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1 Introduction

Partial Differential Equations can be used to model different phenomena from different application do-
mains, for example, Physics, Chemistry, Meteorology and other. As described in [6] the difference between
an ODE and PDE is that ODE contain functions of one independent variable and their derivatives on that
variable. In contrast PDE can have more than one independent variables and derivatives of functions on
these variables. Which makes this class of models more expressive and more difficult to solve. Already
for ODEs there are examples when there is no analytical form for the solution of the equation or equation
system. For PDE the situation gets more complicated as there are examples when it is not known if a so-
lution exists for an initial values problem, for example in Navier-Stokes equations. If an analytical solution
is not known one can apply a numerical algorithm to try to approximate the solution.
In this project report a specific PDE problem is considered namely the second order wave equation defined
as

∂u(x, t)
∂t2

= Λu(x, t) x ∈ Ω, t > 0,

where Λ denotes the Laplacian operator, with boundary conditions

u(x, t) = g(x, t) x ∈ ∂Ω, t > 0.

In this report we will use spectral methods to solve the PDE with basis functions being randomly sampled
with help of the algorithm Sampling Weights of Neural Networks developed by Prof. Dr. Dietrich and the
research team [4]. Then one needs to determine the weights ak(t) of the basis functions.
As shown in the Chapter 2 weights will be the solution of a linear ODE of second order Ax′′(t) = Bx(t).
However, this approach might generate four challenges: 1) if many components are chosen in the spectral
method, then the matrix A of the linear ODE system will become large 2) the matrix A might be very
ill-conditioned 3) the matrix A is not sparse 4) the matrix A might not be square
The goal of the project is to investigate how the linear ODE can be solved, this includes stability and
convergence considerations. Also since the considered ODE methods will result in linear systems of
equations, the question is investigated, how a potentially large, ill-conditioned and dense linear system of
equations can be solved.

2 Numerical Methods for PDEs

In this chapter numerical methods for Partial Differential Equation are introduced. In section 2.1 the spec-
tral method is desribed. We discuss its application to the second order wave equation. The spectral
method is not the only method for approximating the solution of a PDE. In the sections 2.2 and 2.3 two
other methods Finite Difference and Finite Element methods will be introduced. However, these two meth-
ods are not the only alternatives available to the spectral method. One further alternative is the Finite
Volume method described in [15].

2.1 Spectral method

The ansatz of the Galerkin spectral approach is to represent the solution of the PDE as a weighted sum of
basis functions:

u(x, t) =
∞∑

k=1
ak(t)ψk(x) (1)

where ψk are basis functions and ak(t) are weights. The basis functions are functions with global support.
One major advantage of the spectral method is its convergence properties. As shown in [6] for analytical
functions u ∈ Cw(Ω) the error shows exponentially fast decay depending on the number of components
used N . The authors in [6] note that for functions with strongly localised phenomena the spectral method
might be inefficient.
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This approach separates spatial and temporal part of the PDE solution u(x, t) since the coefficients only
depend on time and basis functions only depend on space. The sum contains infinitely many components.
One can obtain an approximation to (1) by considering a finite number of components N :

u(x, t) ≈
N∑

k=1
ak(t)ψk(x).

There might be a tradeoff when choosing the number N . On one hand the more components are con-
sidered, the more accurate the approximation might be. On the other hand bigger number of components
might lead to higher computational effort. One method of choosing the number N is described in [6]. The
method is based on an error estimator for the approximation error

ϵN = ||uN − u||.

The error estimator is built by using multiple spectral method approximations each computed on its own
ansatz space with its own number of components N ′. The method relies upon the assumption that the
more components N ′ one uses the more accurate is the solution. If three approximations computed with
the numbers of components N , N ′ and N” are used and an error tolerance TOL is given, then in [6] the
following strategy of selecting the index N∗ is proposed:

N∗ = N + (N ′ −N)log
TOL
ϵN

/log
ϵ′N
ϵN

with error estimators ϵN = ||uN − uN”|| and ϵN ′ = ||uN ′ − uN”||. The authors in [6] suggest if N∗ < N”
then the solution N” can be taken. Otherwise one can take the approximations N ′, N” and N∗ and repeat
the procedure.
If the basis functions are known, the next step is to determine the coefficients ak(t). One important
consideration here is that the coefficients are not vectors, but rather functions. One way to determine the
coefficients is to insert the approximate solution into the original PDE leading to:

N∑
k=1

a′′
k(t) · ψk(x) = Λ

N∑
k=1

ak(t)ψk(x) =
N∑

k=1
ak(t)Λψk(x). (2)

Then the obtained equation needs to be solved for the coefficients ak(t). The idea described in [6] is to
multiply both sides of the equations by a basis function ψk(x) and integrate over the domain Ω. Since the
coefficients ak(t) do not depend on space they can be brought outside the integral leading to

N∑
k=1

a′′
k(t)

∫
Ω
ψiψjdx =

N∑
k=1

ak(t)
∫

Ω
Λψiψjdx

when multiplied with ψj from both sides. If the basis functions ψi, psik have a global support, then the
integrals < ψi, ψj >=

∫
Ω ψiψjdx and

∫
Ω Λψiψjdx might not be zero in general.

