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Abstract

Gaussian process (GP) models are widely used for regression tasks. Recently, several
authors have developed GP models that fuse information from sources of different fi-
delity levels, with successful application in building a surrogate model for the dynamics
of a rover wheel traversing soft soil. In its current version, noise in the inputs, which are
given as signals, is removed by a low-pass filter. In this thesis, we explore an alternative
approach by treating the inputs as randomly distributed around the smoothed signals,
which might recover valuable information in the high-frequency components of the
input signals. Since standard GP models assume deterministic inputs, they are not
suited for this task. Nonetheless, multiple authors have developed GP regression
models that specifically address uncertain inputs. We review a set of these models
and evaluate their predictive performance against standard GP regression models
trained on smoothed input signals in a synthetic example. Furthermore, we discuss
two multi-fidelity GP regression models and develop extensions to make them account
for uncertain inputs. Using these models, we conduct another synthetic experiment
to assess the predictive performance of our extensions in comparison to the baseline
models trained on smoothed input signals. The results of both synthetic examples
suggest that employing input-uncertainty-aware models is the preferable choice when
the input data consists of noisy signals. Furthermore, we apply our best-performing
multi-fidelity model to rover wheel-soil interaction data. Preliminary results suggest
that our model may serve as a surrogate model with enhanced predictive performance.
However, further experiments should be conducted to substantiate this claim. More-
over, the insights gained from our synthetic experiments may also assist researchers
from other fields in making informed decisions about model selection for more general
applications involving uncertain inputs.
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1 Introduction

Machine learning algorithms are widely used in areas that require high-accuracy pre-
dictions, such as health care [1], disaster forecasting [2], and rover locomotion on
planetary bodies [3]. In the latter case, a single mistake can lead to the failure of the
entire mission, as extraterrestrial vehicles cannot be repaired or maintained during
their missions [4]. For instance, after six successful years of Mars exploration, NASA
lost contact to their Spirit rover. A few months prior, the rover had become embedded
in the martian soil after encountering an unexpected hazard. Despite numerous efforts
to free Spirit, the rover remained trapped in a position where it could only harness an
insufficient amount of solar energy, which is assumed to be a major contributer to the
shutdown of the rover [5]. Since then, considerable advancements have been made in
gaining a deeper understanding of the locomotion of a rover on loose terrain, and a
growing body of literature focuses on machine learning-based methods to model the
underlying mechanics [3].
One particular data-driven approach to modeling rover wheel locomotion, developed
by Fediukov et al. [4] and later by Ravi, Fediukov, et al. [6], employs Gaussian process
(GP) regression models, which generate a distribution over predictions rather than
point estimates. They also propose to leverage data from sources of different accuracy
to build an adequate surrogate model for the complex mechanics of a rover wheel
traversing soft soil. For this purpose, the authors utilize multi-fidelity GP models,
which adapt traditional GP regression models to fuse data of different sources with
varying fidelities.
While GP regression models typically account for noisy observations of the target
values in a given dataset, they assume that the input data to the model is deterministic.
However, when this assumption is violated, the predictive performance of the model
might significantly suffer. Even with simpler linear regression models, it is well known
that untreated measurement noise in the inputs can drastically reduce prediction accu-
racy [7].
To address this issue, several authors have developed GP regression models that ac-
count for uncertainty in the inputs. In this thesis, we will review a selection of these
input-uncertainty-aware GP models for general regression tasks and compare their
predictive performance in the presence of input uncertainty using a synthetic example.
In addition, we develop extensions to two multi-fidelity GP models to incorporate input

1



1 Introduction

uncertainty. We also assess their predictive performance on a noise-corrupted version of
a synthetic example that is commonly examined in the literature. Our experiments aim
to explore a possible extension to the experiments about rover wheel-soil interaction
modeling carried out by Ravi, Fediukov, et al. [6]. In their study, the data consists of a
set of signals generated from simulations or observed in real-world experiments, and
the their model is designed to predict the traction force acting on a rover wheel. Since
only constant application of force can affect the movement of a wheel, the authors
smooth all signals, treating high-frequency components as noise. In our work, we
specifically explore whether we can obtain better results by interpreting the inputs as
randomly distributed around smoothed signals. We design our toy experiments to ad-
dress this question, and as they yielded positive results, we apply the best-performing
multi-fidelity model to similar data to that used in the experiments of Ravi, Fediukov,
et al [6].
Our thesis is structured as follows. In the next chapter, we introduce essential prelimi-
naries about input noise models, Bayesian smoothing, and both single- and multi-fidelity
GP regression models. We also discuss input-uncertainty-aware GP models for tasks
other than standard regression as well as related multi-fidelity GP models that are not
the focus of our work. Chapter 3 details all single-fidelity input-uncertainty-aware
GP models that we consider, along with our extensions to multi-fidelity models. This
chapter also includes all experiments that we conduct. Finally, chapter 4 presents the
conclusions of our work.
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2 Background

2.1 Noise in Regression Models

In a standard parametric regression setting, we are given a training dataset D =

{(xi, yi)|i = 1, ..., N} of N observations of inputs xi ∈ RD and corresponding target
values yi ∈ R. In order to predict y∗ for a new test input x∗, we assume that D has
been generated by the functional relationship

y = f (x, w) + ε.

Here, f stems from a predefined function space whose elements are parametrized
by the parameter vector w. A typical example of such a function space is the space
of linear functions f (x, w) = x⊤w, in which case the regression model is referred to
as linear regression. The term ε represents additive noise, which is assumed to be
independent across different inputs and identically normally distributed with zero
mean and variance σ2

n [8]. The additive noise term introduces a random component to
our model, which accounts for variability around our model. This variability may arise
from various sources. For instance, the target values yi in our dataset may include mea-
surement uncertainty, or we may have omitted relevant features from our dataset [9].
Additionally, the choice of the underlying function space might be too restrictive to
accurately capture the exact relationship between inputs and target values [8].
While the standard regression model addresses uncertainty in yi, it typically assumes
that the inputs xi are deterministic quantities. Nonetheless, this assumption is often
inappropriate in circumstances in which the inputs are subject to uncertainty, which
might be caused by noisy measurements, for instance. One way to account for uncer-
tainty in the inputs is the adoption of a probabilistic model. In the statistics literature,
one usually distinguishes between making assumptions about the distribution of the
true inputs x given fixed observations x̃, referred to as Berkson-type errors-in-variables
model, and the reverse approach, known as the classical errors-in-variables model [10,
11].
The Berkson-type model was originally introduced by Berkson [12] in the context of
controlled observations x̃. More precisely, x̃ represents a desired value for a specified
quantity in an experimental setup. However, this quantity is assumed to be measurable
only with a noisy device, so the true inputs to the experiments will vary around x. In
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2 Background

our scenario involving a fixed training dataset, we adopt the view of fixed observations
x̃i in the dataset around which the true latent inputs xi vary. For the models discussed
in chapter 3, we assume that xi ∼ N (x̃i, Σxi), meaning that xi follows a multivariate
normal distribution with mean vector x̃i and covariance matrix Σxi .

2.2 Modeling Input Uncertainty with Bayesian Smoothing

In chapter 3, we will explore several GP models designed to handle noisy inputs. Most
of these models require prior knowledge of the distribution of the true inputs, whereas
others allow for the input distribution to be learned. However, the input distribution is
rarely explicitly provided. Therefore, an appropriate model for the input distribution,
specific to the context of the modeling task, must be chosen. For instance, Chau et
al. [13] propose a method to account for uncertain data in K-means clustering, where
they represent the uncertain position of moving objects with a uniform distribution
over a line segment in the direction of movement. Another approach is adopted by
Tsang et al. [14], who use a discrete distribution over samples to construct decision
trees that handle uncertain inputs. In other fields, more complex noise models are often
required. For example, in medical imaging, Gaussian, Poisson, or Rician noise models
are commonly employed based on the specific imaging technique [15].
For our purposes, we consider the inputs provided as samples from a noisy signal,
since we aim to extend the application of surrogate modeling the interaction between
a rover wheel and soft soil by Ravi, Fediukov, et al. [6]. In their experiments, noisy
signals are smoothed using a low-pass filter, which may discard relevant high-frequency
information. It also corresponds to making potentially incorrect point estimates of the
true inputs. However, estimating a distribution over the inputs reduces the chance of
misrepresenting the true inputs and may therefore be more appropriate. To estimate
these distributions, we apply a Bayesian smoother to the noisy signals, specifically
the Rauch-Tung-Striebel smoother [16] (RTSS). For a comprehensive introduction to
Bayesian filtering and smoothing, we refer to the textbook by Särkkä [17], which also
serves as the basis for this short overview.
Bayesian smoothing builds upon Bayesian filtering, which adopts a Bayesian framework
to estimate the true state of a time-varying system that is only indirectly observed
through noisy measurements. While Bayesian filtering estimates the current state from a
history of noisy observations, Bayesian smoothing also considers future measurements.
In both cases, we are given a set of noisy measurements zk at time points k = 1, ..., T
and we aim to compute the filtering distribution of the hidden states xk. A commonly
used filter is the Kalman filter [18], which computes the posterior distribution of xk
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2 Background

given the observations z1, ..., zk for linear Gaussian state space models

xk = Ak−1xk−1 + εp,k−1

zk = Hkxk + εn,k .
(2.1)

In this model, the time evolution of the hidden states is represented as a discrete linear
dynamical system given by xk = Ak−1xk−1. The particular choice of Ak−1 depends on
the specific application and reflects our general assumptions about the dynamics of the
system. However, since we do not have complete knowledge about the dynamics of the
system, we allow for random perturbations by introducing normally distributed process
noise εp,k ∼ N (0, Qk−1). Furthermore, the matrix Hk defines the relationship between
the hidden states and the measurements, as in some instances, direct measurements
of the latent states are not availabe. Additionally, our measurements are assumed
to be corrupted by Gaussian measurement noise εn,k ∼ N (0, Rk). While we must
make assumptions about the distribution of the noise, the assumption of normality is
reasonable in many engineering applications. Noise often results from the superposition
of many small, independent contributions, and by the central limit theorem, such a
distribution approximates a Gaussian [19]. Moreover, we assume a prior distribution
x0 ∼ N (m0, P0) over the initial hidden state.
To estimate xk for k ≥ 1 given the measurements z1, ..., zk and the posterior distribution
xk−1|z1, ..., zk−1 ∼ N (mk−1, Pk−1), we first predict xk by applying the dynamic model
in (2.1) on xk−1|z1, ..., zk−1. This prediction step yields the predictive distribution
xk|z1, ..., zk−1 ∼ N (m−

k , P−
k ), where

m−
k = Ak−1mk−1, P−

k = Ak−1Pk−1A⊤
k−1 + Qk−1 .

Next, we correct the predictive distribution by additionally conditioning on zk. The
resulting posterior distribution is xk|z1, ..., zk ∼ N (mk, Pk), where

mk = m−
k + Kkvk, Pk = P−

k − KkSkK⊤
k ,

with

vk = zk − Hkm−
k , Sk = HkP−

k H⊤
k + Rk, Kk = P−

k H⊤
k S−1

k .

Thus, starting with the prior distribution over x0, we can recursively determine the
posterior distribution of xk.
While the Kalman filter computes the filtering distribution for each hidden state through
forward recursion, the RTSS further refines these estimates through backward recursion.
Specifically, it computes

ms
k = mk + Gk(ms

k+1 − m−
k+1), Ps

k = Pk + Gk(Ps
k+1 − P−

k+1)G
⊤
k
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2 Background

such that xk|z1, ..., zT ∼ N (ms
k, Ps

k ) starting from k = T. I.e., it conditions on all T
measurements rather than only those up to time k. In the above equations, Gk is given
by Pk A⊤

k (P−
k+1)

−1, ms
T equals mT, and Ps

T equals PT. Furthermore, ml , m−
l , Pl and P−

l
for all l = 1, ..., T are obtained from a preceding application of the Kalman filter.
In many instances, general knowledge about the dynamics of the system is available and
can be incorporated in the model through the choice of Ak. When such knowledge is
not available, a more general model may be employed. For instance, in our experiments,
we use a linear regression model with drift for one-dimensional signals. In this model,
we assume that the signal is differentiable and approximate xk − xk−1 with ∆t · ẋk−1,
where ∆t is the constant time interval between two measurements. The residuals
(xk − xk−1)− ∆t · ẋk−1 are treated as random and are modeled as normally distributed
process noise. In addition, we model the derivatives as hidden states and we allow
small changes in expectation at each time step by adding normally distributed process
noise. Thus, given xk−1 and ẋk−1, our best estimate for xk and ẋk is xk−1 + ∆t · ẋk−1 and
ẋk−1, respectively. In the form of a linear Gaussian state space model, the hidden states
are xh

k = [xk, ẋk]
⊤ and we measure only xk, therefore

Ak =

[
1 ∆t
0 1

]
, Hk =

[
1 0

]
.

In practice, the transition and measurement matrices in (2.1), along with the the
covariance matrices of the process and measurement noise, are often parametrized.
Specifically, in our real-world data experiments, we will parameterize the covariance ma-
trices, as the process and measurement noise variance are unknown. The corresponding
parameters θ are usually estimated based on the posterior distribution p(θ|z1, ..., zT).
We do not explicit the specific estimation procedures in this thesis, but we refer in-
terested readers to chapter 12 in the textbook by Särkkä [17] for a comprehensive
discussion.

2.3 Gaussian Process Regression

In this thesis, we focus on GP regression, for which we now provide a short introduction
based on the textbook by Rasmussen and Williams [8]. Here, we revisit the standard
regression setting, where the inputs xi are assumed to be deterministic. Parametric
regression, as introduced in section 2.1, requires the modeler to select a suitable space
of admissible functions. On the one hand, a too restrictive function space may not be
able to appropriately model the input-output relationship in our training dataset, under
which the predictive performance of the model may suffer. On the other hand, selecting
an overly flexible function space increases the risk of overfitting, i.e., our model fits the

6



2 Background

training data well, but performs poorly on new test data.
In GP regression, we follow an alternative, nonparametric approach. Loosely speaking,
we assign probabilities to functions based on their ability to capture the functional
relationship between inputs and targets in our dataset. We adopt a Bayesian perspective,
where we initially specify a prior distribution over functions, for example, based on
prespecified regularity assumptions, such as smoothness. Consequently, we use the
training data to update this prior distribution, giving more weight to functions that align
closely with the observed data. The updated distribution is the posterior distribution
over functions. Typically, distributions over functions are represented by stochastic
processes with index set X . For our purposes, X is the space from which the training
and test inputs originate and is often chosen to be RD if the inputs are D-dimensional.
Such a stochastic process with index set X can be defined as a collection of random
variables { f (x)|x ∈ X}, which implies that realizations of these random variables
define a function on X . Particularly, a GP is a special case of a stochastic process
{ f (x)|x ∈ X} which is characterized by the property that the joint distribution of any
finite subset { f (x(1)), ..., f (x(k))|x(1), ..., x(k) ∈ X} of random variables is multivariate
normal. For notational convenience, we will often loosely denote GPs as f (x) or simply
as f . The distribution of a GP is completely determined by its mean function

m(x) = E[ f (x)]

and its covariance function

k(x, x′) = E[( f (x)− m(x))( f (x′)− m(x′))],

which is also referred to as a kernel. Furthermore, we denote the distribution of a GP
with given mean and covariance functions as GP(m(x), k(x, x′)).
The specific choice of the prior mean and prior covariance function is a crucial modeling
decision that defines the prior GP distribution over functions. In the absence of
particular prior knowledge, the mean function is often chosen as the zero function.
Moreover, the choice of the covariance function encodes our assumptions about the
probable characteristics of the functions. A common choice for the covariance function
is the squared exponential

k(x, x′) = σ2
f exp

(
−|x − x′|2

ℓ

)
, (2.2)

where | · | denotes the Euclidean distance in RD, and σ2
f and ℓ are positive hyperpa-

rameters referred to as the signal variance and the lengthscale, respectively. Intuitively,
the lengthscale can be interpreted as the distance one needs to move in the input space
to expect a significant change in the function values. Furthermore, the signal variance
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2 Background

determines the variance of f (x) for any fixed x. It is noteworthy that this covariance
function depends solely on the distance between two input points x and x′, rather than
on their specific locations. This property is also referred to as stationarity. Additionally,
it favors smooth functions. In general, there are various other possible covariance
functions in use. We note that not every function of two arguments x and x′ qualifies
as a covariance function, as some conditions need to be met. Nevertheless, given two
admissible covariance functions k1 and k2, k1 + k2 as well as k1 · k2 are also admissable
covariance functions.
To simplify notation, we will gather the N training inputs xi, i = 1, ..., N, into a D × N
matrix X, and the corresponding target values into a vector y. Single test inputs will
be denoted as x∗, and similarly to the training inputs, sets of M test inputs will be
aggregated into a D × M matrix X∗. Furthermore, we denote the random variable
corresponding to the function evaluation at a training point xi as fi, and at a test point
x∗ as f∗. We then denote the random vector of function evaluations at our training
inputs as f and at multiple test points as f∗. Moreover, we denote the covariance matrix
cov(f, f∗) as K(X, X∗), and define K(X, X) and K(X∗, X∗) similarly. The specification of
the GP prior distribution implies the prior distribution over the joint vectors of function
values given by [

f
f∗

]
∼ N

(
0,
[

K(X, X) K(X, X∗)

K(X∗, X) K(X∗, X∗)

])
. (2.3)

As discussed in section 2.1, we usually assume that the target value observations in
the training dataset are corrupted by independent and identically distributed (i.i.d.)
Gaussian noise, i.e.,

y = f + ε, ε ∼ N (0, σ2
n I),

where I is the identity matrix of appropriate dimensionality. Since the additive noise is
independent of the GP, it contributes a variance σ2

n to the diagonal of the covariance
matrix K(X, X). Thus, the prior distribution in (2.3) becomes[

y
f∗

]
∼ N

(
0,
[

K(X, X) + σ2
n I K(X, X∗)

K(X∗, X) K(X∗, X∗)

])
.

