimensions, both the matrix bond dimensions D and
Kraus bond dimensions K. On the contrary, a variational approach that directly
targets the steady state indicates that when the steady state is non-degenerate,
the final state can often be represented by an MPDO with moderate matrix bond
dimensions [28].

This suggests that the current representation of the density operator is inefficient,
especially for steady states. The aim is to find a better representation of the density
operator. Recall Eq. (2.31), the number of pure states in an LPDO is equal to
the product of the dimensions of the auxiliary Hilbert spaces. Loosely speaking,
a purification with a smaller overall Hilbert space dimension has, in general, less
entanglement. This intuitive picture leads us to the entanglement of purification in
Eq. (2.22), which is repeated below

Ep(ρ) = min
ÛA′B′

SvN

((
ÎAB ⊗ ÛA′B′

)
|ψ⟩⟨ψ|

(
ÎAB ⊗ Û †

A′B′

))
(3.22)
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Xn Xn+1

Ûn,n+1

Figure 3.2: A two-site unitary acting on the auxiliary Hilbert space. Through unitary
transformations in this two-site subspace, one can reduce the entanglement of the
purification.

We hope that by minimizing the entanglement in the purification, in other words,
disentangling the purification, we can reduce the dimensions of the auxiliary Hilbert
space, which corresponds to the Kraus dimensions in the LPDO.

In Ref. [8], the authors proposed a disentanglement procedure to solve a similar prob-
lem, where the mixed state is purified by doubling the local Hilbert space on each site
and represented as an MPS in the enlarged Hilbert space. This corresponds to fixing
the Kraus dimension equal to the corresponding local Hilbert space’s dimension and
leaving only the matrix bond dimension as a variational parameter. Without dissip-
ative dynamics, the matrix bond dimensions will still grow in a real-time evolution.
The procedure was to find an MPS with a smaller matrix bond dimension through
the following unitary transformations on the auxiliary Hilbert space

ÛA′B′ = Î0 ⊗ · · · În−1 ⊗ Ûn,n+1 ⊗ În+2 ⊗ · · · ÎL (3.23)

where ÛA′B′ is only nontrivial on sites n, n+ 1, shown in Figure 3.2.

The local optimization problem of finding Ûn,n+1 was then solved through an iter-
ative method that determines the optimal Ûn,n+1 as a fixed point that minimizes
the second Rényi entropy. The second Rényi entropy was chosen as the entan-
glement measure instead of the standard von Neumann entropy because it can be
conveniently represented as a tensor network. The disentanglement procedure was
completed by sweeping through the system to optimize all the bipartitions until a
certain convergence criterion was satisfied.

The authors discovered that the disentanglement procedure could significantly reduce
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entanglement during real-time evolution. However, it does not lead to a smaller
matrix bond dimension due to the presence of a long tail in the Schmidt values in
the MPS.

In our work, we implemented the same iterative optimizer to disentangle the LPDO.
We would like to highlight two key differences in our work compared to previous
research in Ref. [8]. First, the purification used there has always fixed Kraus dimen-
sions due to the absence of dissipative dynamics. In contrast, our study considers
both unitary and dissipative dynamics during real-time evolutions. As a result, both
the matrix bond dimensions and Kraus bond dimensions increase over time. The
entanglement of purification in Eq. (3.22) now depends on both parameters. Second,
in our implementation, we have included an additional truncation step for the Kraus
bonds, which we will explain further below.

In our simulations of a driven-dissipative Bose-Hubbard model (details in the next
chapter), we observed a reduction in entanglement entropy after the disentanglement
sweeps described above. As indicated in Ref. [8], this decrease does not lead to a
reduction in the matrix bond dimensionsD due to the long tail in the Schmidt values.
In contrast, we found that the singular values associated with the Kraus bonds, Sj′n
in Eq. (3.20), exhibit a sharp decline, with most of the weight concentrated in the
first few singular values, while the remaining values are nearly zero. Consequently,
we introduced a truncation of the Kraus dimensions, as specified in Eq. (3.21). In
most scenarios, we found it possible to reduce the Kraus dimensions K down to the
physical dimensions d.

This finding shows that by disentangling the purification process, we have found a
more efficient parametrization of the LPDO, where the Kraus dimensions match the
physical dimensions. However, it is important to note that this is still a local op-
timum. Theoretically, there is no evidence that an optimal purification in Eq. (2.20)
will necessarily have the same Kraus dimensions as the physical dimensions. Further
research is needed to explore the universality of this method for different systems.

In the example of a one-dimensional driven-dissipative Bose-Hubbard model, as de-
tailed in Eq. (4.9), we compare the results of two different approaches. In the first
approach, we applied only the local truncation methods described in Eq. (3.20) and
Eq. (3.21). The results from this method are represented by the orange solid lines
in Figure 3.3. In the second approach, we included a disentanglement procedure fol-
lowing each time step and applied the same local truncations afterward. The results
from this method are shown by the green solid lines in Figure 3.3. The dynamics
obtained without the disentanglement procedure significantly deviate from the cor-
rect dynamics, indicating that the chosen bond dimensions are insufficiently large.
In contrast, by disentangling the LPDO after each time step, we achieve the correct
dynamics using the same bond dimensions. The simulation results demonstrate that
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Figure 3.3: Simulation of a real-time evolution for a one-dimensional driven-
dissipative Bose-Hubbard model Eq. (4.9) (introduced in the next chapter), with four
sites numbered by 0, 1, 2, 3. (a) The phase space trajectory of the time-dependent
coherence ⟨b(t)⟩ for site 1. (b) The mean photon occupations ⟨n⟩ for site 1 as a
function of time t (in units of U−1). (c) The purity of the system as a function of
time t (in units of U−1). The dashed lines are obtained from direct integration of
Eq. (3.2) and used as a reference. The green solid lines are obtained with our tensor
network method, which includes a disentanglement procedure after each step. The
orange solid lines are obtained using the same method but without disentanglement
procedures. The bond dimensions in both simulations are D = 8 and K = 8. We
observe that without the disentanglement procedure, the errors become substantial
at large t due to truncation. The disentanglement procedure effectively reduces this
error by truncating in an optimal basis of the auxiliary Hilbert space. The paramet-
ers for the driven-dissipative Bose-Hubbard model are chosen as follows: J = 0.2,
µ = 0.2, F = 0.25 and γ = 0.3, all in the units of U . The cutoff of the local Hilbert
space dimension is set to 4.

the disentanglement procedure effectively eliminates the exponential growth of the
Kraus bond dimensions in the LPDO representation while accurately capturing the
long-time dynamics with a moderate bond dimension.
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Chapter 4

The driven-dissipative Bose-Hubbard
model

This chapter will employ the algorithm formulated in the previous chapter to study
the driven-dissipative Bose-Hubbard model in one spatial dimension.

In Section 4.1, we will give a brief introduction to the driven-dissipative Bose-
Hubbard model and existing results. Section 4.2 will provide a mean-field analysis of
the model as a starting point. We find the system exhibits bistability by solving the
Gross-Pitaveski mean-field equation. Subsequently, we take the single-site quantum
effect into account by considering the Gutzwiller mean-field ansatz, which is also
simple to simulate as a tensor network. There, we found the bistability is replaced
with a first-order phase transition, different from the single-site analytical solution
where no phase transitions occur. In the fast sweep regime, the dynamical hysteresis
area exhibits a power-law decay, while in the slow sweep regime, it decays exponen-
tially. Last, we present the tensor network simulation of the full density operator for
this model. We find there is no first-order phase transition after a finite-size scaling.
The dynamical hysteresis area exhibits an exponential decay only.

4.1 The model

We consider the coupled bosonic fields with nearest-neighbor interaction and coherent
driving. Under the rotating-wave approximation, the Hamiltonian Ĥ is given by

Ĥ =
∑
j

(
ωj b̂

†
j b̂j +

U

2
n̂j(n̂j − 1) + Fj

(
b̂je

iΩjt + b̂†je
−iΩjt

))
−
∑
⟨i,j⟩

Jij

(
b̂†i b̂j + b̂†j b̂i

)
,
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where ωj is the energy for the j-th mode, here we have set ℏ = 1. b̂†j and b̂j are
the boson creation and annihilation operators, n̂j = b̂†j b̂j is the number operator. Uj
is the interaction strength for a single mode, Jij = Jji is the tunneling amplitude
between different modes, ⟨i, j⟩ denotes the sum between nearest neighbors, Fj and
Ωj are the amplitude and the frequency of the coherent driving field, respectively.