By multiplying both sides of the system (2) by basis functions one obtains a linear system of ordinary
differential equations

Ax′′(t) = Bx(t) (3)

with aij =< ψi, ψj > and bij =
∫

Ω Λψiψjdx. The initial values for the ODE can be derived by looking at
the boundary conditions < u(x, 0), ψi(x) > as ai(0).
The system (3) is the second order system of ODEs, however, there exists a transformation described in
[5] which allows to transform it to the first order system. The drawback of this method is the increased
dimensionality of the system, since additional variables will be introduced.
The matrix A is symmetric. Its entries are composed of values < ψi, ψj >. These entries are fixed and
can be precomputed if the basis functions are fixed. The basis functions tanh(wkx + bk) have a global
support, as a result the matrix A might be dense. In general [6] the computation of < ψi, ψj > will require
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to compute an integral. There might not be an analytical expression for the integral value. As a result, as
discussed in [6] numerical quadrature formulas can be applied to approximate the solution.
Matrix condition number with the respect to inversion is defined as

k(A) = ||A||||A−1||.

Condition number is not a property of numerical algorithm, but rather a property of the problem to solve. In
case of the matrix inversion problem high condition number means that it is difficult to compute the matrix
inverse as the final result is very sensitive towards noise and computational roundoffs which occur by the
finite precision arithmetics used by modern day computers. If the matrix A has a low condition number,
then the equation (3) can be written in the explicit ODE form:x′(t) = f(x, t). For large condition number
the equation (3) is treated as an implicit linear ODE.
If the L-2 norm is chosen for the condition number, then according to [2] there exists a connection between
the L-2 norm of a matrix and its singular values. Namely for the largest singular value σmax = ||A||2
and for the smallest singular value 1

σmin
= ||A−1||2. Then a matrix will have a large condition number

if σmax >> σmin. There exists a connection between singular values and eigenvalues of a matrix. For
symmetric and Hermitian matrices the eigenvalues and singular values coincide. In the general case one
can use the fact, that AAT is symmetric for a real valued matrix A and σ2

i correspond to the eigenvalues of
this matrix. In order to approximate the condition number the power iteration method based can be used.
It is an iterative algorithm based on Rayleigh quotient as described in [2]:

r(A, zk) = zT
k Azk

zT
k zk

which allows to approximate the largest eigenvalue of the matrix A. There exists an inverse power iteration
which allows to compute the smallest eigenvalue.

2.2 Finite difference methods

One idea when trying to approximate a PDE could be to approximate the derivatives appearing in the
equation. One way to approximate the first derivative as shown in [15] is to look at its Taylor series
expansion and to take the terms which do not involve derivatives as an approximation:

du

dx
(x) ≈ u(x+ h) − u(x)

h

[15] also shows how a Taylor expansion can be used to provide information about the approximations error:

u(x+ h) = u(x) + h
du

dx
+ h2

2
d2u

dx2 + h3

6
d3u

dx3 + h4

24
d4u

dx4 (ϵ)

with ϵ ∈ (x, x+ h). As a result the error is of order O(h)
A similar approach can be applied to the case u(x − h). The obtained approximations for u(x + h) and
u(x− h) can be combined to produce a fourth order approximation to the second derivative:

d2u(x)
dx2 = u(x+ h) − 2u(x) + u(x− h)

h2 − h2

12
d4u(ϵ)
dx4

with ϵ ∈ (x − h, x + h). This formula is also known as the centered difference approximation. As shown
in [15] multiple different difference scheme are possible for Laplacian operator. They also involve different
number of points, an example for 5 and 8 point stencils can be found in [15].
One important property of the described approximation schemes is that the introduced schemes will lead
to a linear system off equations. No derivatives will be involved anymore in the equation. The approach
described in [15] uses a mesh grid, these are the points where the PDE solutions will be approximated. The
stencils can lead in case of large PDE systems to large sparse matrices, which are diagonally dominant.
As a result, despite having a large system of linear equations it can still be solved efficiently. One particular
method described in [15] is Fast Poisson solvers with run time O(Nlog(N)) with N being the size of the
matrix.
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2.3 Finite Element method

Another idea of how to approximate a solution of PDE is to look at the weak formulation of the PDE:

Find u ∈ Vh such that a(u, v) = f(u, v)∀v ∈ Vh

where a(u, v) =
∫

Ω ∇u · ∇vdx and f(u, v) =
∫

Ω fvdx. In the formula Vh denotes the space of candidate
functions. Among them will be thought for the approximation of the PDE solution. The question is how to
select such space Vh. As noted in [15] the weak formulation poses requirements on potential candidates,
namely that the gradient of functions in Vh should exist. Further, boundary conditions can also be taken
into account.
Both Spectral method and Finite element start from the weak formulation of the problem and use a finite
dimensional ansatz space of candidate functions Vh. A major difference between the two methods is that
Spectral method relies upon global basis functions, whereas Finite element uses local basis functions.
One interesting choice of the function space Vh is presented in [15]. The functions presented in the book
of Saad are piecewise linear on the triangulated domain and continuous. Moreover each function ψi is
assigned to a specific mesh point xi:

ψi(xj) =
{

1 if xi = xj

0 if xi ̸= xj
(4)

Such construction allows to define functions ψi uniquely and these functions form a basis of the space
Vh = {ψ|ψΩ continuous , ψΓ = 0, ψKi linear ∀j}. As a result each function ψ ∈ Vh can be expressed as
ψ(x) =

∑n
i=1 ϵiψi(x) with n being the number of the nodes in the space triangulation.

Then the task is how to determine the coefficients ϵi defining n degrees of freedom. This can be done
by considering the requirement posed by the weak formulation of the PDE. Such approach will lead to a
linear system of equations Aϵ = b where aij = a(ψi, ψj) and bi = (f, ψi). The choice of basis functions
from (4) leads to a sparse matrix A, since as noted in [15] an entry a(ψi, ψj) is nonzero only if nodes i and
j are vertices of the same triangle.