For GPs, conditioning the prior distribution over f∗ on the observed data is analytically
tractable and results in the predictive distribution

f∗|X, y, X∗ ∼ N (f∗, cov(f∗, f∗|X, y, X∗) ,

where

f∗ = E[f∗|X, y, X∗] = K(X∗, X)(K(X, X) + σ2
n I)−1y , (2.4)

cov(f∗, f∗|X, y, X∗) = K(X∗, X∗)− K(X∗, X)(K(X, X) + σ2
n I)−1K(X, X∗). (2.5)
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This predictive distribution, which corresponds to the function evaluations at X∗ of the
posterior distribution over functions, allows us not only to predict at new test points,
but also obtain error estimates for our prediction. It is important to note that, in the
absence of noise variance, i.e., σ2

n = 0, (2.4) and (2.5) imply that samples from the
posterior distribution will pass through the training data points.
From the preceding discussion, it is clear that a GP model does not involve explicit
model parameters. However, specifying a GP model requires selecting both the covari-
ance function and the model hyperparameters, which usually consist of parameters for
the covariance function as well as the noise variance. This process is commonly referred
to as the training of a GP. For instance, in a model that employs the squared exponential
covariance function (2.2), the vector of hyperparameters is θ = (σ2

f , ℓ, σ2
n). The set

of hyperparameters is generally dependend on the specific choice of the covariance
function. For instance, a more general form of the squared exponential covariance
function, which includes a larger set of hyperparameters, is given by

k(x, x′) = σ2
f exp

(
−1

2
(x − x′)⊤diag(ℓ)−2(x − x′)

)
+ σ2

nδ(x, x′), (2.6)

where δ(x, x′) = 1 if and only if x = x′, and δ(x, x′) = 0 otherwise. This formulation
absorbs the noise variance directly into the kernel, thereby also adjusting the variance
of the predictive distribution (2.5) by the noise variance. Furthermore, diag(ℓ) denotes
the diagonal matrix constructed from the D-dimensional vector of lengthscales ℓ. By
assigning a lengthscale hyperparameter to each input dimension, we allow for the
potential deactivation of irrelevant input features through an appropriate hyperpa-
rameter optimizattestion procedure. Therefore, the covariance function is also said to
implement automatic relevance determination (ARD).
We now address the optimization of hyperparameters. A widely used method maxi-
mizes the marginal likelihood

p(y|X, θ) =
∫

p(y|f, X, θ)p(f|X, θ) df, (2.7)

where p denotes the density of the respective random variable. Here, the term marginal
refers to the process of integrating over the latent function values f with respect to their
distribution, a procedure commonly known as marginalization over f. Rather than
maximizing the marginal likelihood directly, it is common practice to maximize the
logarithm of the marginal likelihood. Whereas this approach leads to an equivalent
optimization problem, taking the logarithm of probability densities often results in
simpler expressions. One of the key advantages of GPs is that the integral in (2.7) is
analytically tractable, allowing the log marginal likelihood to be exactly evaluated as

log p(y|X, θ) = −1
2

y⊤(K + σ2
n I)−1y − 1

2
log |K + σ2

n I| − N
2

log 2π, (2.8)
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where we use | · | with matrices as argument to denote the determinant, and K =

K(X, X). When the noise variance is absorbed into the kernel, such as in (2.6), the term
K + σ2

n I must be replaced by K.
We can also incorporate prior information about the hyperparameters into the opti-
mization procedure. As is common in Bayesian inference, we maximize the posterior
distribution over the hyperparameters

p(θ|y, X) =
p(y|X, θ)p(θ)

p(y|X)
. (2.9)

Here, p(θ) denotes the prior distribution over the hyperparameters, which reflects prior
knowledge about them. For the maximization of (2.9) with respect to θ, the denomina-
tor can be ignored, as it is a constant independent of θ. A maximizer θ̂ of the posterior
(2.9) is also referred to as a maximum a posteriori (MAP) estimate. This estimate can
equivalently be obtained by maximizing log(p(y|X, θ)p(θ)) = log p(y|X, θ) + log p(θ),
which comprises the log marginal likelihood and a penalty term log p(θ). In the
specific case of a flat prior p(θ) ∝ 1, the hyperparameter posterior is proportional to
the marginal likelihood (2.8), making the MAP estimate equivalent to the maximum
marginal likelihood estimate [20].
The most expensive computation in GP regression is the inversion of the covariance
matrix K + σ2

n, which is necessary for both evaluating the marginal likelihood and
calculating the predictive distribution. This inversion can be more efficiently performed
using the Cholesky decomposition, as the covariance matrix is positive semidefinite.
Nonetheless, the runtime complexity remains O(N3). However, once the Cholesky
decomposition is computed, the gradients of (2.8) can be obtained with a computa-
tional complexity O(N2). Therefore, gradient descent-based optimization procedures
are well-suited to obtain the maximum marginal likelihood or MAP estimate of the
hyperparameters.
After training our model, it is essential to evaluate its performance on a set of test
points. To this end, we will consider two metrics. The first metric is the standardized
mean squared error (SMSE). The mean squared error (MSE) is defined as

MSE =
1
M

M

∑
i=1

(yi,∗ − f (xi,∗))
2 .

That is, the MSE is the average squared error between the test target values yi,∗ and the
predictive means at the test points xi,∗. Since the MSE depends on the scale of the test
target values, it is typically normalized by the sample variance of the test target values,
which yields the SMSE. The SMSE solely considers predictive means at the test inputs.
However, our model yields the whole predictive distribution, which is incorporated in
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the second metric: the mean standardized log loss (MSLL). To compute the MSLL, we
first evaluate the negative log predictive density

− log p(yi,∗|D, xi,∗) =
1
2

log(2πσ2
i,∗) +

(y∗,i − f (xi,∗))

2σ2
i,∗

for all test data points (xi,∗, yi,∗), i = 1, ..., M. Here, σ2
i,∗ = V( fi,∗) + σ2

n with V( fi,∗) =

cov( fi,∗, fi,∗) as defined in (2.5). The noise variance is included, since the test targets
are assumed to be noisy, similar to the training targets. These values are then standard-
ized by subtracting − logN (yi,∗|y, s2), which is the negative log density of a normal
distribution with the sample mean y and sample variance s2 of the training targets y
evaluated at the training target yi,∗. Finally, the MSLL is obtained by averaging these
standardized values. It is worth noting that we use the negative logarithm rather than
the logarithm, so that the MSLL has the characteristics of a loss function, where lower
values indicate better performance.

2.4 Multi-Fidelity Surrogate Modeling with Gaussian Processes

In this section, we introduce some multi-fidelity GP models along with the neces-
sary preliminaries to understand them. The primary focus will be on the nonlinear
autoregressive GP model [21] (NARGP) and the deep GP model for multi-fidelity
modeling [22] (MFDGP), as we will extend these models to handle uncertain inputs in
section 3.2 of this thesis.

2.4.1 Multi-Fidelity Surrogate Modeling

Many applications in engineering and science require high-accuracy predictions of
specific quantities. These predictions may be obtained by experiments or by complex
simulations, both of which can be costly and time-consuming. In such cases, surrogate
models are often employed as a replacement. These are data-driven mathematical
models that are built upon available expensive simulation or experimental results and
commonly significantly accelerate the prediction of the quantitiy of interest. However,
obtaining a sufficiently large high-accuracy dataset for an accurate surrogate model
can be costly as well. One potential solution to this issue is to employ a multi-fidelity
surrogate model. These models leverage not only data from high-fidelity sources, but
also larger quantities of low-fidelity data. Low-fidelity data may be obtained from less
expensive models that yield less accurate approximations to the high-accuracy data.
Assigning fidelity levels to datasets necessitates careful consideration. On the one hand,
fidelity levels are inherently defined relative to each other, with the high-fidelity data
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typically characterized by a desired level of accuracy. On the other hand, determining
the fidelity of a particular data source can be ambiguous. For instance, one might
have data from a one-dimensional numerical simulation with a fine grid and from a
three-dimensional simulation with a coarser grid. Although finer grids are generally
associated with higher accuracy, the dimensionality of the model may significantly
influence the model’s accuracy as well. In such a situation, the fidelity levels must be
determined depending on the context.
After determining the fidelity levels of the available datasets, a multi-fidelity surrogate
model is constructed. These models fuse data of different fidelity levels or combine
surrogate-models for each fidelity level into a single surrogate model. Often, a hierarchy
of multiple fidelity levels is considered, rather than just two. Ultimately, the objective
of multi-fidelity surrogate modeling is to achieve high-accuracy results by enhancing
low-fidelity models with data from high-fidelity sources [23].

2.4.2 The Linear Autoregressive Model

To illustrate multi-fidelity surrogate modeling with GPs and to provide the foundation
for the model in subsection 2.4.3, we begin by introducing the linear autoregressive
multi-fidelity GP regression model developed by Kennedy and O’Hagan [24]. In the
multi-fidelity context, we consider a set of datasets {Ds}t

s=1, where the index s indicates
the fidelity level of each respective dataset. We define higher indices to correspond
to higher fidelity levels, with the highest fidelity level given by t. Furthermore, we
denote the datasets as Ds = {(x(s)i , y(s)i )|i = 1, ..., Ns} and use the notation introduced
in section 2.3 for all other expressions. Where needed, we introduce additional indices
to specify the corresponding fidelity level.
Kennedy and O’Hagan model the surrogate model for each fidelity s as a GP f (s)(x).
They assume noise-free targets, which implies y(s) = f(s). This is based on the assump-
tion that the data is generated by simulations without any measurement error. For each
fidelity s ≥ 2, the corresponding surrogate model is linearly related a priori to f (s−1)

through
f (s)(x) = ρs−1 f (s−1)(x) + δ(s)(x) . (2.10)

At the lowest fidelity level, f (1)(x) is modeled as a GP with prior mean function
g1(x)⊤β1 and squared exponential covariance function k1(x, x′). Furthermore, δ(s) is a
GP independent of f (1)(x), ..., f (s−1)(x) with mean function gs(x)⊤βs and covariance
function ks(x, x′), which is the squared exponential as well. All occuring prior mean
functions are modeled using linear regressions, with gs(x) as the vector of regression
functions and βs as parameter vector. These parameters are estimated alongside all
kernel hyperparameters and the coefficients ρs.

12



2 Background

This model is motivated by the theoretical insights provided by O’Hagan [25]. The
author proves that a decomposition of the form (2.10), where ρs−1 is a function of x,
exists if a kind of Markov property is satisfied. This property states that, once f (s−1)(x)
is observed, no additional information about f (s)(x) can be gained by observing any
other f (s−1)(x′) with x ̸= x′. While the model (2.10) assumes ρs−1 to be a constant,
more general representations for ρs−1 are also possible, such as a parameterizing ρs−1

using a linear regression model, as applied in Le Gratiet and Garnier [26].
Computing the predictive distribution at fidelity s for a new test input x∗ requires
inverting the covariance matrix of [f(1), ..., f(s)]⊤, which has a computational complexity
of O((∑s

i=1 Ni)
3). To accelerate this computation step, Le Gratiet and Garnier replace

the prior GP f(s−1) in (2.10) with its posterior f(s−1)|Ds−1, thereby decoupling the
surrogate models in the prior distribution. They show that this formulation results in
the same posterior distribution at each fidelity level as the original model by Kennedy
and O’Hagan. Thus, building an autoregressive GP model with t fidelities is equivalent
to building t independent GP models. The consequence of this approach is that it
reduces the computational complexity of determining the posterior distribution at
fidelity level s to O(∑s

i=1 N3
i ), as it only requires the inversion of covariances matrices

of size Ni × Ni for i = 1, ..., s.
Furthermore, both models assume that the sets of inputs are nested with decreasing
fidelity, such that

{x(s)i |i = 1, ..., Ns} ⊆ {x(s−1)
i |i = 1, ..., Ns−1} (2.11)

for all s = 2, ..., t. This assumption is reasonable, for instance, in scenarios where
low-fidelity data is cheap to obtain and the low-fidelity model can be evaluated on
the inputs of higher-fidelity levels with negligible additional cost. Since the data is
assumed to be noise-free, the nestedness of the input sets implies that, for all i = 1, ..., Ns,
f (s−1)(x(s)i ) in (2.10) is a deterministic quantity, independent of the hyperparameters of
the GP f (s−1)(x) and all surrogate models with lower fidelities than s − 1. As a result,
the hyperparameters for the surrogate models at each fidelity level can be estimated
separately.

