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Abstract

Training a machine learning model might require a large training data set. However,
not in every setting is it possible to collect a large number of training samples. In
a multi-fidelity setting, samples of a low-fidelity model, a model that might be less
accurate in its predictions but is cheaper to evaluate, might be used to aid in learning
a more precise model, the high-fidelity model. One considers samples in the signal
domain. However, an alternative representation is a discrete spectrum of the samples.
In this project, we aim to extract from the low-fidelity spectrum information, that can
help to learn the spectrum of the high-fidelity function.
The spectral components of the high-fidelity function are learned with Gaussian pro-
cesses [Ras03]. There are different kernels one can choose for the Gaussian processes.
In the context of training with the spectra, we compared the performance of the spectral
mixture kernels [Wil14] with the kernels composed from widely used components such
as, for example, SquaredExponential kernels. Additionally, the BNSE initialization
algorithm [Tob18] was used to further enhance the performance of the spectral mixture
kernels.
The NARGP kernels [Per+17] introduce a structure in a kernel working with both the
input information x and the low-fidelity samples. This structure was incorporated in
the constructed model for learning in the frequency domain.
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1. INTRODUCTION vi

1 Introduction

One central theme of Machine learning is pattern discovery. Given observations from
a complex real-world process, one might wish to build a mathematical model of this
process. Such a model might help better understand how the process evolves and
predict its outcome on the points where the data was not observed before. The data
might contain hidden patterns which might be of interest to discover. The signal that
generated the observed data might be a mixture of multiple sources and might be
affected by noise.
With some signals one can explicitly see the trends and choose the components of a
machine learning model, such that they represent the observed patterns in the data. In
some settings, it is also possible to separate single sources and to model them separately.
An example of such a setting is described in [AAS19]. The authors have trained for
each isolated source a separate Gaussian process and then assumed that the observed
signal is an additive combination of the sources. However, real-world data is often
complicated with no obvious patterns. It might also be difficult to isolate the sources,
to determine which sources comprise the signal and how the separate sources are
combined. In such a scenario, interpretability of the model might be of significance.
The parametric models, for example, Neural Networks [Bis06], trained on the observed
data might be difficult to interpret.
Gaussian processes [Ras03] are a family of machine learning models. It contains models
that are both powerful and interpretable. They describe a distribution over functions.
Gaussian processes can incorporate the observed information about the function with
the help of Bayes’s theorem. The result will also be a Gaussian process. A defining
property of real-valued Gaussian processes is its covariance function. A property, which
according to [Mur12] is often encoded in the covariance function, is that for two similar
points xi and xj one would expect similar function values f (xi) and f(xj) at these
points.
There exist many different kernel functions. Examples include the Square exponential,
Rational Quadratic, and Matern [Gar23]. Through kernel functions, one can control
which properties the sampled functions will have. For example, the Matern kernels
with ν = 0.5 can model functions which are continous, but differentiable nowhere. If
one knows which types of behavior the separate sources comprising the signal have,
then one might choose the appropriate kernels and model the signal.
The difficulty when constructing a kernel function is that a kernel matrix evaluated
at a set of points X must be positive definite for every choice of X. This requirement
might not be easy to prove. The Bochner’s theorem [Boc+59] looks at the spectrum of
the covariance function. It derives a requirement how a spectrum of a valid stationary
covariance function should look like. Namely, a spectrum resulting from the Fourier
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transform of a valid stationary function is proportional to a probability measure. This
requirement in the frequency domain might be easier to satisfy compared to positive-
definiteness in the signal domain. As a result, one idea could be to construct kernels
directly in the frequency domain. The author in [Wil14] models the spectral density of
a kernel function as a mixture of Gaussian distributions. This idea gives rise to Spectral
mixture kernels. As the authors demonstrate the kernels are very flexible and are able
to model many popular kernel families.
A signal can be considered in the signal domain. However, there exists an alternative
representation in the frequency domain. The Fourier series allows to represent a signal
as a weighted sum of periodic functions with different frequencies. One interesting
idea could be to train a Gaussian process in frequency domain. A Gaussian process
will extract information from the spectrum of the function’s samples.
In some settings, it might be costly to build a large training data set for a model. A
possible remedy might be the multi-fidelity setting. The settings have low-fidelity
models and high-fidelity models. Low-fidelity models might be cheap to evaluate, but
less accurate when predicting a ground-truth function. On the contrary, the high-fidelity
functions might provide a very accurate description of the observed process, but are
computationally expensive to evaluate. The idea of the multi-fidelity as described in
[Rav+24] is to use samples from the low-fidelity as a part of the inputs for the high-
fidelity model. The hope is that additional information provided by the low-fidelity
samples might simplify the task of learning the ground truth function.
In the project, all three ideas of the spectral mixture kernels, training of Gaussian
processes in the frequency domain, and multi-fidelity setting are explored. In the
project, we defined a Gaussian process model that takes as inputs the domain points x
and frequencies of the low-fidelity function, and then it tries to predict frequencies of the
high-fidelity function. The Gaussian process was used with the spectral mixture kernels
and custom kernels built from traditional kernels, for example, Squared Exponential.
Finally, the NARGP introduces a structure for a kernel in the multi-fidelity setting. This
kernel was used together with the derived model.
The section 2 starts with theory on Fourier series, Fourier transform and Discrete
Fourier transform. These concepts play a crucial role in the project from being a part
of the definition of the spectral mixture kernel to extracting spectrum from a discrete
set of points from the signal. Then, the concept of a Gaussian process is explained.
Finally, the spectral mixture kernels are described. Additionally, the BNSE initialization
method for the parameters of the spectral mixture kernels introduced by [Tob18] is
described. The method helps to select better initial parameters during the optimization
procedure for the spectral mixture kernels.
The section 3 describes the Gaussian process models trained on the frequencies of
the low-fidelity function. In the section, additionally, the model is combined with the
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NARGP kernels.
Finally, the section 4 shows the performance of the model on academic examples.

2 State of the art

2.1 Fourier series

This section starts with a question of how one can represent a function via simple
building blocks. A close analogy could be to look at vectors in Euclidean space. A
vector can be uniquely represented as a weighted sum of basis vectors. In turn, this
leads to the next question: whether this idea can be extended to function spaces, what
kind of basic functions one should choose, and how many basis functions one needs.
A potential first step is considering a periodic function f (t) with period T. When trying
to find building blocks for the periodic functions, one choice could be to consider sin
and cos functions. These functions are periodic and infinitely differentiable. Euler’s
formula allows shows the relationship between complex exponential function and the
sin and cos functions as:

eix = cos(x) + i sin(x).

The sequence
∞

∑
n=−∞

cne2πin t
T

is the Fourier series expansion of the function f (t). Its coefficients are defined as

cn =
1
T

∫ T

0
e−2πin t

T f (t)dt.

The coefficients result from a complex inner product between functions defined as

( f , t) =
∫ T

0
f (t)g(t)dt.

According to [Osg] the functions en(t) = 1√
T

e2πin t
T are orthonormal and build a basis

of the function space L2([0, 1]), a space containing functions with finite square norm.
For functions belonging to L2 the Fourier coefficients cn exist.
The Fourier series has infinite number of components. In practice, it would be in-
tractable to compute an infinite series. This leads to an approximation of the series by
considering only a finite number of components N:

SN(t) =
N

∑
n=−N

cne2πin t
T .
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It should be noted, that not all functions have a Fourier series representation with
an infinite number of non-zero coefficients cn. One important observation is that the
Fourier series is defined for periodic signals with period T. In practice, a function f (t)
might not be periodic. This raises the question of whether the ideas from the Fourier
series can be extended to aperiodic functions. The question will lead to the Fourier
transform of functions.

2.2 Fourier transform

Fourier transform allows the mapping of a function in the time domain to a function
in the frequency domain. By performing a Fourier transform one can decompose a
complicated input signal into separate frequency components. As noted in [Fre11],
depending on application, some signal components can be interpreted as effects of
physical phenomena that were present when the signal was measured. As an example,
in EKG through Fourier transform one can filter out the noise from the signal by
cutting off the specific frequencies corresponding to the noise. It requires knowing the
typical frequency of the heartbeat and what frequencies might be the noise components.
As a result, frequency representation of the signal might allow to incorporate prior
knowledge about the signal and how it is generated on one side, on the other side it
might help to derive a simpler representation of the signals in terms of its frequencies.
One important observation is that some operators in time domain might be transformed
in the frequency domain and vice versa. For example, the sum operator is preserved

F ( f + g)(s) = F f (s) +Fg(s).

However, pointwise multiplication in frequency domain does not correspond to the
pointwise multiplication in the time domain. Instead, based on the Convolution
theorem, one obtains convolution in the time domain:

F ( f ∗ g)(s) = F f (s)Fg(s).

Since pointwise multiplication in the frequency domain allows the modification of
individual frequencies, this approach can also be used for noise filtering by setting
specific frequencies to zero.
An idea described in [Fre11] is to treat aperiodic signal f (t) as a periodic one, but with
infinite period T → ∞. Then the coefficients of the Fourier series will have the form:

f̂ (s) =
∫ ∞

−∞
e2πist f (t)dt.

Fourier series has a discrete spectrum. It might contain infinitely many elements, but it
is still countable. On the contrary, the Fourier transform has a continuous spectrum.
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A potential question that may arise is whether there exists an inverse transform. An
inverse transform should take the amplitudes f̂ (s) as an input and then from this
function it should reconstruct the original signal f (t). The idea is to assume for a
moment that the function f (t) is periodic with period T and thus has a Fourier series
expansion. Then as shown in [Osg] one can derive a relation between the coefficients of
the series cn and the amplitudes of the Fourier transform:

cn =
1
T

f̂
( n

T

)
.

The next step is to look at the limit T → ∞ and to observe that the series forms a
Riemann sum which approximates the integral:

∞

∑
n=−∞

1
T

f̂ (
n
T
)e2πi n

T t ≈
∫ ∞

−∞
f̂ (s)e2πistds.

This results in the inverse Fourier transform:

f (t) =
∫ ∞

−∞
f̂ (s)e2πistds.

The Fourier transform is defined for continuous functions f (t); however, in practice,
often one obtains not the whole functions but rather a sequence of samples from the
function. A possible question arises on how to extend the idea of the Fourier transform
to discrete finite sequences. One observation from [Fre11] is that a sequence of samples
does not uniquely define a function from which it was sampled.

2.3 Discrete Fourier Transform

A potential first question is how a Fourier series would look for a discrete-time finite
signal. Suppose that the discrete signal contains N elements:

f = ( f [0], f [1], ..., f [N − 1]).

The first important concept is that of a complex root of unity defined as

wn = 1

for a complex number w. According to [Cor+22] for a fixed n there are exactly n
complex roots of unity having the form e2πi k

n . The expression

wn = e2π i
n
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is the principal n-th root of unity. The other n − 1 root s of unity are the powers of the
principal root of unity. One important property denoted in [Cor+22] is the Halving
lemma. It states that, if n > 0 and n is even then the squares of the n complex roots of
unity result in n/2 complex roots of unity. This property plays an important role in an
efficient implementation of the Discrete Fourier Transform.
Let the vector w−k be defined as

w−k = (1, w−k, w−2k, ..., w−(N−1)k).

Then the discrete Fourier transform is defined as

Ff =
N−1

∑
k=0

f[k]w−k.

According to [Osg] the discrete Fourier transform will define two grids. One is in the
signal domain, and one is in the frequency domain. The signal is assumed to be periodic
with period N. An important difference to the continuous Fourier transform according
to [Fre11] is that in continuous case there is an infinite number of harmonics, however
in the discrete case the number is finite. The reason is the wrapping of frequencies, due
to them being defined on a circle. This means that for a discrete signal consisting of N
samples, its Fourier series will contain N frequencies.
According to [Fre11] one can represent a discrete Fourier transform as a matrix vector
product Ff. The matrix F has NxN entries and is defined as

F =


1 1 ... 1
1 w−1 ... w−(N−1)

1 w−2 ... w−2(N−1)

. . ... .
1 w−(N−1) ... w−(N−1)2

 .

An inverse of the transform would require to know the inverse of the matrix F . The
entries of F are complex numbers. If a matrix A is complex, then A∗ denotes its
conjugate transpose. A square complex matrix is unitary if A∗A = I. According to
[Osg] a complex matrix is unitary if and only if its columns form an orthonormal basis.
The columns of F are the powers of vector w. According to [Osg] for two integers k
and l vectors wl and wk are orthogonal. For orthonormality, they must be normalized
with 1√

N
. As a result, the inverse DFT is defined through the matrix F−1:

F−1 =
1
N
F ∗.
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Fast Fourier transform

A potential problem with the matrix formulation of the DFT is that its cost is O(n2)

which might be intractable for discrete signals with many samples. As the author in
[Fre11] describes, one idea could be to use the divide and conquer approach by trying
to decompose a large problem into small ones and then to combine the solutions of the
smaller problems into the solution of the starting problem.
One way to subdivide the problem is to look at even and the odd entries of the signal
separately. For a 4 point signal its DFT is

a0

a1

a2

a3

 =


W0

4 W0
4 W0

4 W0
4

W0
4 W1

4 W2
4 W3

4
W0

4 W2
4 W0

4 W2
4

W0
4 W3

4 W2
4 W1

4

×


x[0]
x[2]
x[4]
x[6]

 .