3 Sampling weights of deep neural networks

In this chapter the generation of the basis functions ψk(x) for the spectral method is described.
Often weights for Neural Networks determined via an optimisation procedure. For a specified loss- function
one seeks values of weights which maximise or minimise the function [3]. Often this is done via Gradi-
ent descent. This is an iterative algorithm and many steps might be required until the loss will become
sufficiently small. Additionally Deep Neural Networks with many layers might contain large number of pa-
rameters. As a result, the back propagation done at each iteration step might become very expensive.
One advantage of the loss-function optimisation approach is that it also allows to optimise the parameters
with respect to the goal the model wants to achieve and it allows to incorporate knowledge of available
data points in the choice of the model’s weights. Optimisation is not the only way how the weights can
be generated. One idea could be to randomly sample weights for the Neural Networks. As mentioned
in [4] the weights can be sampled from a distribution where no information about available data points is
contained, for example Normal distribution, and as authors describe it can lead to Neural Networks which
need large number of neurons to achieve the desired performance. An alternative could be to incorporate
information about the data points in the distribution of the Neural Network parameters.
The idea proposed by authors in [4] is to construct a Neural Network layer by layer. In order to determine
the weights and bias of layer l two data points x1 and x2 as well as their corresponding function values
f(x1), f(x2) coming from an available data set corresponding to the problem are used. The authors define
one to one correspondence between the data points and parameters of the l-th layer. Namely the weights
and bias corresponding to a neuron i are defined as

wl,i = s1
x

(2)
l−1,i − x

(1)
l−1,i

||x(2)
l−1,i − x

(1)
l−1,i||2

, bl,i = <wl,i, x
(1)
l−1,i>+ s2
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where x(1)
l−1,i denotes the output of the Neural Network constructed by layers 1 up to l − 1 applied to the

first data point. The data points x(1) and x(2) should not coincide. The constants s1 and s2 are chosen
such that for the ReLU activation function ψ(x(1)) = 0 and ψ(x(2)) = 1 and for hyperbolic tanh activation
function ψ(x(1)) = 0.5 and ψ(x(2)) = −0.5. As a result, for the ReLU activation function there values
f(x(1)) and f(x(2)) are linearly interpolated for the regression task. In case of classification the tanh
function will build a border between the values of the two points if they belong to different classes.
The next question could be on how to select the pairs of points x(1) and x(2). As the authors in [4]
describe, the points which are spatially close, but differ significantly in their output f(x) should get a higher
probability to be sampled. The authors define the unnormalised density for the sampling at layer l and
given the previous layers with already selected weights and biases as

qϵ
l (x1

0, x
2
0|{Wj , bj}l−1

j=1) =


||f(x(2)

0 )−f(x(1)
0 )||Y

max{||x(2)
l−1−x

(1)
l−1||Xl−1 ,ϵ}

if x(1)
l−1 ̸= x

(2)
l−1

0 otherwise
(5)

where ϵ = 0 if l = 1 and ϵ > 0 otherwise. The function f is assumed to be Lipschitz-continuous and
Y = f(X). Then if the density constant is defined as Cl =

∫
X×X qϵ

l dλ where λ is the Lebesgue measure.

Then the resulting density is defined as qϵ
l

Cl
if Cl > 0, otherwise the distribution is uniform over the domain.

As a result, each layer of the Neural Network might have a distribution which differs from the distributions
at all the other layers.
The next question could be which functions can be approximated by a Neural Network constructed via the
described procedure. The authors in [4] derive the error bounds for the functions from the Barron space
defined as

B = {f : f(x) =
∫

Ω
w2ψ(<w1, x>− b)dµ(b, w1, w2) and ||f ||B < ∞}

then as derived in [4] for any probability measure π and ϵ > 0 there exists a sampled Neural Network Ψ
with N1 ∈ N>0 neurons and one hidden layer such that

||f − Ψ||22 =
∫

X
|f(x) − Ψ(x)|2dπ(x) < (3 + ϵ)||f ||2B

N1
.

The authors also show that any Neural Network with one hidden layer can be approximated by a Deep
Neural Network with any l ∈ N>0 layers constructed with the weight sampling algorithm. The detailed
proof can be found in [4].
With the algorithm for selecting weights of Neural Networks described the question then is how it can be
applied for the Partial Differential equations. In case of the spectral method, how the Neural Networks can
be used to generate the basis functions ψk(x). One idea could be to randomly select points in the input
space X and then to construct a one layer Neural Network. Such construction would not use the density
defined in the formula (5) since it requires to know the function values f(x). The formula for the weights
and biases, however, does not require the function values and can be constructed with the points sampled
from the space X. By using such approach the basis functions ψk can be constructed. For each pair of
sampled points one obtains one basis function.
The described approach of using sampled Neural Networks for constructing the basis functions of the
spectral method is not the only way the sampled Neural Networks can be used to approximate solutionf
of a PDE. The authors in [4] use sampled Neural Networks to construct a map predicting a solution of
Burgers equation at time 1 given the initial condition at time 0. Further details can be found in [4].