2.4.3 The Nonlinear Autoregressive Model

The linear autoregressive models discussed in the preceding section are designed to
capture a linear relationship between consecutive fidelity levels. If no such relationship
can be detected during training, the autoregressive model often ignores the lower-
fidelity data. Instead, it may rely on δs in (2.10) to fit a standard GP regression model
to the higher-fidelity data. While this behaviour is often desirable, it disregards more
complex, non-linear relations between datasets of successive fidelities, which might be
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exploited to build a more accurate surrogate model for the high-fidelity data.
This potential limitation was noted by Perdikaris et al. [21], who address it through the
development of the NARGP. Their approach modifies the linear relation in (2.10) to a
nonlinear one given by

f (s)(x) = gs(x, f (s−1)(x)) , (2.12)

where gs(x, y) ∼ GP(0, ks((x, y), (x′, y′)). However, placing a GP prior over f (1)(x) and
another GP prior over gs(x, y) for all s = 2, ..., t results in a non-Gaussian f (s)(x) if
s ≥ 2. As a consequence, training and inference become intractable. To overcome this
challenge, the authors replace the GP prior f (s−1)(x) in (2.12) with the GP posterior
f (s−1)(x)|Ds−1, motivated by the approach of Le Gratiet and Garnier [26]. Given the
assumption of nestedness as in (2.11) and noise-free data, the posterior distribution of
f(s) becomes analytically tractable for all s = 1, ..., t , as it depends on the deterministic
data from lower fidelity levels and not on the surrogate models from lower fidelities.
Consequently, the surrogate model for each fidelity can be trained independently.
In contrast to training, computing the predictive distribution for unseen test inputs
remains computationally intractable. To address this, Perdikaris et al. estimate the
predictive means and variances of a surrogate model with a specific fidelity by Monte
Carlo integration. For this purpose, samples from the predictive distribution of the
desired fidelity level are required. These can be obtained by initially drawing from
the Gaussian posterior at fidelity level 1 and subsequently propagating the samples
through the surrogate models until the desired fidelity level is reached. This involves
iteratively drawing new samples from the Gaussian predictive distributions at each
fidelity level.
Furthermore, all targets y in the dataset are assumed to be the results of experiments
or simulations conducted at x. It is therefore reasonable to treat x and y as originating
from inherently different spaces. Consequently, the authors suggest using a more
structured covariance function ks((x, y), (x′, y′)) in the GP prior gs(x, y) for s ≥ 2 that
separates x and y. This covariance function is specified as

ks((x, y), (x′, y′)) = k(s)ρ (x, x′) · k(s)f (y, y′) + k(s)δ (x, x′) , (2.13)

which reflects the autoregressive model (2.10). Each of the covariance functions k(s)ρ , k(s)f ,

and k(s)δ is defined as the ARD squared exponential as formulated in (2.6), excluding
noise variance and including its own set of hyperparameters.
Moreover, the deep representation in (2.12) effectively projects the GP posterior f (s−1)(x)
onto a (D + 1)-dimensional smooth latent manifold within a (D + 2)-dimensional
space. From this latent manifold, the higher-fidelity surrogate f (s)(x) can be recovered.
This illustrates the potential benefits of multi-fidelity modeling compared to directly
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fitting the high-fidelity data. When the latent manifold assumes a relatively simple
structure, a small amount of high-fidelity data may suffice to accurately capture it.
More complicated features may be captured in the low-fidelity surrogate, for which
larger datasets are typically be available [6, 21].

2.4.4 Multi-Fidelity Modeling with Deep Gaussian Processes

The NARGP discussed in the previous subsection addresses the intractability of the
prior distribution defined by (2.12) by replacing the prior GP f (s−1)(x) with the posterior
GP f (s−1)(x)|Ds−1. As an alternative, a so-called variational approximation can be
applied, which results in a deep GP model [27] (DGP). In this section, we present this
approach. Before doing so, we introduce some preliminaries that will be useful for
other parts of this thesis as well.

Variational Inference

Variational inference is a method in Bayesian statistics for the approximation of posterior
distributions when no analytical expressions are available. For a comprehensive yet
concise introduction, we refer to Ganguly and Earp [28], which also serves as the basis
for this brief overview. Consider an observable random variable X that depends on a
latent random variable Z. In many problems in Bayesian statistics, the objective is to
compute the posterior probability density

p(z|x) = p(x|z)p(z)
p(x)

.

When an analytical expression for the posterior density is unavailable, variational
inference approximates the posterior density p(z|x) with a variational posterior q(z)
which originates from a predefined family of densities Q.
To assess the quality of the approximation, a metric that measures the distance between
probability densities is required. For this purpose, the Kullback-Leibler (KL) divergence
is typically used. Given two arbitrary continuous probability densities p and q, the KL
divergence between them is defined as

KL[p(y)||q(y)] =
∫

p(y) log
p(y)
q(y)

dy = Ep(y)

[
log

p(y)
q(y)

]
,

where the subscript in Ep(y) denotes that the expectation is taken with respect to p. The
KL divergence is non-negative and equals zero if and only if the probability densities
p and q represent the same distribution. It is also non-symmetric, which means that,
in general, KL[p(y)||p(y)] ̸= KL[q(y)||p(y)]. As a consequence, minimizing the KL
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divergence with respect to q typically yields different results depending on whether
p(y) or q(y) is used as first argument. Specifically, a minimizer q∗(y) of KL[q(y)||p(y)]
usually underestimates p(y), which means that q(y) will be close to zero in regions
where p(y) is close to zero.
To approximate p(z|x), we aim to minimize KL[q(z)||p(z|x)] with respect to the prob-
ability density q(z) subject to q(z) ∈ Q. In general, this KL divergence can not be
directly evaluated, since the posterior density is unknown. However, reformulating the
KL divergence yields

KL[q(z)||p(z|x)] = −Eq(z)[log p(x|z)] + KL[q(z)||p(z)] + Eq(z)[log p(x)]

= −L(q(z)) + log p(x) ,

where L(q(z)) = Eq(z)[log p(x|z)] − KL[q(z)||p(z)] is known as the evidence lower
bound (ELBO), and Eq(z)[log p(x)] = log p(x), since log p(x) does not depend on the
integration variable z. Consequently, it can be ignored for the purpose of optimization,
and the ELBO, which is often analytically tractable, can be maximized instead.
Furthermore, the ELBO bounds the log marginal log p(x) from below, which is also
referred to as log evidence. This can be derived by

log p(x) = log
∫

p(x, z)
q(z)
q(z)

dz = log Eq(z)

[
p(x, z)
q(z)

]
≥ Eq(z)

[
log

p(x, z)
q(z)

]
= Eq(z)[log p(x|z)]− Eq(z)

[
log

q(z)
p(z)

]
= L(q(z)) ,

(2.14)

where the inequality applied is also known as Jensen’s inequality. Notably, the ELBO is
a tight lower bound to the log marginal, and equality in (2.14) holds if and only if q(z)
represents the same distribution as the posterior denisty p(z|x) [29]. Thus, variational
inference can be interpreted in two ways: as a method for approximating the posterior
density p(z|x), or as a method to bound the log evidence log p(x) from below.

Sparse Approximations of Gaussian Processes Using Inducing Variables

As outlined in section 2.3, calculating the predictive distribution or the marginal
likelihood of a GP requires inverting the covariance matrix K(X, X), which has a
computational complexity of O(N3). For large datasets, this computation step may
become infeasible. To overcome this limitation, several approximate methods have been
proposed. For a review of early approaches, see [30, 8]. One possible strategy is to
utilize inducing variables u, which represent the function values of a GP at a set of
M ≪ N pseudo-inputs, denoted in matrix form as Z ∈ RD×M.
For instance, Snelson and Ghahramani [31] introduced an inducing variable framework
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where the pseudo-inputs are treated as freely optimizable hyperparameters. If both the
pseudo-inputs and the inducing variables are initially considered fixed, the likelihood
of the data can be computed using the predictive distribution p(y|X, u, Z) as shown
in (2.4) and (2.5). Here, Z and u serve as a noise-free version of X and y, respectively.
A straightforward training procedure would maximize this likelihood with respect to
Z, u, and the model hyperparameters. However, Snelson and Ghahramani propose to
treat u as latent variables. When placing a GP prior over u, the posterior distribution
p(u|D, Z) becomes tractable. Consequently, u can be marginalized with respect to this
posterior to obtain the predictive distribution p(y∗|x∗, Z,D). Moreover, the model can
be trained by maximizing the analytically tractable marginal likelihood p(y|X, Z) with
respect to both the model hyperparameters θ and the pseudo-inputs Z. Using this
inducing variable framework significantly reduces the computational cost of calculating
the marginal likelihood to O(NM2) and the predictive distribution for a single test
input to O(M2).
In effect, this approach replaces the covariance function of the original GP model with
one that incorporates the pseudo-inputs as hyperparameters. Titsias [32] notes the
potential risk of overfitting with this modification and addresses it using a variational
approach. Specifically, the author approximates the predictive distribution p(f∗|X∗,D)

for arbitrary X∗, which determines the posterior GP, with a variational distribution.
To specify the form of the variational posterior, Titsias reexpresses the true predictive
distribution by introducing inducing variables u and marginalizing over both f and u,
which involves the conditional densities p(f∗|u, f) and p(u|y). The form of the varia-
tional posterior q(f∗) is then specified by replacing p(f∗|u, f) with p(f∗|u) and p(u|y)
with an arbitrary Gaussian distribution ϕ(u). Thus, q(f∗) is determined by the choice
of ϕ and Z. To approximate the true posterior, KL[q(f, u)||p(f, u|D)] is minimized with
respect to q(f, u) while simultaneously optimizing the model hyperparameters. This
is equivalent to maximizing the analytically tractable ELBO, which is evaluated in
O(NM2). When Z is fixed, the form of the variational posterior allows an analytical
expression for an optimal Gaussian distribution ϕ(u). This reduces the optimization
variables to only Z and the model hyperparameters. It is important to note that the
pseudo-inputs Z are not model hyperparameters, but variational parameters; The
original GP model is not changed. A notable benefit of this optimization procedure
is that the ELBO includes an additional regularization term, which penalizes large
deviations from the original GP model.
A notable application of this approach is the Bayesian GP latent variable model (GPLVM)
proposed by Titsias and Lawrence [33], which we will discuss in more detail in sec-
tion 3.1. Their work adopts the described variational procedure to a setting where
the inputs X are latent, addressing the intractability of the log marginal likelihood by
deriving an analytically tractable ELBO.
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Deep Gaussian Processes

Having established the necessary preliminaries, we will now turn our attention to DGPs,
which were introduced by Damianou and Lawrence [27] for conventional machine
learning tasks. The development of this model was motivated by the empirical structural
benefits of deep architectures for handling complex porblems [34]. A DGP consists
of a hierarchy of L + 1 layers, with the final L layers being vector-valued stochastic
processes y(l) of dimension Dl , where l = 1, ..., L. Each dimension d = 1, ..., Dl of a
process y(l) is assigned a prior distribution through the functional relationship

y(l)d = f (l)d (y(l−1)) + ε
(l)
d . (2.15)

Here, the processes f (l)d (y) follow GP prior distributions GP(0, k(l)(y, y′)), which are

assumed to be independent across the dimensions d = 1, ..., Dl . Additionally, ε
(l)
d is

assumed to be i.i.d. Gaussian noise. The first layer y(0) represents the inputs, which
we assume to be deterministic, although the framework also permits the use of latent
inputs. Unlike the frameworks discussed so far, DGPs generally consider vector-valued
stochastic processes as well as training targets. Consequently, we represent the training
targets as a matrix Y ∈ RDL×N and denote the vectors of latent function evaluations,
when the training input X are used in the input layer, as a matrix F(l).
In this model, computing posterior distributions and the marginal likelihood of the
training targets is generally intractable. Therefore, a variational approach related to
the Bayesian GP latent variable model is employed. Specifically, inducing variables
U(l) ∈ RDl×M associated with pseudo-inputs Z(l−1) are introduced at each layer l. The
joint posterior over all F(l) and U(l) for l = 1, ...L as well as over all y(l) for l = 1, ..., L− 1
is approximated by a variational posterior. This variational posterior is assumed to
factorize across layers. That is, the input y(l) to layer l + 1 is assumed to be independent
of the output f (l)(y(l−1)) of layer l conditioned on y(l−1) and U(l). Additionally, the
variational posterior approximates the posterior distribution of all y(l) for l = 1, ..., L − 1
by a Gaussian.
Although the specified form of the variational distribution makes the ELBO tractable,
it discards the correlations between layers and may therefore fail to capture the full
complexity of the model. To address this limitation, Salimbeni and Deisenroth [35]
propose a variational distribution that preserves the correlations between layers. In
addition, their variational distribution does not impose Gaussianity between layers.
However, the ELBO can not be evaluated exactly anymore, and is instead approximated
by Monte Carlo integration.
In the following, we outline their approach, which serves as a basis for the MFDGP.
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Their model is trained by maximizing the ELBO

L(q({F(l), U(l)}L
l=1)) = Eq({F(l),U(l)}L

l=1)

[
log

p(Y, {F(l), U(l)}L
l=1)

q({F(l), U(l)}L
l=1)

]
, (2.16)

Here, the joint density p(Y, {Fl , Ul}L
l=1) can be factorized as

p(Y, {Fl , Ul}L
l=1) =

N

∏
i=1

p
(

yi|f(L)
i

) L

∏
l=1

p
(

F(l)|U(l), F(l−1), Z(l−1)
)

p
(

U(l)|Z(l−1)
)

,

where F(0) = X. Unlike the approach by Damianou and Lawrence [27], the noise
between layers does not need to be separately mentioned and is consequently absorbed
into the kernels. Thus, f (l)d assumes the role of y(l)d in (2.15) for all layers except
the output layer. The posterior distribution p({Fl , Ul}L

l=1|Y) is approximated by a
variational posterior of the form

q({F(l), U(l)}L
l=1) =

N

∏
l=1

p(F(l)|U(l), F(l−1), Z(l−1))q(U(l)) , (2.17)

where q(U(l)) = ∏Dl
d=1 q(u(l)

d ) = ∏Dl
d=1 N (u(l)

d |m(l)
d , S(l)

d ) is factorized across dimensions

within each layer. Here, N (u(l)
d |m(l)

d , S(l)
d ) denotes the density of a multivariate Gaus-

sian, with m(l)
d and S(l)

d acting as variational parameters. To simplify the notation, we
collect these parameters into sets M(l) and S(l).
Through reformulations and marginalization, the ELBO (2.16) can be expressed as

L(q({F(l), U(l)}L
l=1)) =

N

∑
i=1

E
q(f(l)i )

[
log p(yi|f(l)i )

]
+

L

∑
l=1

KL[q(U(l))||p(U(l)|Z(l−1))] .

(2.18)
The KL divergence between the prior p(U(l)) and the variational posterior q(U(l))

is analytically tractable, since both terms are Gaussian. However, the expectations
E

q(f(l)i )

[
log p(yi|f(l)i )

]
cannot be evaluated exactly and are therefore approximated

using Monte Carlo integration. This requires drawing samples from q(f(l)i ), for which

all variables in (2.17) must be marginalized out except for f(l)i . The marginalization
over {U(l)}L

l=1 is analytically tractable and results in

q({F(l)}L
l=1) =

L

∏
l=1

q(F(l)|M(l), S(l), F(l−1), Z(l−1)) =
L

∏
l=1

N (F(l)|M̃(l), S̃(l)) ,

where the means M̃(l) and covariance matrices S̃(l) are dependent on M(l), S(l), Z(l−1),
and F(l−1). It can be further shown that marginalizing out all latent variables {f(l)j }j ̸=i
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from q(F(l)M(l), S(l), F(l−1), Z(l−1)) for a given i ≤ N results in a Gaussian distribu-
tion q(f(l)i |M(l), S(l), f(l−1)

i , Z(l−1)), which depends on F(l−1) solely through f(l−1)
i . By

iteratively applying this result, the marginal distribution q(f(L)
i ) simplifies to

q(f(L)
i ) =

∫
...
∫ L

∏
l=1

q(f(l)i |M(l), S(l), f(l−1)
i , Z(l−1))df(1)i ...df(l−1)

i ,

which facilitates sampling from q(f(L)
i ). Initially, samples from the Gaussian distribution

q(f(1)i |M(l), S(l), xi, Z(l−1)) are drawn, resulting in a set of samples f̂(1)i . Subsequently,

these samples are used to obtain samples f̂(2)i from q(f(2)i |M(l), S(l), f̂(1)i , Z(l−1)). This

procedure is iterated until a final set of samples f̂(L)
i is obtained, which are unbiased

samples from q(f(L)
i ). Using these samples, the intractable mean in the ELBO (2.18) can

be approximated through Monte Carlo integration. This sampling scheme can be also
applied to sample from the predictive distribution q(f(L)

∗ ).