This algorithm is known as the Fast Fourier Transform. It allows to compute the DFT
in time O(nlog(n)).
If the signal is real-valued, then there is a relation between its positive and negative
frequency coefficients. Since the signal is periodic the following relations hold for the
coefficients ak:

aN−k = a−k = a∗k

with a∗k denoting the complex conjugate of the ak. This relation allows to only consider
the positive frequency terms. This leads to a reduction of the frequency vector from the
length n to the length n/2 + 1 for a signal with even number of entries.
If the frequency components of a discrete signal are known a potential task might be to
obtain representations in the signal domain. One way to do that is to use real inverse
Discrete Fourier Transform.

2.4 Gaussian Processes

The problem of regression is given a set of observed data points D = {(xi, yi)}N
i=1 to

learn a mapping from f : x → y. y is assumed to be a continuous variable. This is a
supervised learning problem. One might be interested in building a model which given
the data D tries to learn the mapping f . One additional requirement on the model
might be a measure of how confident the model is in its prediction ŷ for an input point
x.
A variety of different models exist for this task. Examples include linear regression,
Neural Networks, support vector machines described in detail in [Bis06]. One promi-
nent family of models are Gaussian processes.
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One can express the uncertainty in the regression function models by defining a distri-
bution over the potential candidate functions. One way of defining such distribution
is by means of a stochastic process. A stochastic process defines a distribution over
function values ρ(y1, .., yN) for any finite set of points x1, ..., xN . The authors in [Wil14]
provide an interpretation of a stochastic process as a random function. One special
case of a stochastic process is when multivariate Gaussian distribution is used as the
distribution of the joint function values:

(y1, ..., yN) ∼ N (y|µ, K)

with µ and K being mean vector and covariance matrix. This idea leads to the family of
Gaussian process models.
A Gaussian process

p( f ) = GP( f ; µ, K)

is completely specified through its mean and covariance functions. According to [Gar23]
the mean function µ(x) specifies the expected value over the function’s value f (x) at
the location x:

µ(x) = E[ f (x)|x].

The covariance function K(x, x′) is defined as:

K(x, x′) = cov[ f (x), f (x′)|x, x′].

If a Gaussian process is specified, then for any finite set of locations X one can derive a
distribution over the function values y:

p(y|X) = N (y; µ(x), Σ)

with Σ = K(X, X). The matrix G = K(X, X) is called the Gram matrix of X. Each entry
of the matrix is formed as Gij = K(xi, xj) with xi, xj being a pair of points from the
set X. In G, the covariance is computed for each pair of points in X, with the pair not
necessarily consisting of two distinct points.
Gaussian processes are defined though mean and covariance functions. Given the
observed data D one question is how to choose these function in a way that a resulting
Gaussian process model explains the observed data well. The prior knowledge about
ground-truth function can be encoded through it. As the authors in [Wil14] note, one
advantage of Gaussian processes against parametric models with weights w is that one
might have a better prior knowledge about the function rather than about weights w of
the model. This intuition about the function’s characteristics can be encoded through a
kernel function.
If some features of the functions are not precisely known in advance they can be



2. STATE OF THE ART xiv

encoded as parameters of kernel functions. One example is the length scale parameter
by the Squared Exponential kernel. As a result, one obtains a parametric family of
kernel functions. If the family is parametric with the parameters θ and a criterion of
how good the model approximates the ground-truth is the maximum likelihood of the
observed data, then one obtains an optimization problem to be solved:

max
θ

log(p(D|θ)).

The term p(D|θ) describes how likely is the observed data under a model defined
by the parameter θ. The objective function of the minimization problem might have
several optima. Furthermore, there might be several models, which potentially might
significantly differ from each other, having the same probability. As a result, the MLE
criterion does not always specify the clear preference over the model space.
The authors in [Wil14] suggest using Bayesian model averaging:

p( f |D) =
∫

p( f |D, θ)p(θ|D)dθ.

As the authors in [Gar23] describe the model-marginal distribution is often intractable
to compute exactly. One potential reason could be the integral computation. In [Gar23]
several approximation strategies are described.
For the mean function the authors in [Bis06] suggest using the constant 0 function:

µ(x) = 0,

if one has no prior knowledge about the mean function.
One goal of constructing a model learning the map f is to make a prediction at
previously unseen points x. If the model’s parameters are specified, one can use this
model to obtain a distribution p( f |x,D). This distribution encodes what the model
believes will be the value of the map f at the location x, given the training samples the
model knows.
An important component is the Bayes’s theorem:

p(h|D) =
p(D|h)p(h)

∑h′∈H p(D, h′)
.

The theorem shows how a prior belief about a value p(h) can be updated in light of the
observed data D. The resulting distribution is the posterior p(h|D). The distribution
p(D|h) is a likelihood of the observed data.
Suppose a set of inputs x∗ = (x∗1, ..., x∗M) is given and one is interested in the predic-
tions y∗ = (y(x∗1), ..., y(∗M)) given the observed training data x and y. In this scenario
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one assumption could be that the observed function values come from a Gaussian
process plus an additive Gaussian noise:

y(x) = f (x) + ϵ(x),

ϵ(x) ∼ N (0, σ2).

The goal is to derive the distribution

p(y∗|y) =
∫

p(y∗| f (x))p( f (x)|yd( f (x)). (1)

As shown in [Wil14] for this scenario one can compute the expression 1 analytically.
The first step is to derive a joint distribution p(y, f∗):[

y
f∗

]
∼ N (0,

[
K(X, X) + σ2 I K(X, X∗)

K(X∗, X) K(X∗, X∗))

]
),

with f∗ being evaluation of the function f (x1∗), ..., f (xM∗). A marginal distribution over
the observed function values y can be obtained from the Gaussian process p(y) ∼
N (0, K(X, X)). Then one can use the Bayes’s formula to derive the prediction p(f∗|y).
As shown in [Wil14] this distribution is Gaussian with the following moments: the
mean µ̂

µ̂ = K(X∗, X)[K(X, X) + σ2 I]−1y, (2)

and the covariance ĉ

ĉ = K(X∗, X∗)− K(X∗, X)[K(X, X) + σ2 I]−1K(X, X∗). (3)

The distribution over the observations p(y∗|y) has the same mean as in 2. The variance
is ĉ+ σ2 I. If the noise in observations is not Gaussian, then the integral in 1 might not be
analytically computable. The authors in [Wil14] discuss several possible approximation
techniques.

Kernel functions

A kernel function K(x, x′) = cov[y(x), y(x′)|x, x′] together with the mean function µ

specify a Gaussian process. As the authors in [Gar23] note through a kernel function
one can encode different properties of the functions sampled from the Gaussian process.
For example, the sampled function should be continuous and differentiable. Further, a
parametric family of kernels can be constructed, which allows one to choose the kernel
that best explains the data observed. This leads to a question of how a kernel family
can be constructed and which properties of functions can be incorporated in the kernel
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functions. On one hand a parametric family should be broad enough, such that a wide
range of possible function behaviours can be modeled with kernels from this family.
On the other hand, it should not be expensive to evaluate such function and to perform
optimization over the function family by looking for the parameter values fitting to the
training data. Another question are the requirements to a potential kernel function to
be a valid function for a Gaussian process.
According to [Bis06] often kernel functions K are designed to measure similarity.
Namely, for two points xi and xj which are similar in the input space X , the kernel
function will show a high correlation of the output values y(xi) and y(xj). The precise
definition of similarity between vectors is dependent on the application. An example of
such kernel is a member of the exponential covariance kernel, a member of the Matern
family, defined as:

KM 1
2
(x, x′) = exp(−d)

with the Euclidean distance d = |x − x′|.
According to [Gar23] two properties are necessary for a kernel function to be admissible.
The first property is that a kernel function should be symmetric:

K(x, x′) = K(x′, x).

The second requirement is that for any finite set of points X the Gram matrix K(X, X)

should be positive semidefinite. One implication of this requirement, that the variance
is non negative: K(x, x) = var[y(x)|x] ≥ 0. Further if the Gram matrix is positive
definite, than according to Mercer’s theorem [Mur12] one can perform eigenvector
decomposition on the Gram matrix G:

G = UTΛU.

By defining ϕ(xi) = Λ
1
2 U:i one can observe that the ij-th component of the Gram matrix

can be formulated as
gij = ϕ(xi)

Tϕ(xj).

The function ϕ : X → RD with RD being potentially infinite dimensional space can be
interpreted as extracting features from the input vector x. Then the kernel allows to
compute inner product of potentially infinite dimensional feature vectors. This allows
to avoid the explicit definition of the feature vectors ϕ(x). Kernels which are positive
definite are called Mercer kernels. An example of Mercer kernels are kernels from the
Matern family and the RBF kernels.
An important result described in [Gar23] is that one can treat valid kernel functions as
building blocks. By modifying and combining these blocks new valid kernel functions
can be obtained. For example, scaling introduces a valid kernel function:

K′(x, x′; λ) = λ2K(x, x′).
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If a function g : X → Z is used to perform a transformation of the domain X and KZ
is a valid kernel in the domain Z , then one obtains a valid kernel KX in the domain X
defined by:

KX (x, x′) = KZ (g(x), g(x′)).

Finally, as described in [WR06] one can additively combine kernel functions and obtain
valid kernel functions. If two random processes f1(x) and f2(x) are independent, then
a sum fadd(x) = f1(x) + f2(x) will have a kernel:

kadd(x, x′) = k1(x, x′) + k2(x, x′).

In [WR06] the authors describe further combinations including multiplication and
convolution. These results allow to model complex behaviour out of simple blocks.
The question on how to choose a suitable parametric family of kernels provided the
observed data is a topic of research. One can rely on prior knowledge to choose a family
expressing the believed properties of a random process. The prior knowledge can
greatly accelerate the search for a model with the best explanation for the training data.
However, in praxis not always a lot is known in advance about the underlying process
which generated the observed data. The authors in [Gar23] describe multiple possible
strategies on how to select a space of candidate kernel functions. One idea is to define a
space of kernels by using a context-free grammar defining what combinations of kernels
lead to kernels still belonging to the space. Then one can perform a search over this
space. Two ideas described in [Gar23] is to perform a greedy search or alternatively to
perform Bayesian optimization over the space of kernel functions. A potential difficulty
is how to rapidly perform a search over potentially infinite space of candidates.
One important property of kernel functions is described in [Mur12]. That is a value of
kernel function corresponds to a scalar product of two vectors:

k(x, x′) = ϕ(x)ϕ(x′)T.

The vectors ϕ(x) might be infinite dimensional and they correspond to the extraction of
features of the input data x. A similar idea could be fined in SVM and Linear regression
models of the form

y(x) = wTϕ(x),

where ψ(x) represent fixed basis functions. An important difference from is that for
kernels one can consider infinite number of basis functions.
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Examples of kernel functions

One family of covariance functions is the Matern family. Matern family is a parametric
family of kernels having the form [Mur12]:

k(r) =
21−ν

Γ(ν)

(√
2νr
l

)ν

Kν

(√
2νr
l

)

with the distance r = ∥x − x′∥, parameters ν > 0 and l > 0 and a modified Bessel
function Kν.This is a family of stationary kernels. Stationarity means that the kernel is
invariant to translation since:

k(x, x′) = k(|x − x′|)

with the kernel depending only on the distance between the data points and not on
their exact location. According to [Gar23] this family can model Gaussian processes
with the sample paths of any desired degree of smoothness. The parameter ν controls
the degree. Namely, the sampled paths from a centered Gaussian process with a Matern
kernel are ⌈ν⌉ − 1 times continuously differentiable.
The limit case of the parameter ν → ∞ is the squared exponential kernel:

k(x, x′) = exp(−1
2
(x − x′)TΣ−1(x − x′)).

This is a family of stationary kernels. The squared exponential kernel has the property
that the functions drawn from a Gaussian process are infinitely differentiable.
The parameter ν = 0.5 leads to the exponential covariance defined as

kM0.5(x, x′) = exp(−d)

with d = |x − x′|. The sampled paths are continuous but not differentiable. Once and
twice differentiable functions are modelled by ν = 1.5 and ν = 2.5 with the covariance
being defined as

kM1.5 = (1 +
√

3d)exp(−
√

3d),

kM2.5 = (1 +
√

5d +
5
3

d2)exp(−
√

5d).

2.5 Spectral Mixture kernels

One expressive family of kernels is the Spectral Mixture kernels proposed in [Wil14].
The idea of the Spectral Mixture Kernels uses two results as its foundation. The first
result is the Bochner’s Theorem [Boc+59]:
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Theorem (Bochner) 1 A continuous function K : Rn → R is positive semidefinite (that is,
represents a stationary covariance function) if and only it holds

K(τ) =
∫

Rn
exp2πisTτψd

where ψ is a finite, positive Borel measure on Rn.