4 Numerical Methods for ODEs

Recall that the solution when aplying the spectral method to the PDE is of the form
∑N

i=1 ai(t)ψi(x)
The equation for coefficients a(t) is a system of ordinary differential equations. More specifically this
is an instance of linear initial value problem. There exists an analytical solution of this problem, namely
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a(t) = exp(A−1Bt). However, in practice this solution might be infeasible to compute due to high cost of
computing matrix exponential. As a result, numerical approximations can be used to form the approxima-
tions to the solution u(x, t).
If a numerical approximation is used, one important question to consider is whether this approximation is
close to the true solution, whether the behaviour of the approximate solution is qualitatively similar to the
solution. The second question is how an approximate solution will look like, will it be discretised or not.
In this project two families of methods for numerical solutions of ordinary differential equations will be con-
sidered linear implicit Runge- Kutta methods and BDF methods. Both families will build a mesh function
u∆(t) ≈ u(t)∀t ∈ ∆ where ∆ corresponds to the sequence of times ti where the solution will be approxi-
mated.
Then the question is what is the error a numerical method makes on the mesh ∆ and how does this error
behave especially if the mesh is large and the method must make many steps to approximate all points in
∆. Another important point to consider is since the numerical approximation might not be exact, how do
accumulated computation errors influence the approximation of the value u(ti).
According to [5] a mesh function is convergent on the time interval [t0, T ] to the true function x ∈
C([t0, T ],d ) when the discretization error ∥ϵ∆∥∞ = maxt∈∆|x(t) − x∆(t)| converges to 0 as the maxi-
mal step width τ∆ in mesh goes to zero. Order p of the convergence gives information on how fast does
the convergence occur: a mesh function converges with order p > 0 if

∥ϵ∆∥∞ = O(τp
∆) for τ∆ → 0

where the consistency error ϵ(x, t, τ) is the difference between the actual solution and computed numerical
approximation of the ODE at time t+ τ starting at the value x and time t. A numerical algorithm algorithm
defining approximate solutions of the ODE on the mesh has a consistency order p if the consistency error
ϵ(t, x, τ) = O(τp+1) for τ → 0 across the domain Ω
The result from convergence gives statement that there exists a small step size τ∆, such that when the
step size goes to zero the convergence can be observed. However, it does not give information on how
small this step size τ∆ should be. This question is important for practical applications since for very small
step sizes the computation time and load might be too high. Some ODE problems as described in [5] might
require very small step sizes τ∆ so that the convergence of discrete condition number might be observed.
This type of problems are referred to as stiff problems.
An ODE is called stable in the Lyapunov sense if for every ϵ > 0 there exists a σ > 0 such that the solution
curve for the perturbed initial values of the maximal magnitude σ x ∈ Bσ(x0) are contained within a pipe
with radius ϵ and do not leave it for all t > t0. If the problem is unstable with small errors in initial values at
t0 leading to very different results at time t compared to the unperturbed case and the exactness of initial
values cannot be guaranteed, which is the case in many practical applications, then one cannot expect a
numerical algorithm to compute a close solution to the unperturbed case starting with inexact initial values.
In case of one step methods for initial value problems as shown in [5] for linear ODEs x′ = Cx the stability
of the problem can be inherited by a discrete phase flow Ψτ = R(τC), where R describes a rational
approximation to the exponential function, if

max
α∈σ(C)

|R(τα)| < 1

with σ(C) describing the set of eigenvalues of C. τ in the formula describes the step size of the algorithm.
Ψτ is assumed to be applied recursively. This leads to a set

S = {z ∈ C : |R(z)| ≤ 1}

One additional requirement is posed for the eigenvalues leading to |R(τλ)| = 1. Namely such eigenvalues
should have index 1. For a given linear problem it is necessary for all eigenvalues λ of the matrix C, that
τλ ∈ S for the computed mesh function to be stable. If the region S is a compact set, then there is a
restriction for which step sizes τ the discrete approximation will be stable.
The form of stability region depends on the form of the function R. The authors in [5] distinguish multiple
stability definitions.
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• A-stability: C− ⊂ S. No restriction of the step size, works for all stable linear systems independent
of the eigenvalues of C

• L-stability: A stability and additionally lim
z→∞

R(z) = 0.

• A(α) stability: Sα = {z ∈ C : |arg(−z)| ≤ α} for α ∈ [0, π/2] No restriction of the step size, but
there are restrictions on the allowed eigenvalues

For linear multisteps methods the stability region is formed as

S = {z ∈ C : ρz(E)X = 0} is a stable difference equation

with ρ being characteristic polynomial of a linear multistep method: ρ(E)xτ = τσ(E)fτ . Similarly to the
one-step case the authors in [5] define the stability definitions for multistep methods as

• A-stable: C− ⊂ S

• A(α)-stable: Sα ⊂ S for α ∈ [0, π/2]

According to [5] for linear multistep methods two components are required for the algorithm to converge to
true solution on the mesh- consistency and stability.

4.1 Linear- implicit Runge- Kutta methods

One family of methods which can be applied to stiff problems is linearly- implicit one step methods. One
step methods mean that the algorithm on the step ti+1 will use the result uticomputed on the step ti to
form the solution value uti+1 . In order to inherit the stability of the original problem these method build
rational approximations of the exponential function in the linear case and not a polynomial as it is the case
for explicit Runge- Kutta methods. According to [5] one significant advantage of linearly- implicit one step
methods is that the algorithm will not require to perform Newton-Iteration, but rather to solve one linear
system of equations in each step.
The idea of the method as described in [5] is to write the discrete evolution operator as Ψτx = x +
τ

∑s
j=1 bjkj . The differential equation u(t)′ = f(u) can be brought into the form u(t)′ = Ju(t) + (f(u) −

Jx(t)) with J = Df(u). And then only the first part Ju(t) is implicitly discretised. On the second part an
explicit Runge-Kutta method is applied. Then a component ki can be determined as

ki = J(x+ τ
i∑

j=1
βijkj) + (f(x+ τ

i−1∑
j=1

αijkj) − J(x+ τ
i−1∑
j=1

αijkj)) for i ∈ 1..s

As a result for each component ki a linear system of equations must be solved:

(I − τβiiJ)ki = τ
i−1∑
j=1

(βij − αij)Jkj + f(x+ τ
i−1∑
j=1

αijkj)

this equation is based on the explicit formulation of the initial value problem:x′ = f(x). If the matrix A from
the equation (3) is difficult to invert, then one can use formulation suggested in [16] and multiply both sides
with the matrix A. This procedure will give the following formulation of the linear system of equations:

(A− τβiiB)ki = τ
i−1∑
j=1

(βij − αij)Bkj +B(x+ τ
i−1∑
j=1

αijkj)

The condition number of matrix A − τβiiB might be different from the condition number of the matrix A.
Despite A being ill conditioned, A− τβiiB might be well conditioned and can be inverted.
A linear- implicit Runge- Kutta method requires to determine the weights αij , βij and bi. As shown in
[5] the idea of rooted trees from J.C. Butcher with light modifications can also be used for linear-implicit
methods to determine the coefficients, such that an order of convergence p can be achieved.
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4.2 BDF methods

One step methods use the last computed value x(ti) to compute the mesh value x(ti+1). They do not
use any further computed values of the mesh ∆, no further history. The idea of k-multistep method is to
use already computed values x(ti−k+1), ..., x(ti) to build the value x(ti+1). According to [5] one major
benefit of the BDF family of methods is that it requires to solve only one nonlinear system of equations per
algorithm step in general case compared to s for a linear- implicit Runge- Kutta method.
As discussed in [5] A-stable linear multiple step method has consistency order p ≤ 2. As a result, if
eigenvalues of the problem lie on the imaginary axis a multi-step method cannot be applied, if consistency
order of 2 is not sufficient for acceptable approximation quality. If eigenvalues do not lie on the imaginary
axis A(α)- stable method can be used. However, as described in [5] if the eigenvalues are close to π/2,
then the constants of the error decay will explode for high consistency order. In both cases using a one
step method might give better approximations of the solution on the mesh x(t). [8] has shown existence
of A(α) stable k-multistep methods with consistency order p = k for any k > 0.
BDF family are algorithms designed for stiff problems. This is a A(α) stable family. One additional property
of BDF methods is that they inherit the requirement R(∞) < 0 for the stability function R. The general
form of the k-step BDF method is

αkxτ (tj+k) + ...+ α0xτ (tj) = τfτ (tj+k) (6)

This is an instance of linear k-step methods. According to [5] for the number of steps k there exists exactly
one method of maximal consistency order p = k and which also suffices the form (6).
However, as shown in [9] a k-step BDF method is stable only of the number of steps k ≤ 6. Additionally
there are cases shown in the book [5] where the angle α gets very small the higher the consistency order
of a BDF method and respectively the number of considered steps k are.
There exists a modification of BDF methods for DAE as shown in [5] which in case of the ODE (3) will not
require to invert the matrix A. In case of linear differential algebraic problem with index ν ≤ 1 an ODE can
be formulated as Bx′ = f(x), x(0) = x0 where the matrix B is assumed to be singular. As shown in [5]
one can represent k-step BDF method as

q′
k(ti+1) = f(ti+1, x∆(ti+1))

where qk is a polynomial which interpolates k computed mesh values before i+1: qk(ti−j) = x∆(ti−j) for i =
0, ..., k. Then one can rewrite the equation as

B(q′
k(tj+1) − µk(tj+1)(x∆(tj+1) − x0)) − f(x∆(tj+1)), x0 = qk(tj+1)

with µk(tj+1) = 1
tj+1−tj

+...+ 1
tj+1−tj−k+1

. In case of the equation (3) the formula above will be transformed
to the equation:

A(q′
k(tj+1) − µk(tj+1)(x∆(tj+1) − x0)) −Ax∆(tj+1) = 0, x0 = qk(tj+1)

this system can be solved with the Newtons Method or since it is a linear system with respect to x∆(tj+1)
with a solver for linear systems of equations. The resulting matrix similarly to the case with a linear- implicit
Runge- Kutta method might be well conditioned despite the matrix A having a high condition number.

4.3 Note on linear DAE systems

As described in [11] a general form of a linear differential-algebraic system can be phrased as

Σ :
{
Ez′(t) = Fz(t) +Gu(t), Ez(0) = Ez0

y(t) = Hz(t)
(7)
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If an i-th row of the matrix E is not a zero vector,then the i-th row of the system (7) is a differential equation,
otherwise it is an algebraic equation. In general the matrix E is assumed to be singular and as a result
one cannot transform differential equations in (7) to the explicit form x′(t) = Ax(t) + Bu(t) by using the
inverse of E. As a result the problem defined in (3) with ill conditioned matrix A can be considered as
a linear DAE. There might appear a question whether there are solution methods designed for DAE and
assuming that the matrix E from the system (7) is not invertible.
According to [17] there exists an analytical solution to the DAE Ax′(t) + Bx(t) = f(t) assuming that the
matrix pencil A+ λB is regular. However, this solution relies upon Jordan canonical form which is difficult
to compute numerically. Both [11] and [14] suggest bringing DAE to index one form and then to apply
standard integrators for ODEs like BDF.
According to [11] a regular DAE system can be brought to a form resembling an ODE and additionally
there will be conditions which a potential solution should fulfill. As a result the set of solutions to the ODE
system can be larger than the set of the solutions to the respective DAE. If the system (3) has a unique
solution, then according to [11] the index of the system is 0 and no index reduction algorithm needs to be
applied. In that case a method for ODEs can be directly applied to the system.

