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Abstract

This thesis presents a neural network that solves the three-body problem numerically.
The three-body problem, a fundamental challenge in classical mechanics and astron-
omy, involves predicting the dynamic behavior of three celestial bodies under mutual
gravitational influences. This thesis builds upon the n-body solver of G. Gonçalves
Ferrari, T. Boekholt, and S. F. Portegies Zwart and introduces a novel methodology that
conceptualizes solvers for the two-body problem as neurons within a neural network.
Combining these solvers, the network predicts the complex gravitational interactions
among celestial bodies. Unlike conventional neural networks, which often act as "black
boxes", this approach maintains interpretability by integrating physical calculations
directly into the network’s architecture. This enables the learning of arbitrary calcula-
tional components of the underlying physical formulas, including the masses of celestial
bodies. The thesis is structured to guide the reader from foundational concepts to the
specific TensorFlow implementation of the n-body simulator, transforming the simula-
tor written in Python into a neural network. To show the potential of this approach,
learning algorithms for this unique model are developed, and the masses of celestial
objects are accurately approximated using synthetic data, marking the beginning of
further investigation, potentially leading to an improvement in the estimation of the
planet’s masses in our solar system.
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1. Introduction

The three-body problem, a cornerstone of classical mechanics and astronomy, examines
the motion of three celestial bodies under mutual gravitational attraction. It encom-
passes the challenge of predicting the trajectories of multiple bodies interacting through
gravity. While solutions for specific cases, such as the two-body problem, are solved,
the three-body problem remains analytically unsolvable. Figures 1.1 and 1.2 show the
complexity of three-body interactions compared to two bodies.

Figure 1.1.: Trajectories of two bodies. Figure 1.2.: Trajectories of three bod-
ies.

This has spurred the development of numerous numerical methods and simulations
to approximate such bodies’ future positions and velocities. One of those numerical
methods was developed by G. Gonçalves Ferrari, T. Boekholt, and S. F. Portegies Zwart
[6]. They show how a composition of multiple independently evolved 2-body problems
can approximate the solution of the general n-body problem.

This thesis demonstrates how those independent two-body problem solvers could
be considered neurons within a neuronal network. This network distributes input to
these neurons and combines their outputs to solve the n-body problem. It is created
by implementing the code from the n-body simulator in TensorFlow and leveraging
TenserFlow’s computational graph and automatic differentiation capabilities.

This approach is different from other cases of machine learning in physics, like when
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1. Introduction

a deep artificial neural network was trained to solve the three-body problem [2]. In such
models, the roles of individual neurons and the rationale behind the network’s output
remain obscured. Conversely, the network presented in this work integrates physical
calculations directly into its structure, ensuring that each connection and computational
unit fulfills a clear and discernible purpose. The advantage here is that every parameter
and segment of the network is either fixed by the given physical approximation or can
be left free to learn from data. This can potentially provide a new way of determining
the masses of celestial objects like the planets of the Solar System or the mass of the
supermassive black hole in the center of the Milky Way.

This thesis is structured to guide the reader from a foundational understanding of
the n-body problem in section 2.1, neural networks in section 2.2, and TensorFlow in
section 2.3 to the TensorFlow implementation of the n-body simulator in section 3.2.
Following a review of the relevant information for this thesis, the technical details and
capabilities of the model will be discussed. This includes the TensorFlow architecture
in section 3.2 and the learning algorithms developed to learn the masses of celestial
bodies in section 3.3. The last section—section 4—presents a conclusion and possible
future work.
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2. State of the art

2.1. The n-body problem

2.1.1. The two-body problem

To understand the solution to the three-body problem, it is essential first to grasp the
two-body problem. The two-body problem is a critical and extensively studied problem
in physics and astronomy. Despite its age (over 300 years), research on it continues.
The goal is to predict the movements of two bodies influencing each other through
gravity. Specifically, given the positions, velocities, and masses of two bodies at a time,
it should be possible to calculate their positions and velocities at any time.

As stated in chapter 25 of Dourmashkin’s work on Classical Mechanics [4], this issue
is also known as the Kepler problem, named after Johannes Kepler to honor him for
first describing the motion of planets in three laws. However, it was Isaac Newton
who provided a solution to this problem. While the solution process is too complex to
be detailed here, it’s important to note that transformations can reduce the two-body
problem to a one-body problem. This means that two planets moving around each
other with positions (r1, r2), velocities (v1, v2), and masses (m1, m2) like shown in figure
2.1 can be considered as a single body with a reduced mass m = m1·m2

m1+m2
, position

r = r1 − r2, and velocity v = v1 − v2, moving in a constant force field.

Figure 2.1.: Two bodies orbiting each other.

3



2. State of the art

A particularly elegant solution is the Universal Variable Solution. Among its advan-
tages is that it does not require distinguishing between different orbit types, such as
elliptical, parabolic, and hyperbolic orbits [3, chap. 4, p. 55].

This approach is also recommended for the code in the paper [6]. This thesis utilizes
the universal variable approach by Jack Wisdom and David M. Hernandez [16].

2.1.2. The three-body problem

For this section, the review of the three-body problem by Musielak and Quarles’ [10]
has been shortened and reformulated to fit this thesis. The three-body problem, initially
formulated by Isaac Newton [12], examines the complex motion of three celestial bodies
as they exert gravitational forces upon each other. Newton encountered this problem
when he wanted to understand the Earth, Moon, and Sun dynamics. It has been a
significant challenge in classical mechanics, known for its complexity and the inherent
difficulties in predicting the precise movements of the bodies involved.