When the system is coupled to a Markovian environment, the dynamics of the density
matrix is described by the Lindblad master equation

dρ

dt
= −i[Ĥ, ρ] +D(ρ) (4.1)

In the limit of zero environment temperature, the Lindblad dissipatorD(ρ) describing
only the boson losses is given by:

D(ρ) =
∑
j

γj

(
b̂jρb̂

†
j −

1

2
{b̂†j b̂j , ρ}

)
(4.2)

with γj being the dissipation rate of the j-th mode. {·, ·} denotes the anti-
commutator.

This model can be used to describe a variety of open quantum systems. A well-
known example is circuit quantum electrodynamics (QED) systems [32], where cavity
photons interact through nonlinear effects. The dissipative dynamics account for
photon leakage due to the finite lifetime of the photons, which is compensated by
external pumping. An illustration of this is provided in Figure 4.1. Recently, large
nonlinearities, where U ≫ γ, have been achieved using superconducting quantum
circuits [33]. This advancement made it possible to explore strong quantum effects
in experimental settings.

It is often useful to move to a frame rotating at the driving frequency Ωj . This
transformation is achieved with the unitary operator:

Û(t) = exp

i∑
j

Ωj b̂
†
j b̂j t

 . (4.3)

The transformed Hamiltonian Ĥ ′ in the rotating frame is:

Ĥ ′ = ÛĤÛ † − iÛ ∂Û
†

∂t
. (4.4)
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Figure 4.1: An illustration fo the driven-dissipative Bose-Hubbard model. The mean-
ing of the parameters are explained in the main text.

An extra time-derivative term arises because the unitary operator is time-dependent.
This term evaluates to:

−iÛ ∂Û
†

∂t
= −iÛ Û †

−i∑
j

Ωj b̂
†
j b̂j

 = −
∑
j

Ωj b̂
†
j b̂j . (4.5)

To obtain the first term ÛĤÛ †, we only need to calculate how the unitary operator
Û(t) acts on the annihilation operator b̂j

Û(t) b̂j Û
†(t) = eiΩj n̂jt b̂j e

−iΩj n̂jt = b̂je
−iΩjt (4.6)

Similarly, we have

Û(t) b̂†j Û
†(t) = b̂†je

iΩjt. (4.7)

Thus, in the rotating frame, the exponents in the driving terms cancel out

b̂je
iΩjt →

(
b̂je

−iΩjt
)
eiΩjt = b̂j ,

b̂†je
−iΩjt →

(
b̂†je

iΩjt
)
e−iΩjt = b̂†j .
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The diagonal terms b̂†j b̂j are invariant under this transformation, the on-site energy
term

∑
j ωj b̂

†
j b̂j effectively shifts by −∑j Ωj b̂

†
j b̂j due to Eq. (4.5), resulting in:

∑
j

(ωj − Ωj)b̂
†
j b̂j = −

∑
j

µj b̂
†
j b̂j ,

where µj = Ωj − ωj is the detuning between the driving frequency and the cavity
frequency.

If we assume that the driving frequency Ωj is identical for every site j, the Hamilto-
nian Eq. (4.4) becomes:

Ĥ ′ =
∑
j

(
U

2
n̂j(n̂j − 1)−∆j b̂

†
j b̂j + Fj(b̂j + b̂†j)

)
− J

∑
⟨i,j⟩

(
b̂†i b̂j + b̂†j b̂i

)
, (4.8)

where each term is now time-independent, with the detuning µj and the constant
drive term Fj(b̂j + b̂†j) representing the coherent drive in the rotating frame.

In this work, we consider the situation where the system is homogeneous, that all
cavities are identical, and the external driving field is the same for each cavity. The
Hamiltonian now reads

Ĥ =
∑
j

−µb̂†j b̂j +
U

2
b̂†j b̂

†
j b̂j b̂j − J(b̂

†
j+1b̂j + b̂†j b̂j+1) + F (b̂†j + b̂j) (4.9)

The Bose-Hubbard model for a closed system without external drive and dissipation
is known for a superfluid-Mott insulator phase transition at zero temperature. In the
limit of large interaction strength U , the system is a Mott insulator. When the ratio
between the tunneling amplitude J and the interaction strength U is increased, the
system experiences a second-order phase transition by breaking the U(1) symmetry.
The resulting superfluid phase has a long-range order and zero viscosity.

In our model Eq. (4.9), the U(1) symmetry is explicitly broken by the external
driving. Thus, such a transition will not occur.

Similar to a quantum phase transition at zero temperature, where the competition
between non-commuting terms in the Hamiltonian can cause abrupt changes in the
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ground state, the competition between unitary and dissipative dynamics in the Lind-
blad master equation can lead to abrupt changes in the nonequilibrium steady state,
giving rise to a dissipative quantum phase transition [34, 35].

The driven-dissipative Bose Hubbard model described in Eq. (4.9) turns out to have
a very rich phase diagram. In Ref. [36], the author solved a self-consistent mean-field
equation using the single-site analytical solution. It was found that the system exhib-
its bistability, namely, that it has two steady states in a finite range of parameters.

It is widely believed certain bistability is only an artifact of the mean-field theory
and is replaced by a first-order phase transition when quantum fluctuations are taken
into consideration. Such dissipative phase transition is oberserved in experiment for
a 1D circuit QED array driven at one end [37].

In Ref. [38], the author simulated both 1D and 2D models with truncated Wigner
approximation and found the Liouvillian gap converges to a finite value in the 1D
case after finite-size scaling; thus, no phase transition happens.

We want to point out that the previous works we discussed above mostly close to the
semi-classical case, where the interaction U is weak. In this regime, the system has
high occupation numbers and quantum fluctuations are negligible, the mean-field
theory and truncated Wigner approxiation therefore provide a good description of
the system.

The strong quantum limit, on the other hand, is not well studied due to the limit
of existing numerical methods. In the following, we will use the time evolution
algorithm developed in the last chapter to study the driven-dissipative Bose-Hubbard
model and compare it to the results obtained from the Gross-Pitaevski mean-field
equation and Gutzwiller mean-field equation. To highlight the strong interaction
regime we are focusing on, the model parameters we used in numerical simulations
are defined in the unit of the interaction strength U by setting U = 1. The tunneling
amplitude J , the driving amplitude F and the dissipation rate γ are 0.2, 0.25, 0.3,
respectively.

It is worth noting that a more common practice is to define the parameters in units
of γ, as it determines the relaxation time. However, since γ remains constant across
all our simulations, this choice of units does not affect our results.

4.2 Mean-field theory analysis

The Heisenberg equation of motion for the annihilation operator b̂i reads
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˙̂
bi = −i

[
b̂i, Ĥ

]
+ γ

(
b̂†i b̂ib̂i −

1

2

{
b̂†i b̂i, b̂i

})
. (4.10)

Using the commutator relations

[b̂†i , b̂
†
j ] = [b̂i, b̂j ] = 0, [b̂i, b̂

†
j ] = δij , (4.11)

the first commutator equals to

[b̂i, Ĥ] = −µ[b̂i, b̂†i b̂i] +
U

2
[b̂i, b̂

†
i b̂

†
i b̂ib̂i]− J [b̂i, b̂

†
i b̂i−1 + b̂†i b̂i+1] + F [b̂i, b̂

†
i ]

= −µb̂i +
U

2
(b̂ib̂

†
i b̂

†
i b̂ib̂i − b̂

†
i b̂

†
i b̂ib̂ib̂i)− J(b̂i−1 + b̂i+1) + F

= −µb̂i + Ub̂†i b̂ib̂i − J(b̂i−1 + b̂i+1) + F.