5 Linear system of equations

Both linear- implicit Runge- Kutta and BDF methods require to solve systems of linear equations in order
to compute approximations x(ti). A notable challenge is that in an obtained linear system Âx = b the
matrix Â can be ill conditioned, not sparse and large. As described in [1] using a direct solver, for example
LU, does not scale well with problem size in terms of required memory and computing time. More specific
matrix factorisation techniques like LU, QR and Cholesky factorisation have the run time is O(n3). A
second problem might be, that according to [1] direct methods are often based on some form of Gaussian
elimination which for ill conditioned problems might lead to very poor quality of computed solution. This
leads to a question on how a large scale ill-conditioned dense linear system can be solved.
A similar question is posed in [10] where the authors explore large linear systems resulting from applying
MQ-RBFs to elliptic PDEs. The authors propose multiple methods which can also be used in combination
with one another. Some of the proposed techniques are:

• Use preconditioners. Goal: construct a linear system with lower condition number

• Domain decomposition. Goal: divide domain into smaller chunks and obtain smaller matrices on the
subdomains which potentially are easier to invert.

• Cutoff radius. Goal: introduce cutoff radius to the basis functions and sparcify the matrix Â.

• Change parameters of the basis functions. Goal: obtain better conditioned matrix Â with more
distinct rows.

The authors note regarding the cutoff radius that its introduction makes the basis functions no more global
and it might affect convergence of the method. Therefore, the proposed solution is to pose the tradeoff
between the accuracy and sparsity as an optimisation problem. This approach however is not further
considered in this paper since the tanh functions are designed to have global support.
The choice of the parameters of the basis functions is made by the Neural network and it is not a data
agnostic choice.
As a result two methods of preconditioners and domain decomposition are investigated in this paper.

5.1 Preconditioner

As the authors from [1] and [7] if a system of linear equations is ill-conditioned, then it poses problems
for both iterative and direct solvers. If a linear system of equations has a large condition number, then
an iterative method might fail to converge or will take large number of steps until convergence. For direct
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methods which are often based on some form of Gaussian elimination roundoff errors produced by finite
precision arithmetics might result in very large deviation of the computed result from the the true solution
effectively making it not useful. One idea could be to use a preconditioner on the system of linear equari-
ons. As described in [1] the idea of preconditioners is to transform the system of linear equations Âx = b
to M−1Âx = M−1b. In that case the matrix M−1 is called preconditioner. The authors also discuss a
tradeoff which arises when building a preconditioner. On one hand the resulting system should be not
difficult to solve. On the other hand the construction of a precondition should not be expensive to construct
and use. The last criterion is especially important if not just one linear system must be solved, but many
as it is the case for BDF and Rosenbrock methods for each step of the algorithms.
As described in [1] there are two approaches by constructing a preconditioner. Namely a preconditioner
can be problem-specific or purely algebraic. The authors note that problem-specific preconditioners can
achieve a very good performance. Such preconditioners might use the information about the original PDE,
its domain and boundary condition, also the discretisation might be taken into account. A weakness of
such approach might be as described in [1] that such preconditioners might be very sensitive regarding
the details of the problem and the details of the problem might be difficult to obtain and to use. Algebraic
preconditioners, on the other hand, use on the information contained in the linear system itself. As a re-
sult, they can be applied to a broader class of problems compared to the problem-specific approaches.
The drawback is that for a specific problem the perfomance of an algebraic preconditioner can be worse
compared to a problem specific one.
In the following text multiple preconditioners are introduced ranging from purely algebraic to precondition-
ers which use problem specific information. Finally, techniques of combining preconditioners are intro-
duced.

5.1.1 Jacobi and Gauss-Seidel preconditioners

Jacobi and Gauss-Seidel preconditioners have the advantage that they are easy to construct. A Jacobi
preconditioner is defined as the diagonal of the matrix Â: P = D. The Gauss-Seidel preconditioner is
defined as P = D + L where D is the diagonal and L is the lower diagonal part of Â.

5.1.2 Deflation

As described in [7] in case of iterative methods the convergence might be very slow for systems with large
condition number. Also there exists a connection between condition numbers and eigenvalues. As a result
one idea could be to construct a preconditioner P which clusters together the eigenvalues of the matrix Â.
This idea was used in the deflation projector P by Nicolaides [13]:

PÂx = Pb

with P, Â ∈ CNxN . The deflation projector P is defined as

P = I − ÂZ(ZHÂZ)−1ZH , Z ∈ CNxm

with Z having rank m and m << N . If Â is a diagonalisable matrix and v1, ..., vn are eigenvectors
corresponding to the eigenvalues λ1, .., λn, then setting Z as Z = [v1, ..., vn] will result in the same
spectrum σ(PÂ) as in case for the matrix Â except for the eigenvalues λ1, ..., λn which will be shifted to
zero. A construction of such preconditioner requires to have eigenvectors of the matrix Â which might not
be easy to obtain. In such case one idea could be to try to approximate the deflation subspace matrix Z.
One strategy of approximating Z is described in [7]. If {λ1, ..., λk} is a set of eigenvalues to be deflated
and this set is enclosed by a circle Γ with center at the origin and radius r, then the matrix Z can be written
as:

Z = 1
2π

√
−1

∮
Γ
(zI − Â)−1Y dz
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with Y being a random matrix with columns randomly selected from the space Zk spanned by the eigen-
vectors corresponding to the eigenvalues λ1, ..., λk. Gaussian quadrature with q points can be used to
approximate the integral leading to

Z ≈
q∑

i=1
wi(ziI − Â)−1Y

with wi being quadrature weights and zi being the points of Gaussian quadrature. As noted in [7] such
construction will require solving q shifted linear systems (ziI − Â)X = Y .