Since Newton, the problem has been explored extensively, and while it is often
described as unsolvable, this characterization requires nuance. The term "unsolvable"
refers to the absence of a general analytic solution —a precise mathematical expression
that can predict the positions of the bodies at any given time. Henri Poincaré proved this
absence in 1892 [15] during a competition created by King Oscar II of Sweden. Despite
this, with advancements in numerical methods and computational power, generating
highly accurate simulations of three-body systems is now possible. These simulations
allow scientists to explore the movement of celestial bodies with remarkable precision.
However, the chaotic nature of these systems limits long-term predictability, as even
minuscule variations in the starting conditions can lead to exponential divergences
in trajectories over time. Figures 2.2 and 2.3 show the chaotic nature by plotting the
trajectories of three bodies over some time with only minuscule variations in starting
positions.

During the studies of the three-body problem, certain special cases have been iden-
tified where the problem is solvable. These special cases are mostly solvable because
they can be reduced to a two-body problem. One such instance, discovered by Euler,
occurs when the three bodies are always aligned with the center of mass in a straight
line [5].

Overall, the three-body problem remains an active field of study. Despite its inherent
difficulty, the continued exploration of this problem continues to yield new insight.
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2. State of the art

Figure 2.2.: Bodies one, two, and three start at [1, 1, 0], [0, 0, 0], and [1, 0, 0], respectively,
with equal masses of 1. Their initial velocities are [−1, 0, 0], [0, 0, 0], and [0,
1, 0]. Their trajectories for a given time period are simulated.

Figure 2.3.: The starting position of Body one is changed to [1 + 1 · 10−10, 1, 0]. This
results in an exponential divergence in trajectories over time.

2.1.3. The general case

As seen earlier, the two-body problem involving just a pair of objects yields exact
solutions, allowing for precise predictions of positions and velocities. However, the
extension to the three-body problem significantly increased complexity, introducing
scenarios where analytical solutions are not generally feasible. The n-body problem
extends these challenges even further. Similar to the three-body problem, however,
numerical methods can calculate the trajectories of n interacting bodies with high
precision. This thesis mainly focuses on problems with n < 10, but the implementation
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2. State of the art

allows for relatively large n.

2.2. Neural Networks

The book on neural networks by Michael Nielson [13] gives a very good introduction.
Everything in this section is based on his work.

Though this book does not explicitly define neural networks, an implicit definition
of a neural network can be taken from it. A neural network can be defined as a parallel
and distributed processor that can learn from data. This processor is made up of simple
processing units called neurons. The Motivation for such a way of computing came
from the human brain, a highly complex, nonlinear, and parallel computer. Though
artificial neural networks have little in common with the brain, they are still potent
tools for complex tasks because they can be automatically adjusted to learn from data
and thus can discover patterns that a programmer would have a tough time finding. A
common use case for them is image recognition.
The general structure of a Neural Network is that the neurons are structured in layers.
Data is given to the input layer and fed through the network to produce an output.
Figure 2.4 gives a general illustration of neurons. Figure 2.5 then illustrates a Network.

Figure 2.4.: A single neuron [13]. Figure 2.5.: A neural Network [13].

Many types of neurons can be used for networks. One common type is, for example,
the sigmoid neuron. This neuron computes a weighted sum of its inputs, which is then
passed through the sigmoid function, defined as

σ(z) =
1

1 + e−z .

A neuron’s output, y, is
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2. State of the art

y = σ

(
n

∑
i=1

wixi + b

)
,

where xi are the inputs to the neuron, wi are the weights of the inputs, b is the bias
and σ is the activation function.

The problem with creating a network with sigmoid neurons is that the rationale
behind the network’s output often remains obscured. To avoid this problem, the
neurons in this paper will be based on physics calculations. For example, one type of
neuron used in the network will solve the two-body problem. The following will show
what it means when a network learns and how it is done. For this, a measure of how
well the network does is defined. It is then shown how the network could, with this
information, be adjusted to perform better.

2.2.1. Cost functions

An untrained network often has some randomly initialized parameters. That means
that the network is very likely to perform poorly at the calculations it should do. For
example, a network with sigmoid neurons initially has randomly initialized weights
and biases. That means that the network output will be a randomly created function
of the inputs. The correct parameters for the problem the network has to deal with
first have to be learned. To learn the parameters, a performance measure has to be
defined. With this, different parameters can be compared, and better parameters can be
found. One way to measure the performance of parameters is to assign a cost to each
calculation the network does. The costs are higher or lower depending on how well the
parameters are chosen. The notation in Table 2.1 will be used.

Table 2.1.: Notation used for cost functions.
Symbol Definition
n ∈ N. The number of parameters that can be learned.
p ∈ Rn. The vector of parameters.
Fp Fp : Ra → Rb with a, b ∈ N. The function the network describes.
N ∈ N. The number of training data points.
xi The i-th training data point input.
yi The desired output of the i-th training data point input.
ŷi Fp(xi)

C C : Rn → R. The cost function gives the cost for every combination
of parameters.

7
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One often used cost function is the quadratic cost function

C(p) =
1

2N

N

∑
i=1

(ŷi − yi)
2 =

1
2N

N

∑
i=1

(Fp(xi)− yi)
2.

This cost function ideally provides a good measure of the network’s performance with
the chosen parameters [13]. If the parameters are chosen well, the network performs
well, which means the outputs will be close to the desired outputs, and the cost will be
low. If the parameters are chosen poorly, the network performs poorly, which means
the outputs will be very different from the desired outputs, and the cost will be high.
Other cost functions also satisfy those requirements [13], but the quadratic cost function
is used in this paper.