Furthermore, as shown in [Wil14], a density S(s) corresponding to the measure ψ,
which is also called the power spectrum of the kernel k, and the covariance function
are connected through the Fourier transform:

k(τ) =
∫

S(s)e2πisTτds,

S(s) =
∫

k(τ)e−2Tτdτ.

As the authors in [PT17] note, constructing a positive definite kernel function is often
difficult. Bochner’s theorem shows that one can construct a stationary kernel in
the frequency domain instead of the signal domain. In the frequency domain the
requirements on the function S(ω) are easier to satisfy according to [PT17]. The
reason is that in the spectral domain, one needs to ensure that the function S(s) is a
valid probability density function. In the signal domain, the requirement is positive-
definiteness of the kernel function. As a result, the idea of the Spectral Mixture kernels
is to construct probability distributions in the frequency domain and then to transform
them back to the signal domain via Fourier transform, obtaining a valid stationary
kernel. This leads to two potential questions. The first question is how to construct a
potentially complex probability distribution. The second question is how to obtain a
tractable Fourier transform of the probability distribution.
The second key idea of the Spectral Mixture Kernels is to use a mixture of Gaussian
distributions to construct a probability distribution for the kernel. The single Gaussians
are used as building blocks. Then one constructs a weighted sum of the blocks as:

k(ϵ) = ∑
i

wiN (ϵ; µi, Σi)

with wi being the weights of the components. One can achieve the symmetry by
applying

k(ϵ) =
1
2
[k(ϵ) + k(−ϵ)].

According to [Gar23] there exists an analytical representation of the Fourier transform
of the Gaussian mixture defined as:

KSM(x, x′; {wi}, {µi}, {Σi}) = ∑
i

wiexp(−2π2(x − x′)TΣi(x − x′))cos(2π(x − x′)Tµi).
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The sets {wi}, {µi} and {Σi} are learnable parameters for the model. One can perform
training in the signal domain and optimize these parameters with the help of the
observed data from the ground truth process. One requirement to the mixture weights
wi as noted in [Gar23] is that the weights should be positive.
One potential question could be what family of distributions can be approximated
with a Gaussian mixture and how flexible this family is. According to [Mur12] any
probability density function defined on RD can be approximated by a Gaussian mix-
ture provided that the number of mixture components is large enough. According
to [Gün22] one might need a very large number of mixture components to represent
2-dimensional densities. The dimensionality poses an additional challenge here since
the author notes that the number of needed components might grow exponentially
with the dimensionality of the data. A large number of components can not only be
computationally expensive but can also lead to the problem of overfitting. Overfitting
refers to the problem of having a hypothesis h which perfectly describes the observed
data, but which does not generalize to the previously unseen data. Models having
a big number of trainable parameters might lead to overfitting, because the model
might be too flexible. Since each mixture component has its own parameters, one might
obtain an overfitted model if the number of the mixture components is big. There exist
models capable of modeling complex distributions and suitable for density evaluation.
One example is Normalising flows based on the change of variables formula [Gün22].
However, a significant problem is the tractability of the Fourier transform back to the
signal domain. Computing a Fourier transform involves the evaluation of an integral.
For a general density function this integral might not be analytically computable. As a
result, the use of Normalising flows might be a topic of future work in the context of
kernels constructed in the frequency domain.

Initialisation

The kernels often contain parameters that can be optimized. Often, optimization is per-
formed with a gradient descent method. This is an iterative method that, starting from
some location in the space, tries to locate a local maximum of a function. The gradient
of a function is often used as a way to decide in which direction to move in the next
step. One example of such an optimization scheme is Adam. An optimization might
require many steps to achieve a low-loss function value. This might be problematic if it
is costly to evaluate or to approximate the gradient of a loss function.
The initialization of the hyperparameters defines the starting values of the hyperpa-
rameters that are further refined by the following optimization procedure. Often, one
uses random initialization of the parameters. However, a choice of parameters closer to
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the desired minimum might accelerate the optimization procedure.

BNSE

When initializing parameters of the spectral components for the spectral mixture kernels
one idea could be to try to estimate frequencies from the observed data. Then the
estimated frequencies can be used as a starting point for the optimization procedure.
This leads to the question of how frequency information can be extracted from the data
points. One way to do it is to use the Discrete Fourier transform. As the authors in
[Tob18] describe, real-world data might be noisy, it might be unevenly sampled and
some data points might be missing. As a result, due to the convolution in the Fourier
transform this leads to uncertainty over the entire frequency domain. This might lead
to a requirement of expressing uncertainty in the obtained frequencies.
An approach to address this requirement is proposed in [Tob18]. The idea is to
approximate the unknown signal via a Gaussian process. Then a Fourier transform
is performed on the Gaussian process allowing to obtain a Gaussian process over
frequencies. If a stationary GP f (t) ∼ GP(m, K) is chosen as a prior over the ground-
truth signal, then according to [Tob18] the power spectral density of the signal can be
derived from the Fourier transform of the kernel:

S(ϵ) = F{K(t)}(ϵ).

One difficulty with the stationary processes as noted by the authors is that the draws
from a stationary GP are almost surely not Lebesgue integrable which is required for
the Fourier transform to exist. One idea could be to look at the spectrum of the signal
in the neighborhood of a center c, the local spectrum. The local spectrum is defined as:

Fc(ϵ) = F{ f (t − c)e−αt2}

with the width of the window being defined as 1√
2α

. The authors in [Tob18] provide an
analytical form of the covariance function of the local spectrum Fc(ϵ)for the stationary
signal f (t) ∼ GP(0, K(t)):

KF(ϵ, ϵ′) =

√
π

2α
e−

π2
2α (ϵ−ϵ′)2

(K(ρ) ∗
√

2π

α
e−

2π2
α ρ2

)

with K(ϵ) being the Fourier transform of the kernel K and ρ = ϵ+ϵ′

2 . The authors in
[Tob18] provide an analytical form for the choice of kernel K as the spectral mixture
kernel with Q components KSM(τ) = ∑Q

q=1 σ2
q exp(−γqτ2)cos(2πθT

q τ).
The Gaussian process over frequencies is a complex-valued Gaussian process. To
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determine the process one needs the covariance function K(ϵ, ϵ′) and the pseudo-
covariance P(ϵ, ϵ′). If the signal f (t) is real-valued, then according to [Tob18] there
exists a relation

P(ϵ, ϵ′) = K(ϵ,−ϵ′)

allowing to specify pseudo- covariance through the covariance function.
Given the observed data y one can then refine the prior on frequencies. The authors in
[Tob18] derive the following equalities for the mean and covariance of the posterior
distribution p(Fc(ϵ)|y):

E[Fc(ϵ)|] = KT
Fc
(t, ϵ)K(t, t)−1,

E[F∗
c (ϵ)Fc(ϵ

′)|y] = KF(ϵ, ϵ′)− KT
yFc

(t, ϵ)K(t, t)−1KyFc(t, ϵ)

with KyFc(t, ϵ) = K(ϵ)e−j2πϵt ∗ π
α e−

π2ϵ2
α where K(ϵ) is the result of applying the Fourier

transform to the kernel K.
From this result, the authors also show that the posterior of the power spectral density
of a stationary process f (t) ∼ GP(0, K) which considers the observed data, is a χ2 -
distributed stochastic process possessing an analytical representation of its mean.
The following graphs 3 demonstrate the loss function when training on the air passen-
gers data set. The training was performed with the Adam method. 2000 iterations were
done in both cases.

On the graphs, one can observe that the initialization with BNSE has led to a much
smaller initial loss of 3251 compared to 1 · 1016 in the random initialization case. As a
result, BNSE initialization might result in a smaller loss and a better model compared
to the random initialization of parameters.

2.6 Multi-fidelity Models

A traditional approach in machine learning is to first define a family of potential
candidate models that might explain the observed data well. Such family is often a
parametric family where the models differ in parameter values. An example of this
approach are Neural Networks [Bis06]. This brings to a question on how to select out
of potentially uncountably many candidate models a model which we think might be
the best model approximating the unknown function. A classical way to select a model
is to perform optimization over the model space. The optimization requires a criterion
to optimize. The criterion often tries to capture how well the model performs. One way
to measure performance is to use the observed data for which the correct answer is
already known. For example, in an image classification task, one can compare what the
model predicted for the observed images against the available labels. This approach
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Figure 1: Initialisation with BNSE

Figure 2: Random initialisation

Figure 3: Loss-function for random initialization and the BNSE initialization. The figure
was generated with help of the Mogptk library [Tob].

is known as the empirical risk minimization [SB14]. The empirical risk minimization
relies on the training data set.
The size of the data set might pose a tradeoff. On the one hand, the points in the data
set provide information about the unknown function and probability distribution. An
increased amount of data points might guide towards a better model. On the other
hand, in some settings, gathering large data sets might be very expensive. For example,
if images are labeled by hand, then labeling of thousands of images requires a lot of
work. An additional consideration is the dimensionality of the input space. Intuitively
by increasing dimensionality of the input space one might need significantly more
points to cover interesting regions of the space. Two potential methods arise from the
tradeoff. The first approach is to select the data points which are the most informative.
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An example of this approach with the Bayesian optimisation used to select the points
was considered in the project [Lia23]. The second approach is to transform the domain.
The idea has similarities with the Support Vector Machines approach [Bis06]. Suppose
that in the original domain X the function f (x) has a very complicated structure and
consequently would require many points from different domain regions to capture its
structure. Suppose there is a transformation function g(x) which transforms the input
domain X to the feature space X′. Despite the function f : X → Y being complicated,
the function f ′ : X′ → Y might be significantly simpler. As an example, in Support
Vector Machines one can try to fit a linear function f ′ to the transformed features. If
the function f ′(x′) has a simple form, then the hope is that it will not require many
data points to learn its structure.
One difficulty with the described approach is how to select the transformation g.
According to [Rav+24] one idea is to look at multi-fidelity modeling. For the same
problem different one might obtain levels of approximation accuracy by using different
approaches or different amount of available data. For example, when approximating an
integral of a function one can construct a mesh on which the data is evaluated. Taking 2
points per dimension or 200 might result in significant differences in the approximation
quality depending on the integrated function. Following [Rav+24] in the paper we
distinguish low-fidelity models, which might provide a less accurate approximation
of the problem but are cheap to evaluate, and high-fidelity models, models providing
fine-grained approximations of the target function f , but which are potentially costly to
evaluate. Then, a question arises of how multi-fidelity settings can be combined with
Gaussian process models.

NARGP

One model introduced in [Rav+24] addresses this question. A first model is the linear
Autoregressive model [KO00] defined as

ut = ρ · ut−1 + uσ.

This model takes as input a realization of the previous fidelity level ut−1, multiplies it
with a scaling constant ρ and adds a correction term uσ. The samples ut−1 and uσ are
coming from Gaussian processes. According to [Per+17], the scaling constant can be
interpreted as a term modeling correlation between the low-fidelity input ut−1 and the
high-fidelity input ut. This parameter together with the kernel hyperparameters of uσ

and ut−1 are learnable. uσ is assumed to be independent from ut−1. As a result, one
can chain different levels of fidelity in a Neural Network-like structure. The training
then involves learning simultaneously hyperparameters of the whole structure. One
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important observation described in [Per+17] this model has a Markov property:

cov( ft(x), ft−1(x′)| ft−1(x)) = 0, ∀x ̸= x′.

This property means that given a low- fidelity information about the points x we cannot
derive any further information useful for learning ft(x) from the other low-fidelity
evaluations at points x′ ̸= x.
The authors in [Per+17] describe a modification of the algorithm allowing more efficient
inference. The algorithm assumes the nested structure of the training data sets D1 ⊆
D2 ⊆ Ds. The prior GP ft−1 is replaced by a posterior Gaussian process f ∗t−1. This
decouples the model resulting in s regression problems.
One way of generalising the Linear Autoregressive model described in [Per+17] is by
using a non-linear transformation function zt−1:

ft(x) = zt−1( ft−1(x)) + σt(x).

As the authors note, if a non-parametric GP prior is used to model zt−1, then one
obtains a deep Gaussian process. One potential problem with this construction is that
the posterior is no longer a Gaussian process. One solution to this problem presented
in [DL13] is to use variational inference and find an approximation to the posterior.
The approximate posterior is assumed to be Gaussian and is found by maximizing the
Evidence Lower Bound.
The authors note that this type of generalization of the AR leads to a significant increase
in the computational cost. As a result, an alternative construction is proposed in [DL13].
A prior from the previous fidelity ft−1 is again replaced with a posterior f ∗t−1. Allowing
to train Gaussian processes one by one with an increasing fidelity level. The Gaussian
process of level t receives as input as described in [Rav+24] the predictions made by
the already trained Gaussian process model of the previous fidelity level. During the
predictions, samples are drawn from the lower-fidelity GP and are also used as a part
of the input for the higher-fidelity model. The Gaussian process of level t only receives
the information from the previous fidelity- level t − 1.
One additional idea proposed by the authors in [DL13] is to introduce more structure
to the kernel of the Gaussian processes. The proposed kernel has the form

ktg = ktp(x, x′; θtp) · kt f ( f ∗t−1(x), f ∗t−1(x′); θt f ) + ktσ(x, x′; θtσ).