5.1.3 Domain decomposition

Domain decomposition techniques rely on decomposing the domain into multiple subdomains. Subprob-
lems are solved on the subdomains and then combined to a global solution. As described in [12] the
domains can be overlapping or non- overlapping. The stength of the domain decomposition is that the
global problem is divided into smaller ones which allows to use parallelisation and might lead to smaller
and better conditioned matrices. The method also allows to pay more attention to local phenomena.
One approach to domain decomposition is the Schwarz framework belonging to a class of approaches
designed for overlapping subdomains Ω∗

1 and Ω∗
2. This is an iterative method. According to [12] for two

subdomains the k-th iteration of the algorithm is defined as 4 steps: The first step is to solve the system
for wk+1

1 
Lwk+1

1 = f1 in Ω∗
1

wk+1
1 = vk on B1

wk+1
1 = g on B[1]

(8)

then vk+1/2 is set to

v(k+1/2) =
{
wk+1

1 on Ω∗
1

vk on Ω \ Ω∗
1

(9)

The next step of the algorithm is to solve for wk+1
2 the system

Lwk+1
2 = f2 in Ω∗

2

wk+1
2 = g on B[2]

wk+1
2 = vk+1/2 on B2

(10)

eventually vk+1 is defined as

vk+1 =
{
wk+1

2 on Ω∗
2

vk+1/2 on Ω \ Ω∗
2

(11)

Lwk+1
2 = f2 and Lwk+1

1 denote the original PDE equation. This equation is solved on the smaller sub-
domains. B[i] describe the domain boundaries. Each subdomain some boundaries of which coincide with
the domain boundaries needs to take into consideration the defined boundaries conditions of the original
PDE. Bi are the boundaries between subdomains.
One difficulty of the domain decomposition approach is how to put together the solutions computed on dif-
ferent subdomains into one solution. Often properties of the solution like global smoothness are desired.
That means, that at the boundaries of subdomains the computed solutions need to be connected. One
additional difficulty described in [12] is that only neighboring subdomains directly transfer the information
to one another, which means that globally the information propagation might be rather slow.
There exists as shown in [12] a matrix formulation for the Schwarz algorithm allowing to treat it as a form
of preconditioning. On the subdomains spectral method together with Sampling weights of deep neural
networks can be used. In that case the spectral method will be used to approximate local solutions and
then the global solution will be assembled from the local ones. Connecting different solutions might be
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difficult in that case.

5.1.4 Multigrid Methods

According to [19] and [18] there are algebraic and geometric multigrid methods.
Geometric multigrid does not use subdomains to approximate the solution of a PDE, but rather it uses
coarser grids. The support of the coarse grid is global and covers the original domain. As described
in [18] the advantage of multigrid methods is that they might remove smooth error components which
otherwise might need many iterations of iterative linear systems solvers to disappear. As the authors in
[18] describe, going to coarser grid might make low frequency error components to become high frequency.
High frequency errors can then be removed in the coarse space and that information will be transferred
back to the fine grid space to update the current solution vector of the linear system. As a result, fewer
steps of the iterative solver might be needed.
Two key components of the geometric multigrid procedure are the matrix transferring the information from
fine to coarse space, the restriction matrix R, and the matrix transferring the information from the coarse to
the fine grid, the interpolation matrix I. Given the restriction and interpolation matrices one can represent
the original matrix Âh in the coarse grid as Â2h = RÂI. Then one can define a two-grid V cycle [18] as
follows: .

Step 1: Iterate on the fine grid Âhu = b
Step 2: Compute the residual rh = bh − Âhuh and transfer it to the coarse grid by r2h = Rrh

Step 3: Iterate the system Â2hE2h = r2h

Step 4: Transfer E2h to the fine grid space by applying Eh = IE2h and update current solution u by
setting u := u+ Eh

Step 5: Iterate Âhu = b starting from the updated solution u
Algorithm 1: Multigrid procedure

Multiple V-cycles can be combined together as shown in [18]. One way to define the matrix R described in
[18] is to build a weighted average among the neighbors of a grid node and the node itself. Then this value
replaces the node and its neighbors in the coarse grid. It is a similar idea to pooling in CNNs. The authors
also suggest to use interpolation to reconstruct missing fine grid values from the coarse grid. Based on
this idea the matrix I can be constructed. One potential difficulty of applying geometrical multigrid to the
Spectral method with Sampling weights of neural networks is how to define a grid. The linear ODE matrix
from the system (3) consists of the elements aij =< ψi, ψj > and each basis function ψi needs two points
sampled from the domain to be defined.
An alternative to the geometric multigrid is an algebraic multigrid which does not assume an existence
of the geometric grid. As described in [18] three components from the geometric multigrid need to be
formulated for the linear system Âx = b: smooth vectors, connected nodes and coarse subset of nodes.
The authors suggest defining smooth vectors as the vectors for which the norms of u and Âu are similar.
Connected nodes are selected based on the entries of the matrix Â. Namely, if the entry âij has significant
magnitude, then the nodes i and j are thought as connected, neighboring, nodes. Coarse subset of nodes
can be defined with help of the heuristics: if the entry âij is large, then the node i or node j should be in
the coarse set C, but not both since the nodes are neighbors. If a node i is not in C, then its neighbor j
should be in C unless j itself has neighbors which are in C.