Deep Gaussian Processes for Multi-Fidelity Surrogate Modeling

We return to the context of multi-fidelity modeling, where we consider t datasets
{(X(1), y(1)), ..., (X(t), y(t))} with scalar training targets. The DGP method proposed by
Salimbeni and Deisenroth [35] was extended to the MFDGP by Cutajar et al. [22] to
suit this application. Unlike the NARGP, their approach does not require the training
inputs to be nested. The core idea is to model the surrogate for the s-th fidelity as the
s-th layer of a DGP. This achieved by modifying the prior in (2.15) to

y(s) = f (s)(x, f (s−1)(x, ...)) + ε(s)

for s ≥ 1. Here, f (s)(x, y) ∼ GP(0, k(s)((x, y), (x′, y′))) and ε(s) represents i.i.d. Gaussian
noise. As before, the surrogate for the lowest fidelity level is assumed to follow a
standard GP prior. Unlike standard DGPs, it is assumed that there is no noise between
layers, but the observations y(s) are allowed to be corrupted by noise. Though, as
in standard DGPs, inducing variables are introduced and the marginal likelihood is
approximated by a lower bound, which is then maximized with respect to both model
hyperparameters and variational parameters. Function evaluations at fidelity s for
the inputs X(s) require evaluations of all lower-fidelity surrogates at these inputs. For
this purpose, we denote the function evaluations of the surrogate for fidelity s with
inputs from fidelity l recursively as f(s)l = f(s)(X(l), f(s−1)

l ) . Here, the notation f(X) is
used to represent the vector of function evaluations across all inputs aggregated in X.
Additionally, f (s)l,i denotes the function evaluation of the i-th input in Xl .
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With this notation, the expanded marginal likelihood is expressed as

p({y(s), {f(l)s }s
l=1, u(s)}t

s=1) =

(
t

∏
s=1

Ns

∏
i=1

p(y(s)i | f (s)s,i )
s

∏
l=1

p(f(l)s |u(l), {Xs, f(l−1)
s , Zl−1})

)

·
t

∏
l=1

p(u(l)|Zl−1) .

(2.19)

The variational posterior maintains the model structure, but introduces a free Gaussian
distribution over the inducing variables. It is given by

q({{f(l)s }s
l=1, u(s)}t

s=1) =

(
t

∏
s=1

s

∏
l=1

p(f(l)s |u(l), {Xs, f(l−1)
s , Zl−1})

)
·

t

∏
s=1

q(u(s)) , (2.20)

where q(us) ∼ N (m(s), S(s)) with variational parameters m(s) and S(s). In these formu-
las, f(0)s serves as an empty placeholder to simplify notations. The ELBO (2.16) for this
model then becomes

L(q({{f(l)s }s
l=1, u(s)}t

s=1)) =
t

∑
s=1

Ns

∑
i=1

E
q( f (s)s,i )

[log p(y(s)i | f (s)s,i )]

+
t

∑
s=1

KL[q(us)||p(u(s)|Z(s−1))]

(2.21)

and samples from q( f (s)s,i ) are obtained by using a sampling scheme similar to that of
Salimbeni and Deisenroth [35].
Several additional factors need to be considered. For layer s, the pseudo-inputs Z(s−1)

are (D + 1)-dimensional, as the input to this layer comprises both the original D-
dimensional inputs and the function evaluations from the previous layer in the last
dimension. Consequently, the last dimension is linked to the first D dimensions,
and freely optimizing the pseudo-input locations becomes rather inappropriate. To
circumvent this issue, Cutajar et al. suggest using a subset of the lower-fidelity data
as pseudo-inputs and fixing them during optimization. Furthermore, they employ
a multi-step training procedure to enhance the stability of the optimization process.
Initially, the covariances of the inducing variables and the noise variances are fixed
to small values. After a certain number of optimization steps, these parameters are
released and optimized alongside all other hyperparameters. Moreover, the authors
recommend using the structured covariance function (2.13), and they also propose to
extend it to more effectively capture linear relationships between fidelities.
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2.5 Related Work

2.5.1 Gaussian Process Models with Uncertain Inputs for Applications
beyond Standard Regression

We restrict this thesis to input-uncertainty-aware GP models specifically developed for
general regression tasks. Nonetheless, several authors have developed methods tailored
to either specialized regression tasks or GP applications other than regression, such as
classification or optimization.
One such approach, developed by Daemi et al. [36], addresses situations in which the
inputs to a GP regression model are assumed uncertain and, additionally, the training
targets are prone to outliers. In order to make the GP model robust to outliers, the
authors propose modeling the output noise as a mixture of two normal distributions,
which allows for heavier tails in the noise distribution. For the purpose of training
their model with both an adapted noise distribution and uncertain inputs, the authors
developed an expectation-maximization (EM) algorithm. Another input-uncertainty-
aware GP regression model was introduced by Tran et al. [37] for scenarios where the
inputs are uncertain, but adhere to an ordering constraint. A typical example for this
setting occurs when the inputs are noisy measurements of time, but the experimenter
knows that the inputs were measured sequentially. The authors propose a variational
approach to account for the input uncertainty by defining a variational posterior
over the latent inputs after applying a variable transform to these. This variational
posterior is modeled as a mixture of normal distributions, which allows for a flexible
approximation of the true posterior distribution. The resulting lower bound on the
marginal likelihood includes both analytically tractable terms and an intractable term,
which the authors approximate using a second-order Taylor approximation. Jadaliha
et al. [38] developed a further method for specific scenarios where multiple noisy
measurements, taken by a sensor network at a set of sampling points, are available.
The authors formulate both a Monte Carlo method and a Laplace approximation-based
method to approximate the resulting posterior predictive distribution.
The challenge of accounting for input uncertainty in multi-class GP classification
tasks, in which a GP is trained to predict discrete class labels, was addressed by
Villacampa-Calvo et al. [39]. For this purpose, the authors introduced three distinct
methods. The first method introduces a parametrized variational posterior over the
inputs, whereby the number parameters grow with the size of the dataset. In order
to mitigate the number of parameters for larger datasets, the authors also suggest
modeling these parameters using a neural network. Their final method extends the
Taylor approximation-based approach introduced by McHutchon and Rasmussen [40],
which we will also discuss in section 3.1, to the classification task.
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Another line of research deals with input uncertainty in GP surrogate models or
metamodels for optimization tasks. For instance, Ryan et al. [41] model the objective
function and the constraint function in an optimization problem as functions of a
GP predictive distribution evaluated at the design variables to be optimized. These
variables are assumed to be uncertain, and the authors employ methods for predicting
at uncertain inputs to evaluate the moments of the predictive distribution analytically.
Furthermore, in the context of Bayesian optimization, Bodin et al. [42] consider an
unknown objective function, which is assumed to be ill-behaved. They propose utilizing
a GP surrogate model to capture the well-behaved essential structure of the objective
function while modeling its ill-behaved components as additional uncertain input
dimensions to the GP surrogate model.

2.5.2 Related Multi-Fidelity Surrogate Modeling Approaches

We limit our work about multi-fidelity GP models to the NARGP and the MFDGP,
both of which can be regarded as nonlinear extensions to the linear autoregressive
model discussed in subsection 2.4.2. Beyond these methods, several authors have
developed alternative nonlinear extensions of the linear autoregressive model. For
instance, Qian and Wu [43] replace the scaling constant ρ in (2.10) with a nonlinear
function modeled by a separate GP. They also allow for measurement noise in the
high-fidelity target values, as they focus on applications in which the high-fidelity
data is formed by observations of experiments. Their model further adopts a Bayesian
approach for the majority of the parameters, integrating them out in the predictive
distribution. As a result, evaluating the resulting predictive distribution requires Monte
Carlo Markov-Chain (MCMC) sampling.
An alternative to correcting the low-fidelity surrogate through both a multiplicative
correction term ρ and an additive correction term δ, as in (2.10), was considered
by Fischer et al. [44]. Their work, which was developed for design optimization,
introduces a weighting function that enables dynamic switching between multiplicative
and additive corrections. To obtain both correction terms, the original low-fidelity and
high-fidelity models are first approximated by GP surrogates. The correction terms
were then obtained by dividing and subtracting the surrogates, respectively, and can be
individually applied to the original low-fidelity model to approximate the high-fidelity
model. The corresponding weighting function is then dynamically evaluated in a
Bayesian manner to balance between the additive and multiplicative correction terms.

Another extension of the linear autoregressive model was proposed by Raissi and
Karniadakis [45], which significantly improves its predictive performance when the
underlying ground truth exhibits discontinuities. In their work, the authors initially
map the inputs in both the low-fidelity and high-fidelity datasets through a deep
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neural network. The resulting outputs are then used as inputs to the corresponding GP
surrogates within the linear autoregressive model. Both the neural network and the
GPs can then be jointly trained.
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3 Single- and Multi-Fidelity Gaussian
Process Regression with Uncertain Inputs

3.1 Single-Fidelity Gaussian Process Regression with Uncertain
Inputs

In this section, we explore how input uncertainty can be incorporated in single-fidelity
GP regression models. If the training inputs are uncertain, calculating the marginal
likelihood and the predictive distribution for a GP model becomes more complex.
Ideally, the uncertain training inputs would be marginalized out in the computation of
these terms. However, the inputs typically appear in a highly nonlinear way in both the
predictive distribution and the marginal likelihood, which makes marginalization gen-
erally intractable [46, 47]. To address this challenge, several approximate methods have
been proposed. We introduce some of these methods and compare their performance
on a synthetic experiment. While our primary focus is on uncertain training inputs,
test inputs may also be subject to uncertainty. Although we consider deterministic
test inputs in our experiment, we briefly discuss ideas for incorporating uncertain test
inputs when they are mentioned by authors, as they will be relevant for section 3.2. For
a collection of methods for predicting at uncertain test inputs in standard GP models,
see [48].

3.1.1 Methods for Gaussian Process Regression with Uncertain Inputs

Employing the Expected Covariance Function

One approach to account for uncertain inputs is to absorb the uncertainty into the
covariance function by calculating its expectation with respect to the latent inputs. For
this approach, we initially consider the input to a GP as a stochastic process over the
input space X . Specifically, we define the inputs as the stochastic process x = x̃ + ε(x̃)
with x̃ as argument. Here, ε(x̃) ∼ N (0, Σx̃) is assumed independent across observations.
When substituting this process as input into an independent GP f (z) ∼ GP(0, k(z, z′)),
the resulting process f (x) is generally not Gaussian. Nevertheless, its mean function
remains 0, and its covariance function can, in some instances, be computed analytically.
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The core idea of the method we consider is to use the covariance function of the process
f (x) as the covariance function for a GP with certain inputs x̃ [49]. Consequently, this
method approximates the non-Gaussian prior distribution of f (x) with a GP.
This concept has been adopted by Girard [48] and Dallaire et al. [47, 50] to derive
uncertainty-aware covariance functions for the training of a GP. In general, these
covariance functions can be computed as

kn(x̃i, x̃j) = Ep(xi)p(xj)[cov( f (xi), f (xj)|xi, xj)] =
∫

k(xi, xj)p(xi)p(xj)dxi dxj (3.1)

where i ̸= j and p(xl) = N (xl |x̃l , Σx̃l ). For the case where i = j, the covariance equals
the variance and

kn(x̃i, x̃i) = Ep(xi)[V( f (xi)|xi)] =
∫

k(xi, xi)p(xi)dxi . (3.2)

As was shown by Seeger [49], and further extended by Girard [48] and Dallaire et
al. [47], these integrals can be evaluated analytically when the covariance function is a
squared exponential with ARD, as in (2.6), resulting in

kn(x̃i, x̃j) =
σ2

f exp
(
− 1

2 (x̃i − x̃j)
⊤(diag(l)2 + Σx̃i + Σx̃j)

−1(x̃i − x̃j)
)

|I + diag(ℓ)−2(Σx̃i + Σx̃j)(1 − δ(i, j)| + σ2
nδ(i, j) . (3.3)

Additionally, Dallaire et al. [47] show that (3.1) and (3.2) are analytically tractable
for linear and polynomial covariance functions, although these will not be further
examined in this thesis.
In practice, using the covariance function (3.3) to account for uncertain inputs amounts
to a standard GP regression, where the means of the inputs {x̃i|i = 1, ..., N} are treated
as the actual inputs, and their respective covariance matrices are absorbed into the prior
covariance function. Furthermore, the model for the stochastic process x implies that
all inputs should be assumed independent. The covariance function (3.3) also allows
for prediction at uncertain test inputs when their means and covariance matrices are
provided. In addition, it permits a combination of deterministic and uncertain inputs,
by setting the covariance matrices of deterministic inputs to the zero matrix.
Dallaire et al. [47] discuss some further practical issues regarding this approach. On the
one hand, taking the mean of the conditional covariance function cov( f (xi), f (xj)|xi, xj)

over the latent inputs can be an inappropriate approximation when its distribution has
high variance. However, the authors point out that this issue is rarely problematic for
inferring the underlying function, particularly when the dataset is sufficiently large.
On the other hand, the marginal likelihood can become riddled with local maxima,
which complicates the optimization of hyperparameters. Often, standard conjugate
gradient optimization methods overestimate both lengthscales and the noise variance,
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which, in effect, causes the model to interprete the data as noise. To address this issue,
a possible solution is to employ an MAP estimate of the hyperparameters by assigning
them a prior distribution, which should be chosen to penalize large values.

Utilizing Taylor Approximations

An alternative approach to account for input uncertainty is to utilize Taylor approx-
imations, which allow for the propagation of input distributions through nonlinear
functions. The first Taylor approximation-based method that we examine was devel-
oped by Girard and Murray-Smith [51], and we will refer to it as the delta method
approximation. In their method, they assume that the inputs are independent of each
other and that xi ∼ N (x̃i, σ2

x I). In contrast to the method discussed in the previous
section, this approach makes the additional assumption that the dimensions of all
inputs are independent and share the same variance σ2

x , which functions as a learnable
hyperparameter. Nonetheless, the authors mention that their method could potentially
be extended to more complex noise models using similar arguments as those outlined
below. We also note that it appears feasible to adapt this method to cases in which the
variance is input-dependend and known a priori. However, we do not further explore
possible extensions and focus on the model as originally specified by the authors.
Consider first the problem of propagating uncertain inputs through a deterministic,
sufficiently smooth function f . We are interested in the expectation E[ f (x̃ + ε)], where
ε ∼ N (0, σ2

x I). Using a second order taylor expansion around x̃, and denoting ∇ f (z)
as the gradient and ∇2 f (z) as the Hessian matrix of f evaluated at z, we obtain

f (x) = f (x̃) + (x − x̃)⊤∇ f (x̃) + (x − x̃)⊤∇2 f (x̃)(x − x̃) +O(|x − x̃|3) .

Substituting this Tayler expansion into E[ f (x̃ + ε)] yields the asymptotic approximation

E[ f (x̃ + ε)] ≈ f (x̃) +
σ2

x
2

Tr[∇2 f (x̃)] (3.4)

for σ2
x → 0, which is also know as the delta method.

When f is considered random with a GP prior distribution f (x̃) ∼ GP(0, k(x̃, x̃′)),
the approximation (3.4) suggests to adjust f (x̃) by σ2

x
2 Tr[∇2 f (x̃)] to approximately

propagate the uncertainty about the input through f . Here, the covariance function
k(x̃, x̃′) is assumed to be a squared exponential with ARD which does not integrate the
output noise variance. The resulting stochastic process g(x̃) = f (x̃) + σ2

x
2 Tr[∇2 f (x̃)] is

again a Gaussian [52] with mean function 0 and covariance function

cov(g(x̃), g(x̃′)) = k(x̃, x̃′) + σ2
x

D

∑
i=1

∂2k(x̃, x̃′)
∂x̃2

i
+

σ4
x

4

D

∑
i,j=1

∂4k(x̃, x̃′)
∂x̃2

i ∂x̃′2
j

. (3.5)
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Having defined the mean function and covariance function of the prior GP g(x̃), we can
now proceed with standard GP regression methods for training and inference. Similar
to the method discussed in the previous section, we use the means of the training
input distribution as new deterministic inputs. However, computing the predictive
distribution at a test input x∗ as in (2.4) and (2.5) using the covariance function (3.5)
assumes that the test input is uncertain. If the test input x∗ is deterministic, though, we
are interested in the posterior distribution of f (x∗) rather than g(x∗). This distribution
is still obtained by using (2.4) and (2.5), but the prior covariance between the function
values at certain test inputs and uncertain training inputs is replaced by

cov( f (x∗), g(x̃)) = k(x∗, x̃) +
σ2

x
2

D

∑
i=1

∂2k(x∗, x̃′)
∂x̃2

i
.