The first observation is that this kernel separates the inputs x from the low- fidelity
observations f ∗t−1(x). The authors claim that putting together into the same kernel x
and f ∗t−1(x) might not be natural since they belong to different spaces.
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3 Training in the frequency domain

In the state-of-the-art section, four concepts were discussed. The first is the signal and
its alternative representation in terms of frequencies. The second is Gaussian processes.
These are flexible models capable of learning distributions over functions. The kernels
of Gaussian processes can capture different kinds of correlation between function’s
outputs. The third concept was a specific kind of the kernel function, the spectral
mixture kernels. The power of the spectral mixture kernels lies in its flexibility. Finally,
the multi-fidelity setting is described.
The following section is dedicated to bringing all four concepts together. For a multi-
fidelity setting where we have the input x and additionally the low-fidelity function
samples we aim to learn the high-fidelity function. We extract the spectrum from
the low-fidelity samples and use it as an input for Gaussian processes which pre-
dict the spectrum of the high-fidelity function. Gaussian processes can be used with
different types of kernels. In this project we analyze the spectral mixture kernels com-
pared to a custom kernel. Additionally, we apply the BNSE initialization to the spectral
mixture kernel with the hope that it will lead to a better choice of the kernel parameters.

3.1 Motivation

Many Machine learning models are defined and trained in the signal domain. One
task might be reconstructing the signal y = ϕ(x) from the input signal x. The idea of
learning in the frequency domain is to look at the representation of the signal in terms
of its frequencies. If ψ is a function that maps a spectrum of one signal in the spectrum
of the other signal, then according to [Pol+22], the functions ψ(x) and ϕ(x) are related
through:

ϕ(x) = T −1 ◦ ψ ◦ T

where T represents the transformation of the input signal into its spectrum. This
relation also assumes that the inverse transformation T−1 from frequency to the signal
domain exists. As noted in [Pol+22] frequency domain models might be able to learn
long-range dependencies in signals and they might result in architectures containing a
tractable number of layers in the case of Neural Networks.
Some motivational examples in this field include [Pol+22] and [Li+20] where the
authors propose Neural Network models that work with the frequencies of the discrete
input signal.
In [Pol+22] the discrete signal is transformed into the frequency domain only once,
before the first layer of the Neural Network. The Neural Network is defined and
trained in the frequency domain. The authors pose the training procedure of the model
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parameters θ as a constrained nonlinear optimization problem of the form

minimizeθ Ex,y[||T (y)− Ŷ]
subject to Ŷ = fθ ◦ T (x)
x ∼ p(x)
y = ϕ(x)

There are multiple transformations T of the input signal that can be used, for example,
DFT, Discrete Cosine Transform, DCT-II. The authors note that a real-valued transfor-
mation might be beneficial since it might allow the use of already existing architectures
for separate layers of the Neural Network. As a result, the authors propose to use the
Discrete Cosine Transform.
A Fourier Neural Operator model presented in [Li+20] uses a slightly different ap-
proach. For each layer a transformation of the input data into frequency domain is
performed. Then, a potentially complex-valued function is applied to the data. Finally,
the obtained data is transformed back to the time domain. According to [Pol+22] the
flow can be described as

X = T (x) Forward Transform
X̂ = fθ(X) Learned Map
x̂ = T −1(X̂) Inverse Transform
ŷ = x̂ + g(x) Residual.

The residual can be additionally added to reintroduce frequencies, which may be lost
during the transformation ftheta. The transformation T used in the proposed model is
the Discrete Fourier Transform.

3.2 Definition of the model

In this project Gaussian processes were used to learn the function ψ(x). A first
idea could be to follow a similar approach to that described in the previous section.
Starting from a sequence of samples from the input signal, a low-fidelity samples
( fl(x1), ..., fl(xN)), we aim to learn the corresponding sequence of high-fidelity samples
( fh(x1), ..., fh(xN)). The figure 4 shows the first architecture of the model. The model
takes a sequence of low-fidelity samples as input. The sequence is transformed with the
real DFT to its frequency representation. Then the discrete spectrum is used as an input
to the Gaussian processes. A discrete spectrum of the high-fidelity function (ϕ1, ..., ϕK),
which Gaussian processes are trying to predict, is a vector. One approach could be
to treat each dimension of this vector independently. Each of the processes GPi tries
to reconstruct its respective part of the high-fidelity spectrum ϕi. An alternative idea
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Figure 4: First architecture for learning in frequency domain. Starting from the low-
fidelity discrete spectrum the model tries to learn the high-fidelity spectrum

could be to model correlations between the parts of the discrete spectrum.
One additional observation is that a real DFT will result in complex-valued frequency
components. An approach used in the project is to treat real and imaginary parts
separately. That is for a Fourier coefficient ϕi two Gaussian processes are used. One
predicts the real part ϕi.real and one predicts the imaginary part ϕi.imag. After both
real and imaginary parts of the spectrum are obtained, they are again assembled
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into a complex-valued spectrum, which then undergoes the inverse real Fast Fourier
transform to obtain the signal samples in the time domain. This approach allows the
use of Gaussian processes, which are specified for real-valued input and output vectors.
As a result, for a vector of samples ( fh(x1), ..., fh(xN)) of the dimensionality N where
N is assumed to be even, the model will have 2 · (N/2 + 1) Gaussian processes. This
might be very computationally expensive to train. However, one observation is that
these models can be trained independently and in parallel. This allows to train them
on distributed memory systems, allowing to utilize more hardware resources. An
alternative approach is to use complex-valued Gaussian processes. One example of
such an approach can be found in [Tob18]. As the authors note, the model requires one
additional component to be specified together with the usual covariance function. This
component is the pseudocovariance function.
The model in 4 has one problem when it is used only with frequencies of the low-
fidelity function as input to predict high-fidelity samples as output. The problem can
be demonstrated by the low- and high-fidelity functions depicted in 5. The low-fidelity

Figure 5: Low- and high-fidelity functions

samples taken from the interval [−1, 1] all have the same value of 1. On the contrary,
the high-fidelity function does have different types of behavior in the interval. From the
low-fidelity values alone, it is impossible to differentiate which values the high-fidelity
function should have. This is no longer a functional relation between the low- and high-
fidelity samples. As a result, the model that uses only low-fidelity inputs is restricted
to functions that cannot have to two identical input sequences two different output
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sequences. An example of such functions could be strictly monotonically increasing
functions for low and high-fidelity.
Since in practice this family of functions might be too restrictive, one idea could be to
use additional information in the input. One example could be to use together with the
frequencies the input points x on which the low-fidelity function was evaluated. Then
the model from 4 will have the following structure:
The model in 6 involves transforming the predicted frequencies back into signal domain.
The transformation is done via the Inverse real Fourier transform. According to the
section 2 this transformation is a multiplication with the matrix. A key question is how
the small errors in the frequency vector will behave after undergoing the transformation
back to the frequency domain. Is it possible that small errors in the frequency vector
might lead to large deviations in the obtained signal vector. This question is of high
importance since the frequencies are predicted by a Gaussian process which can
produce errors on previously unseen evaluation points. If the result is too sensitive
to the errors, then no matter how good the Gaussian process is, the final model is
of little use. According to [RSA15] the Parseval’s theorem provides an insight into
the sensitivity question. Let x and x̂ be a discrete signal and its approximation. F (x)
denotes frequencies of the signal x extracted by the Discrete Fourier transform. The
theorem states:

|x − x̂|22 = |F (x)−F (x̂)|22.

The authors in [RSA15] mention that there exists an equivalent results for the IDFT
operator. This means that minimizing the l2 loss between two frequency vectors will
result in signal vectors having minimal l2 loss in the signal domain.
The model in 6 is suitable for multi-fidelity setting as it involves both the input xi and
the low-fidelity information ψi. In the section with the numerical experiments it will be
empirically tested whether the frequencies of the low-fidelity signal help to predict the
frequencies of the high-fidelity signal. One way to do it is to use a model that does not
use the discrete spectrum of the low-fidelity and only relies on the points xi. Such a
model will then have the following structure as illustrated in 7.

Transferring probability distribution

One important aspect of Gaussian processes is that during inference for a vector
of arguments x it gives a multivariate Gaussian distribution back. A distribution
expresses uncertainty of the model regarding its predictions. As a result, one potential
requirement on the trained model might be to transform a probability distribution over
frequencies ρ(ϕ), resulting from a Gaussian process, into a probability distribution over
the high-fidelity values ρ( fh).
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Figure 6: Learning in frequency domain with both x and low-fidelity information. The
low-fidelity information is the discrete spectrum of the low-fidelity function.
The Gaussian processes predict the discrete spectrum of the high-fidelity
function.

The first observation is the transformation IRFFT. This is a matrix-vector fh(x) =

M· ψh(x) product where both the matrix and the vector are complex-valued. However,
if the signal fh is real-valued, then the IRFFT of its frequencies must lead to real-valued
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Figure 7: Model without low-fidelity information

outputs. The matrix has a form

M =


1 1 ... 1
1 w1 ... w(N−1)

1 w2 ... w2(N−1)

. . ... .
1 w(N−1) ... w(N−1)2

 ,

the vector has a form ψh(x) = re(ψh) + i · im(ψh). During the inference, each entry of
the vectors re(ψh) and im(ψh) are Normally distributed random variables. This leads
to the question of whether from the distributions of the vector entries re and im one
can derive a closed form expression for the distribution of the function values fh(x).
A potential first step is to look at the Fourier coefficients and the complex roots of unity
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involved in deriving the function values. The following formula shows one row of the
matrix M multiplied with the vector ψh resulting in a high-fidelity sample at the point
xn:

fh[xn] =
1
N

N−1

∑
k=0

F[k]wkn

where wkn = e
2πik

N . For a real-valued signal fh there is one important property according
to [Osg]. Suppose that the number of samples is even. Amplitudes which have the
same distance i to the center N

2 are complex conjugate of each other:

F[
N
2
+ i] = F[

N
2
− i].

A similar property holds for the frequencies wkn:

wk( N
2 +d) = wkd · w

kN
2 = wkd(−1)k,

wk( N
2 −d) = w−kd · w

kN
2 = w−kd(−1)k,

w−kd = ei(−2πkd
N ) = cos(−2πkd

N
) + i · sin(−2πkd

N
) = cos(

2πkd
N

)− i · sin(
2πkd

N
) = wkd.

As a result, for the sum components of f [n] holds:

F[
N
2
+ d] · wn N

2 +d = F[
N
2
− d] · wn N

2 −d.

As a result, one obtains a sum with N
2 real-valued summands:

f [xn] =
1
N

N−1

∑
k=0

F[k]wkn =
1
N

N
2 −1

∑
k=1

2P(F[k]wkn) +
1
N

Re(F[0]) +
1
N

Re(F[
N
2
]) · cos(πn),

with P(F[k]wkn) being defined as:

P(F[k]wkn) = Re(F[k]) · cos(kn · 2π

N
)− sin(kn · 2 · π

N
) · Im(F[k]).

As a result, the distribution of f [xn] is an affine combination of Normally distributed
random variables Re(F[k]) and Im(F[k]). Furthermore, if one assumes that random vari-
ables X ∼ N (µx, σx) and Y ∼ N (µy, σy) are independent, then a linear combination of
these distributions results again in a Normal distribution: X +Y ∼ N (µx + µy, σ2

x + σ2
y ).

The distributions Re(F[k]) and Im(F[k]) are modeling predictions of Gaussian processes
for the frequency k. More specifically, one distribution models the real part of the fre-
quency, and another models the imaginary part. It is assumed that separate frequencies
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in the discrete spectrum are uncorrelated with each other. One further assumption is
that real and imaginary components are also independent. By using the formula for
the sums of independent Normal distributions, one obtains the following formulas for
mean and variance:

E[ f [xn]] =
1
N

µ0 +
1
N

cos(nπ) · µ N
2
+

2
N

N
2 −1

∑
k=1

cos(kn
2π

N
)µk − sin(kn

2π

N
)µ̂k, (4)

where µi is the mean of Re[Fi] and µ̂i is the mean of Im[Fi]. The variance has the form:

Var[ f [xn]] =
1

N2 σ2
0 +

1
N2 cos(nπ)2σ2

N
2
+

4
N2

N
2 −1

∑
k=1

cos(kn
2π

N
)2σ2

k + sin(kn
2π

N
)2σ̂k

2. (5)

Initialisation

F. Tobar in [Tob] mentions one potential problem regarding the spectral mixture kernels.
Namely, that it might be difficult to optimize their parameters. One strategy that might
help to overcome this challenge to some extent is to make a good first guess about
which parameter values might be a good fit.
One possible choice of kernels for Gaussian processes in 6 for predicting frequencies
of the high-fidelity model are spectral mixture kernels. The model in 6 uses discrete
spectrum as an input for Gaussian processes. Spectral mixture kernels also look at
spectra. However, there is an important difference. The model in 6 extracts the spectrum
from the input data, whereas spectral mixture kernels optimize spectral components of
the kernel itself. In general case these are two different spectra.
If spectral mixture kernels are used for the Gaussian processes in 6, then one can try
to combine the Spectral mixture kernels with the BNSE initialization. The spectral
mixture kernels use a mixture of Gaussians to model a complex distribution. The
parameters to optimize are the means, the variance, and the mixture weights of the
separate components in the mixture. The hope is that a better initialization of the
parameters might lead to a better model when the number of the iteration steps during
the optimization procedure is fixed. The authors in [Tob] suggest to use the BNSE
method to approximate the empirical spectral density of the data defined as

Ŝ(sm) =
|ỹ(sm)|2

N
, m = 0, .., N − 1

where ỹ(sm) denotes the m-th element of the Discrete Fourier Transform of the function
evaluations y with N being the number of collected samples. If there are Q mixture
components, then the initialization method will select the locations of the Q frequency
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peaks with the largest magnitude and use them as means for the mixture components.
The lengthscale is derived as the width of the peaks multiplied by 2. Finally, the mixture
of Gaussians is a weighted sum, where each of the distributions receives its own weight.
The authors propose to take the normalized magnitude of the peaks as the weights.
The normalization is done so that the sum of weights is equal to the variance of the
output.
In this approach, the spectral density of the kernel is constructed with the help of the
spectral information from the data. One possible question that might arise is how the
two are connected with each other. According to the author in [Wil14] the first step is
to look at stationary kernels and regular grid of evaluation points. This setting gives
rise to the Toeplitz structure of the kernel matrix. Every diagonal from left to right in
the kernel matrix is constant. For example,

K =


a1 a2 a3 a4

b1 a1 a2 a3

c1 b1 a1 a2

d1 c1 b1 a1

 .