(4.12)

Similarly, the dissipative terms equals to γ
2 (b̂

†
i b̂ib̂i − b̂ib̂

†
i b̂i) = −γ

2 b̂i. Combining the
coherent evolution and the dissipative dynamics, we arrive at

˙̂
bi = −i

(
−µb̂i + Ub̂†i b̂ib̂i − J

(
b̂i−1 + b̂i+1

)
+ F

)
− γ

2
b̂i. (4.13)

Due to the presence of the nonlinear term, we cannot solve this equation analytically.
A standard approach is using mean-field theory, starting by replacing the operator
with its mean-field value βi = ⟨b̂i⟩ and using ⟨b̂†i b̂ib̂i⟩ ≈ |βi|2βi under the mean-
field approximation, we obtain the so-called Gross-Pitaevski mean-field equation of
motion for βi,

dβi
dt

= i
(
µβi − U |βi|2βi + J (βi−1 + βi+1)− F

)
− γ

2
βi. (4.14)

This is a system of equations for βi. Define a vector βββ = (β1, β2, . . . , βN ) (for a
system of size N). In the steady state, dβββ

dt = 0:


u1 J
J u2

. . .
J uN



β1
β2
...
βN

− F = 0, (4.15)
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Figure 4.2: The time-dependent mean-field photon density ρ(t) on every site for an
array of 5 sites, numbered by 0, 1, 2, 3, 4, for different detunings µ. The trajectories
are obtained by numerical integration of Eq. (4.14) using a fourth-order Runge-Kutta
method. The initial conditions are chosen such that the cavity array has inhomogen-
eous occupations. The rest of the parameters are F = 0.25U , γ = 0.3U , J = 0.2U .
In all cases, we found that the steady-state configurations were homogeneous.
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where ui = µ− U |βi|2 + iγ2 and open boundary conditon is assumed.

Since we do not assume that the system is homogeneous, the diagonal entries of our
tridiagonal matrix can be different. Therefore, it is not possible to solve the matrix
equation analytically. Instead, we simulate the time dependence of the mean fields
βi using different initial conditions. We know the system has reached a steady state
once the values of βi become stationary.

We utilize the fourth-order Range-Kutta method to integrate the differential equa-
tions Eq. (4.14). We assume a periodic boundary condition such that βN+1 = β1
and β0 = βN . In Figure 4.2 we show a number of sample trajectories. We have
defined the mean-field photon density as ρi = |βi|2. It is important to note that this
should not be confused with the density operator that we will encounter in the next
section. Our findings indicate that, in all cases, the system relaxes to a homogeneous
configuration. The outcome is expected due to the translational invariance of our
model. Consequently, we can assume a homogeneous solution, namely ⟨b̂i⟩ is the
same for all i, Eq. (4.14) reduces to a scalar equation,

(
µ̃− U |β|2 + i

γ

2

)
β = F. (4.16)

Here we have dropped the subscript i and define µ̃ = µ+2J . Taking the magnitude
on both sides and solving for ρ:

U2ρ3 − 2Uµ̃ρ2 + (µ̃2 +
γ2

4
)ρ− F 2 = 0. (4.17)

Divide the equation by U2, which is equivalent to redefining the rest of the parameters
in the unit of U, we get

ρ3 − 2µ̃ρ2 + (µ̃2 +
γ2

4
)ρ− F 2 = 0. (4.18)

This is a cubic equation in terms of ρ, and we are interested in determining how
many positive real roots it has, which correspond to the density of the mean-field
steady states. To answer this question, we can start by examining the discriminant.

The discriminant of a general cubic polynomial p3(x) = ax3+ bx2+ cx+d is defined
as

∆ = 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2.
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Figure 4.3: The discriminant ∆ of G(ρ) as a function of µ. ∆ > 0 means there are
three distinct real roots. ∆ < 0 means there are one real root and two complex
conjugate roots. The model parameters defining the discriminant are the same as in
Figure 4.2.

We refer to the left-hand side of Eq. (4.18) as G(ρ), the coefficients a, b, c, d are given
as:

a = 1, b = −2µ̃, c = µ̃2 +
γ2

4
, d = −F 2.

If we consider the discriminant as a function of the detuning µ, the polynomial G(ρ)
will have three distinct real roots if ∆(µ) > 0. Conversely, if ∆(µ) < 0, G(ρ) will
have one real root along with a pair of complex conjugate roots. When ∆(µ) equals
zero, G(ρ) will have degenerate roots.

The sign of ∆(µ) can be determined by first plotting the function, as illustrated in
Figure 4.3. By employing a numerical root-finding method, such as the bisection
search, we identify the numerical values of the two roots of G(ρ), which are µ1 =
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Figure 4.4: A saddle node bifurcation occurs at µ = µ1. For values of µ less than
µ1, there is only one steady state with a high density of ρ ∼ 1. As we increase the
detuning and cross µ1, two slightly positive roots emerge as a pair. In the context
of mean-field hysteresis presented below, we observe that the smaller of these two
roots is stable, while the larger root is dynamically unstable, which confirms the
saddle-node nature of the bifurcation. The other parameters in G(ρ) Eq. (4.18) are
the same as in Figure 4.2.

0.326775U and µ2 = 2.379805U . We have also plotted the function G(ρ) around
these two values in Figure 4.4 and Figure 4.5.

First, all real roots are also positive in both cases. For small detuning µ < µ1
and large µ > µ2, there are only one root, call them ρ1 and ρ2, respectively. ρ1
corresponds to a high-density phase and ρ2 corresponds to a low-density phase.
Second, in the area where < µ1 < µ < µ2, there are an additional root ρm which sits
in between ρ1 and ρ2.

Next, we examine the stability of these solutions by simulating the dynamical hyster-
esis arising from a triangular modulation of the detuning µ. We consider a variation
of detuning from µs to µs +∆µ covering the whole range of the hysteresis in a time
duration of ts. We start at detuning and allow Eq. (4.14) to evolve over a prolonged
period until a steady state is achieved. Using this steady state at the initial state,
we evolve the system for time ts while incrementing µ linearly in time until reaching
µs+∆µ. Thus, ts/∆µ defines the inverse of the sweep rate. We also do the same in
reverse. Therefore, the total evolution time is 2ts. The hysteresis that persists when
ts approaches infinity is referred to as static hysteresis. This process is depicted in
Figure 4.6.
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Figure 4.5: The dynamically unstable solution that arises from the first bifurcation,
illustrated in Figure 4.4, moves toward the high-density stable solution as µ is in-
creased from µ1 to µ2. At µ = µ2, it collides with the high-density root, and together
they disappear, indicating another saddle-node bifurcation. For µ > µ2, bistability
ceases to exist, and only one stable low-density solution remains. The other para-
meters in G(ρ) Eq. (4.18) are the same as in Figure 4.2.

As we can see, in the region where there are three positive solutions, only two are
stable, namely ρ1 and ρ2. They coexist for µ1 < µ < µ2. At µ = µ1 (µ = µ2), a
saddle-node bifurcation creates (annihilates) a pair of stable-unstable states.

Up to this point, we have only analyzed the mean-field equations at fixed values of
the driving amplitude F , damping rate γ, and tunneling amplitude J . For the sake
of completeness, we now present the mean-field phase diagrams in the F − µ plane
and the γ − µ plane, as illustrated in Fig. 4.7.

It is evident that bistability occurs over a broad range of F and γ. In Eq. 4.14, the
tunneling amplitude J is considered a redundant variable since it is equivalent to the
detuning µ. As a result, we will not take J into account in this discussion.