An alternative approach to propagate input uncertainty through a GP based on a Taylor
approximation was developed by McHutchon and Rasmussen [40], which we will refer
to as the mean function derivative method. In their work, the authors assume that only
noisy measurements of the inputs are available, which are distributed around latent
true inputs. Thus, their assumptions deviate slightly from the noise model discussed
in section 2.1. To maintain consistency with the other methods that we examine, we
make slight adaptations to their model. As before, we assume that the true inputs x are
centered around their means x̃, which we consider given. We note that, if these means
are regarded as noisy observations, our slight reformulations result in the same model
as the original.
When the targets y are generated by a GP model with noisy inputs, i.e.,

y = f (x̃ + εx) + εy , (3.6)

the distribution of y will no longer be Gaussian, as previously discussed. Here,
f (x) ∼ GP(0, k(x, x′)), and εx ∼ N (0, Σx) is i.i.d. across different inputs, with Σx

being a learnable diagonal matrix of variances. A direct Taylor approximation of f in
(3.6) is not useful, as it involves products of derivatives of f with εx, which results in
non-Gaussian distributions. Instead, the authors propose using the derivative of the
mean function of f (x), denoted by f̄ (x), which yields the approximate model

y = f (x̃) + ε⊤x ∇ f̄ (x̃) + εy . (3.7)

The primary benefit of this model is that it replaces the random derivatives of
f (x) with the deterministic gradients of the mean function ∇ f̄ (x), which makes
(3.7) Gaussian. The authors note that, despite its simplicity, this model does not
empirically exhibit any notable decline in performance compared to methods that
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incorporate random derivatives or higher-order Taylor approximations. Further-
more, the model (3.7) together with the independence of f , εx, and εy implies that
p(y| f (x̃),∇ f̄ (x̃)) = N (y| f (x̃), σ2

n +∇ f̄ (x̃)⊤Σx∇ f̄ (x̃)). In other words, the uncertainty
in the inputs translates into additional uncertainty in the outputs, with its variance
given by the quadratic form ∇ f̄ (x̃)⊤Σx∇ f̄ (x̃), which depends on the slope of the mean
function. Consequently, the predictions become more uncertain, whenever the gradient
is relatively large, which reflects that small changes in the input are expected to have
a large influence on the output. Conversely, when the gradient of the mean function
vanishes, the effect of the input noise also vanishes.
The predictive distribution for this model can be calculated by replacing K(X, X) + σ2

n I
in (2.4) and (2.5) with K(X, X) + σ2

n I + diag(∆⊤
f̄∗

Σx∆ f̄∗), which adds additional variance

to the function evaluations at the uncertain training inputs. Here, f̄∗ denotes the mean
function of the posterior GP, and ∆ f̄∗ is the N × D matrix in which the i-th row is given
by ∇ f̄∗(x̃i). Furthermore, applying diag to a square matrix yields a diagonal matrix of
the same dimensionality with the same diagonal elements as the original matrix.
An immediate issue with this predictive distribution is that the mean function depends
on its own gradient, which leads to a differential equation which cannot be solved
analytically. This problem affects not only predicting but also training: For the cal-
culation of the marginal likelihood (2.8), the output variance must be corrected by
diag(∆⊤

f̄∗
Σx∆ f̄∗), which requires knowledge about the posterior mean. To circumvent

this challenge, the authors propose a multi-step approximate training procedure. First,
the posterior distribution of a standard GP with an initial set of hyperparameters is
computed. Next, diag(∆⊤

f̄∗
Σx∆ f̄∗) is analytically calculated with the mean function of

the posterior GP, and is then used to correct the marginal likelihood (2.8). Finally, the
marginal likelihood is optimized with respect to the model hyperparameters, including
the parameters of the input noise Σx, using a gradient descent algorithm. The approxi-
mation in this training procedure is introduced when the posterior mean of a standard
GP is used to calculate the corrective term diag(∆⊤

f̄∗
Σx∆ f̄∗), thereby avoiding the need

to solve a differential equation. This process can also be iterated by recomputing the
posterior mean function, including the term diag(∆⊤

f̄∗
Σx∆ f̄∗) from the current model,

and retraining.
Prediction at an uncertain test input with mean x̃∗ can be performed in a similar way.
First, the posterior mean is evaluated by treating the mean x̃∗ as deterministic. Then, its
gradient is computed and used to update the posterior variance by ∇ f̄ (x̃∗)⊤Σx∇ f̄ (x̃∗).
The authors also suggest a prediction method based on [53], which is related to the
expected covariance function method.
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Formulating Variational Lower Bounds on the Marginal Likelihood

As discussed in the beginning of this chapter, when we have access to the distribution of
the uncertain inputs, the marginal likelihood of the data would ideally be computed by
marginalizing out these inputs. However, this is in general not analytically tractable. To
address this issue, some authors approximate the marginal likelihood with a variational
lower bound. In this section, we explore several possible approaches.
We first consider two methods developed by Quiñonero-Candela. The first method is
described in both a paper with Roweis [46] and his PhD thesis [54], while the second
method is outlined exclusively in his thesis. Both approaches formulate the ELBO

log p(y|θ) = log
∫

p(y|θ, X)p(X)dX ≥
∫

log q(X)
p(y|θ, X)p(X)

q(X)
dX = L(q, θ) , (3.8)

on the log marginal likelihood, where q(X) is a variational posterior over the inputs. In
these methods, it is also assumed that all training inputs are independently normally
distributed, xi ∼ N (x̃i, Σxi), with the parameters x̃i and Σxi known. Together, these
distributions define the prior distribution p(X) over X.
The first of the two methods defines the variational posterior distribution as a product
of N delta distributions, each of which centered around learnable estimates of the
true inputs x̂i, i = 1, ..., N. To simplify notations, we aggregate these into a matrix
X̂ ∈ RD×N . This choice of variational distribution means that

L(X̂, θ) = log p(y|X̂, θ)p(X̂) = log p(y|X̂, θ) +
N

∑
i=1

log p(x̂i|x̃i, Σxi) , (3.9)

which corresponds to the optimization objective of an MAP estimate for X̂. In this
expression, we have reparametrized the ELBO L using the MAP estimates X̂ instead of
q. The first term in (3.9) is the GP log marginal likelihood (2.8) with X̂ as deterministic
inputs. The second term is a sum of log densities of normal distributions, which
penalizes large deviations of x̂i from their respective expected values. For instance, if
Σxi = σ2

i I for all i = 1, ..., N, then

N

∑
i=1

p(x̂i|x̃i, Σxi) = −1
2

N

∑
i=1

σ2
i −

1
2

N

∑
i=1

|x̂i − x̃i|2
σ2

i
,

which means that each x̂i inflicts a penalty that is proportional to the squared eucliden
distance from the mean x̃i.
A major drawback of this method, as the authors note, is that it is highly susceptible to
overfitting. This problem occurs because the penalization term is not strong enough to
prevent the optimization procedure from driving all estimates x̂i to locations where the
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model can perfectly fit the data with no variance. If the noise in the training targets is
known a priori, an immediate solution is to fix the noise variance to its known value,
though such information is typically not available. However, when alternating between
optimizing X̂ and θ, the authors observed that overfitting occurs more slowly. This
suggests that the optimization procedure may initially approach a good optimum.
Consequently, the authors propose an annealing-type training procedure. In this
procedure, the noise variance is initially fixed at a high value, and the ELBO (3.9) is
maximized with respect to all other hyperparameters. Subsequently, the noise variance
is gradually decreased and the ELBO re-optimized at each step with noise variance
held fixed. However, the authors note that determining an appropriate stopping point
for this procedure is challenging. In our experiments, we let the noise variance run over
a prespecified range of values. For each value, we evaluate the log marginal likelihood
on validation data after trainig to select a final choice of hyperparameters.
The second method developed by Quiñonero-Candela employs a stochastic EM training
procedure to maximize the ELBO in (3.8). This procedure iteratively alternates between
the Expectation step (E-step), which maximizes L(q, θ) with respect to q while fixing θ,
and the Maximization step (M-step), which optimizes θ with q held constant.
For the E-step, the author decided to sample from the posterior distribution over X,
which maximizes L(q, θ) given θ, rather than parameterizing the variational posterior
q. This approach can be interpreted in two ways. First, it can be understood as
defining the variational posterior q as a mixture of delta distributions centered at the
samples from the actual posterior. Alternatively, it can be viewed as a Monte Carlo
approximation of the log marginal likelihood p(y|θ). This is due to the fact that L(q, θ)

equals the log marginal likelihood when q is the posterior distribution over X. In
order to obtain a set of samples from the posterior distribution, the author employs the
Hamiltonian MCMC [55]. We do not explicit the algorithm here. Instead, we refer the
reader to [56] for a concise explanation. In general, MCMC algorithms successively
generate samples from a sequence of distributions that gradually approximate a desired
target distribution. Typically, samples from a certain number of initial steps, also
referred to as burn-in steps, are discarded to ensure that samples from the remaining
steps follow distributions that are sufficiently close to the target distribution. The
Hamiltonian MCMC algorithm specifically requires knowledge of the logarithm of the
unnormalized posterior p(y|X, θ)p(X), which is equal to the posterior p(X|y, θ) up to
a scaling constant independent of X, as well as the gradients of this log-posterior. The
log unnormalized posterior is given by (3.9), and its gradients are available.
The E-step yields a set of S samples {X̂1, ..., X̂S} drawn from close approximations
of the posterior distribution over X. These samples are then used in the M-step to
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optimize
1
S

S

∑
s=1

log p(y|X̂s, θ) + log p(X̂s)

with respect to θ. This quantity is obtained by using a mixture of delta distributions
centered at the samples from the E-step as variational posterior in (3.8). It also serves
as a Monte Carlo approximation of p(y|θ). For the purpose of optimization, the terms
log p(X̂s) can be ignored as they are independent of θ.
Similarly, the obtained samples {X̂1, ..., X̂S} can be utilized to compute Monte Carlo
estimates of the posterior mean and posterior variance at certain test inputs. To obtain
these estimates, the posterior mean or posterior variance, respectively, is calculated for
each sample, treating each sample as a set of deterministic training inputs. Subsequently,
the Monte Carlo estimates are computed by averaging over all sample.
This stochastic EM approach does not introduce additional parameters and does not
rely on assumptions about the form of the variational posterior to approximate the
posterior distribution over X. Nevertheless, it carries a high computational load. In each
E-step, S samples are drawn using the Hamiltonian MCMC, and additional samples
are computed and then discarded in the burn-in phase. Each sample requires the
computation of a specific number of so-called leapfrog steps, which involve evaluating
the gradient of (3.9). Therefore, each leapfrog step necessitates the inversion of a
covariance matrix of size N × N, which scales cubically with N. In each M-step, several
optimization steps are performed. During each iteration, the covariance matrices
K(X̂s, X̂s) for s = 1, ..., S have to be inverted, which incurs a computational complexity
of O(SN3). In addition, for larger datasets or higher input dimensions, the number
of samples must generally be increased to achieve a certain accuracy. Therefore, this
method is practically limited to small datasets with relatively few input dimensions.
As a final method, we consider the application of the Bayesian GPLVM for uncertain
inputs. The original method, developed by Titsias and Lawrence [33] and briefly
discussed in subsection 2.4.4, was not specifically designed for GP regression. Instead,
its primary application is nonlinear dimensionality reduction, where a vector-valued
training set of targets Y is provided and the corresponding inputs X are latent variables
of lower dimensionality.
Nonetheless, a subsequent paper by Damianou, Titsias, et al. [57] extended this method
to several other applications, including GP regression with uncertain inputs. This
uncertainty is modeled as a prior distribution p(X) over the inputs. For more flexible
prior distributions than products of delta distributions, an ELBO on the log marginal
likelihood, obtained by marginalizing out uncertain inputs X, is generally intractable.
However, the authors demonstrate that an analytically tractable ELBO can be derived by
introducing inducing variables u corresponding to M pseudo-inputs Z. These inducing
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variables are assumed to follow the GP prior u ∼ N (0, K(Z, Z)). Together with the
training targets, latent function evaluations, and latent inputs, their joint density is
given by

p(y, f, u, X) = p(y|f)p(f|u, X, Z)p(u|Z)p(X) .

An immediate benefit of using inducing variables is that the covariance matrix K(X, X)

does not need to be inverted to compute p(f|u, X, Z), which simplifies marginalizing out
X. This is because p(f|u, X, Z) is the density of the noise-free version of the predictive
distribution given by (2.4) and (2.5), with u and the deterministics Z assuming the role
of y and X, respectively.
The variational posterior distribution over f, u, and X is chosen to be of the form

q(f, u, X) = p(f|u, X, Z)q(u)q(X)

where q(X) is a Gaussian with mean and covariance parameterized by variational
parameters M,S , respectively, and q(u) is left arbitrary. With this variational posterior,
an ELBO on the log marginal likelihood can be formulated as

log p(y) = log
∫

q(f, u, X)
p(y, f, u, X)

q(f, u, X)
df du dX

≥
∫

p(f|u, X, Z)q(u)q(X) log
p(y|f)p(u|Z)p(X)

q(u)q(X)
df du dX

=
∫

p(f|u, X, Z)q(u)q(X) log
p(y|f)p(u|Z)

q(u)
df du dX −

∫
q(X) log

q(X)

p(X)
dX

= F (q(X), q(u))− KL[q(X)||p(X)] .
(3.10)

The particular form of the variational posterior enables the simplification of the fraction
in the logarithm by cancelling the complicated term p(f|u, X, Z). Furthermore, for fixed
q(X), an analytically tractable Gaussian q(u) which optimizes F (q(X), q(u)) among
all possible distributions can be computed. Consequently, F (q(X), q(u)) can be repa-
rameterized as F (q(X)), and q(u) can always be selected as the optimal distribution.
Additionally, F (q(X)) is analytically tractable for some specific covariance functions,
among which is the squared exponential with ARD. The KL divergence between q(X)

and p(X) is also analytically tractable when p(X) is Gaussian. In particular, when we
assume that all inputs are independent under both the prior and the variational poste-
rior distribution, with p(xi) = N (xi|x̃i, Σxi) and q(xi) = N (xi|µi, Si), the KL divergence
is given by [58]

KL[q(X)||p(X)] =
1
2

N

∑
i=1

(
(µi − x̃i)

⊤Σ−1
xi
(µi − x̃i) + Tr[Σ−1

xi
Si]− log

|Si|
|Σxi |

− D
)

.

(3.11)
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Therefore, the model can be trained by maximizing the analytically tractable ELBO
(3.10) with respect to the model hyperparameters θ and the variational parameters
{Z,M,S} using a gradient descent algorithm. As discussed in subsection 2.4.4, the
computational complexity for each training step is in O(M2N), which is a significant
reduction compared to O(N3) when M ≪ N. However, it should be noted that
the number of parameters increases linearly with N, as a parametrized variational
posterior is introduced for each training input. Though, the authors note that their
model is robust to overfitting, particularly due to the regularization provided by the
KL divergence.
To make predictions at new deterministic inputs X∗, we use the variational posterior
predictive distribution q(f∗|X∗). This distribution is Gaussian, and its mean and
covariance matrix can be analytically computed. The exact formulas are relatively
complex. Therefore, we refer the reader to section 4.1 of the paper by Damianou, Titsias,
et al. [57]. Additionally, the authors mention how to predict at uncertain test inputs
based on the method by Girard et al. [53].