From the covariance matrix one can construct a circulant matrix C. A key observation
in [Wil14] is that a circulant matrix in time domain when transformed via a Fourier
transform becomes a diagonal matrix:

Cz = DFT−1[diag(c̃)]DFT[z].

This observation leads to a discrete form of the Bochner’s theorem:

ct =
1
N ∑

m
e

2t
N c̃m.

If a Gaussian process has a circulant covariance matrix, then the log marginal likelihood
according to [Wil14] has the form:

logp(y|X) = − 1
2N ∑

m

|ỹm|2
˜cm

− 0.5 ∑
m

log(c̃m)− 0.5 · N · log(2π).

According to the authors the circulant covariance kernel in order to maximize the
log-likelihood has the following form in the frequency space:

ĉ(sm) =
|ỹ(sm)|2

N
,

which is exactly the empirical spectral density.
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Size of the subsequences

In order to extract frequencies, the DFT needs a sequence of the signal samples. From a
vector of samples, a vector of amplitudes is derived. The size of the input sequence is a
hyperparameter in the model.
One observation is that a sequence of samples can be collected locally, describing a
small region of the ground truth function, or globally, going over the whole domain. A
local construction might require significantly fewer samples to describe the behavior
of the ground truth function in the local region. The idea of approximating locally
the ground truth function is similar to splines in the interpolation. However, it only
provides the local information. This might also lead to differences in the frequency
domain. Local frequencies might be different from the global frequencies. However,
this does not necessarily mean that the information about the global patterns will
completely vanish from the local spectrum. This information might be contained in
the Fourier coefficients. As a result, learning locally over multiple subintervals might
still be sufficient to capture the global behavior. The DFT will then fit a whole Fourier
series into this local part of the function, assuming that it is one period of the global
function. This assumption might be violated depending on the size of the subinterval
and the ground-truth function.
On the contrary collecting samples over the whole domain gives information over the
global trends. The disadvantage is that for functions with complex behavior, a large
number of samples might be required to accurately model different regions of the
function in the global sample. Also, the number of samples in the subsequence has an
effect on the output of the model in 6. The number of Gaussian processes the model
uses depends on the number of frequencies of the high-fidelity function one needs to
predict. In turn, the number of frequencies is N

2 + 1 for the number of samples N. As a
result, in the project the local sampling was used to minimize the runtime needed to
train and evaluate models.
From the frequency point of view, the Nyquist sampling theorem [Jer77] provides
an insight of what a sampling rate should be to avoid aliasing. The theorem relates
the sampling frequency fs to the highest frequency of interest in the signal fN to be
preserved. The statement is

fs > 2 · fN .

The theorem provides an additional criterion of how many samples should be in a
subsequence.
Another observation comes from the components of the Fourier series itself. The com-
ponents are defined over the whole interval for which the Fourier series is computed.
If a Gaussian process makes a significant error in its prediction of the component’s
weight, then this error will have an effect on every prediction of the signal’s value
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( fh(x1), ..., fh(xN)) in the signal domain.
Finally, a set of subsequences is collected to train the model. A limitation of the number
of samples comes from the Gaussian process itself. During the inference, the process
will build a NxN covariance matrix with N being the number of the training samples.
Too many samples will lead to intractable computation time.

Structure of the model’s output

The next question is whether the model in 6 specifies a Gaussian or more generally a
stochastic process for its predictions of the high-fidelity values fh(x).
The model starts with an input vector (x, ψ) where x is a subsequence of the input
locations xi and ψ is a discrete spectrum of the low-fidelity function over the subse-
quence. The input vector is then used by Gaussian processes to make a prediction of
the frequency components ri or imi. Each ri or imi is a Gaussian random variable and
is assumed to be independent from the predictions of the other Gaussian processes in
the model. The next step the model makes is the IRFFT transformation of the predicted
spectrum to obtain the signal values of the high-fidelity functions. The formulas 4
and 5 show that a prediction f [xn] at the location xn is a normally distributed random
variable. During the computation of f [xn] the predictions of the Gaussian processes ri
and imi are linearly combined. An example of the coefficients of the linear combination
are cos(ki · 2π

N ) and sin(ki · 2π
N ). According to [Gar23] a linear combination of Gaussian

processes is also a Gaussian process. As a result, for an input vector (x, ψ) the pre-
diction f [xn] for a location xn will be modelled by a Gaussian process. An important
observation is that for two indices m, p with m ̸= p the Gaussian processes modelling
f [xm] and f [xp] are different. This can be observed when looking at the coefficients
of the linear combination cos(ki · 2π

N ) and sin(ki · 2π
N ). The coefficients depend on the

index i of f [xi].
Suppose one fixes a point x̂ in the signal domain. This point can be part of different
subsequences around the point. Suppose the two possible subsequences s1 = (x1, ..., x̂)
and s2 = (x̂, ..., xN) are put as inputs in the model 6. Then there might occur a situation
when the same point x̂ will get two different distributions over the high-fidelity values
depending on which subsequence was used as the input. The Gaussian processes
predict a discrete spectrum of a subinterval. If the spectra of the two subsequences s1

and s2 are predicted without an error then converting the spectra back to the signal
domain will result in the same value for the point x̂. However, errors in predicted
frequencies might lead to a situation when the reconstruction of the point is no longer
the same. This is illustrated with the following example: the model from 59 receives as
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inputs two subsequences

s1 = (0.100063, 0.100688, 0.101313, 0.101939, 0.102564, 0.103189, 0.103815, 0.104440),

s2 = (0.104440, 0.105066, 0.105691, 0.106316, 0.106942, 0.107567, 0.108193, 0.108818).

The last element of the s1 is the same as the first element of the s2. The model outputs
0.81 and 0.53 as the locations of the mean for that element. Since a Gaussian distribu-
tion is defined through mean and variance, different means lead to different Gaussian
distributions for the same x = 0.104440. Since a point in the signal domain x might
not have a unique probability distribution assigned to it, this is not a stochastic process
over the domain x.

3.3 NARGP and training in frequency domain

The NARGP extracts information from both the inputs X and the low fidelity model fl .
It constructs a Gaussian process modeling high-fidelity function by considering three
components in the kernel:

k(x, x′) = kρ(x, x′; θρ)k f ( fl(x), fl(x′); θ f ) + kσ(x, x′; θσ).

This leads to the question of how one can integrate spectral mixture kernels and Gaus-
sian processes trained in the frequency domain into NARGP.
In the NARGP model introduced in [DL13], Squared Exponential kernels were used for
all three components kρ, k f and kσ. If one considers more complex kernels, which are
more expressive but at the same time are more costly to train, this brings to a question
of how to combine these kernels with the NARGP model. A first potential idea is
to use complex kernels only for the kernel working with the low-fidelity function k f .
The hope is to extract from latent features of fl enough information that a problem of
modeling high-fidelity would significantly simplify and it would be enough to consider
linear transformations. Also, simpler kernels for kρ and kσ might be considered, which
are less costly to train and evaluate. However, as the authors in [DL13] note if a low-
fidelity function is strongly correlated with a high-fidelity function, then its samples
can provide very valuable information when reconstructing the high-fidelity function.
But it can also be that the low-fidelity function is only weakly correlated on specific
parts of the domain with the high-fidelity function. Then, the low-fidelity samples
might be misleading for the model and might result in overall bad performance. As
a result, in the project all three components of the kernel kρ, k f and kσ have received
equally powerful kernels. This increases the computational cost to train the overall
model, but it also allows the extraction of complex features from both the input x and
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the low-fidelity samples fl(x).
If spectral mixture kernels are used in the model, this brings a question of how to com-
bine them with the BNSE initialization. One idea could be to initialize each component
of the NARGP kernel separately with BNSE as if it would be the only kernel predicting
the output of the model. An advantage of the method is the ease of the implementation.
A disadvantage is that it does not directly fit parameters for the whole NARGP kernel
but only for its part. As a result, the obtained initialization of the parameters might be
suboptimal for the whole kernel.
Another idea might be to try to use the BNSE with the whole NARGP kernel. An
important observation is that a spectral mixture kernel with Q components defines a
certain structure in its spectral density. Namely, it is a mixture of Q Gaussian distri-
butions. The parameters of the kernel correspond to the parameters of the mixture.
If a spectral mixture kernel undergoes a transformation and combination with other
kernels, then the resulting spectral density might no longer be a mixture of exactly Q
Gaussian distributions. The BNSE initialization looks for spectral peaks and assumes
that the spectral density corresponds to a mixture of Gaussians with a fixed number of
mixture components. As a result, it might be necessary to select a different number
than Q of Gaussian distributions in the BNSE. If the resulting spectral density has
a more complex form which is difficult to represent as an affine combination of the
Gaussians from the component kernels of the NARGP, then one might need to create
a mapping between the parameters found by the BNSE and the parameters of the
components.
For the model describing training in frequency domain 6 a potential first question would
be how to combine it with the NARGP approach. In the first approach demonstrated
on the figure 8 a Gaussian process lives completely in the frequency domain. It is
trained to predict the frequencies of the high-fidelity signal. During the inference such
process would predict separate frequency components which then can be transformed
further via IRFFT to the signal components. IRFFT itself is not part of the Gaussian
process and the process knows nothing about it. In this scenario, NARGP is formed in
the frequency domain. The kernel components kρ and kσ receive the space points xi as
inputs.
A second approach demonstrated in 9 is to train the model in the signal domain. How-
ever, this approach would require transforming Gaussian process modeling frequencies
into a Gaussian process in the signal domain. The Gaussian process with the NARGP
kernel will then predict the high-fidelity samples in the signal domain. IRFFT is a
multiplication of the input by a fixed complex-valued matrix M. As a result, this
procedure would result in modification of the kernel function of the Gaussian process.
When modifying a kernel- function, one needs to ensure that the resulting kernel
matrices are always positive-definite.
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Figure 8: NARGP in frequency domain

Figure 9: NARGP in signal domain

Figure 10: Two ways to apply the NARGP kernel. In the first, the component k f of
the NARGP working with the low-fidelity inputs will obtain the discrete
spectrum of the low-fidelity samples. Overall model will predict the discrete
spectrum of the high-fidelity function. In the second way, the NARGP kernel
is completely defined in the signal domain. The kernel component k̂ f is a
result of transformation, namely multiplication with the IRFFT matrix. This
kernel takes frequencies of the low-fidelity spectrum as inputs and directly
makes prediction in the signal domain without a need of an explicit IRFFT
transformation. This kernel function should be positive-definite
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4 Numerical Experiments

The model defined in the previous section was implemented with the help of the
Mogptk library 1. Several tests for multiple low and high-fidelity pairs were performed.
The goal was to estimate the model’s performance 6 on the test functions, to detect
weak and strong sides of the model, and to identify possible improvements. In the
experiments different types of kernels are used with the model. That includes the
spectral mixture kernel. Also, the BNSE initialization, together with the spectral mixture
kernel, is considered. The code of the performed experiments can be found in 2.

4.1 Spectral mixture kernel in signal domain

The first experiment was dedicated to the question of how expressive the spectral
Mixture kernels are. In order to perform the experiment a function was chosen

f (x) = sin(πx) + 2 sin(2πx) + sin(3πx) + sin(7πx) + 2 sin(8πx) + sin(9πx).