2.2.2. Gradient descent

In the last section, a measure of the performance of a network is introduced. This
section will show how, with this measure, the parameters can be adjusted so that
the network produces better results. This is done by finding a local minimum of the
cost function. Because of the usually huge number of trainable parameters and the
complexity of the derivative, an analytical solution is often unfeasible. That is why an
algorithm called gradient descent is used. In the following, the mathematical idea of
gradient descent is discussed [13].
Let n ∈ N be fixed but arbitrary, v ∈ Rn, vi ∈ R is the i-th element in this vector and
f : Rn → R.
∆ f (v) is approximately

n

∑
i=1

∂ f
∂vi

∆vi =


∂ f
∂v1
...

∂ f
∂vn


T

·

 ∆v1
...

∆vn

 = ∇ f (v) · ∆v.

Let η ∈ R be a small value. When −η · ∇ f (v) is chosen for ∆v,

∆ f (v) ≈ ∇ f (v) · (−η · ∇ f (v)) = −η · ∇ f (v)2

is smaller than zero. That means that if a very small vector pointing in the direction
of the gradient is subtracted from v, f (v) decreases. The gradient descent algorithm
then always computes the gradient ∇ f (v) and updates v with v − η · ∇ f (v). This is
often referred to as taking a step. It can be easily shown that for any small fixed-length
vector that can be subtracted from v, the one that points in the direction of the gradient
decreases f (v) by the highest amount. Visually, that corresponds to the gradient always

8
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pointing towards the steepest slope, making it a sort of compass with which the nearest
minimum can be found by always going in the opposite direction. Researchers often use
gradient descent for the parameters of neural networks to minimize the cost functions.
That means that with each gradient step, the parameters are updated to reduce the
error of the whole network.

2.2.3. Backpropagation

Up to this point, it is shown how a network can learn from training data by using
the gradient descent algorithm on the cost function. What now needs to be done
is to calculate the gradient of the cost function. For this, backpropagation is used.
Backpropagation is a way of breaking down gradient computations with the help of
the chain rule. The book by Michael Nielsen [13] shows backpropagation for neuronal
networks with sigmoid neurons. This section generalizes the principles learned there
so that they can be applied to any function.

The algorithm consists of two phases: the forward pass and the backward pass. In
the forward pass, the function is calculated, and a computational graph is created. The
computational graph for the function f (x, y, z) = (x + y + z) · z is shown in figure 2.6.

Figure 2.6.: An example for Backpropagation.

The nodes of this graph are arithmetic operations. After an arithmetic operation, the
intermediate results are stored in a variable for that node. The outgoing edges from
one node determine where the operation’s result goes. In the backward pass, the nodes
are traversed in reverse order. For each node, the partial derivative of the function with
respect to the result of this node is calculated with the chain rule. To better understand
the process and see how the chain rule is applied, figure 2.6 is given and ∂ f

∂z for x = 3,
y = 2 and z = 1 will be calculated. The variables in black are initialized in the forward
pass. The information created in the backward pass is in red. First comes the forward
pass. The result of an operation is stored in a variable to the corresponding node. The
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2. State of the art

result of x + y = 3 + 2 = 5 is for example stored in the variable p = 5. After the result
of the computational graph is calculated, the backward pass starts. For every node,
every edge is looked at, and it is asked how much a change in the node’s value would
result in a change in the value of the node the edge is pointing toward. This change is
then multiplied by the amount, a change in the node being pointed to influences the
result. Because the nodes are traversed in reverse order from the forward pass, only one
derivative of one operation must be calculated per edge instead of the whole function
derivative with respect to the node. Applied to the example, ∂r

∂d would be calculated
first. r is equal to d · z = 6 · 1 = 6. That means, that ∂r

∂d = 1. With the chain rule, ∂ f
∂z is

∂ f
∂r

· ∂r
∂d

· ∂d
∂z

+
∂ f
∂r

· ∂r
∂z

= 1 · 1 · 1 + 1 · 6 = 7.

2.3. TensorFlow

TensorFlow, an open-source library developed by the Google Brain team [9], has
established itself in machine learning and deep learning. Launched in 2015, TensorFlow
is designed for research and production, providing a versatile platform for developing
and deploying machine learning models across various devices—from servers to mobile
devices. Central to TensorFlow’s design is its computational graph architecture, where
data (represented as tensors) flows through a network of operations. That is how
TensorFlow got its name. This graph-based approach allows for backpropagation,
similar to the one described above. This is especially useful when creating a custom,
very complex neural network like the one in this thesis.
The following provides a rough overview of the most important aspects of TensorFlow
for this paper. The information is from the official TensorFlow documentation [9].

2.3.1. Tensors

Tensors are the primary data structure used in TensorFlow. They represent multi-
dimensional arrays of data or operations outputs. Once a tensor is created, it becomes
immutable, meaning its values cannot be changed. Tensors are used to pass data
through the network and to hold the network’s operational results. Important terminol-
ogy for a tensor is:

• rank: This represents the dimension of the array. A rank-0 tensor, for example, is
a scalar. A Vector would then be a rank-1 tensor.

• axis: A specific dimension of a tensor, with a scalar having none, a vector having
one axis, and a matrix with two axes.

10
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• shape: A list of values, where each value represents the number of elements of
the corresponding axes.