3.1.2 Experiments on Synthetic Data

After detailing the models in the last section, we now proceed with comparing their
performance on a synthetic example. To this end, we have implemented all methods
as described in the previous subsection with gpflow 2.9.2 [59], except for the Bayesian
GPLVM, which is already available in this library. Additionally, for the delta method
approximation and the mean function derivative method, we computed all occuring
derivatives analytically.
Preliminary experiments with simpler functions showed that all methods performed
well. Consequently, we devised a more challenging scenario. In this scenario, we
assumed that the inputs are components of a noisy signal, and we estimated their
true states by applying the RTSS described in section 2.2 provided by the pykalman
library [60]. For the dynamics of the hidden states in the RTSS, we used the linear
regresssion model with drift. As a consequence of employing the RTSS, we lack
complete knowledge about the actual distribution of the true inputs, which were
instead derived from additional model assumptions on the inputs, a scenario that
we consider realistic. Our primary goal is therefore to explore whether, and to what
extent, the described input-uncertainty-aware methods can outperform a standard GP
regression model trained on smoothed inputs, simulating a realistic scenario.
We generated two input signals by sampling 10 points from a uniform distribution over
the interval [−6, 6] and interpolating them using cubic splines, yielding 100 samples per
signal. We then added Gaussian white noise with variance 0.1 to these signals which
ensures that smoothing them will result in different signals. These two signals constitute
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our clean inputs. Subsequently, we corrupted the signals with additional Gaussian
white noise with variances of 0.2 and 0.4, respectively, representing noisy measurements.
By doing so, we incorporated varying levels of noise into our experiments. To estimate
the distribution of the true signal, we applied the RTSS seperately to these two signals.
The first of the two signals along with the results of the application of the RTSS are
depicted in Figure 3.1.

Figure 3.1: The first of the two signals that constitute the inputs. The true signal was
corrupted with Gaussian noise with variance 0.2. Subsequently, we applied
the RTSS to estimate the true signal from the corrupted signal.

For the underlying function that we aim to infer, we chose

f (x) = 3 sin(x cos(x)) exp
(
− x2

32

)
,

as we considered this function to be particularly challenging. It exhibits irregular
oscillations with a high amplitude near the center at 0 and increasing frequencies
towards the edges of the interval [−6, 6]. To illustrate the effects of corrupting inputs
with noise, we trained standard GP regression models on both corrupted inputs and
clean inputs. For this purpose, we utilized half of the inputs from each signal together
with their function values, which we corrupted with Gaussian white noise of variance
0.01, as training data. To train the models, we employed the L-BFGS-B [61] optimizer
provided by Scipy 1.11.4 [62], which we also used for all other optimization tasks in
this set of experiments. The initial values of all hyperparameters were set to 1, and
we maintained this choice throughout all experiments in this section unless stated
otherwise. The resulting predictive distributions of the standard GP models are shown
in Figure 3.2. While a standard GP performs well on a dataset without input noise,
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it cannot adequately infer the underlying function when the inputs are corrupted by
noise, attributing a high output variance to the training data.

Figure 3.2: A standard GP trained with clean inputs and noisy inputs, respectively.

We obtained fairly better results when we used the means of the estimated input
distributions as inputs, which corresponds to smoothing the input signals. The resulting
predictive distribution is shown in Figure 3.3, along with the predictive distributions of
all methods described in the last section. To train these models, we used the estimated
input distributions, or their respective means, in correspondance to the inputs used to
train the standard GP models in Figure 3.2. For the mean function derivative method,
we iterated the nested training procedure twice, since we could not observe a notable
improve in performance with more iterations. In both the mean function derivative
method and the delta method approximation, we initialized the input variance to 0.3
to create more comparable conditions to the other methods which had access to more
information about the inputs. Regarding the stochastic EM method, we alternated
between the E- and M-step 30 times and resampled the training inputs 100 times after
100 burn-in steps. The Bayesian GPLVM used 30 pseudo-inputs, with their initial
locations uniformly sampled from the range [−6, 6]. Moreover, we trained the model
that infers the latent inputs through an MAP estimate in two different ways. We
did this to evaluate the effectiveness of the annealing-type procedure, as described in
subsection 3.1.1, in preventing overfitting. First, we trained the model by switching
between fixing the estimated input locations and fixing all other hyperparameters,
using gradient descent to optimize both. Second, we trained it using the annealing-type
training procedure, with 80% of the data points used for training and 20% for validation.
For this training procedure, we initialized the noise variance to 1 first, and we gradually
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lowered it to 0.001 in 1000 iterations. We selected the final hyperparameters based on
the setting that obtained the lowest negative log likelihood. The resulting predictive
distributions of each trained model are depicted in Figure 3.3. In addition, the SMSEs
and MSLLs for 100 test data points, which consist of the unused portions of the input
signals along with their function values, are collected in Table 3.1.

Model Metric

SMSE MSLL

GP trained on clean inputs 0.0102 −2.2304
GP trained on corrupted inputs 0.3911 −0.3584
GP trained on means of the inputs 0.2801 −0.4895
GP with expected covariance function 0.2628 −0.6739
Delta method approximation 0.2656 −0.2851
Mean function derivative method 0.2541 −0.5264
Stochastic EM method 0.2693 −0.5040
Bayesian GPLVM 0.2733 −0.5597
GP with MAP input estimate 2.1326 216 923.6259
GP with MAP input estimate, annealing 0.2351 −0.7424

Table 3.1: SMSE and MSLL on the test dataset for all models considered in our experi-
ments. Lower values correspond to better performance.

Most of the models we analyzed outperformed a standard GP trained on the means of
the inputs both with respect to the MSLL and SMSE. We obtained notably strong results
using an MAP estimate of the inputs using the annealing-type training procedure.
This model adequately captured the higher-frequency oscillations towards the edges
of the interval [−6, 6] as well as the region with higher amplitude near the center.
However, our implementation of the annealing-type training procedure requires vague
prior knowledge of an interval that contains the true noise variance and an increased
computation time, as the GP model is retrained for each considered value of the noise
variance. The effect of the annealing-type training process on the MAP estimate of
the inputs can be assessed by comparing the resulting predictive distribution to that
obtained when the noise variance is learned via gradient descent: The noise variance is
effectively prevented from approaching 0 by moving the inputs to locations where the
GP can fit them without noise variance.
We also achieved good results with the GP model that employs the expected covariance
function. However, this model performed worse in higher-frequency regions, which
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Figure 3.3: Predictive distributions of all described input uncertainty-aware models and
of a GP trained with smoothed inputs. We omitted the visualization of the
input distribution when it is not necessary or the plots become cluttered.
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may be attributed to the fact that incorporating the covariance matrices of the inputs
into the covariance function imposes lower bounds to the lengthscales. This issue was
also mentioned by Girard [48] and can result in worse performance on higher-resolution
functions. One possible solution is to introduce a suitable prior on the lengthscales, but
we did not consider this information as given to ensure a fairer comparison.
While the mean function derivative method also yielded a good fit to the data-generating
function, it significantly overestimated the input variance, even with reasonable initial
values, resulting in broader confidence intervals. The delta method approximation
model likewise yielded large confidence intervals and a higher MSLL than the baseline
GP which used the input means as deterministic inputs. Nonetheless, the model only
slightly underestimated the input noise and provided a reasonably good fit to the latent
function.
Furthermore, the improvements of the stochastic EM method were rather modest
relative to its training time. Though, the results may be further improved by using
more samples or more iterations of the EM algorithm. Lastly, the Bayesian GPLVM
only slightly improved the SMSE, but yielded a fairly lower MSLL, while also reducing
the computation time.

3.2 Multi-Fidelity Gaussian Process Regression with Uncertain
Inputs

In this section, we propose adaptations to the NARGP and MFDGP introduced in
section 2.4 to account for uncertainty in the inputs. We validate our methods using
a synthetic two-fidelity example. The results show that the proposed methods can
sufficiently recover the underlying data-generating functions from data that is corrupted
by both input and target noise when the NARGP and the MFDGP fail. Furthermore,
we apply our extended MFDGP to rover wheel-soil interaction data and compare its
predictive performance to the standard MFDGP.

3.2.1 The Input-Uncertainty-Aware Nonlinear Autoregressive Gaussian
Process Model

In the original NARGP model by Perdikaris et al. [21], the authors assumed that the
training inputs of adjacent fidelity levels are nested. This assumption is particularly
appropriate when we know that the inputs are sufficiently precise and when obtaining
lower-fidelity data at the inputs of higer-fidelity levels is inexpensive. The primary
benefit of this assumption is that it allows for an analytically tractable training scheme.
As the latent function evaluations from the posterior of the GP surrogate for fidelity
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level s − 1 are deterministic quantities at its training data, the inputs for the surrogate
for fidelity level s are also deterministic. Therefore, the training procedure for the
surrogate f (s) does not depend on the surrogate f (s−1), and all surrogates can be trained
independently.
However, if the inputs are uncertain at all fidelity levels, the assumption of nestedness
is not reasonable, since we do not know the true inputs that were used to generate the
data for each fidelity level. Thus, if the data for each fidelity level was generated by a
different technique, we cannot assume that some inputs were coincidentally the same.
It is also not a viable solution to assume that the distributions of the training inputs are
nested: Data from different fidelity levels typically comes from different sources likely
associated with a different level of uncertainty.
As a consequence, we abandon the assumption of nestedness in our data. Instead, we
consider a collection of datasets Dt

s=1 where the inputs in each dataset are independent
normal distributions. More specifically, Ds = {(x̃(s)i , Σ(s)

xi , y)|i = 1, ..., N(s)}, such that

the true input x(s)i ∼ N (x̃(s)i , Σ(s)
xi ). While we can no longer rely on the nestedness of

our data, we can leverage the GP regression models that account for input uncertainty
discussed in section 3.1. Accordingly, we propose stacking input-uncertainty-aware
GP regression models to construct an input-uncertainty-aware multi-fidelity GP model.
As most of the methods approximate the posterior process with a GP, our approach
accordingly approximates the posterior distribution of each surrogate by a GP. A similar
idea was already proposed by Perdikaris et al. [21] to simplify computing predictive
distributions.
More specifically, we propose the following training scheme. For the lowest fidelity
level, we train a GP regression model that accounts for input uncertainty with D1.
To train the surrogate for any fidelity level s ≥ 2, we first compute the predictive
means f̄(s−1)

(s) |D1 and variances V(f(s−1)
(s) )|D1 from the posterior of the surrogate for

fidelity s − 1 at the input distributions in Ds. For that purpose, we propagate the input
distributions in Ds through all surrogates of lower fidelity than s. This involves predict-
ing at uncertain inputs. Subsequently, we add an independent normally distributed
dimension to each of the random inputs in Ds, where the distribution of each additional
dimension is defined by the corresponding predictive mean and variance obtained from
the lower fidelity surrogate. We then train an input uncertainty-aware surrogate for
fidelity s on this set of distributions. After iteratively training the surrogates f (s) for
s = 1, ..., t, we obtain a set of stacked surrogate GPs, which can be used to predict at any
fidelity level. We do this for both certain and uncertain test inputs by propagating them
through all surrogate models until a desired fidelity level is reached. For deterministic
inputs, all surrogates for fidelities greater than 1 must make predictions at inputs where
only the last dimension is uncertain.
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In addition to assuming Gaussianity of the posterior at each fidelity level and inde-
pendence of the training inputs, we have made two further approximations to agree
with most of the models from section 3.1. First, we assumed independence the la-
tent function evaluations from the posterior GP at a fixed fidelity. This assumption
is generally not satisfied, as the latent function evaluations from the posterior are
typically correlated, quantified by (2.5). Second, we assumed that the latent function
evaluations are independent of their corresponding inputs, which is also generally
wrong. Though, this aligns with the assumption that the random inputs have diagonal
covariance matrices, and it also facilitates the application of the expected covariance
function model with a composite kernel (2.13).
To employ an input-uncertainty-aware GP regression model for this adaptation of the
NARGP, it must be capable of handling known input distributions where covariance
matrices vary across different inputs. This is required, since the predictive distributions
of the surrogates generally do not exhibit constant variances across the latent function
evaluations. Consequently, both the delta method approximation and the mean deriva-
tive method, as they are described in section 3.1, are not suitable for this task. However,
future work might adapt these models to handle known input distributions. Moreover,
our adaptation to the NARGP requires a method for making predictions at uncertain
inputs. Although Girard [48] provides a flexible framework to predict at uncertain in-
puts with GP regression models, we do not further consider the MAP estimate method
or the stochastic EM method, as these do not directly address uncertain test inputs.
Additionally, the stochastic EM method requires a high computation time, and our
implementation of the annealing-type training procedure lacks sufficient flexibility.
A further issue with both the expected covariance function method and the Bayesian
GPLVM is that they require specific covariance functions. Since the expected covariance
function approach provided the most stable results in our experiments, we exlusively
focus on this approach in our adaptation to the NARGP. While this methods supports
the squared exponential covariance functions with ARD, we intend to use the composite
covariance function (2.13) for all fidelity levels higher than 1. Nonetheless, under the
independence assumptions previously discussed, we can extend the principles of the
expected covariance function method to models that use the composite covariance
function. We show this by calculating the expectation of the composite covariance
function k((xi, yi), (xj, yj)) defined through (2.13) analytically. For this purpose, we
assume that (xi, yi) follows a normal distribution with mean (x̃i, ỹi) and that yi is
independent of xi. Furthermore, we define (xj, yj) with mean (x̃j, ỹj) for j ̸= i in the
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same way, and assume that (xi, yi) is independent of (xj, yj). Then it holds that∫
k((xi, yi), (xj, yj))p(xi, yi)p(xj, yj)dxi dyi dxj dyj

=
∫

kρ(xi, xj) · k f (yi, yj)p(xi)p(yi)p(xj)p(yj)dxi dyi dxj dyj

+
∫

kδ(xi, xj)p(xi, yi)p(xj, yj)dxi dyi dxj dyj

=
∫

kρ(xi, xj)p(xi)p(xj)dxi dxj ·
∫

k f (yi, yj)p(yi)p(yj)dyi dyj

+
∫

kδ(xi, xj)p(xi)p(xj)dxi dxj = kρ,n(x̃i, x̃j) · k f ,n(ỹi, ỹj) + kδ,n(x̃i, x̃j) ,

where each kernel on the right-hand side has the form (3.3) without the noise variance
term. A similar result applies to the expectation of k((xi, yi), (xi, yi)) with respect to
p(xi, yi). Consequently, we use the uncertainty-aware covariance function

kn((x̃i, ỹi), (x̃j, ỹj)) = kρ,n(x̃i, x̃j) · k f ,n(ỹi, ỹj) + kδ,n(x̃i, x̃j)

for all fidelity levels except the first one.
Lastly, we note that training each surrogate independently neglects that the posterior
for the surrogate at fidelity s depends on the hyperparameters from all lower fidelity
levels. This may be achieved by propagating the gradients for the hyperparameters
through all higher fidelity levels and training all surrogates collectively. However,
we currently retain the independent training procedure for simplification. Thus, this
approach, with all its assumptions and simplifications, may be interpreted as the path
of least resistance and also serves as a baseline for the more complex approach we
consider in the next subsection.

3.2.2 The Input-Uncertainty-Aware Multi-Fidelity Deep Gaussian Process
Model

The MFDGP discussed in subsection 2.4.4 employs a variational framework to approxi-
mate the intractable log marginal likelihood of the training targets. This intractability
follows from the fact that the function evaluations of each surrogate, which are inputs
to the subsequent fidelity level, are latent. Thus, a natural way to incorporate input un-
certainty is to also treat the inputs as latent variables, as we will explain in this section.
Our approach is therefore closely aligned with the application of the Bayesian GPLVM
for uncertain inputs. However, we follow the approach by Cutajar et al. [22], who
consider a different variational approach that results in an ELBO that is not analytically
tractable.
As in the previous subsection, we assume that the distribution of the inputs is provided
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for each fidelity level, and that the inputs are independent across fidelities. These dis-
tributions serve as the prior distribution over the training inputs, which consequently
factorizes across fidelities. To formulate an ELBO on the marginal log likelihood of the
training targets, we augment the joint density (2.19) with the uncertain inputs, which
factorizes as

p({y(s), {f(l)s }s
l=1, u(s), Xs}t

s=1) =

(
t

∏
s=1

Ns

∏
i=1

p(y(s)i | f (s)s,i )
s

∏
l=1

p(f(l)s |ul , {Xs, f(l−1)
s , Zl−1})

)

·
t

∏
l=1

p(u(l)|Zl−1)p(Xl) .