The figure 11 shows the plot of the function in the interval [0, 3]. One can observe
that the function has both low- and high-frequency components. Also, the function
is periodic. The goal of the experiment was to observe whether a Gaussian process
with the spectral mixture kernel can learn the function f , capturing both low and high
frequencies. Additionally, the runtime required to train the model was measured.
The experiment setting was starting from a value x the Gaussian process must predict
the corresponding function value f (x). For the experiment 2400 training pairs (xi, yi)

were collected over the interval [0, 3]. The points xi build a regular grid over the inter-
val. The kernel has 15 mixture components. Additionally, the BNSE initialization was
applied to make an initial choice of the model’s parameters prior to the optimization
procedure. The optimization algorithm is Adam, which took 500 steps.
During the testing phase the model was evaluated on 3200 samples gathered equidis-
tantly on the interval [0, 3]. The figure 12 shows the model’s predictions together with
the ground-truth values for the collected samples. One can observe that the trained
model did capture the structure of the ground- truth function almost everywhere except
for a small approximately linear region from [0.8, 1.3]. In this region, the model makes
an error with the high-frequency components. A possible improvement might be to
take more mixture components Q in the spectral mixture kernel. This might allow to
capture smaller frequencies of the ground-truth function. The maximum of the error
| f (x)− ŷ(x)| between the values of the ground-truth sample f (x) and its prediction
ŷ(x) is 0.23 for the collected test samples.

1https://github.com/GAMES-UChile/mogptk
2https://github.com/NastassiaLiatsetskaya/Learning_in_frequency_domain

https://github.com/GAMES-UChile/mogptk
https://github.com/NastassiaLiatsetskaya/Learning_in_frequency_domain
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Figure 11: Ground-truth function

Figure 12: Ground-truth function and the model’s prediction

Figure 13: Experiment: learning with spectral mixture kernels a function with both low
and high frequencies.
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As a result, for a function having both low- and high-frequency components a spec-
tral mixture kernel was able to learn the structure of the function except for a small
region. This leads to a hope, that spectral mixture kernels are good candidates to be
combined with the model 6 allowing learn complex relations between low-fidelity and
high-fidelity functions.
One additional observation is that it required 2715 s seconds to train the model on
2400 samples. In the project, multi-fidelity setting is considered. It is assumed that it is
computationally intractable to gather many samples from the high-fidelity function.
In the following experiments for the case of complex relation between high-fidelity
and low-fidelity functions, each Gaussian process model will receive a smaller set
of 800 high-fidelity samples during the training procedure. The idea is to extract
information from the low-fidelity samples, hopefully simplifying the learning problem.
The performance of the spectral mixture kernels will be compared to the performance
of the kernels combined from the widely used component kernels, for example, Square-
dExponetial and RationalQuadratic.
In practice, there is often a tradeoff between the accuracy of the model and the time
needed to train it. In the following experiments, together with the accuracy of the
model, its training time will be measured. Additionally, the performance and runtime
of the spectral mixture kernel with and without the BNSE initialization will be com-
pared. The goal is to observe whether a spectral mixture without BNSE can produce
results that do not significantly deviate from the version with the BNSE, but at the
same time, the runtime improves significantly.

4.2 Learning in frequency domain. Simple relation between low and
high-fidelity

The second experiment was dedicated to see whether a Gaussian process model
trained in the frequency domain can learn a simple relation between frequencies of
low-fidelity and high-fidelity functions. A linear transformation between functions
fh(t) = a · fl(t) + b is a simple relation chosen for the experiments. The advantage of
the linear transformation is that a linear transformation of the low-fidelity function
in signal space corresponds to the linear transformation of the frequencies of the low-
fidelity function in the frequency space.
The low-fidelity function used in the experiment has the form

yl(t) = sin(t) + cos(t2) + max(30, t).

The high-fidelity function
yh(t) = 10 · yl(t) + 5.



4. NUMERICAL EXPERIMENTS xliv

The figure 14 shows samples of the high-fidelity function. One can observe three

Figure 14: High-fidelity function in signal domain

components in the behavior of the function. The first component is the linear rising
trend starting at 30. The second component is the constant behavior until the input
value 30. Both of these components are caused by the RELU function. The third
component is the oscillations resulting from sin and cos components of the function.

Figures 15 and 16 show the relation between frequency components of low-fidelity
and high-fidelity functions. One can observe that for both real and imaginary compo-
nents the relations are linear. As a result, the model trained in the frequency domain
should learn a linear relation between the part of the input, the low-fidelity frequencies,
and the output.
In the experiments performed, two kinds of models were tested. The first was using
the Spectral mixture kernels in every Gaussian process. The second was using a linear
combination of the Exponential, Linear and Matern kernels. The Matern kernel had the
parameter ν = 0.5. The goal of using two models was to compare the performance of
the model 6 using the Spectral mixture kernel against the model with the combination
of the Exponential, Linear and Matern kernels.
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Figure 15: Relation between real components of frequencies

Figure 16: Relation between imaginary components of frequencies
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The input to the Gaussian processes were sequences of 12 elements. The sequence
corresponds to frequencies of 6 low-fidelity samples containing both real and imaginary
parts of the spectrum. Since the signal is real, one obtains for 6 samples 4 complex
frequency components. Additionally, the locations xi were added to the input. The goal
was given the input information x and the low-fidelity discrete spectrum to predict the
high-fidelity spectrum on the subinterval x. In the experiments, 200 sample sequences
were used as a training data set. All of the models trained in the experiment were
trained with 500 optimization steps each.
The figure 17 shows the predictions of the model with the linear combination of the

Figure 17: High-fidelity function samples predicted by the trained model

Linear, Matern and Exponential kernels transformed to the signal domain. On the plot,
the mean values of the multivariate Gaussian distribution are shown. One can observe
that means follow the structure of the high-fidelity function. They capture both the
rising trend, the constant behavior caused by the RELU function, and oscillations. The
time needed to train the model is 88.98s.
The figure 18 shows the results obtained for the models with the pure spectral mixture

kernels. One can observe that the trained models were not able to learn the high-fidelity
function. The learned result resembles more random oscillations without a clear struc-
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Figure 18: High-fidelity function samples predicted by the SM model

ture. The time needed to train the model is 2352.10 s.
To investigate a possible reason behind the poor performance of the spectral mixture
kernels additional experiments with the model were performed. The hypothesis was
that different values of the hyperparameters of the model might improve the perfor-
mance. There exist multiple different parameters one can vary in an experiment. The
first is the size of the training data set. The more data the model has, the more infor-
mation about the underlying ground truth function it obtains. This might increase the
probability of learning the underlying function. The second parameter is the number of
the mixture components. The model, which has few parameters, might not be flexible
enough to capture the behavior of the function. The third parameter is the number of
optimization steps. The first potential idea might be to make as many optimization
steps as possible. However, the authors in [HRS16] suggest restricting the number of
steps in the context of Stochastic gradient descent in order to achieve better stability of
the optimization algorithm and to potentially generalize better.
In the experiment, the number of training data points was varied. A linear function
f (x) = x was taken as the ground truth function that needs to be learned. As a model
a Gaussian process with a spectral mixture kernel was taken. The kernel has 15 mixture
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components. The model received samples of the form (xi, f (xi)). The hypothesis was
that more training data might lead to a better quality of the model. For the experiments
the model was trained with 500 steps. On figures 19, 20 and 21 one can observe the

Figure 19: 200 samples in the training set Figure 20: 400 samples in the training set

Figure 21: 600 samples in the training set

Figure 22: Predicted values by a model with the spectral mixture kernel. The ground
truth function is linear. In the experiments the size of the training data set
was varied.

obtained results. With the increasing number of samples, the model’s predictions
capture more accurately the linear structure of the ground truth function. A drawback
of this approach is that in a multi-fidelity scenario it might not always be possible to
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collect a larger data set to improve performance of spectral mixture kernels.
The performed experiments have demonstrated that in case of a linear relation between
frequencies of the low and high- fidelity models Gaussian process models using tra-
ditional kernels have significantly outperformed models using pure spectral mixture
kernels.

4.3 Learning in frequency domain. Complex relation

More complex low- and high-fidelity functions were considered in the third group
of experiments. Adding frequency as inputs provides additional information for the
model, but at the same time, it also increases the runtime. This raises the question
of whether this information is effective and whether it significantly helps to learn
the high-fidelity function or whether the effects of the additional inputs are rather
negligible, considering the increased computational effort.
As a result, two types of Gaussian process models were evaluated. The first type uses
only the vector x as an input, and no low-fidelity information is provided to the model.
The used type of architecture is illustrated in 7. The second type adds frequencies of the
low-fidelity samples to the input vector according to the schema in 6. Both groups of
models were aiming at predicting the frequencies of the high-fidelity samples. The goal
of the experiments was to compare their performance against each other. Additionally,
the runtime needed to train the models was measured.
A subgoal was also to observe whether the results from the second experiment for the
pure spectral mixture kernels having weaker performance than custom kernels can be
reproduced for new pairs of low and high-fidelity functions. The BNSE initialization
procedure allows selecting of parameter values for the spectral mixture kernel based on
the data observed. Then the parameters are further optimized via the Adam procedure.
In the experiments, a combination of the spectral mixture kernel together with the BNSE
initialization was tested for both models with low-fidelity and without low-fidelity
inputs. This allowed us to compare the performance of the spectral mixture kernel with
BNSE against pure spectral mixture on the test functions and observe how does the
BNSE improve the final predictions.
A widespread type of training in regression task is first to collect a set of points
{(x1, f (x1)), ..., (xK, f (xK))} and then from xi to directly predict the function’s value
f (xi). This type of training does not involve building subsequences of samples and
working with the spectrum of the samples. As a result, on the final stage of the
experiments the performance of the previously constructed models working with the
subsequences and predicting the discrete spectrum is compared against models which
starting from exactly one point x predict its corresponding function value f (x).
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Both models 6 and 7 allow to use different kernels in the Gaussian process models. In
the experiments performed, three different groups of Gaussian process models were
considered as illustrated in 26. The models differ in the kernel used for Gaussian
process models and how the parameters of the kernels are initialised.

The first group was Gaussian processes with the custom kernel being a sum of
Exponential, Matern with µ = 0.5, Polynomial kernel of degree 2, Rational Quadratic
kernel, and Squared exponential kernel. The second group was Gaussian processes,
with the spectral mixture kernel having 15 mixture components. The third group
was Gaussian processes with 15 mixture components, and additionally, the BNSE
initialization was applied. Each group consists of two Gaussian processes. The first
process constructed according to 7 was trained by using only the x- values as input.
The second process following 6 used additional frequencies of the low-fidelity func-
tion. The goal for all Gaussian processes was given a subinterval x = (x1, ..., xN) to
predict discrete spectrum (ψ1(x), ..., ψN(x)) of the high-fidelity models. In all of the
experiments performed, the data points for both fidelity levels were nested. The pa-
rameters of kernels were optimized with Adam. The number of iterations was set to 500.

First function

For the tests two pairs of low and high-fidelity functions were chosen. The first pair is

fl(x) = sin(8 · π · x),

fh(x) = sin(8πx + π/10)2 + cos(4πx).

The figure 27 demonstrates the graphs of the low and high-fidelity functions. One
can observe that both high- and low-fidelity functions are periodic. The high-fidelity
function has both low and high frequencies. On the other hand, the low-fidelity function
only has a low-frequency component. Also the period of the high-fidelity function is
larger compared to the period of the low-fidelity function.
For the training of Gaussian process models, a training data set is needed. The following
steps were performed:

• a sequence of 800 equidistant xi values in range [0, 1] was formed

• 800 samples fl(xi) and fh(xi) of both low- and high-fidelity functions were collected

• subsequences are formed with each subsequence being defined as (xi, ..., xi+8) and
containing 8 samples. The same procedure is applied to the samples of fl and fh
leading to the vectors of the form ( fl(xi), ..., fl(xi+8)) and ( fh(xi), ..., fh(xi+8))
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Figure 23: Gaussian processes with custom kernel

Figure 24: Gaussian processes with the spectral mixture ker-
nel

Figure 25: Gaussian processes with the BNSE initialisation

Figure 26: Three groups of Gaussian processes considered in the experiments. The
groups differ in the choice of the kernel function for Gaussian processes
and initialisation of the kernel’s parameters. Each group consists of two
Gaussian processes. One works purely with the input points x, another also
takes discrete spectrum of the high-fidelity function as a part of the input.
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Figure 27: Low and High-fidelity functions in the signal domain

• the RFFT is applied to the subsequences ( fl(xi), ..., fl(xi+8)) and ( fh(xi), ..., fh(xi+8))

The Real Discrete Fourier transform of a subsequence returns a 5-dimensional vector of
amplitudes for a subsequence of 8 samples. Since real and imaginary components are
predicted separately by two separate Gaussian processes, this results in 10 Gaussian
process models which are trained independently. The choice of the 8 samples per
sequence was made after empirical observation that this number of points does not lead
to a very long training time of the models. At the same time models resulting from the
sunsequences are able to capture some of the behavioral patterns of the high-fidelity
function. For testing the procedure 4.3 was applied to generate a data set with 200
subsequences for each x, fl and fh.
The first experiment was to train Gaussian processes from the first group defined in 26
with custom kernel. The group contains two Gaussian processes. One uses only the sub-
sequences (xi, ..., xi+8) to form its predictions. Another also takes into consideration the
values of the discrete spectrum of the low-fidelity function. Figure 28 demonstrates the
model trained on inputs with frequencies of the low-fidelity function. One can observe
that the model has learned the location of peaks and pits. However, in most cases, the
amplitudes of the peaks are predicted wrong. This might indicate that for a subinterval
(xi, ..., xi+8) in the predicted high-fidelity spectrum by the model the low-frequency
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Figure 28: Inputs with frequencies