Figure 2.7, for example, shows a visualization of a 3-axis tensor with shape [3, 2, 5].
The following code could create this tensor [8]:

tensor = tf.constant([[[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]],

[[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19]],

[[20, 21, 22, 23, 24],
[25, 26, 27, 28, 29]]])

Figure 2.7.: Visualisation of a 3-axis tensor with shape [3, 2, 5], adapted from [8].

2.3.2. Variables

Variables are mutable tensor-like entities that are used to store the state of the program.
Variables are designed to maintain and update the model’s parameters during training.
Unlike tensors, which are immutable once created, the value of a Variable can be
updated and modified throughout the program’s execution. This makes them ideal
for representing parameters in a neural network that need to be learned and adjusted
during training.

2.3.3. Graphs and functions

Tensorflow graphs are similar to the computational graph shown in figure 2.6. They have
nodes representing operations in the graph and edges representing tensors carrying
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data between those operations. Visualized with a tool called TensorBoard, a TensorFlow
graph representing a two-layer neural network is shown in figure 2.8.

Figure 2.8.: TensorFlow graph representing a two-layer neural network [7].

A graph then serves as a blueprint of the whole execution. By encapsulating the entire
computation as a graph, TensorFlow can optimize the computation as a whole. This
optimization may include rearranging operations for execution efficiency, distributing
computations across multiple CPUs, GPUs, or TPUs, and facilitating parallel processing
of independent operations. A function written in Python can be transformed into a
graph by annotating it with "@tf.function".

12



2. State of the art

2.3.4. Automatic differentiation

TensorFlow’s approach to automatic differentiation, crucial for optimizing model
parameters during training, is encapsulated in the GradientTape API. TensorFlow
"records" relevant operations executed on inputs—usually variables—inside the context
of a GradientTape onto a tape and then uses that tape to compute the gradients using
reverse mode differentiation, akin to Backpropagation. The inherent graph structure of
TensorFlow computations is beneficial for this.

2.3.5. Comparison with similar libraries (PyTorch and JAX)

While TensorFlow remains a popular choice among developers and researchers, other
libraries such as PyTorch [14] and JAX [1] offer their unique advantages and perspec-
tives on deep learning and automatic differentiation. PyTorch, developed by Facebook’s
AI Research lab, emphasizes ease of use, flexibility, and dynamic computation graphs,
making it well-suited for research and prototyping. PyTorch’s dynamic graph (auto-
grad) system allows for more intuitive modeling and debugging, as the computational
graph is built on the fly during execution. Tensorflow, in contrast, is often very hard
to debug as the computational graphs can be very complex and very different from
the original code. JAX is designed for high-performance machine learning research.
It extends Autograd (for automatic differentiation) and XLA (Accelerated Linear Al-
gebra) to offer fast computations, especially on TPUs. JAX’s functional programming
approach promotes pure functions and immutable data structures, distinguishing it
from TensorFlow’s and PyTorch’s object-oriented paradigms.

13



3. Neural network for solving the n-body
problem

3.1. Motivation

This thesis aims to enable automatic differentiation of the Python code shown in figure
3.2 that describes the calculations for an n-body solver [6]. As the calculations involved
in the n-body solver are long, complex, and impractical to do manually, TensorFlow is
used for its automatic differentiation capabilities.

The n-body solver is chosen because of its approach to approximating the n-body
problem. It analyzes isolated pairwise interactions for all combinations of bodies and
combines the pairwise outcomes in such a manner that, for each body, the actual
simultaneous influence of all other bodies is accurately approximated. That means
the two-body problem is solved for every pair of bodies, and the results are combined
to solve the n-body problem. This way of breaking down the whole problem—the n-
body problem—into smaller problems—independently evolved two-body problems—is
similar to how neurons in neural networks solve smaller problems that the network
then combines to solve a bigger problem. In this thesis, a neural network that solves
the n-body problem is created by having neurons that solve the two-body problem,
combining their calculations to solve the n-body problem and making everything
differentiable to facilitate learning. Figure 3.1 shows an illustration of this neural
network. A color is chosen for each kind of neuron, and the corresponding code section
in figure 3.2 is marked the same color.

Neural networks that try to solve the three-body problem have already been created
[2], but their usage is mainly to speed up calculations, as they are not accurate enough.
One factor limiting their accuracy is that they try to solve the whole three-body problem
at once. Conversely, arbitrary parts of the neural network created in this thesis, which
integrates physical calculations directly into its structure, can be approximated by
machine learning models to make the calculations faster. This approach simplifies the
function the model needs to learn as the model does not have to approximate the whole
n-body solver, potentially leading to better results.

However, learning a part of the algorithm that solves the n-body problem is only
some of what can be done with the neural network created in this thesis. As the inputs
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3. Neural network for solving the n-body problem

are also part of a calculation, this network could be used to learn any input. This means,
for example, that the masses of celestial bodies could be learned by just watching the
trajectories or, given that celestial observations are often made in two dimensions, the
position of an object in the third could be learned.

Figure 3.1.: The neural network for the solution of the n-body problem. The inputs
are the positions r and velocities v at time t and masses m of all bodies.
After a time step tau, the outputs are the positions r and velocities m of
all bodies. The outer two boxes in purple are the neurons that calculate
the evolve_HT() function. Everything in between is in the evolve_HW()
function. The green neurons solve the two-body problem. For n bodies as
input, there are (n

2) neurons that solve the two-body problem.

15



3. Neural network for solving the n-body problem

Figure 3.2.: Abbreviated version of the Python code of the n-body problem solver [6].