(3.12)

Accordingly, we incorporate latent inputs that are independent across fidelities in the
variational posterior (2.20), i.e.,

q({{f(l)s }s
l=1, u(s), Xs}t

s=1) =

(
t

∏
s=1

s

∏
l=1

p(f(l)s |ul , {Xs, f(l−1)
s , Zl−1})

)
·

t

∏
s=1

q(u(s))q(Xl) ,

(3.13)

where q(Xs) is modeled as a Gaussian distribution, with its mean and covariance matrix
parameterized by the variational parameters M(s) and S (s), respectively. Consequently,
the ELBO (2.21) becomes

L(q({{f(l)s }s
l=1, u(s), Xs}t

s=1))

= E
q({{f(l)s }s

l=1,u(s),Xs}t
s=1)

[
log

p({y(s), {f(l)s }s
l=1, u(s), Xs}t

s=1)

q({{f(l)s }s
l=1, u(s), Xs}t

s=1)

]

=
t

∑
s=1

Ns

∑
i=1

E
q({{f(l)k }k

l=1,u(k),Xk}t
k=1)

[
log p(y(s)i | f (s)s,i )

]
+

t

∑
l=1

E
q({{f(k)s }s

k=1,u(s),Xs}t
s=1)

[
log

p(u(l)|Zl−1)

q(u(l))

]
+

t

∑
l=1

E
q({{f(k)s }s

k=1,u(s),Xs}t
s=1)

[
log

p(Xl)

q(Xl)

]
,

(3.14)

where we substituted the factorization from (3.12) and (3.13) and cancelled out

t

∏
s=1

s

∏
l=1

p(f(l)s |ul , {Xs, f(l−1)
s , Zl−1})

in the corresponding fraction. Additionally, we used the product rule for logarithms
and the linearity of the expectation to decompose the ELBO into sums. Following
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Cutajar et al. [22], we have

E
q({{f(k)s }s

k=1,u(s),Xs}t
s=1)

[
log

p(u(l)|Zl−1)

q(u(l))

]
= −Eq(u(l))

[
log

q(u(l))

p(u(l)|Zl−1)

]
= −KL[q(u(l))||p(u(l)|Zl−1)]

for l = 1, ..., t, since log p(u(l)|Zl−1)

q(u(l))
only depends on u(l). To simplify the expectations

that involve the uncertain inputs, we assume that the inputs for a fidelity level l are
independent under both the prior distribution p(Xl) as well as the variational posterior
q(Xl). Then, it follows that

E
q({{f(k)s }s

k=1,u(s),Xs}t
s=1)

[
log

p(Xl)

q(Xl)

]
= −

Nl

∑
i=1

E
q(x(l)i )

[
log

q(x(l)i )

p(x(l)i )

]

= −
Nl

∑
i=1

KL[q(x(l)i )||p(x(l)i )]

for l = 1, ..., t. Here, the term log p(x(s)i )

q(x(s)i )
depends only on x(s)i , analogous to the case of

the inducing variables. Notably, these negative KL divergences between the variational
posterior and the prior over the uncertain inputs act as a regularizing term, which
penalizes large deviations from the prior.
Moreover, for s = 1, ..., t and i = 1, ..., Ns, it holds that

E
q({{f(l)k }k

l=1,u(k),Xk}t
k=1)

[
log p(y(s)i | f (s)s,i )

]
= E

q( f (s)s,i )

[
log p(y(s)i | f (s)s,i )

]
.

Similar to the original model, this term is generally intractable and requires an approxi-
mation via Monte Carlo integration. For this purpose, we need samples from q( f (s)s,i ).
Since

q( f (s)s,i ) =
∫

q( f (s)s,i |x
(s)
i )q(x(s)i )dx(s)i ,

these samples can be obtained by first generating a set of S samples from the multi-
variate normal q(x(s)i ), and then drawing samples from the conditional q( f (s)|x(s)i ) [63]
using the sampling scheme from Salimbeni and Deisenroth [35] discussed in subsec-
tion 2.4.4.
Combining all results, the ELBO (3.14) becomes

L(q({{f(l)s }s
l=1, u(s), Xs}t

s=1)) =
t

∑
s=1

Ns

∑
i=1

E
q( f (s)s,i )

[
log p(y(s)i | f (s)s,i )

]
−

t

∑
l=1

KL[q(u(l))||p(u(l)|Zl−1)]−
t

∑
l=1

Nl

∑
i=1

KL[q(x(s)i )||p(x(s)i )] .
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Finally, the predictive distribution can be computed in the same manner as described
in subsection 2.4.4.
In comparison to the method of Cutajar et al. [22], our approach requires the additional
computation of the KL divergences between the prior distributions over the uncertain
inputs and their corresponding variational posteriors. Furthermore, we also need to
sample from the variational posteriors over the inputs to compute the expectations with
respect to q( f (s)s,i ). For a fixed number of input dimensions, the KL divergence between
two multivariate normal distributions can be evaluated in constant time using (3.11).
Therefore, the computation of all KL divergences involving inputs scales linearly with
the total size of the training data. Moreover, for each sample drawn from q( f (s)s,i ), one

additional sample from q(x(s)i ) is required. When the number of input dimensions is

fixed, sampling from q(x(s)i ) can be performed in constant time per sample, resulting in
an additional computational cost that scales linearly with both the size of the training
dataset as well as the number of samples S used to approximate the expectations.
Furthermore, our approach introduces parameters for the variational posterior over
each input. In our experiments, we parametrized each of these with its mean vector
and a diagonal covariance matrix to reduce the number of parameters. With variational
posteriors over the inputs defined in this way, an additional 2D(N1 + ... + Ns) varia-
tional parameters are needed for the inputs. While this increase in parameters is not
ideal, we presume that the KL divergence between the variational posterior and the
prior over the inputs will provide adequate regularization to prevent overfitting.
A further issue is the selection of the pseudo-input locations. While Cutajar et al. [22]
use subsets from the lower-fidelity data for all fidelities except the first, extending this
approach to scenarios with uncertain inputs is not straightforward. We refrain from
introducing additional uncertainty over the pseudo-inputs, since it further complicates
the calculation of the ELBO. As a short-term solution, we use the input means from the
lower fidelity model along with the respective training targets and assume that these
are sufficient to represent inputs to our model.
For model training, we achieved the best results by first employing the training proce-
dure proposed Cutajar et al. [22]. During this initial training stage, we fix the variational
posteriors over the inputs to their mean vectors and set their variances to a value close
to zero. Subsequently, we free the parameters of the variational posterior and train
all parameters jointly. Thus, our training procedure corresponds to first training a
multi-fidelity DGP on the means of the input distributions, and then correcting it to
account for input uncertainty.
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3.2.3 Experiments on Synthetic Data

To assess the performance of the methods developed in the previous two subsections,
we consider a synthetic example explored by Perdikaris et al. [21] and Cutajar et al. [22].
We generate the low-fidelity data using the function

fl(x) = sin(8πx)

and the high-fidelity data through

fh(x) = (x −
√

2) fl(x)2 .

We follow Cutajar et al. and restrict the inputs in the high-fidelity dataset to roughly
the interval [0, 0.7], whereas the inputs for the low-fidelity surrogate cover the broader
interval [0, 1]. This allows us to compare the performance of the methods in regions
where high-fidelity observations are scarce or not available. The inputs are again
measurements of a signal which we created in a similar fashion to subsection 3.1.2.
Though, we added Gaussian white noise with smaller variances to the input signals.
Additionally, we used a smaller noise variance for the inputs to high-fidelity function
compared to the low-fidelity inputs, as we considered this choice more realistic. To
estimate the true inputs, we modeled the input signals by the linear regression model
with drift and applied a RTSS to them, tuning the parameters such that the true signal
was approximately contained in 95% of the 1.96 standard deviation confidence intervals.
As training data, we sampled 55 and 28 clean inputs, along with their corresponding
estimated distributions, for the low-fidelity and high-fidelity datasets, respectively. Sub-
sequently, we computed the corresponding function values and added small Gaussian
white noise to them when the inputs were uncertain. The resulting data is shown in
Figure 3.4.
For comparison with the standard NARGP, we additionally required nested training
data. To this end, we replaced 28 points from the low-fidelity dataset, which had inputs
within [0, 0.7], with 28 new training points generated by evaluating the low-fidelity
function at the high-fidelity inputs. In the experiments with noisy inputs, we substi-
tuted these inputs with the means of their respective input distribution and generated
the nested training data in a similar manner.
To implement the baseline models and our proposed extensions, we modified the
implementations of the NARGP [64] and MFDGP [65] to be compatible with GPflow
2.9.2 and incorporated our additions proposed in subsection 3.2.1 and subsection 3.2.2.
In all experiments with versions of the MFDGP, we utilized all low-fidelity training
inputs or their estimated means as pesudo-inputs for the low-fidelity surrogate. For
the high-fidelity surrogate, we used half of these inputs, concatenated with their corre-
sponding target values, as pseudo-inputs.
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Figure 3.4: The underlying low-fidelity and high-fidelity functions together with the
data points with and without uncertainty in the inputs.

To train the standard MFDGP with clean inputs, we employed the Adam optimizer [66]
for 3,000 optimization steps while fixing the noise variances and the variances of the
inducing variables at a value close to zero. Afterward, we ran the optimizer for an
additional 15,000 steps, during which all hyperparameters were optimized simulta-
neously. We assigned a learning rate of 0.003 to the optimizer for the initial set of
iterations and reduced it to 0.001 for the second set of iterations. The numbers of
training steps and the learning rates were chosen to achieve a comparable result to
that presented by Cutajar et al. for the MFDGP trained on clean inputs. The resulting
predictive distributions are shown in Figure 3.5. In general, fewer optimization steps
were needed for the models to converge. However, in some instances, we observed
that the expected log likelihoods in (2.21) converged first, while the penalty term from
the KL divergences continued to improve. After a few more iterations, the increase
of the penalty term came at the expense of a significant reduction of the expected
log likelihoods. As a result, the hyperparameters converged to an optimum where
the KL divergences inflicted only a small penalty, but the target variance was highly
overestimated. We experimented with different numbers of optimization steps, learning
rates, and applying exponential decay to the learning rates, but were unable to find a
general way to prevent this issue.
We obtained comparably strong results with a standard NARGP trained on clean inputs,
employing the L-BFGS-B optimizer from Scipy 1.11.4. However, the performance of the
of the high-fidelity surrogate significantly declined within the interval [0.8, 1], which we
attribute to the scarcity of low-fidelity training points in this region. When the training
inputs were uniformly sampled from [0, 1] and [0, 0.7], respectively, we obtained an
appropriate fit to the high-fidelity function within the entire interval [0, 1].
When both the MFDGP and the NARGP were trained using only the means of the
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Figure 3.5: Predictive distribution for each fidelity level of the MFDGP trained with
clean inputs. For the low-fidelity surrogate, the predictive mean closely
aligns with the underlying function and the variance

estimated input distributions in the presence of input uncertainty, their performance
significantly deteriorated on this synthetic example. This approach effectively trains
the models on smoothed input signals, disregarding the distribution of the inputs. The
resulting predictive distributions are shown in Figure 3.6 and Figure 3.7.
For the MFDGP, we used the same number of optimization steps and learning rates
as specified for training the MFDGP on clean inputs. During training, we observed
the previously discussed issue that the expected log likelihoods were significantly de-
creased in order to improve the penalty term. Under different training configurations,
we occasionally obtained a slightly better fit, with an appropriate predictive mean of
the high-fidelity surrogate for inputs in the interval [0.1, 0.3].
Moreover, the NARGP attempts to fit all noisy data points exactly, resulting in small
lengthscales and strong oscillations. These results can be expected, as the NARGP
assumes noise-free data. Therefore, it is ill-suited for application to noisy data. Nev-
ertheless, it is noteworthy that the predictive means mostly remain close to both the
low-fidelity and high-fidelity functions.
We trained our input-uncertainty-aware models using the input distributions estimated

by the RTSS, which once again resembles the realistic scenario that we do not have exact
knowledge about the distribution of the inputs. For our extension to the MFDGP, we
initially trained our model as a standard MFDGP by fixing the variational posterior over
the inputs fixed to the means of the prior, with a variance close to zero. In this initial
training stage, we ran 3,000 optimization steps in its first phase and 7500 optimization
steps for its second phase, employing a learning rate of 0.003 and 0.001, respectively.
Subsequently, we released the variational parameters for the variational posterior over
the inputs and jointly trained all hyperparameters for another 7,500 training steps with
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Figure 3.6: The predictive distribution of both MFDGP layers, trained on the means of
the estimated inputs.

Figure 3.7: The predictive distribution of both NARGP layers, trained on the means of
the estimated inputs.

a learning rate of 0.001. The resulting predictive distributions of our extensions are
illustrated in Figure 3.8 and Figure 3.9.
To quantify the performance of all models, we calculated the SMSE and MSLL for each

model trained. The test data for the low-fidelity surrogates were created by evaluating
the low-fidelity function on 100 equally spaced inputs spanning the interval [0, 1]. For
the high-fidelity test data, we distinguished between the input interval [0, 0.7], which is
covered by both low- and high-fidelity training points, and the input interval [0.7, 1],
which is exclusively covered by low-fidelity training data. In both cases, we evaluated
the high-fidelity function for equally spaced input points, using 100 data points for
the interval [0, 0.7] and 50 data points for [0.7, 1]. Furthermore, we used a Gaussian
approximation of the predictive distribution to compute the MSLL for all versions of
the MFDGP. The results are presented in Table 3.2.
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Figure 3.8: Predictive distribution of both layers of our input-uncertainty-aware adapta-
tion to the MFDGP.

Figure 3.9: Predictive distribution of both layers of our input-uncertainty-aware adapta-
tion to the NARGP.

As shown in Figure 3.8, our extension of the MFDGP adequately recovers the low-
fidelity function and the high-fidelity function within the area covered by high-fidelity
data points. Additionally, it roughly generalizes the shape of the high-fidelity function
to the region solely covered by low-fidelity training data. Nonetheless, the SMSE in
this area is rather high and the generalization is quite imprecise, accompanied by a
large predictive variance. It is also noteworthy that our model demonstrated great
performance in recovering the low-fidelity function, reducing the SMSE of a standard
MFDGP by a factor of 10. In particular, it correctly recovers the latent inputs of the low-
fidelity training data within the interval [0.2, 0.6] with minimal variance. Nevertheless,
our model, trained with the specified training configuration, predicts overly narrow
confidence intervals, resulting in a high MSLL for the low-fidelity test data and a
relatively high MSLL for the high-fidelity test data with inputs in [0, 0.7]. These narrow
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Model Metric for low- Metric for high- Metric for high-
fidelity test data fidelity test data fidelity test data

test data within [0, 0.7] within [0, 1]

SMSE MSLL SMSE MSLL SMSE MSLL

MFDGP trained with 0.000 −4.891 0.019 −2.074 0.364 −1.250
clean inputs
MFDGP trained with 0.336 −0.472 1.102 0.307 1.614 0.751
estimated input means
MFDGP with variational 0.033 6.637 0.321 0.371 1.500 −0.420
posterior over inputs
NARGP trained with 0.000 −5.652 0.0159 −2.802 4.335 −0.037
clean inputs
NARGP trained with 0.419 38.660 0.645 0.675 0.799 −0.863
estimated input means
NARGP with expected 0.125 −1.312 0.479 0.552 0.805 −0.703
covariance function

Table 3.2: Results for the toy data experiments for different sets of test data. All
values were rounded to the third decimal place. Lower values indicate better
performance.

confidence intervals can be attributed to slightly inaccurate variational posteriors over
the inputs with high confidence.
However, other training configurations resulted in broader confidence intervals, while
adequately preserving the shape of the low-fidelity function. Although the high-fidelity
function could generally be recovered, our model interpreted small peaks in the valleys
of the high-fidelity function which increased with larger input values. Consequently,
the MSLL could be reduced at the expense of a higher SMSE.
In contrast to the predictive distribution generated by our input-uncertainty-aware
MFDGP, our modification of the NARGP predicted broader confidence intervals, but
generally performed worse in recovering both the underlying low-fidelity and high-
fidelity function. Nonetheless, it provided better approximations to the data-generating
functions than the baseline models. Furthermore, while achieving merely a relatively
high MSLL for the high-fidelity test data with inputs in [0, 0.7], it predicted relatively
narrow confidence intervals that still managed to cover the underlying functions in most
regions. Thus, this method can be regarded as a simpler yet lower-quality alternative to
our MFDGP extension, which required more iterations to converge and parametrized
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each input with a variational posterior.