5.1.5 Combined preconditioners

In this chapter methods are describd which allow to combine existing preconditioners into a new one,
a multi-level preconditioner. According to [20] two SPD preconditioners C1 and C2 can be additively
combined into an SPD preconditioner Pa2:

Pa2 = C1 + C2
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This formula can be generalised for more SPD preconditioners C1, C2, C3 ... Cn. Also multiplicative
combination of the preconditioners is possible. For two SPD preconditioners C1 and C2 the multiplicative
operator can be defined as:

Pm2 = C1 + C2 − C2ÂC1

Similarly to the additive case the multiplicative scheme can be generalised for more SPD preconditioners
C1,...,Cn. For the case of three matrices the combination will lead to

Pm3 = C1 + C2 + C3 − C2ÂC1 − C3ÂC2 − C3ÂC1 + C3ÂC2ÂC1

Further the authors note that for a linear system PAx = b where P is a traditional preconditioner, where
the examples of traditional preconditioners among others are according to [20] diagonal scaling methods,
approximate inverse and incomplete Cholesky preconditioners, the matrix A can further be a combination
of the linear system matrix Â and a preconditioner P . According to the authors the use of the second
preconditioner P might improve the converge of iterative solvers.
The authors in [20] describe multiple examples, how the techniques described above can be combined
with deflation, multigrid and domain decomposition methods. One interesting property described by the
authors is that from the algebraic point of view the two-level preconditioned conjugated gradient methods
resulting from the fields of deflation, multigrid and domain decomposition show similarity and in some
cases even equivalence.

6 Conclusion

In the project numerical solution of the second order wave equation via Galerkin spectral method with one
layer Neural Networks as basis functions is investigated. The basis functions have a global support. The
Neural Networks have hyperbolic tanh activation function. Weights and biases are determined with help of
the Sampling weights for Neural Networks algorithm defined in [4]. The weights ak(t) lead to a system of
linear ordinary differential equations. Two families of methods for stiff ODEs are introduced. Both families
will eventually lead to linear systems of equations which need to be solved in order to numerically compute
the solution at the next time step. Since the matrix Â in the obtained linear system Âx = b might be
ill-conditioned, preconditioners are introduced which might transform the linear system in a system which
is easier to solve.
Since the linear ODE problem might be stiff the two families introduced are designed for stiff ODEs. The
choice between linear- implicit Runge-Kutta methods and BDF methods might pose a tradeoff. On one
hand, linear- implicit Runge- Kutta methods can achieve higher convergence order compared to BDF meth-
ods which are restricted to k ≤ 6 to ensure stability [5]. But on the other hand, linear- implicit Runge- Kutta
might have a higher computational cost.
The choice of preconditioner or a combination of preconditioners might also lead to a tradeoff between
quality of the preconditioner and the its construction cost. The authors in [20] look at this tradeoff for differ-
ent preconditioners. The authors note, that traditional preconditioners, an example of which is the Jacobi
preconditioner, might be cheap to construct, however, they might lead to a poorer performance compared
to deflation or multigrid two-level preconditioners. The authors suggest using a traditional preconidtioner as
one of the building blocks for a two-level preconidtioner. For example, combining it with deflation. Accord-
ing to the authors deflation preconditioner is expected to show better performance in context of iterative
solvers compared to abstract balancing and additive coarse- grid correction methods. However, this would
require to solve accurately the second level correction which might be expensive. Additionally, the approx-
imation of the matrix Z consisting of eigenvectors as shown in [7] might lead to multiple systems of linear
equations to be solved. As a result, it might be expensive in practice to use the deflation preconditioner.
The authors in [19] investigate performance of an algebraic multigrid preconditioners. According to the
authors an algebraic multigrid preconidtioner might achieve good performance, especially compared to
one-level preconditioners like ILU, by trying to reduce both short range and long range error components.
However, as the authors describe before applying the preconditioner the coarse grid must be constructed.
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The size of the coarse set might have a large impact on computational effort with larger sets potentially
resulting in the increased computational time. Ideally the coarse system should not be expensive to solve,
however it should contain enough information to improve the convergence rate. This might also lead to a
tradeoff when constructing the coarse set of nodes. The algorithm also requires to define an interpolation
scheme. Several potential examples are discussed in [19].
As a result, one could try to apply to the system (3) BDF methods together with an algebraic multigrid
preconditioner combined with Jacobi or Gauss- Seidel preconditioner. If more expensive computational
time can be afforded, then a linear- implicit Runge- Kutta method or a deflation preconditioner combined
with Jacobi or Gauss- Seidel preconditioner might lead to improved results.

7 Future work

Potential future work might construct different combinations of preconditioners. As discussed in the Chap-
ter "Combined preconditioners" one can combine different preconditioners together. Then one could in-
vestigate the efficiency versus computational cost for the derived preconditioners.
One other interesting direction of future work might be to look at different choices of sampled basis func-
tions for the spectral method. In this project one- layer Neural Networks with tanh activation functions
were considered. One other choice could be to construct deeper Neural Networks or to use a different ac-
tivation function. Another idea might be to use sampled basis functions in combination with local Galerkin
methods, for example, with the finite element method. Such methods would require basis functions with
local support. As a result, the matrix entries aij =

∫
Ω ψiψjdx might often be zero leading to sparse ma-

trices. Sparse matrices might result in reduced computational costs. However, the one advantage of the
spectral method is that it might converge exponentially fast. Also local Galerkin methods might require a
high number of basis functions to show good performance.
The distribution from which the points xi and xj are sampled when constructing the basis functions might
be of further interest. One idea might be to try to use problem specific distributions by sampling the points.
The hope is that such distributions might lead to a better choice of the weights and biases and, conse-
quently, to a better choice of basis functions for the spectral method.
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