4.3 Tensor network simulations

In this section, we will utilize the time evolution method developed in the previous
chapter to simulate the dynamics of the driven-dissipative Bose-Hubbard model. We
will begin by considering the Gutzwiller ansatz, which can be treated as an LPDO
with matrix bond dimensions equal to one. Our findings indicate that the mean-
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Figure 4.6: This figure illustrates that the model exhibits a bistable phase when
µ1 < µ < µ2, according to the Gross-Pitaevskii mean-field equation. The purple
dotted line represents the solutions of G(ρ). The S-shaped curve is a characteristic
feature of mean-field bistability. The blue solid (dashed) lines depict the static
hysteresis loop obtained by adiabatically varying µ in the increasing (decreasing)
direction. The model parameters are the same as in Figure 4.2.
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Figure 4.7: The mean-field phase diagram in the F − µ plane (top) and the γ − µ
plane (bottom) shows the bistable region in black and the monostable region in white
(transparent). In the top figure, γ is set to 0.3U . In the bottom figure, F is set to
0.25U .
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field bistability is replaced by a first-order phase transition. The area of dynamical
hysteresis exhibits a power-law decay in the fast sweep regime, while it shows an
exponential decay in the slow sweep regime. Subsequently, we will present the res-
ults from the LPDO simulation, which shows that no first-order phase transition is
observed, and the dynamical hysteresis area decays solely exponentially as the sweep
time increases.

4.3.1 Gutzwiller ansatz

The Gross-Pitaevski mean-field equation Eq. (4.14), as discussed in the previous sec-
tion, completely neglects quantum fluctuations. A more meaningful approximation
is given by the Gutzwiller mean-field ansatz, expressed as follows:

ρ =
⊗
i

ρi, (4.19)

where ρ represents the density operator for the entire system, and ρi denotes the
density operator at site i. Please note that from this point onward, ρ refers specific-
ally to the density operator and should not be confused with the mean-field photon
density defined in the previous section. This formulation factorizes the density op-
erator at each site, which means that while we ignore correlations between different
parts of the system, we do take into account the on-site quantum fluctuations.

One advantage of this approach is that it can be easily simulated as a tensor net-
work with a matrix bond dimension of 1. We simulate the same dynamic hysteresis
discussed in the previous section. We truncate the local Hilbert space dimension d
to 4, where the results have converged. The Kraus dimension is set larger than d,
such no truncation is needed. The model parameters are identical to those shown in
Figure 4.2.

In Figure 4.8, we show the change of mean photon number

⟨n⟩ = 1

N
Tr

(
ρ

N∑
i=1

ni

)
(4.20)

as we vary the detuning µ, where ni is the number operator acting on the site
i. N is the system size. We note that the system displays behavior significantly
different from what we observed with the Gross-Pitaevski mean-field equation. Due
to the strong nonlinearity, the maximum occupation ⟨n⟩max is approximately 1.
Consequently, the hysteresis area is significantly smaller than what was shown in
Figure 4.6. Notably, the hysteresis area disappears as we approach the adiabatic
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Figure 4.8: The dynamical hysteresis loop of Gutzwiller ansatz Eq. (4.19) for a system
with 50 sites corresponding to different sweep times ts (in the unit of ∆µ/U2). For
a given sweep time, the lines corresponding to higher mean photon numbers are
obtained in the sweeping direction of increasing (decreasing) µ. The dynamical
hysteresis disappears as ts → ∞ and leaves a sharp transition, indicating a first-
order phase transition at µ ≈ 0.43U . The model parameters are the same as in
Figure 4.2.

limit. The sharp transition at µ ≈ 0.43U indicates a first-order phase transition.
This contrasts sharply with the single-site model, which has an analytical solution
available [26]. In that case, no phase transitions occur at finite interaction strength
U .

The transition from bistability to a first-order phase transition occurs due to clas-
sical and quantum correlations. In mean-field theory, all dynamically stable solutions
(local minima) have infinite lifetimes, which leads to bistability. However, when cor-
relations are taken into account, the system can switch between the two bistable
phases, resulting in a unique steady state. These switchings can be effectively cap-
tured by quantum trajectory simulations [39].
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The switching time is related to the Liouvillian gap, which is defined through the
eigendecomposition of the Liouvillian superoperator L defined in Eq. (3.1)

Lρ = λiρi, (4.21)

where 0 = Reλ0 ≥ Reλ1 ≥ · · ·. The steady state then corresponds to the eigenvector
ρ0 associated with the zero eigenvalue. The value Reλ1 represents the slowest dy-
namics and is referred to as the Liouvillian gap, denoted as ∆. Consequently, the
switching time is inversely proportional to the Liouvillian gap, expressed as ∆−1.

At the critical point in the thermodynamics limit, the gap closes (∆ = 0), resulting
in two degenerate steady states that correspond to the two bistable phases with
both infinite lifetimes. Near the critical point, although the gap ∆ is finite, it can
be very small. When the timescale set by ∆−1 is significantly longer than other
relevant timescales in the system (such as the sweep time in our example), dynamical
hysteresis occurs.

We define the dynamical hysteresis area as the area enclosed in the hysteresis loop

A =

∫ (
n↑ − n↓

)
dµ. (4.22)

In our case, n↑ is the mean photon numbers obtained in the direction of increasing
detuning µ, and n↓ is the opposite.

We present the dynamical hysteresis area A as a function of the sweep time ts in
Figures 4.9a and 4.9b. Two distinct decay patterns can be identified in the fast and
slow sweep regimes, respectively. In the fast sweep regime, where the sweep time
ts is short, the area decays with sweep time ts following a power law A ∝ t−as . For
N = 50, we found that a ≈ 0.68, as shown in Figure 4.10. This result aligns with
the 2/3 power-law derived from a mean-field equation in Ref. [40]. Additionally,
the agreement with mean-field theory in the fast sweep regime was also reported in
Ref. [41]. At medium sweep times, a transient regime is observed for larger systems.

In the slow sweep regime, the area A decays exponentially over time and exhibits
a strong finite-size effect compared to the power-law regime. This can be explained
intuitively by considering the following analysis. We can express the integral as a
Riemann sum for simpler notation:

A(t) =
∑
i

∆µi(n
↑
i (t)− n

↓
i (t)). (4.23)
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Figure 4.9: The dynamical hysteresis area A for the Gutzwiller ansatz as a function
of the sweep time ts (in the unit of ∆µ/U2) for different system sizes N . (a) In
log-log scale, the initial straight lines indicate the areas follow a power-law decay
with increasing sweep time. A power-law fitting for N = 50 is provided in Fig. 4.10.
When the sweep time is increased, the power-law decay is replaced by an exponential
decay. (b) In log-linear scale. At long sweep times (towards the adiabatic limit), the
area decays exponentially with a evident finite-size effect. For large system sizes, we
observe a transient regime at medium sweep times. The exponential decay confirms
a vanishing hysteresis area in the ts →∞ limit. The parameters are the same as in
Figure 4.2.
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At large t, the mean photon numbers ni decay exponentially

n↑i (t) = nssi −Aie−t∆i , (4.24a)

n↓i (t) = nssi +Bie
−t∆i , (4.24b)

where nssi is the mean photon number of the steady state, Ai and Bi are coefficients
that depend on the system paramters. ∆i represents the Liouvillian gap defined
above. We did not include the case where ∆i = 0 at the critical point. It does not
affect our analysis since it has a zero measure. Therefore, Eq. (4.23) can be written
as

A(t) = −
∑
i

∆µi(Ai +Bi)e
−t∆i . (4.25)

In the slow sweep regime, the hysteresis only exists in the vicinity of the critical
point. For finite systems, the Liouvillian gap ∆ is always finite, even at the critical
point. We anticipate that the sum Eq. (4.25) will be dominated by the term with ∆c,
the Liouvillian gap at the critical point. Hence, the area should decay exponentially.
This also explains the strong finite-size effect we observed in the slow sweep regime.

4.3.2 Full quantum solution

We now present the simulation results of the full density operator as an LPDO.

First, we recall the three important parameters controlling the time evolution:
the matrix bond dimension D, Kraus bond dimension K, and disentanglement
steps disent_step. The last one determines how many time steps are computed
between two disentanglement steps. The results are generally more accurate when
disent_step is chosen small, meaning we disentangle the LPDO more frequently
throughout the time evolution. However, since the disentanglement is based on an
iterative algorithm, calling disentanglement too often can largely impact the per-
formance of the algorithm. Therefore, it also requires fine-tuning.