3.2.4 Application to Rover Wheel-Soil Interaction Modeling

We further evaluate the performance of our extension to the MFDGP by applying
it to model the movement of a rover wheel on soft soil. Maneuvering rovers on
extraterrestrial surfaces requires highly accurate predictions of the locomotion of the
vehicle, as rovers typically cannot be maintained or repaired on extraterrestrial missions,
and any mistake can jeopardize the entire mission [4]. When operating on planetary
bodies, rovers often traverse soft deformable soils such as sand or dust. Under these
conditions, the rover encounters significant challenges, such as slip-sinkage, which
refers to increased vehicle sinkage and motion resistance due to vehicle slip [67]. Such
situations can result in the rover becoming trapped in the soft soil, and therefore
necessitate explicit modeling of the wheel-soil interaction, as kinematic theory is
insufficient for such complex dynamics [68]. However, no exact physical models exist to
describe these interactions [69]. While several numerical simulation tools are available,
they either demand considerable computational resources or yield relatively inaccurate
predictions, which renders them ill-suited for application in extraterrestrial missions.
A promising alternative is to employ machine learning-based surrogate models using
data from simulations or experiments to build a prediction tool which is both fast and
accurate [4].

Several machine learning-based approaches for modeling rover wheel-soil interaction
have been successfully developed [3]. In our work, we build upon the multi-fidelity GP
approaches presented by Ravi, Fediukov, et al. [6]. Their experiments aim to predict
the traction force acting on a wheel, which is a critical factor in modeling rover wheel
locomotion [4]. The inputs to their models comprise four three-dimensional vectors:
the position of the center of the wheel relative to the ground, the velocity of the wheel,
its angular velocity, and the direction of gravity. The authors considered multiple data
sources, among which were the Soil Contact Model [69] (SCM), a semi-empirical simu-
lation model with intermediate approximation capability [4], and the Terramechanics
Robotics Locomotion Lab (TROLL) testbed at the German Aerospace Center, a physical
test rig for automated analysis of ground interactions [70]. Their findings demonstrate
that two fidelity levels suffice to model the traction force using multi-fidelity GPs,
with the SCM serving as the low-fidelity data source and the TROLL testbed as the
high-fidelity data source. Additionally, they achieved superior results with the MFDGP.
Therefore, we do not consider the application of the NARGP and its extension, as these
models also produced inferior results in the experiments from the previous subsection.
The data for both the low-fidelity and high-fidelity surrogates is generated as a series of
runs, each producing inputs and target values represented as signals. Ravi, Fediukov,
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et al. [6] note that only a constant application of traction force has an impact on the
movement of a wheel. Consequently, they treat spikes in the traction force as noise
and smooth all signals. Our experiments aim to investigate whether cutting off higher-
frequency components in the signals can negatively impact the performance of the
models, as this approach corresponds to discarding information in the data. While we
still work with smoothed signals in our experiments, we allow for the true inputs to be
unknown and distributed around these smoothed signals.
For the low-fidelity training dataset, we utilized 200 runs generated by the SCM. Each
of these runs was 20 seconds long and we sampled data points at a rate of 10 points
per second. The high-fidelity training dataset was derived from 38 runs in the TROLL
testbed, all with the same sampling rate but lengths ranging from 8 seconds to 77
seconds, resulting in 8,610 data points. For testing, we reserved an additional 12 runs
from the TROLL testbed, with lengths varying between 9 and 77 seconds, resulting in
3,140 test data points.
After normalizing the data, we applied the RTSS to each run and each input dimension
separately. We also used it to smooth the target values. This approach does not account
for correlations between individual input dimensions, as well as between inputs and
targets, and it assumes that the inputs are normally distributed. We made these as-
sumptions to comply with our model formulation. For simplicity, we also employed
the linear regression model with drift in the RTSS. To apply the RTSS, we were required
to specify the covariance matrices for both the process and measurement noise, as well
as the distribution of the initial state, individually for each signal. For the mean of the
initial states, we used the first state in the respective signal and the difference between
the first and the second state. For each signal, we further calculated its sample variance,
as well as the sample variance of the differences between neighboring samples. We
scaled these variances by constants and then used them as initial parameters in the
covariance matrices for the RTSS, which we assumed to be diagonal. Subsequently, we
executed three iterations of the EM algorithm provided by pykalman [60] to further
adapt the parameters of the RTSS to each respective signal. We obtained mostly rel-
atively under-confident confidence intervals, which was intentional, since all signals
were provided to us pre-smoothed. Exemplary cases from the TROLL dataset are
shown in Figure 3.10.
We further randomly subsampled the training datasets, resulting in 3,000 low-fidelity
training points and 600 high-fidelity training points. For the standard MFDGP, we used
the means of the input distributions as training inputs, which corresponds to using
smoothed signals as inputs. Conversely, we used the estimated input distributions
to train our extension to the MFDGP. Both training datasets included the smoothed
version of the traction force as target values, discarding their variance estimates from
the RTSS. For both models, we used 600 pseudo-inputs for the low-fidelity surrogate
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Figure 3.10: Examples for the application of the RTSS to an input signal for the high-
fidelity data. In the graphic on the left, the signal is relatively smooth,
resulting in under-confident confidence intervals. Such cases were com-
mon.

and 200 pseudo-inputs for the high-fidelity surrogate. The low-fidelity pseudo-inputs
consisted of randomly sampled means from the distributions of the training inputs.
Since SCM evaluations were available for all high-fidelity training inputs, we randomly
sampled 200 input means from the high-fidelity training dataset and concatenated
them with the respective traction force predictions from the SCM to create the set of
high-fidelity pseudo-inputs. We hypothesized that this choice of pseudo-inputs might
yield better performance, as the pseudo-inputs would align with the inputs for the
high-fidelity surrogate.
We devided the training procedure of the standard MFDGP into 3,000 optimization
steps for the initial training phase, followed by 20,000 additional iterations for the
second training phase, employing learning rates of 0.003 and 0.001, respectively. For
our extension to the MFDGP, we split the training process into three stages consisting
of 3,000, 10,000 and another 10,000 optimization steps, employing learning rates of
0.003, 0.001, and 0.001, respectively. For both models, the differences between the
respective training phases is analogous to those discussed in the previous subsection.
The resulting predictive means of the high-fidelity surrogates for the test dataset are
illustrated in Figure 3.11, and the corresponding loss metrics, along with some statistics
for the resulting standard deviations, are presented in Table 3.3.
The results show that our input-uncertainty-aware MFDGP variant outperformed the

standard MFDGP in terms of both the test MSLL and the test SMSE, which can also
be seen by comparing the predictive means in Figure 3.11. Yet, there are some regions
where the standard MFDGP provides a better fit to the test data than our version.
Both models significantly overestimated the output variance, resulting in confidence
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Figure 3.11: Predictive means of the considered model along with the test data. All test
runs were accumulated into single plots and discontinuities indicate the
transition between separate runs. We omitted the confidence intervals for
clarity. Average and bounds of the standard variations can be found in
Table 3.3.

intervals that were so broad that they lack practical meaning. This issue is also reflected
in the relatively high MSLLs. As previously mentioned, we observed a similar issue
with the standard MFDGP in our toy data experiment. However, in this real-world data
experiment, we could not observe a decrease of the expected log likelihoods during
training. Additionally, we did not obtain notably smaller standard deviations with
other configurations of the training procedure. Nevertheless, our variant of the MFDGP
still produced slightly smaller standard deviations compared to the baseline model.
We also note that Ravi, Fediukov, et al. [6] achieved lower SMSEs with their implemen-
tation of the MFDGP than both the models we considered. Moreover, their experiments
did not exhibit the issue of significantly overestimated confidence intervals. However,
our experiments differed in several ways. For training, we used different subsets from
the original datasets, which also differed slightly from the ones they used. In addition,
the numbers of training points and pseudo inputs in our experiment deviated from
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Model Metric Standard deviations

SMSE MSLL Minimum Average Maximum

MFDGP baseline 0.3157 0.1634 7.2153 9.4333 26.0149
input-uncertainty-aware 0.1977 -0.0018 6.1818 8.1873 22.9103
MFDGP

Table 3.3: Test metrics as well as the standard deviations for the application of both
variants of the MFDGP to the rover wheel locomotion dataset. Lower values
correspond to better performance.

theirs. We also smoothed all signals differently and adapted the parameters of the
smoother to each signal individually. Apart from that, we implemented the MFDGP in
a different way, along with another training procedure and optimizer. These factors
likely contributed substantially to the reduced predictive performance of our mod-
els. Although our variant of the MFDGP performed notably better than our baseline
model, our results do not permit us to make a definite statement whether our proposed
framework provides an enhanced surrogate model for rover wheel locomotion. There
remains room for improvement, and both methods should be assessed under more
optimal conditions.
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4.1 Summary

In this thesis, we explored various methods that address uncertainty in the inputs of
GP regression models, using some as the basis for developing input-uncertainty-aware
extensions to two prominent multi-fidelity GP models. We focused particularly on
scenarios where the inputs are noisy signals, which are smoothed during preprocessing
to reduce the noise. In these cases, we investigated whether input-uncertainty-aware
GP models can outperform standard single- and multi-fidelity GP models in terms of
predictive performance. We approached this by treating the true inputs as randomly
distributed around the smoothed signal. The results from our synthetic examples in
both the single- and the multi-fidelity frameworks suggest that treating the inputs
as uncertain generally leads to better predictive performance. We further tested our
best-performing multi-fidelity model on the task of modeling rover wheel locomotion.
Although our setup was likely not optimal, our results indicate that our model may
offer valuable improvements in practical applications.
We considered three different approaches to incorporating uncertain inputs into single-
fidelity GP regression models. The first approach involved taking the expectation of a
squared exponential covariance function to obtain a GP that approximately incorporates
the input distributions. The second approach comprised two methods that utilize
Taylor approximations to derive input-uncertainty-aware GPs. Lastly, we examined
three further methods that utilize different variational techniques. These encompass
the well-known Bayesian GPLVM, a method that infers inputs using MAP estimation,
and a stochastic EM method that samples from the posterior distribution over the
inputs using an MCMC sampler. The multi-fidelity segment of our work focused on the
NARGP and the MFDGP. These multi-fidelity GP models served as baselines, and we
proposed extensions to them to account for uncertain inputs. Specifically, we extended
the NARGP by stacking GP regression models using an adapted expected covariance
function, and we modified the MFDGP by introducing a variational posterior over the
inputs.
In our experiments, we employed a Bayesian smoother to jointly smooth noisy input
signals and estimate the distributions of the true latent inputs. Consequently, we
maintained a Gaussian assumption of the input distributions throughout this entire
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study. While most of the methods we considered assumed the input distribution was
known, both Taylor approximation-based methods learned the distribution without
relying on this prior knowledge. Our single-fidelity experiments indicated superior
predictive performance when an MAP estimate of the inputs was computed using a
specific training procedure that prevents overfitting. Additionally, we achieved notable
results by employing an expected covariance function. In the multi-fidelity setting, our
MFDGP variant achieved the best performance, while our NARGP variant could also
produce more stable predictions than the baseline models in the presence of uncertain
inputs.

4.2 Discussion

In addition to quantitatively showing superior predictive performance of input-uncer-
tainty-aware GP regression models in the presence of noise in input signals, our work
also involved a comparative study of these methods using a synthetic example. While
most single-fidelity models were validated in their respective original papers, the
authors generally considered different examples, complicating the specific choice of
a model for applications with uncertain inputs. The models varied in whether they
assume the input distribution as known, yet, all are applicable for general regression
tasks. We aimed to conduct an experiment that highlights the strengths and shortcom-
ings of individual models, allowing researches to make informed choices among them.
For instance, in scenarios in which only some inputs are uncertain or in particularly
safety-critical applications, it may be desirable to employ a model that produces wider
confidence intervals around uncertain data, rather than one with narrower confidence
intervals yet a better fit to the ground truth.
Moreover, our work has explored how to incorporate input uncertainty in multi-fidelity
GP regression models, providing two novel input-uncertainty-aware models. To the
best of our knowledge, no such extensions of the NARGP or the MFDGP currently
exist. Our models may be readily applied in practice when researchers know that the
inputs have uncertain values with a known Gaussian distribution.
Nonetheless, we mainly compared the models with respect to their ability to recover
the underlying ground truth. Other important factors, such as runtime complexity and
memory usage, should also be considered, though. For instance, while the Bayesian
GPLVM was outperformed by most of the input-uncertainty-aware models in our
synthetic examples, its inducing variable framework makes it suitable for larger scale
applications. Conversely, it requires the parametrization of the variational posterior
over each individual inputs. Similarly, our extension of the MFDGP parametrizes all
inputs and needed demanded more optimization steps to converge than our simpler
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extension of the NARGP.
Furthermore, we upheld the assumption that the inputs are normally distributed. In
applications where this is not the case, the predictive performance of individual models
might be significantly compromised. We also did not directly assess the performance
of the methods for predicting at uncertain inputs. Although this was not necessary to
compare the predictive performance of models trained with uncertain inputs, more
realistic experiments should include testing on uncertain inputs, as the test and training
datasets are typically derived from the same source.

4.3 Future Work

A primary objective for future work regarding our methods should be to compare our
input-uncertainty-aware MFDGP with a standard MFDGP in the context of rover wheel
locomotion, ensuring both models achieve their optimal performance. The findings
of our real-world data experiments do not provide a clear indication of whether our
model is appropriate for this application, given that the baseline method is known
achieve better results. Apart from that, future work on our input-uncertainty-aware
MFDGP might feature reducing the number of parameters used for the variational
posteriors over the inputs. Possible approaches include those suggested by Damianou,
Titsias, et al. [57], who propose fixing the means of the variational posteriors to the
means of the prior, or by Villacampa-Calvo et al. [39], who use a deep neural network
to parametrize the variational posteriors.
Furthermore, our adaptation of the NARGP only considered the use of the expected
covariance function. Other approaches are possible, as long as the input noise is
allowed to vary across inputs. While this applies to all models except the Taylor
approximation-based ones, they might also be adapted for known, varying input
distributions. Furthermore, stacking other models requires a method for predicting
at uncertain inputs, which is offered for general GP regression tasks by Girard et
al. [48]. Additionally, it is essential to further investigate whether the newly considered
single-fidelity model remains applicable when the structured covariance function from
the NARGP is used.
Another line of future work could build upon the suggestions by Lee et al. [71], which
were also adopted by Ravi, Fediukov, et al. [6]. Their approach incorporates gradient
information or evaluations at slightly shifted locations from low-fidelity model in the
high-fidelity surrogate. Although we did not address these approaches, combining
them with our input-uncertainty-aware GP models could yield further interesting
results.
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