Figure 29: Inputs without frequencies

Figure 30: Complex relation, first pair of low- and high-fidelity functions: model with
the kernel from 23 trained on the inputs with and without low-fidelity
discrete spectrum. The model was trained to predict the first pair of low-
and high-fidelity functions.
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components might contain an error which causes the effect observed. The values of the
model’s prediction are contained in the interval of the approximate width of 2. This
is the same value as the amplitude of the low-fidelity function. For the high-fidelity
function the values are in the interval between [−1, 2] of width 3. In this scenario it
might be that the model has failed to learn the structure of the high-fidelity function
making errors in the amplitudes of both the low and high-frequency components of the
ground-truth function. Instead, the model might inherit the interval width of 2 directly
from the low-fidelity function. One additional observation is that the ground truth
function is symmetric. However, there is no strict symmetry in the model’s prediction.
Figure 28 shows an example of this around the peaks at x = 0.3 and x = 0.8. The
period of the ground truth function is 0.5, so the function around x = 0.3 and x = 0.8
should have exactly the same behavior. But the prediction shows a shift upwards of the
values around x = 0.3. This might indicate that the model did not completely capture
the periodicity of the ground truth function. This, in turn, might be an indication that
the low-frequency components on the subintervals were not captured correctly. Also,
the predicted function shows a lot of high-frequency oscillations. These oscillations
might come from the errors when predicting high frequencies on the subintervals.
A possible source of the errors might be a potentially complex relation between the
frequencies of the low-fidelity function and the frequencies of the high-fidelity function.
The low-fidelity spectrum might not be informative when learning the high-fidelity
spectrum. Also, the frequencies of the high-fidelity might define a complex function to
fit for a Gaussian process. The chosen kernels might not be flexible enough to fit it. An
alternative source of errors might be the length of the subintervals used as an input.
If the interval contains too few samples, then it might be insufficient to capture and
model high-frequency terms.
The figure 29 also shows the predictions of the model trained without frequency input
as the green curve. One can observe that the model, similarly to the model trained with
frequency inputs, has the problem of overshooting or undershooting peaks and pits
of the ground truth function. Since both models operate on subintervals of the same
length, in both cases this might lead to errors when capturing the high frequencies. One
can observe that in different regions either the model trained on frequencies gives a
better prediction or the model trained without frequencies. Overall, the model without
frequencies shows fewer jumps and is more smooth. This might be an indication that
the model is more certain on how the ground truth function looks locally compared
to the model with frequencies. As a result, one conclusion might be that for this
setting adding additional frequency input did not lead to a significant increase in the
prediction quality.
An interesting insight might be derived from the functions that Gaussian processes are
trying to learn. The final goal is given a subinterval of inputs (x1, ..., xN) to predict a
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discrete spectrum of the high-fidelity function (ψ1, ..., ψN) on that subinterval. Each
component of the discrete spectrum ψi containing a real and an imaginary part is
learned by two Gaussian processes. The first process learns the real part, and the
second the imaginary part. This forms a function with the function domain being a
vector (x1, ..., xN), which depending on the setting can contain additional dimensions
with low-fidelity spectrum, and the function value being the real or imaginary part
of the i−th component of the spectrum, ψi.real or ψi.imag. Figure 31 shows the first
Fourier ψ1 coefficient projected on the first dimension of the input vector x1. For the
first coefficient of the Fourier series holds that its imaginary part is zero. Which is why
the coefficient is a real number. The graph also shows the predictions of the Gaussian
process with custom kernel and frequency inputs. One can observe that the model
makes a rather significant error when predicting some of the sharp peaks and pits. The
graphs 32 and 33 show the real and the imaginary part of the second coefficient. One
can observe that the real part was modeled relatively accurately. The imaginary part
shows slightly more errors when it comes to the amplitudes of the oscillations. On
one hand, the graphs suggest improving the prediction of the first coefficient. One
potential way to do it is to select a more flexible kernel. On the other hand, the plots
for the second component ψ2.real and ψ2.imag show a function that significantly differs
from the first coefficient ψ1.real. As a result, if such a situation occurs, one might
consider having different kernels optimized for a particular behavior of the ground
truth function ψi.real or ψi.imag.
The second experiment was to look at the spectral mixture kernels without the BNSE

initialization. The figure 35 shows the results for the Gaussian process model with the
spectral mixture kernel using inputs without frequency components. One can observe
that the model did capture the low-frequency component corresponding to cos(4πx).
The high-frequency peaks and pits resulting from the addition of the squared sinus
component were not captured. This might be connected to the results obtained in
section 5.2 for the spectral mixture kernels, which show that spectral mixture kernels
might need more training data to capture the function accurately. Figure 36 shows mod-
els trained with spectral mixture kernels and using inputs with frequency components.
One can observe that the model also recognizes the global oscillation. However, unlike
the model without frequency components, figure 36 shows small peaks and pits on
locations where the ground truth function also has them. This might be an indication
that adding information in the form of frequencies of the low-fidelity function did help
to guide the model toward more accurate predictions. One might also observe that the
amplitudes of the peaks are too small compared to the ground truth. This might be
caused by errors in low-frequency components on the subintervals when forming a
prediction by the model. Also, the model oscillates heavily. This might be an effect of
predicting the high frequencies wrong with their amplitudes being too high.
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Figure 31: First coefficient Figure 32: Second coefficient, real part

Figure 33: Second coefficient, imaginary part

Figure 34: Complex relation: Target functions corresponding to the first real, second
real and second imaginary Fourier coefficients. Also, the model’s predictions
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Figure 35: Inputs without frequencies

Figure 36: Inputs with frequencies

Figure 37: Complex relation: the model with the spectral mixture kernel trained on
inputs with and without low-fidelity discrete spectrum. The model predicts
the high-fidelity function from the first pair.
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Table 1: Time needed to train models with low-fidelity spectrum and wihtout the
spectrum

Model Runtime in s

Spectral mixture 334.81
Custom kernel 40.74

Spectral mixture with frequencies 653.88
Custom kernel with frequencies 107.34

Spectral mixture with BNSE 430.931
Spectral mixture with BNSE and frequencies 853.0.37

The third experiment was to add the BNSE initialization to the spectral mixture model.
On the one hand, this allows to see whether adding frequencies will significantly
improve the prediction. On the other hand, this allows to compare the performance of
the spectral mixture kernel with BNSE initialization against pure spectral mixture and
against custom kernel from the first experiment. Figure 38 shows the obtained results
for the model trained without frequency inputs. One can observe that the model shows
very accurate predictions and significantly outperforms all the models trained in the
chapter. A drawback of using the BNSE initialization is the increased runtime.
One important consideration when selecting a Machine learning model is the computa-
tional resources needed to train and evaluate the model. In the experiments, multiple
models were trained. The training was done sequentially. The following table 1 shows
computational time needed to train the models from 28, 29, 36, 35, 38, 39: One can
observe that the models using the custom kernel were much faster to train. The increase
of the input dimensionality through the low-fidelity input leads to an approximately
linear increase in the computational time. The BNSE initialization did increase the time
by approximately 25 percent.

Figure 39 shows the obtained results for the BNSE models using frequencies as a part
of the input. One can observe that the frequency of input did not lead to a significant
improvement in the model’s predictions. One small observation is that the BNSE on
figure 39 has made slightly more errors compared to the performance on 38. One
possible explanation is that BNSE is optimal for kernel matrices having the Toeplitz
structure discussed in 3.2. According to [Wil14], this structure arises when the grid
is regular and the kernel is stationary. The input subsequences of x were collected
at regular intervals. As a result, in the setting where only the x is used as input, the
BNSE initialization leads to an accurate fit of the model. However, if the frequencies



4. NUMERICAL EXPERIMENTS lix

Figure 38: Inputs without frequencies

Figure 39: Inputs with frequencies

Figure 40: Complex relation: The model with the spectral mixture kernel and the BNSE
initialisation trained on inputs with and without low-fidelity inputs. The
model was trained on the first pair of the low- and high-fidelity functions.
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Table 2: RMSE of the models with low-fidelity spectrum and without the spectum
Model RMSE

Spectral mixture 0.3452
Custom kernel 0.193

Spectral mixture with frequencies 0.3933
Custom kernel with frequencies 0.3419

Spectral mixture with BNSE 0.037
Spectral mixture with BNSE and frequencies 0.057

of the low-fidelity function are added to the input, the resulting vectors might not be
equidistanced anymore. Then, the BNSE initialisation might be suboptimal, and further
optimisation might be necessary to improve the predictions.
The spectral mixture kernel for all models has 15 mixture components. This is also a
hyperparameter which can be optimized. The Gaussian process with a pure spectral
mixture kernel has shown significantly worse performance compared to the model with
custom kernel. One could consider the insufficient number of the mixture components
as a potential reason for the performance problems. The kernel is not flexible enough to
capture the ground truth function. However, the results for the BNSE kernel show that
a SM model with 15 components can perfectly capture the underlying function. As a
result, a source of error for the pure spectral mixture kernel might lie not in the number
of components but in the found parameters for these components. This is a problem of
optimization. One hypothesis might also be that Spectral mixture kernels introduce a
more complex objective function to optimize compared to the custom kernels.
One statistics which can be used to measure performance of the models is the RMSE.
For all 6 models considered in this chapter the following table 2 presents the RMSE
values: Interestingly, one can observe that in terms of the RMSE error the models with
pure spectral mixture kernel and the spectral mixture with frequencies with frequencies
have a similar performance to the custom kernel with frequencies. Both models with
the spectral mixture kernel mistly capture the low-frequency component of the ground-
truth function. Whereas the custom kernel also tries to model the high-frequencies.
However, this modelling is no perfect and in some regions, for example around x = 0.5
leading to large deviations from the ground truth function. This deviation might lead
to an effect that on average imprecise modelling of high-frequencies gives no advantage
compared to models which largely focus on low-frequencies. The second observation
is that for the custom kernel with frequencies despite better on some regions of the
ground-truth function compared to the custom kernel without frequencies the average



4. NUMERICAL EXPERIMENTS lxi

RMSE is worse.

Second function

The second pair of the low- and high-fidelity functions considered is defined as

fl(x) = sin(8 · π · x),

fh(x) = sin(8 · π · x)2.

Figure 41 shows plots of 800 samples from the low and high-fidelity functions. The high-

Figure 41: Low and high-fidelity functions

fidelity function shows a simpler behavior compared to the high-fidelity function in the
previous section. In the performed experiments, the number of training subsequences
was reduced to 60, each consisting of 8 samples. The same models as in the previous
section were considered. The models were trained with 500 steps using the Adam
algorithm and evaluated on 100 subsequences.

The figure 42 shows the obtained results for the Gaussian process model using the
kernel from 23 and no frequencies in input. One can observe that the model makes
an error in the amplitudes of the oscillations. Figure 43 depicts the results for the
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Figure 42: Inputs without frequencies

Figure 43: Inputs with frequencies

Figure 44: Complex relation: Models with the kernel from 23 trained with and without
low-fidelity frequencies as part of the input. The models predict the second
pair of the low- and high-fidelity functions.
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model using frequency inputs. Its predictions are more accurate compared to the
model without frequencies. This might be an indication that the additional information
provided by the low-fidelity frequencies might have helped to improve the prediction
of the model.
The figure 45 shows the observed results for the model with the spectral mixture kernel

and without frequencies in the input. One can observe that the model did not catch
the structure of the ground truth function. The figure 46 shows the same model but
with the frequencies in the input. The model does see the oscillations. The amplitude
of the oscillations is not predicted correctly. Also, the prediction is shifted upwards.
This might result from the wrong prediction of the low-frequency components on the
subintervals. The model itself shows sharp jumps. This might be an effect of errors in
the high-frequency components on the subintervals.
Finally, the spectral mixture model with the BNSE initialization without frequency
inputs in shown on the figure 48. The model did capture the behavior of the ground
truth function. A similar result can be seen on predictions 49 generated by the model
with spectral mixture kernel, the BNSE initialization, and using frequencies as in-
put. The observed results might be an indication that for the second pair of the low-
and high-fidelity functions the frequencies of the low-fidelity function have led to
an improvement in prediction. One possible reason might be a simpler correlation
between low and high-fidelity functions, which allows for the model to extract easier
the information needed to accurately predict the high-fidelity function.
The experiments that were performed showed that using frequencies of the low-fidelity
function as additional input to the model might improve the model’s prediction. How-
ever, this is not necessarily the case and for some low- and high-fidelity pairs adding
frequencies might worsen the quality of the model. One additional observation was
that the length of the subintervals used as inputs might influence the quality of the
model’s predictions.