To determine the set of parameters that yield converged results, we begin by simulat-
ing small systems (N < 5), where direct integration of the full density matrix remains
possible. We conduct a convergence test as follows: First, we set disent_step = 1 and
perform a grid search for the matrix and Kraus bond dimensions, denoted as D and
K. Once we identify the sufficient sizes for D and K, we freeze these values and in-
crease disent_step. Finally, we keep all parameters—D, K, and disent_step—fixed
to compare the results across different local Hilbert space dimensions. We found that
the results had already converged at a dimension of d = 4.
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Figure 4.10: The dynamical hysteresis area A of the Gutzwiller ansatz with 50 sites as
a function of the sweep time ts in the unit of ∆µ/U2. The dashed line is a power-law
fit. In the fast sweep limit, the area A follows a power law A ∝ t−as with a ≈ 0.68,
which is in great agreement with the 2/3 law found for a generic mean-field eqaution
in Ref. [40]. The parameters are same as in Figure 4.2.

We repeated the same convergence test while increasing the system size until N = 12.
We found converged results with a local Hilbert space d = 4, bond dimensions
D = K = 8, and disent_step = 4. These parameters are used in all subsequent
simulations.

Based on the predictions of the Gutzwiller ansatz, we investigate the LPDO from two
perspectives: the finite-size scaling of the order parameter ⟨n⟩ to determine whether
a first-order phase transition is present, and the finite-time scaling of the dynamical
hysteresis area, as discussed previously.

For the finite-size scaling, we evolve the systems until the hysteresis area approaches
zero, allowing us to obtain the true steady states. The steady-state mean photon
occupations are plotted in Figure 4.11a. We the lines intersect at µ ≈ 0.26U , sug-
gesting the possibility of a first-order phase transition. However, this observation
is inconclusive, as we do not observe a sudden jump in ⟨n⟩. Further increasing the
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system size results in overlapping lines with N = 25, which contradicts the first-order
phase transition predicted by the Gutzwiller ansatz. Figure 4.11b presents the purity
of the steady states.

A similar behavior is observed in the one-dimensional lattice in Ref. [38], where
the Liouvillian gap ∆ decreases to a small but finite value as the lattice length
increases. Consequently, the relaxation time trelax = 1/∆ becomes very long, leading
to dynamical hysteresis.

In Figure 4.12, we present the dynamical hysteresis of a LPDO with 25 sites. Unlike in
Figure 4.8, the discontinuity in the mean photon number ⟨n⟩ is absent in Figure 4.12.
This observation indicates that the first-order phase transition seen in the Gutzwiller
ansatz has been smoothed out when taking into account the correlations between
different parts of the system.

In Figure 4.13, we show the dynamical hysteresis area as a function of sweep time ts.
Once again, we observe significant differences compared to the Gutzwiller ansatz. For
the LPDO, the dynamical hysteresis area demonstrates only an exponential decay
with respect to the sweep time ts:

A ∝ eats ,

with the exponent a ≈ −8× 10−4U . It is important to note that the sweep times in
Figure 4.12 belong to the fast sweep regime for the Gutzwiller ansatz, see Figure 4.8.
Therefore, the absence of power law is confirmed.

Based on our analysis from Eq. (4.23) to Eq. (4.25), the exponent a is expected to be
related to the Liouvillian gap ∆ = −a, suggesting a nearly vanishing gap. However,
as seen in Figures 4.11a and 4.12, there is no abrupt jump in the order parameter ⟨n⟩.
This intriguing behavior warrants further investigation in our upcoming research.
Simulation of larger system sizes are needed to confirm if the gap indeed vanishes in
the thermodynamic limit.
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Figure 4.11: Finite-size scaling for the driven-dissipative Bose-Hubbard model (a)
The steady-state mean photon number ⟨n⟩. A crossing at around µ = 0.26U sug-
gests a critical point for the first-order phase transition. However, further increasing
system size shows overlapping lines with N = 25, meaning no sharp transition exists.
(b) The purity of the steady states. The high occupation phase is more mixed. At
large detuning, the purity approaches one as the system approaches the vacuum.
The parameters are the same in Figure 4.2.
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Figure 4.12: The dynamical hysteresis loop of a full LPDO for a system with 25
sites corresponding to different sweep times ts (in the unit of ∆µ/U2). The dashed
line, which corresponds to the solid red line in Figure 4.11a, is obtained by evolving
the system for a prolonged time until no hysteresis is observed. The mean photon
occupation ⟨n⟩ changes smoothly with the detuning µ. Therefore, no first-order
phase transition is observed, which contrasts with the predictions of the Gutzwiller
ansatz. The model parameters are the same as in Figure 4.2.
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Figure 4.13: The dynamical hysteresis area A for the full LPDO as a function of
sweep time ts (in units of ∆µ/U2). The dashed line is exponential fit A ∝ eats with
the exponent a ≈ −8×10−4U . The sweep times in this plot belong to the fast sweep
regime for the Gutzwiller ansatz (see Figure 4.8), where the area decays as a power-
law of the sweep time ts. The model parameters are the same as in Figure. 4.2.
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Chapter 5

Summary and outlook

In the first part of the thesis, we extended current methods for simulating one-
dimensional open quantum systems using tensor networks. We employed a locally
purified density operator, which is positive semi-definite by construction. This ap-
proach utilized a variational method to simulate the dynamics of the density operator
according to the Lindblad equation. This method has the advantage of preserving
the unit trace and the positivity of the density operator at all times. By utilizing a
disentanglement procedure, we reduced the algorithm’s complexity significantly and
allowed for long-time dynamics simulation.

In the second part, we systematically studied the driven-dissipative Bose-Hubbard
model in the strong interaction regime, which was intractable with other methods.
We demonstrated that the model exhibits mean-field bistability. Next, we simulated
the time evolution, where the Gutzwiller ansatz predicts a first-order phase trans-
ition and a power-law decay of the dynamical hysteresis area in the fast sweep regime
before transitioning to exponential decay. Finally, we simulated the full locally pur-
ified density operator (LPDO). After applying finite-size scaling, we found that the
first-order phase transition is smoothed out due to the correlations between different
parts of the system. The dynamical hysteresis area exhibits only an exponential
decay.

For future research, one could study the relationship between the bond dimensions
in LPDO and the physical properties of the state, such as purity and entanglement
of formation [42]. Based on this analysis, one may be able to propose an improved
ansatz for representing a density operator with tensor networks. Furthermore, we
can investigate the effectiveness of this method in various open quantum many-body
systems and compare it to other approaches, such as the variational approach in
Ref. [28]. Given that our method inherently preserves a positive density matrix, this
comparison could help classify models where positivity is of greater significance.
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Appendix A

Fourier transform of the
driven-dissipative Bose-Hubbard model

In the main text, we considered only the case where the driving in the driven-
dissipative Bose-Hubbard model is homogeneous. In Fourier space, this means we
are only driving the k = 0 mode [43].

Consider the Fourier expansion of the annihilation operator,

b̂j =
1√
N

∑
k

b̂ke
ikja, b̂†j =

1√
N

∑
k

b̂†ke
−ikja (A.1)

where a is the lattice spacing. The Hamiltonian Eq. (4.9) in the Fourier space thus
reads

Ĥk = −∆
∑
k

b̂†k b̂k −
J

N

∑
⟨j,l⟩

2 cos (k (j − l))b̂†k b̂k

+
F√
N

∑
j,k

(
b̂†ke

−ikja + b̂ke
ikja
)

+
U

2N

∑
k1,k2,k3

b̂†k1 b̂
†
k2
b̂k3 b̂k1+k2−k3

(A.2)

We observe that the driving term vanishes for k ̸= 0, meaning that only the k = 0
mode is externally driven. Additionally, only the last term mixes different Fourier
modes. If we ignore the nonlinear scattering between different modes, only the k = 0
mode will be populated. In this scenario, the model becomes uncoupled and can be
mapped as a single Kerr cavity.

63



Appendix A Fourier transform of the driven-dissipative Bose-Hubbard model

0 2 4 6 8 10 12

j −N/2

10−5

10−4

10−3

10−2

10−1

100
〈n

N
/
2
n
j
〉

µ = 0.40U

µ = 0.36U

µ = 0.32U

µ = 0.28U

µ = 0.24U

µ = 0.20U

µ = 0.16U

µ = 0.12U

Figure A.1: The connected density-density correlation function for different values
of dtuning. The It is clear that the correlation decays exponentially in all cases.