16



3. Neural network for solving the n-body problem

In the following sections, the implementation of the Python code using TensorFlow is
described. For this, the main loop shown in figure 3.2 and the missing kepler_solver
function are implemented with TensorFlow. The application of the resulting neural
network is then illustrated by introducing a local minimum-finding algorithm that
enables the calculation of a planet’s mass using only synthetic data. Subsequently, it
is explained how this algorithm can be extended to estimate the masses of multiple
bodies simultaneously using only synthetic data. Finally, the challenges of employing
real data in these calculations are discussed.

3.2. TensorFlow implementation

3.2.1. The main loop

To see what has to be done to transform the Python code in figure 3.2 into a neural
network, it is helpful to look again at the previously introduced definition of a neural
network. Part of this definition is that a neural network is a parallel and distributed
processor that can learn from data. The task at hand then involves making the code
as parallel as possible. Implementing it with TensorFlow would enable automatic
differentiation, facilitating the network’s learning process.

The do_step() function accepts inputs listed in table 3.1.

Table 3.1.: Inputs of the do_step() function.
Symbol Definition
tau Specifies the duration of the time step.
n Represents the total number of bodies.
m A one-dimensional array containing the masses of each body, with

each element corresponding to a distinct body.
r A two-dimensional array that holds the positions of the bodies in

three-dimensional space. For example, r[0] returns an array with
three elements, denoting the position of the first body.

v Similarly, a two-dimensional array that stores the velocities of the
bodies, using the same indexing system as r.

The inputs can easily be transformed to tensors with r, for example, being a rank-2
tensor. With this, the evolve_HT() function can be written as r = r + v * (tau / 2).
The evolve_HW() function is not easily transformed. In this function, the i and j loops
select two different bodies and then perform calculations on them. One way of doing
all loop executions in parallel is to structure the calculation steps of the executions in
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a matrix. The element in row i and column j of one matrix would then represent the
calculations of that step done with the body selected by the loop variable i and the
body selected by the loop variable j in the original implementation. It is important to
note that in the case of the positions and velocities, this matrix would be a cube, as
every element is a vector. However, to keep the formulations simpler, it is still referred
to as a matrix, as in the context of making the code parallel, it is not important what
exactly the elements are.

A good example is the calculation step, where the combined mass mij is calculated.
The mass vector can be seen on the left in figure 3.3. Body one has a mass of 1, while
body two has a mass of 2. On the right, the tensor that holds all the combined masses
for all loop iterations can be seen. For example, the combined mass of bodies one and
two is in the first row and second column. The diagonal, where i is equal to j, is zero
because no calculations need to be done for this case.

Figure 3.3.: The input vector, m, is shown on the left and the mij tensor is on the right.

It is easy to see why the matrix is symmetrical. The symmetry or antisymmetry
resulting from each pair being looked at from each body’s point of view can significantly
accelerate calculations.

To see how this matrix is derived, looking at what an element represents is again
good. The element in row i and column j of one matrix represents the calculations of
that step done with the body selected by the loop variable i and the body chosen by j in
the original implementation. Therefore, two other matrices have to be created. One has
the bodies selected by i as elements, and the other has the bodies chosen by j. In the
case of the combined mass, the two matrices and how they are combined are shown in
figure 3.4.

Figure 3.4.: The creation of the mij tensor.

The two matrices already have zeros on the diagonal because nothing has to be
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calculated there. The matrix on the left is structured such that each row, aside from
zeros on the diagonal, is filled with the same repeated value across all other positions,
as the body, the loop variable i refers to only changes every three iterations of the j loop.
Similar to this, the second matrix does this for each column. It is then easy to see that
the second matrix is just the transpose of the first. Figure 3.5 illustrates the process for
rr0 and vv0, and demonstrates how r0 is subsequently calculated.

Figure 3.5.: How the relative positions and velocities are calculated.

rr0, vv0 and r0 are antisymmetric. It is logical for the relative positions and velocities
of bodies to be antisymmetric, given that these values differ only in sign depending on
the reference body under consideration. This means that when the perspective between
two bodies is switched, the direction of the observed values for relative position and
velocity reverses. This is very useful as that means, that the kepler_solver function
only has to be called (n

2) =
n(n−1)

2 times instead of n2 − n times. In figure 3.1, this is
indicated by the (n

2) highlighted in green.
By using the map_fn function from TensorFlow, the call of the kepler_solver for

each pair of bodies can be done in parallel. For this, the input parameters must be
concatenated so that the kepler_solver function is called for each eight-dimensional
vector element. This is shown in figure 3.6.

Every element in the upper triangular prism of the concatenated cube is set to zero,
as no calculations have to be done. If the elements are zero, the kepler_solver returns
zero. After the call, the upper triangles of r1 and v1 are filled so that the matrices with
vectors as elements are antisymmetric. Due to the impracticality of writing the values
of the tensors r1 and v1 in figure 3.5, letters are used as placeholders instead.
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Figure 3.6.: How the kepler_solver function is called.

All the changes in positions and velocities then have to be summed up. For this, a
few more tensor operations must be done, and the result is reduced along its first axis
with the TensorFlow function reduce_sum. Figure 3.7 visualizes this last step.

Figure 3.7.: The calculation of the change in positions.

The resulting rank-2 tensors dmr and dmv are added to the input tensors r and v,
which are then returned.