Training in signal domain

In the experiments performed in this chapter, the question was whether the information
of low-fidelity frequencies can help when trying to predict high-fidelity frequencies.
Another approach as described in [Rav+24] is to directly take samples from low-
fidelity without forming subsequences and try to predict high-fidelity points. In the
experiments, the number of training data points is kept constant compared to the
experiments with frequencies. The chosen Gaussian process kernels are also the same.
A low-fidelity sample is also used as a part of the input to a Gaussian process. A goal is
to predict a high-fidelity sample on the same location x. The data points are assumed to
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Figure 45: Inputs without frequencies

Figure 46: Inputs with frequencies

Figure 47: Complex relation: Models with the spectral mixture kernel trained with
and without low-fidelity frequencies as part of the input. The models were
trained on the second pair of the low- and high-fidelity functions
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Figure 48: Inputs without frequencies

Figure 49: Inputs with frequencies

Figure 50: Complex relation: Models trained with the spectral mixture kernels and the
BNSE initialisation trained with and without low-fidelity frequencies as part
of the input. The models were trained on the second pair of the low- and
high-fidelity functions.
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be nested. Since no frequencies were involved, in each case only one Gaussian process
model was trained, taking as input 2 dimensional input (x, fl(x)) and producing the
output fh(x).

The figure 51 shows the obtained results for the custom kernel. The model also
shows not purely periodic prediction. This might support the hypothesis that for the
predictions with frequencies, one possible reason for the lack of symmetry in 28 was
the chosen kernel. The prediction’s quality is increased compared to the models with
the custom kernel trained on subsequences.
The figure 52 shows the predictions made by the model with the pure spectral mixture
kernel. The quality of predictions is significantly improved compared to the training
on the subsequences for the spectral mixture kernel. One source of the observed
improvement might be the amount of available information. In the models trained on
subsequences each Gaussian process predicts its own entry in the frequency vector. It
does see the full subsequence of the low-fidelity functions. But from the high-fidelity, it
only sees its vector entry, which it has to predict. For a subsequence with 5 samples. It
would be 1/5 of the overall high-fidelity training data. The results of the experiments
in the previous chapters might indicate that the performance of the spectral mixture
kernels might be improved with the increased amount of available training data. This
might have been a reason for the improved performance in the 52 having more training
data on high-fidelity function available to the model. Another source of improvement
might be the low-fidelity samples in the signal domain. They might have helped to
simplify the function to be optimized. Which, in turn, has led to a better choice of the
parameters for the spectral mixture kernels.
Finally, the figure 53 plots the predictions of the BNSE initialization together with
the spectral mixture kernel. It has the best performance among all three models. Its
performance is similar to the models with BNSE trained on the subsequences. The
results of the models with BNSE have shown that the initialization method might help
a lot in selecting better parameters for a spectral mixture GP.
The figures 55, 56, 57 plot the results obtained for the second pair of low- and high-
fidelity functions. All three models have accurately predicted the ground-truth function.

4.4 Incorporating frequency training in NARGP

In the previous experiments, the multi-fidelity structure was very simple. Gaussian
processes using the low-fidelity information had one kernel

kh(x, x′) = k((x, fl(x)), (x′, fl(x′))), (6)
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Figure 51: Custom kernel Figure 52: Spectral mixture kernel

Figure 53: Spectral mixture with BNSE

Figure 54: Multi-fidelity models with the same kernels, but trained purely in the signal
domain. Each model uses as input (x, fl(x)).
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Figure 55: Custom kernel Figure 56: Spectral mixture kernel

Figure 57: Spectral mixture with BNSE

Figure 58: Multi-fidelity models trained on the signal’s samples plotted for the second
pair of the low- and high-fidelity functions
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which received both the input x and the low- fidelity frequencies. The idea of NARPG
is to use a more complex kernel the components of which work on separate parts of
the input vector

kp(x, x′) · k f ( fl(x), fl(x′)) + kσ(x, x′). (7)

In this chapter the NARGP kernel was combined with the model 6. Each Gaussian
process predicting a component of the discrete spectrum has received a NARGP kernel.
Each of the kernel’s three components kp, k f and kρ received the same kernel k̂. Different
choices for the kernel k̂ are possible. In the performed experiments two kernels same as
in the experiments for the first and the second groups from 26 were chosen. This allows
to compare the results for the NARGP kernel with results computed in the previous
sections.
The experiments in this chapter were aiming at answering two questions. The first
question is whether the use of the NARGP kernel 7 in the model 6 leads to much better
results, compared to the use of the kernel 6 in the same model. Can a better structure
of kernel lead to a more efficient extraction of the information from the low-fidelity
frequencies? The second question is to compare performance of the model with the
NARGP kernel in two scenarios, using the samples fl(xi) and the discrete spectrum of
the samples ψl to form the prediction. The idea is to empirically observe which type of
the input, a discrete spectrum of the low-fidelity or the values in the signal domain,
was the most helpful for the model to learn the high-fidelity function.
The number of optimization steps and training points was kept constant compared
to the previous experiments. Throughout this chapter the custom kernel refers to the
kernel used in the first group of 26. The figure 59 shows the obtained results for the
custom kernel combined with NARGP. The results show a significant improvement
compared to the model using the same kernel with frequency input from 28. This might
indicate that a structure of the chosen kernel might play a significant role when learning
a Gaussian process with frequency inputs in the multi-fidelity setting. Separation of
the spatial x inputs and the low-fidelity fl(x) inputs did lead to better results in the
performed experiments. An additional observation is that the Gaussian process with
custom kernel evaluated only on the spatial inputs x in 29 makes an error with the
global amplitude. Its predictions cannot capture the magnitude of the sharp peaks
and deep pits of the function. The performed experiments demonstrate that a model
with the NARGP kernel and frequency input was able to more accurately model high-
frequency components of the ground-truth function. The RMSE of the model is 0.1288.
The figure 60 shows the results for the pure spectral mixture kernel. One can observe
that the NARGP model did not capture the ground truth function. The predictions
from the model closely resemble that of the experiment 36. This might be a piece
of additional evidence that in this experiment, it is not that the kernel is not flexible
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Figure 59: Custom kernel with frequencies

Figure 60: SM with frequencies

Figure 61: Models with the NARGP kernel and frequencies

enough to capture the ground-truth function or that the low-fidelity frequencies are
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Table 3: RMSE error of the models trained with NARGP kernel
Model RMSE

NARGP with spectral mixture kernel and low-fidelity samples 0.097
NARGP with custom kernel and low-fidelity samples 0.1066

NARGP with spectral mixture kernel and low-fidelity spectre 0.387
NARGP with custom kernel and low-fidelity spectre 0.1288

not informative, but rather the optimization procedure returns parameters that lead to
poor performance of the model. The RMSE of the model is 0.387.
Similarly to the previous chapters the experiments were repeated on the same models,
but without the frequency input. Instead, the values of the low-fidelity function fl(x)
were used as input to the NARGP kernel. The goal was to observe which form, in signal
or in frequency domain, of the low-fidelity samples will lead to better predictions. The
figure 62a shows the obtained results for the custom kernel. The results are slightly
more accurate compared to the 59. Interestingly, in both settings with low-fidelity
information in signal and in frequency domain the models struggle with the two pits
near 0.2 and 0.7. It might be that it is a problem with the structure of the custom kernel
itself, that it is not flexible enough to capture high- frequencies of the function.
The figure 62b illustrates predictions for the spectral mixture kernel. Compared to the
60 and 35 the predictions have improved significantly. The model accurately captures
the amplitudes of the peaks. Contrasting to the results for the frequency inputs in
59 the prediction has become much more exact. Since from 39, it is known that a
spectral mixture kernel can learn the ground truth function. So, the reason for the
poor performance is not the inflexibility of the kernel. But it is the choice of the
parameters that leads to good or bad performance of this model. It might be that
NARGP and inputs without frequencies did simplify the optimization problem, so that
nearly optimal parameter values were found for the kernel. A similar effect for the
frequency inputs was not observed in the experiments.
The following table 3 demonstates the RMSE errors measured for all four models
considered in this chapter. In the table one can observe that the NARGP models using
the low-fidelity spectrum have shown bigger RMSE errors compared to the models
using the low-fidelity samples. The pure spectral mixture with the low-fidelity samples
has outperformed the model with custom kernel and the low-fidelity samples. An
opposite situation can be observed for the models having low-fidelity spectrum. The
model with custom kernel has a three times smaller RMSE than the model with the
spectral mixture kernel.
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(a) Custom kernel without frequencies

(b) SM without frequencies

Figure 62: Models with NARGP kernel and signal inputs
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As a result of the performed experiments, the NARGP kernels might significantly
improve the results of the models. The additional structure in kernel might lead to
more effective extraction of the low-fidelity information. Additionally, NARGP might
help to simplify the optimization problem for the spectral mixture kernels. Leading
even without the BNSE initialization to a good quality of the predictions.

5 Conclusion

In the project, the idea of training Gaussian processes in the frequency domain was
explored. A model 6 uses both, the input x and the discrete spectrum of the low-fidelity
function to learn the spectrum of a high-fidelity function. Gaussian processes in the
model are trained independently. The model allows to use different kernels for the
Gaussian processes. An important kernel is the spectral mixture kernel. Its perfor-
mance was compared against the performance of the custom kernel defined in 23. In a
group of experiments the spectral mixture kernel was enhanced by applying the BNSE
initialization of the kernel’s parameters. Finally, the NARGP kernels were tested in
combination with the model 6.
The experiments that were performed led to multiple interesting results. The first out-
come of the project is that training the Gaussian process in the frequency domain might
improve predictions in the multi-fidelity setting. However, for the constructed model,
it is not guaranteed that the results will automatically improve when the low-fidelity
frequencies are added. Rather, it might be function dependent. In the experiments also
the cases were observed when adding the frequency information either did not play a
decisive role when forming the prediction or has even slightly made the prediction’s
quality worse.
The second observation is that optimizing the spectral mixture kernels might be dif-
ficult. The BNSE initialization procedure might lead to significant improvement of
the parameters. However, when applying BNSE to a model with frequency inputs,
the resulting model might be suboptimal. A potential reason might be that when
adding frequencies to the inputs, the kernel matrix does not have the Toeplitz structure
anymore, because the inputs no longer form a regular grid. This leads to the BNSE
algorithm providing parameter values that are suboptimal. Another observation is that
spectral mixture kernels might have larger runtime needed to train them compared to
kernels composed from the Matern, Polynomial, Exponential, SquaredExpoenntial and
RationalQuadratic. The BNSE initialization additionally increases the runtime.
The structured kernel of the NARGP model has significantly improved performance
on the tested models. An interesting result is that a spectral mixture kernel, together
with the NARGP kernel, outperformed all cases with the spectral mixture kernel except
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for the cases with the BNSE initialization. A potential reason might be that NARGP
has effectively extracted the low-fidelity information. That might have simplified the
optimization procedure for the spectral mixture kernel.

5.1 Future work

The model in 6 assumes that the frequency components of the spectrum are indepen-
dent. As a result, an independent multi-output Gaussian process is constructed. An
extension of this setting is to also consider multioutput Gaussian processes where the
outputs are correlated with each other. This would mean that for a signal it is assumed
that separate frequency components are dependent on each other. Various kernels for
modeling channel dependencies exist. For example, the Linear Model of Corregoization
defined in [Goo97]. This kernel can be applicable to different combinations of the
latent Gaussian process kernels. In the spectral mixture setting, there are also kernels
that consider dependencies. One example is the multi-output spectral mixture kernel
defined in [PT17].
Another potential direction is to see whether training in signal domain can improve the
predictions. In the model 6 Gaussian processes are trained independently of each other.
Each process predicts its own frequency component. The model doesn’t know that
later these frequency components will be combined together in the IRFFT to predict
samples in the signal domain. One could consider defining the loss function in the
signal domain. This loss function will compare the predicted high-fidelity samples
against the ground truth. This loss will couple together different Gaussian processes
used in the model. Also, it will incorporate the IRFFT transformation. The hope is that
if the loss function knows the final goal, predicting the signal samples, it can select
better parameters for all the kernels. Potential drawbacks of the scheme are that the loss
function might become more complicated to implement. Additionally, such a scheme
would optimize all Gaussian processes at the same time, which might be more difficult
in terms of computational resources.
In the NARGP setting, one can consider incorporating the BNSE initialization together
with the SM kernels into the kernels with the NARGP structure. The current implemen-
tation of the BNSE initialization in the [Tob] library allows the direct use of the BNSE
only with objects of the type Spectral Mixture model, a pure spectral mixture kernel.
NARGP will involve combining multiple spectral mixture kernels together. The hope
is that introducing the BNSE initialization might improve predictions of the NARGP
kernel with the spectral mixture components.
Also, in the project, the test functions did not have any noise. On the contrary, real-
world processes often are corrupted by noise signals. One problem with the Fourier
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transform mentioned in [Tob18] is that noisy or missing data will introduce uncertainty
over the entire frequency domain. The authors suggest using the BNSE to obtain a
probabilistic model of signal’s frequencies.
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