Ĥ = ω0b̂
†
0b̂0 + Feff

(
b̂†0 + b̂0

)
+
Ueff
2

b̂†0b̂
†
0b̂0b̂0

where ω0 = −µ− 2J , Feff =
√
NF , and Ueff = U/N . In this case, we can directly

approach the thermodynamic limit by letting Feff →∞ and Ueff → 0 while keeping
UeffF

2
eff constant.

One direct consequence of ignoring the higher k modes is that the system would
be perfectly correlated, implying that the correlation function would be constant.
However, as shown in Figure A.1, the correlation in our system decays exponen-
tially. Thus, the mapping is not valid. This outcome is expected, given that in our
parameter regime, nonlinearity is dominant.

64



Bibliography

[1] Ulrich Schollwöck. ‘The density-matrix renormalization group in the age of
matrix product states’. In: Annals of Physics 326.1 (Jan. 2011), pp. 96–192.
issn: 0003-4916. doi: 10.1016/j.aop.2010.09.012. url: http://dx.doi.
org/10.1016/j.aop.2010.09.012.

[2] Guifré Vidal. ‘Efficient Classical Simulation of Slightly Entangled Quantum
Computations’. In: Phys. Rev. Lett. 91 (14 Oct. 2003), p. 147902. doi: 10.
1103/PhysRevLett . 91 . 147902. url: https : //link . aps . org/doi/10 .
1103/PhysRevLett.91.147902.

[3] Guifré Vidal. ‘Efficient Simulation of One-Dimensional Quantum Many-Body
Systems’. In: Phys. Rev. Lett. 93 (4 July 2004), p. 040502. doi: 10 .
1103/PhysRevLett . 93 . 040502. url: https : //link . aps . org/doi/10 .
1103/PhysRevLett.93.040502.

[4] Jutho Haegeman et al. ‘Unifying time evolution and optimization with mat-
rix product states’. In: Phys. Rev. B 94 (16 Oct. 2016), p. 165116. doi:
10 . 1103/PhysRevB . 94 . 165116. url: https : //link . aps . org/doi/10 .
1103/PhysRevB.94.165116.

[5] F. Verstraete, J. J. García-Ripoll and J. I. Cirac. ‘Matrix Product Density
Operators: Simulation of Finite-Temperature and Dissipative Systems’. In:
Phys. Rev. Lett. 93 (20 Nov. 2004), p. 207204. doi: 10.1103/PhysRevLett.
93.207204. url: https://link.aps.org/doi/10.1103/PhysRevLett.93.
207204.

[6] A. H. Werner et al. ‘Positive Tensor Network Approach for Simulating Open
Quantum Many-Body Systems’. In: Phys. Rev. Lett. 116 (23 June 2016),
p. 237201. doi: 10.1103/PhysRevLett.116.237201. url: https://link.
aps.org/doi/10.1103/PhysRevLett.116.237201.

[7] Hendrik Weimer, Augustine Kshetrimayum and Román Orús. ‘Simulation
methods for open quantum many-body systems’. In: Rev. Mod. Phys. 93 (1
Mar. 2021), p. 015008. doi: 10.1103/RevModPhys.93.015008. url: https:
//link.aps.org/doi/10.1103/RevModPhys.93.015008.

[8] Johannes Hauschild et al. ‘Finding purifications with minimal entanglement’.
In: Phys. Rev. B 98 (23 Dec. 2018), p. 235163. doi: 10.1103/PhysRevB.98.
235163. url: https://link.aps.org/doi/10.1103/PhysRevB.98.235163.

65

https://doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.91.147902
https://link.aps.org/doi/10.1103/PhysRevLett.91.147902
https://link.aps.org/doi/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1103/PhysRevLett.93.040502
https://link.aps.org/doi/10.1103/PhysRevLett.93.040502
https://link.aps.org/doi/10.1103/PhysRevLett.93.040502
https://doi.org/10.1103/PhysRevB.94.165116
https://link.aps.org/doi/10.1103/PhysRevB.94.165116
https://link.aps.org/doi/10.1103/PhysRevB.94.165116
https://doi.org/10.1103/PhysRevLett.93.207204
https://doi.org/10.1103/PhysRevLett.93.207204
https://link.aps.org/doi/10.1103/PhysRevLett.93.207204
https://link.aps.org/doi/10.1103/PhysRevLett.93.207204
https://doi.org/10.1103/PhysRevLett.116.237201
https://link.aps.org/doi/10.1103/PhysRevLett.116.237201
https://link.aps.org/doi/10.1103/PhysRevLett.116.237201
https://doi.org/10.1103/RevModPhys.93.015008
https://link.aps.org/doi/10.1103/RevModPhys.93.015008
https://link.aps.org/doi/10.1103/RevModPhys.93.015008
https://doi.org/10.1103/PhysRevB.98.235163
https://doi.org/10.1103/PhysRevB.98.235163
https://link.aps.org/doi/10.1103/PhysRevB.98.235163


[9] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press, 2010.

[10] Mark M. Wilde. Quantum Information Theory. Cambridge University Press,
2013.

[11] Don N. Page. ‘Average entropy of a subsystem’. In: Phys. Rev. Lett. 71 (9 Aug.
1993), pp. 1291–1294. doi: 10.1103/PhysRevLett.71.1291. url: https:
//link.aps.org/doi/10.1103/PhysRevLett.71.1291.

[12] J. Eisert, M. Cramer and M. B. Plenio. ‘Colloquium: Area laws for the entan-
glement entropy’. In: Rev. Mod. Phys. 82 (1 Feb. 2010), pp. 277–306. doi:
10 . 1103/RevModPhys . 82 . 277. url: https : //link . aps . org/doi/10 .
1103/RevModPhys.82.277.

[13] M B Hastings. ‘An area law for one-dimensional quantum systems’. In: Journal
of Statistical Mechanics: Theory and Experiment 2007.08 (Aug. 2007), P08024–
P08024. issn: 1742-5468. doi: 10.1088/1742- 5468/2007/08/p08024. url:
http://dx.doi.org/10.1088/1742-5468/2007/08/P08024.

[14] Leonid Gurvits. ‘Classical deterministic complexity of Edmonds’ Problem and
quantum entanglement’. In: Proceedings of the Thirty-Fifth Annual ACM Sym-
posium on Theory of Computing. STOC ’03. San Diego, CA, USA: Asso-
ciation for Computing Machinery, 2003, pp. 10–19. isbn: 1581136749. doi:
10.1145/780542.780545. url: https://doi.org/10.1145/780542.780545.

[15] Ryszard Horodecki et al. ‘Quantum entanglement’. In: Rev. Mod. Phys. 81 (2
June 2009), pp. 865–942. doi: 10.1103/RevModPhys.81.865. url: https:
//link.aps.org/doi/10.1103/RevModPhys.81.865.

[16] Charles H. Bennett et al. ‘Mixed-state entanglement and quantum error
correction’. In: Phys. Rev. A 54 (5 Nov. 1996), pp. 3824–3851. doi: 10 .
1103/ PhysRevA . 54 . 3824. url: https : / / link . aps . org/ doi/ 10 .
1103/PhysRevA.54.3824.

[17] William K. Wootters. ‘Entanglement of Formation of an Arbitrary State of
Two Qubits’. In: Phys. Rev. Lett. 80 (10 Mar. 1998), pp. 2245–2248. doi:
10.1103/PhysRevLett.80.2245. url: https://link.aps.org/doi/10.
1103/PhysRevLett.80.2245.

[18] Barbara M. Terhal et al. ‘The entanglement of purification’. In: Journal of
Mathematical Physics 43.9 (Sept. 2002), pp. 4286–4298. issn: 0022-2488. doi:
10.1063/1.1498001. eprint: https://pubs.aip.org/aip/jmp/article-
pdf/43/9/4286/19183123/4286 \ _1 \ _online . pdf. url: https : //doi .
org/10.1063/1.1498001.