3.2.2. The kepler_solver function

The code shown in figure 3.2 invokes the kepler_solver function. This function solves
the two-body problem and can be considered a type of neuron in a neuronal network
when implemented using TensorFlow. In the following, the implementation of Jack
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Wisdom and David M. Hernandez [16] is translated into TensorFlow code. One thing to
note is that the code written by Jack Wisdom and David M. Hernandez was C code. The
translation to Python was not difficult, just time-consuming, and thus is not described
here. The most challenging part was transforming the code into a TensorFlow Graph.
For this, a recursion had to be made iterative, as TensorFlow demands that the whole
computational graph be known when starting the execution. In the kepler_solver
function, an attempt is made to solve the Kepler problem for a single time step. If this
attempt fails, the Kepler problem is solved recursively for four time intervals, being
one-quarter the size of the original. The results are combined to solve the problem for
the original time interval. Figure 3.8 shows the relevant Python code for this recursion.
The kepler_step_internal function tries to solve the Kepler problem for the given
time step.

Figure 3.8.: The recursive algorithm within the kepler_solver.
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The iterative form was achieved by conceptualizing the problem similarly to a depth-
first search in a tree. Each node of the quaternary tree corresponds to a calculation of
the Kepler problem for a time interval. If the original time interval is of length dt, then
the assigned time interval of a node at depth d is dt/4d.

Two variables are required to navigate this tree and determine the correct length of
the current time interval being calculated. The first variable indicates the position in
the tree, and the second indicates the depth.

Determining the depth is relatively straightforward. Each time a calculation fails,
and the algorithm moves one level deeper, the depth is incremented. Conversely, each
time the fourth quarter of a time interval is calculated, the position moves up a level
inside the tree, or the problem for the entire original time interval is solved, and the
depth is decremented. Thus, starting at a depth of 0, the computation is finished when
the depth reaches -1. This serves as an elegant termination condition and is a reason
for depth being a separate variable.

How, then, is the current position in the tree determined? Initially, it is helpful to
consider how a path from the origin node to the current node would be described.
Starting at the root node, if a calculation fails, four possible time intervals are being
calculated next. 0 would indicate that the first quarter is being computed. Hence, the
position would be at the first node. One would then denote the second node, two the
third, and three the fourth. This path description can be extended recursively. The
current position is represented by a 64-bit integer, interpreted in base 4. Visually, the
number 3124 = 5410 would represent the correspond to the path highlighted in figure
3.9.

Figure 3.9.: Quatenary tree representing the kepler_step_depth calculations. Each tree
node corresponds to a calculation of the Kepler problem for a time interval.
The depth is the number of edges traversed to reach the root.
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With the 64-bit integer, a path of length 30 can be represented, matching the maximum
recursion depth in the original implementation. This is evident since 263 − 1 > 262 =

431 > 430. The algorithm thus performs a depth-first search of this constructed tree.
However, the tree is not infinitely large; a node only has children if the Kepler problem
cannot be computed for that node. Once a node is visited —meaning the next node at
the same level or one level above is considered— the Kepler problem for that node’s
assigned time interval is deemed solved. The algorithm terminates when the depth is
-1, indicating the Kepler problem for the origin node has been solved.

It is also important to note that in the actual implementation of this iterative algorithm,
the integer does not directly store the path to the current node but indicates which
child node needs to be visited next for each level of the tree. If no child node needs to
be visited next, 0 is stored.

Algorithm 1 shows pseudo-code for the solution of the Kepler problem
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while depth ≤ 30 and depth ̸= -1 do
// If the depth is greater than 30, implying the problem cannot be

solved even after dividing the time interval into 1/4-sized
segments 30 times, the computation is terminated.

// If the depth is -1, the computation is complete.
if least significant digit of the position variable = 0 then

Attempt to solve the Kepler problem.
if not successful then

The position variable is incremented and then multiplied by 4, and the
depth is incremented.

// This describes moving one level deeper to solve the
Kepler problem four times for time intervals 1/4 the size
and also indicates that the first child node will now be
visited and the next child node after that to be visited
is the second.

end
else

The position variable is divided by four, and the depth is decremented
until the position variable can no longer be divided without
remainder or the depth is -1.

// This describes going up the tree to the next node that is
waiting for this calculation’s result. This is not
necessarily the direct parent node.

end
end
else

Variables like eta or zeta are updated for the next calculation.
if least significant digit of the position variable ̸= 3 then

The position variable is incremented and then multiplied by 4.
end
else

The least significant digit of the position variable is set to 0. The
position variable is then multiplied by 4.

// This indicates that the current node has no more work to
do and can be skipped on the way up the tree.

end
The depth is incremented.

end
end

Algorithm 1: The iterative algorithm of the kepler_step_depth function.
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3.3. Learning

The preceding sections show how the n-body solver is implemented with TensorFlow,
creating a neuronal network that solves the n-body problem. The subsequent dis-
cussions focus on the training of specific components within this network. This is
illustrated through the task of learning the masses of celestial bodies. Initially, using
synthetic data for the cost function, the mass of a single body is learned. For this, a
minimum finding algorithm is introduced. This method is subsequently extended to
simultaneously learn the masses of multiple bodies. Although successful with synthetic
data, the limitations of applying this approach to real-world data are demonstrated,
and insights into the underlying reasons are provided.

3.3.1. Learning with synthetic data

Learning the mass of one body

Most neural network training employs gradient descent, utilizing a step size initially set
and subsequently decreased over time. This approach is particularly effective when the
objective is to locate any local minimum with multiple minima. However, in celestial
body attributes, it is hypothesized that a unique minimum exists when only one body
at a time is considered. For given positions and velocities, the body has only one
correct mass, which would explain the resulting positions and velocities after a time
step. Further deviation of this correct mass would result in further deviation from the
correct positions and velocities. Given this premise, searching for the unique minimum
can be significantly accelerated.