66

https://doi.org/10.1103/PhysRevLett.71.1291
https://link.aps.org/doi/10.1103/PhysRevLett.71.1291
https://link.aps.org/doi/10.1103/PhysRevLett.71.1291
https://doi.org/10.1103/RevModPhys.82.277
https://link.aps.org/doi/10.1103/RevModPhys.82.277
https://link.aps.org/doi/10.1103/RevModPhys.82.277
https://doi.org/10.1088/1742-5468/2007/08/p08024
http://dx.doi.org/10.1088/1742-5468/2007/08/P08024
https://doi.org/10.1145/780542.780545
https://doi.org/10.1145/780542.780545
https://doi.org/10.1103/RevModPhys.81.865
https://link.aps.org/doi/10.1103/RevModPhys.81.865
https://link.aps.org/doi/10.1103/RevModPhys.81.865
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1103/PhysRevA.54.3824
https://link.aps.org/doi/10.1103/PhysRevA.54.3824
https://link.aps.org/doi/10.1103/PhysRevA.54.3824
https://doi.org/10.1103/PhysRevLett.80.2245
https://link.aps.org/doi/10.1103/PhysRevLett.80.2245
https://link.aps.org/doi/10.1103/PhysRevLett.80.2245
https://doi.org/10.1063/1.1498001
https://pubs.aip.org/aip/jmp/article-pdf/43/9/4286/19183123/4286\_1\_online.pdf
https://pubs.aip.org/aip/jmp/article-pdf/43/9/4286/19183123/4286\_1\_online.pdf
https://doi.org/10.1063/1.1498001
https://doi.org/10.1063/1.1498001


[19] Jan Bouda and Vladimír Bu žek. ‘Purification and correlated measurements of
bipartite mixed states’. In: Phys. Rev. A 65 (3 Feb. 2002), p. 034304. doi:
10 . 1103/PhysRevA . 65 . 034304. url: https : //link . aps . org/doi/10 .
1103/PhysRevA.65.034304.

[20] M. Kliesch, D. Gross and J. Eisert. ‘Matrix-Product Operators and States:
NP-Hardness and Undecidability’. In: Phys. Rev. Lett. 113 (16 Oct. 2014),
p. 160503. doi: 10.1103/PhysRevLett.113.160503. url: https://link.
aps.org/doi/10.1103/PhysRevLett.113.160503.

[21] Man-Duen Choi. ‘Completely positive linear maps on complex matrices’. In:
Linear Algebra and its Applications 10.3 (1975), pp. 285–290. issn: 0024-3795.
doi: https://doi.org/10.1016/0024- 3795(75)90075- 0. url: https:
//www.sciencedirect.com/science/article/pii/0024379575900750.

[22] G. Lindblad. ‘On the generators of quantum dynamical semigroups’. In:
Communications in Mathematical Physics 48.2 (June 1976), pp. 119–130.
issn: 1432-0916. doi: 10.1007/BF01608499. url: https://doi.org/10.
1007/BF01608499.

[23] Vittorio Gorini, Andrzej Kossakowski and E. C. G. Sudarshan. ‘Completely
positive dynamical semigroups of N-level systems’. In: Journal of Mathem-
atical Physics 17.5 (May 1976), pp. 821–825. issn: 0022-2488. doi: 10 .
1063/ 1 . 522979. eprint: https : / / pubs . aip . org/ aip/ jmp/ article -
pdf/17/5/821/19090720/821\_1\_online.pdf. url: https://doi.org/10.
1063/1.522979.

[24] Daniel Manzano. ‘A short introduction to the Lindblad master equation’. In:
AIP Advances 10.2 (Feb. 2020), p. 025106. issn: 2158-3226. doi: 10.1063/1.
5115323. eprint: https://pubs.aip.org/aip/adv/article-pdf/doi/10.
1063/1.5115323/12881278/025106\_1\_online.pdf. url: https://doi.
org/10.1063/1.5115323.

[25] David E Evans and Harald Hanche-Olsen. ‘The generators of positive semig-
roups’. In: Journal of Functional Analysis 32.2 (1979), pp. 207–212. issn: 0022-
1236. doi: https://doi.org/10.1016/0022-1236(79)90054-5. url: https:
//www.sciencedirect.com/science/article/pii/0022123679900545.

[26] P D Drummond and D F Walls. ‘Quantum theory of optical bistability. I.
Nonlinear polarisability model’. In: Journal of Physics A: Mathematical and
General 13.2 (Feb. 1980), p. 725. doi: 10.1088/0305-4470/13/2/034. url:
https://dx.doi.org/10.1088/0305-4470/13/2/034.

67

https://doi.org/10.1103/PhysRevA.65.034304
https://link.aps.org/doi/10.1103/PhysRevA.65.034304
https://link.aps.org/doi/10.1103/PhysRevA.65.034304
https://doi.org/10.1103/PhysRevLett.113.160503
https://link.aps.org/doi/10.1103/PhysRevLett.113.160503
https://link.aps.org/doi/10.1103/PhysRevLett.113.160503
https://doi.org/https://doi.org/10.1016/0024-3795(75)90075-0
https://www.sciencedirect.com/science/article/pii/0024379575900750
https://www.sciencedirect.com/science/article/pii/0024379575900750
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://pubs.aip.org/aip/jmp/article-pdf/17/5/821/19090720/821\_1\_online.pdf
https://pubs.aip.org/aip/jmp/article-pdf/17/5/821/19090720/821\_1\_online.pdf
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.5115323
https://doi.org/10.1063/1.5115323
https://pubs.aip.org/aip/adv/article-pdf/doi/10.1063/1.5115323/12881278/025106\_1\_online.pdf
https://pubs.aip.org/aip/adv/article-pdf/doi/10.1063/1.5115323/12881278/025106\_1\_online.pdf
https://doi.org/10.1063/1.5115323
https://doi.org/10.1063/1.5115323
https://doi.org/https://doi.org/10.1016/0022-1236(79)90054-5
https://www.sciencedirect.com/science/article/pii/0022123679900545
https://www.sciencedirect.com/science/article/pii/0022123679900545
https://doi.org/10.1088/0305-4470/13/2/034
https://dx.doi.org/10.1088/0305-4470/13/2/034


[27] Toma ž Prosen. ‘Exact Nonequilibrium Steady State of a Strongly Driven Open
XXZ Chain’. In: Phys. Rev. Lett. 107 (13 Sept. 2011), p. 137201. doi: 10.
1103/PhysRevLett. 107. 137201. url: https ://link. aps. org/doi/10 .
1103/PhysRevLett.107.137201.

[28] Jian Cui, J. Ignacio Cirac and Mari Carmen Bañuls. ‘Variational Matrix
Product Operators for the Steady State of Dissipative Quantum Systems’. In:
Phys. Rev. Lett. 114 (22 June 2015), p. 220601. doi: 10.1103/PhysRevLett.
114.220601. url: https://link.aps.org/doi/10.1103/PhysRevLett.114.
220601.

[29] Hendrik Weimer. ‘Variational Principle for Steady States of Dissipative
Quantum Many-Body Systems’. In: Phys. Rev. Lett. 114 (4 Jan. 2015),
p. 040402. doi: 10.1103/PhysRevLett.114.040402. url: https://link.
aps.org/doi/10.1103/PhysRevLett.114.040402.

[30] Iacopo Carusotto and Cristiano Ciuti. ‘Spontaneous microcavity-polariton co-
herence across the parametric threshold: Quantum Monte Carlo studies’. In:
Phys. Rev. B 72 (12 Sept. 2005), p. 125335. doi: 10.1103/PhysRevB.72.
125335. url: https://link.aps.org/doi/10.1103/PhysRevB.72.125335.

[31] Andrew J. Daley. ‘Quantum trajectories and open many-body quantum
systems’. In: Advances in Physics 63.2 (2014), pp. 77–149. doi: 10 .
1080/00018732.2014.933502. eprint: https://doi.org/10.1080/00018732.
2014.933502. url: https://doi.org/10.1080/00018732.2014.933502.

[32] Alexandre Blais et al. ‘Circuit quantum electrodynamics’. In: Rev. Mod. Phys.
93 (2 May 2021), p. 025005. doi: 10.1103/RevModPhys.93.025005. url:
https://link.aps.org/doi/10.1103/RevModPhys.93.025005.

[33] Iacopo Carusotto and Cristiano Ciuti. ‘Quantum fluids of light’. In: Rev. Mod.
Phys. 85 (1 Feb. 2013), pp. 299–366. doi: 10.1103/RevModPhys.85.299. url:
https://link.aps.org/doi/10.1103/RevModPhys.85.299.

[34] Sebastian Diehl et al. ‘Dynamical Phase Transitions and Instabilities in Open
Atomic Many-Body Systems’. In: Phys. Rev. Lett. 105 (1 July 2010), p. 015702.
doi: 10 . 1103/PhysRevLett . 105 . 015702. url: https : //link . aps .
org/doi/10.1103/PhysRevLett.105.015702.

[35] Fabrizio Minganti et al. ‘Spectral theory of Liouvillians for dissipative phase
transitions’. In: Phys. Rev. A 98 (4 Oct. 2018), p. 042118. doi: 10 .
1103/ PhysRevA . 98 . 042118. url: https : / / link . aps . org/ doi/ 10 .
1103/PhysRevA.98.042118.

68

https://doi.org/10.1103/PhysRevLett.107.137201
https://doi.org/10.1103/PhysRevLett.107.137201
https://link.aps.org/doi/10.1103/PhysRevLett.107.137201
https://link.aps.org/doi/10.1103/PhysRevLett.107.137201
https://doi.org/10.1103/PhysRevLett.114.220601
https://doi.org/10.1103/PhysRevLett.114.220601
https://link.aps.org/doi/10.1103/PhysRevLett.114.220601
https://link.aps.org/doi/10.1103/PhysRevLett.114.220601
https://doi.org/10.1103/PhysRevLett.114.040402
https://link.aps.org/doi/10.1103/PhysRevLett.114.040402
https://link.aps.org/doi/10.1103/PhysRevLett.114.040402
https://doi.org/10.1103/PhysRevB.72.125335
https://doi.org/10.1103/PhysRevB.72.125335
https://link.aps.org/doi/10.1103/PhysRevB.72.125335
https://doi.org/10.1080/00018732.2014.933502
https://doi.org/10.1080/00018732.2014.933502
https://doi.org/10.1080/00018732.2014.933502
https://doi.org/10.1080/00018732.2014.933502
https://doi.org/10.1080/00018732.2014.933502
https://doi.org/10.1103/RevModPhys.93.025005
https://link.aps.org/doi/10.1103/RevModPhys.93.025005
https://doi.org/10.1103/RevModPhys.85.299
https://link.aps.org/doi/10.1103/RevModPhys.85.299
https://doi.org/10.1103/PhysRevLett.105.015702
https://link.aps.org/doi/10.1103/PhysRevLett.105.015702
https://link.aps.org/doi/10.1103/PhysRevLett.105.015702
https://doi.org/10.1103/PhysRevA.98.042118
https://doi.org/10.1103/PhysRevA.98.042118
https://link.aps.org/doi/10.1103/PhysRevA.98.042118
https://link.aps.org/doi/10.1103/PhysRevA.98.042118


[36] Alexandre Le Boité, Giuliano Orso and Cristiano Ciuti. ‘Steady-State Phases
and Tunneling-Induced Instabilities in the Driven Dissipative Bose-Hubbard
Model’. In: Phys. Rev. Lett. 110 (23 June 2013), p. 233601. doi: 10 .
1103/PhysRevLett. 110. 233601. url: https ://link. aps. org/doi/10 .
1103/PhysRevLett.110.233601.

[37] Mattias Fitzpatrick et al. ‘Observation of a Dissipative Phase Transition in
a One-Dimensional Circuit QED Lattice’. In: Phys. Rev. X 7 (1 Feb. 2017),
p. 011016. doi: 10.1103/PhysRevX.7.011016. url: https://link.aps.
org/doi/10.1103/PhysRevX.7.011016.

[38] Filippo Vicentini et al. ‘Critical slowing down in driven-dissipative Bose-
Hubbard lattices’. In: Phys. Rev. A 97 (1 Jan. 2018), p. 013853. doi: 10.
1103/ PhysRevA . 97 . 013853. url: https : / / link . aps . org/ doi/ 10 .
1103/PhysRevA.97.013853.

[39] Matteo Biondi et al. ‘Nonequilibrium gas-liquid transition in the driven-
dissipative photonic lattice’. In: Phys. Rev. A 96 (4 Oct. 2017), p. 043809.
doi: 10.1103/PhysRevA.96.043809. url: https://link.aps.org/doi/10.
1103/PhysRevA.96.043809.

[40] Peter Jung et al. ‘Scaling law for dynamical hysteresis’. In: Phys. Rev. Lett.
65 (15 Oct. 1990), pp. 1873–1876. doi: 10.1103/PhysRevLett.65.1873. url:
https://link.aps.org/doi/10.1103/PhysRevLett.65.1873.

[41] W. Casteels et al. ‘Power laws in the dynamic hysteresis of quantum non-
linear photonic resonators’. In: Phys. Rev. A 93 (3 Mar. 2016), p. 033824.
doi: 10.1103/PhysRevA.93.033824. url: https://link.aps.org/doi/10.
1103/PhysRevA.93.033824.

[42] Luigi Amico et al. ‘Entanglement in many-body systems’. In: Rev. Mod. Phys.
80 (2 May 2008), pp. 517–576. doi: 10.1103/RevModPhys.80.517. url: https:
//link.aps.org/doi/10.1103/RevModPhys.80.517.

[43] W. Casteels, R. Fazio and C. Ciuti. ‘Critical dynamical properties of a first-
order dissipative phase transition’. In: Phys. Rev. A 95 (1 Jan. 2017), p. 012128.
doi: 10.1103/PhysRevA.95.012128. url: https://link.aps.org/doi/10.
1103/PhysRevA.95.012128.

69

https://doi.org/10.1103/PhysRevLett.110.233601
https://doi.org/10.1103/PhysRevLett.110.233601
https://link.aps.org/doi/10.1103/PhysRevLett.110.233601
https://link.aps.org/doi/10.1103/PhysRevLett.110.233601
https://doi.org/10.1103/PhysRevX.7.011016
https://link.aps.org/doi/10.1103/PhysRevX.7.011016
https://link.aps.org/doi/10.1103/PhysRevX.7.011016
https://doi.org/10.1103/PhysRevA.97.013853
https://doi.org/10.1103/PhysRevA.97.013853
https://link.aps.org/doi/10.1103/PhysRevA.97.013853
https://link.aps.org/doi/10.1103/PhysRevA.97.013853
https://doi.org/10.1103/PhysRevA.96.043809
https://link.aps.org/doi/10.1103/PhysRevA.96.043809
https://link.aps.org/doi/10.1103/PhysRevA.96.043809
https://doi.org/10.1103/PhysRevLett.65.1873
https://link.aps.org/doi/10.1103/PhysRevLett.65.1873
https://doi.org/10.1103/PhysRevA.93.033824
https://link.aps.org/doi/10.1103/PhysRevA.93.033824
https://link.aps.org/doi/10.1103/PhysRevA.93.033824
https://doi.org/10.1103/RevModPhys.80.517
https://link.aps.org/doi/10.1103/RevModPhys.80.517
https://link.aps.org/doi/10.1103/RevModPhys.80.517
https://doi.org/10.1103/PhysRevA.95.012128
https://link.aps.org/doi/10.1103/PhysRevA.95.012128
https://link.aps.org/doi/10.1103/PhysRevA.95.012128

	Abstract
	Acknowledgement
	Introduction
	Fundamentals
	Entanglement
	Matrix product states
	Matrix product operators
	Locally purified density operator
	Canonical forms
	Lindblad Master equation

	Algorithms
	General Framework
	Unitary dynamics
	Dissipative Dynamics
	Disentanglement

	The driven-dissipative Bose-Hubbard model
	The model
	Mean-field theory analysis
	Tensor network simulations

	Summary and outlook
	Fourier transform of the driven-dissipative Bose-Hubbard model
	Bibliography