For the cost function, the non-TensorFlow code is run for a few time steps, and the
results are seen as the correct data, with which the network results given the learned
parameter are tested. After the synthetic data is calculated, part of the input—in this
case, the mass of one planet—is forgotten and then learned again by first guessing the
input and then, with the help of a custom gradient descent algorithm performed on
the quadratic cost function, is learned again.

The custom gradient descent algorithm begins with an arbitrary step size and an
arbitrary initial guess at the value. As the gradient, in this case, is directed towards
the opposite of the global minimum, the update rule for the mass being learned is
mass = mass - (gradient · step size). This process is iterated, increasing the step size
by a factor of eight as long as the gradient’s sign remains unchanged, indicating that
the global minimum still needs to be bypassed. If a change in the gradient’s sign is
observed, suggesting an overshoot of the global minimum, the step size is halved at
every subsequent iteration to converge to the minimum.
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This adaptive step size algorithm allows for arbitrarily precisely determining the
sought mass. When the global minimum has yet to be bypassed, the exponentially
increasing step size ensures rapid convergence, even though the initial guess was very
far off. To facilitate control over the precision of this method, the implementation
accepts a parameter named accuracy. This parameter specifies the threshold below
which the step size must fall before the algorithm terminates, thereby defining the
upper limit of error.

In Figure 3.10, a simplified illustration of the algorithm is presented. This depiction
highlights a worst-case scenario, where the penultimate value learned by the algorithm
slightly deviates from the actual minimum. As a result, the final error margin is just
below the specified accuracy threshold.

Figure 3.10.: Illustration of how the algorithm finds the global minimum.

As a test example, the mass of the Sun is learned. For this, the Sun, Mercury, and
Venus values are given as input, the non-TensorFlow code is executed for ten time steps,
and the result is used to evaluate the learned value of the Sun. If real data were used
to evaluate the learned value, it would not be a good example to choose the first two
planets and the Sun, as the influences of the other solar system planets are ignored.
However, as synthetic data is used, this does not matter. The values of the celestial
bodies are given in astronomical units, days, and mass relative to the Sun. NASA
provides the starting values [11].
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values = find_global_minimum(
tau=0.1,
n=3,
m=[1, 3.302e23 / 1988500e24, 48.685e23 / 1988500e24],
r=[[-7.673580434738827E-03, -3.302239590214931E-03,

2.073556671274906E-04],
[3.452597940573748E-01, -1.498122010844959E-01,
-4.413780254122306E-02],

[1.031676785783527E-01, -7.220322696819025E-01,
-1.605894448118791E-02]],

v=[[5.284080958425666E-06, -6.612725729575814E-06,
-5.777615059407366E-08],

[5.305044905894823E-03, 2.724866176413712E-02,
1.741157849018483E-03],

[1.986026764570113E-02, 3.004963198838360E-03,
-1.104347674861390E-03]],

learning_rate=0.1,
starting_guess=100,
num_of_steps_in_do_step=10,
accuracy=1e-5,
variable_to_learn="m"

)

The parameter variable_to_learn could also be set to r or v to learn the position or
velocity of the Sun, respectively. It is always the first value in the mass array that is
learned. The learned values after each training epoch are:

[99.9, 99.10000000000001, 92.7, 41.5, -368.1, -163.3,
-60.900000000000006, -9.700000000000003, 15.899999999999999,
3.099999999999998, -3.3000000000000025, -0.10000000000000231,
1.4999999999999978, 0.6999999999999977, 1.0999999999999979,
0.8999999999999979, 0.9999999999999979, 1.0499999999999978,
1.024999999999998, 1.012499999999998, 1.0062499999999979,
1.0031249999999978, 1.001562499999998, 1.000781249999998,
1.0003906249999979, 1.0001953124999978, 1.000097656249998,
1.000048828124998, 1.0000244140624979, 1.0000122070312478,
1.000006103515623]

It can be seen that, even though the initial guess was off by a factor of 100, the
minimum algorithm converges fairly quickly and within the accuracy.
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Learning the masses of multiple bodies simultaneously

In the last section, an algorithm was introduced that took advantage of the hypothesis
that there can only be one correct mass and used it to learn the mass of one body
within a predefined accuracy. This minimum finding algorithm is now expanded to
also work when multiple masses are learned simultaneously. The difficulty with this is
that the minimum of the cost function with respect to a specific mass when all other
masses are held is fixed, depending on the other masses. So, if all masses are learned
simultaneously, this would visually correspond to the curve in figure 3.10 moving
around and changing.

Because of this, the algorithm described in the last section would not work. This is
because it would detect a change in the gradient’s sign and incorrectly assume that
the minimum lies within the values range that the last gradient step skipped over. But
because the other masses also changed, the minimum could have moved to a value the
algorithm can not reach now, as it is too far away.

For this case, the approach includes three phases instead of two, like in the algorithm
with only one mass. In phase one, the step size is now increased by a factor of t/rk

until a change in the gradient’s sign is observed. t is the learning rate factor, r is the
convergence rate, and k is the number of times phase 3 was executed. This mirrors the
process used in single-variable minimum search. Upon a change in the gradient’s sign,
the algorithm always enters or stays in Phase 2, where the step size is halved, assuming
proximity to the minimum. If no change in the gradient’s sign after a step in Phase 2 is
observed, the method transitions to Phase 3, maintaining the current step size without
further halving, to explore the immediate vicinity of the estimated minimum. If, after a
Phase 3 iteration, the gradient’s sign remains unchanged, implying that the minimum
has shifted, the algorithm reverts to Phase 1. The convergency_rate gradually reduces
the multiplication factor of the step size in Phase 1. However, if the minimum remains
within the explored interval —as indicated by a sign change during a Phase 3 step—
the process moves back to Phase 2.

Figure 3.11 presents a conceptual visualization for simultaneously learning multiple
masses. The illustration is not meant to depict precise functions but to convey the
underlying concept. Within this figure, the vertical blue line represents the current
mass values under consideration, while the arrow signifies the adjustments made to
these values during a training epoch. The black curve illustrates the cost function’s
behavior for varying parameter values, assuming all other parameters remain constant.

The transition from the left to the right demonstrates a dynamic shift in the cost
functions, marked by the gray curves that trace the function’s position in the previous
epoch. The illustration highlights the three phases:

1. At the top, phase one is depicted where the step size is increased by a factor of
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eight because the learning rate factor is eight and the gradient sign never changed.

2. The middle part reveals a transition to phase two caused by a change in the
gradient’s sign. The moving minima between epochs show the necessity of
adapting the step size more dynamically rather than merely halving it at each
iteration.

3. The bottom part illustrates phase three, where the step size remains constant over
two epochs.

Figure 3.11.: Illustration of learning multiple masses simultaneously.

This dynamic adjustment strategy works very well, with initial guesses being even
unreasonably far off. The algorithm, for example, learns the correct values for the
Sun, Mercury, and Venus with the starting guess of [1692, -342, 0.00000012301].
However, if it is too far off, it seems to converge to completely wrong results. This,
however, should not be a problem, as a realistic starting guess of the mass of the Sun is
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not more than 100000 times the mass of the Sun like in this example, where the learned
values are entirely wrong: starting_guess = [169842, -342, 0.00000012301]. An-
other problem arises in a different example: the masses of the Sun, Venus, Earth +

Moon, Mars, Jupiter, Saturn, Uranus, and Neptune are learned. Figure 3.12 shows the
cost per training epoch.

Figure 3.12.: Plot of the costs per training epoch.

It can be seen that, in the beginning, the cost decreases but stays constant at some-
where around 10−28. This is because the calculated positions and velocities with the
learned masses are very close to the target positions and velocities, leading to numerical
errors in the gradient calculations. Because of this, gradient descent does not work
anymore. This leads to limited accuracy of the learned masses. The differences between
the learned and actual masses are still less than 1.5 · 10−9.

3.3.2. Learning with real data

In the last section, synthetic data showed how the masses of celestial bodies could
theoretically be calculated with high accuracy. When, however, real data is used,
problems arise. In testing, the real starting values of the Sun, Venus, Earth and Moon,
Mars, Jupiter, Saturn, Uranus, and Neptune for 28.02.2024 are taken from NASA’s
website, and a day is simulated. The difference between the data provided by NASA
for 29.02.2024 and the calculated values for that day is less than 9 · 10−7, which is too
high to accurately calculate the masses.
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This thesis solved the three-body problem, a fundamental challenge in classical me-
chanics and astronomy, using a neural network approach with TensorFlow. For this,
the Python code written by G. Gonçalves Ferrari, T. Boekholt, and S. F. Portegies Zwart
[6] was translated to TensorFlow. The resulting model interprets independent two-body
problem solvers as neurons within a neural network, which combines the results of
those neurons to predict complex gravitational interactions among celestial bodies.
This new method contrasts with traditional ’black box’ neuronal networks, providing a
clear, interpretable network directly integrating physical laws into its architecture. As a
result, arbitrary parts of the network can be learned, including but not limited to the
masses of celestial bodies.

The experiments with synthetic data have demonstrated that the masses learned by
the network are close to their actual values. However, challenges were encountered
when it was tried to learn the masses from real data. To resolve these issues, future
work could explore using longer trajectories or alternative n-body simulators, which
could then be implemented with TensorFlow, analogous to how it is done in this
thesis. The idea’s potential to have an interpretable machine learning model with
integrated physical laws and then learn unknown parameters, which would be very
hard to estimate otherwise, is huge. Given that this approach calculates masses based
on n-body interactions (n > 2) rather than limiting itself to binary relations, it has the
potential to:

• Approximate the masses of all planets in the solar system,

• Enhance the precision of the gravitational constant measurement,

• Estimate the mass of Sagittarius A* (the black hole at the center of our galaxy)
along with the masses of reference stars and

• Determine the planetary masses of extraterrestrial solar systems where orbital
trajectories are known.

Furthermore, by learning arbitrary input parameters concurrently, the network could
potentially deduce the masses of all celestial bodies using only two-dimensional inputs
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for positions and velocities. This is particularly relevant given that celestial observations
are often made in two dimensions.

This thesis could lay the groundwork for a better understanding of the universe by
utilizing machine learning techniques and interpretable models.
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A. Appendix

The complete source code and resources for this project are available on GitHub. The
repository includes a Dockerfile specifying all the tools and versions required to en-
sure the project’s code runs seamlessly. The project’s code can be found at: https://github.
com/AndreasMerrath/Solving-the-three-body-problem-with-neural-networks.git.
The project structure is:

• NormalCode: This folder contains the Python implementation of the n-body
simulator.

• TensorCode: This folder contains the TensorFlow implementation

• Learning: This folder contains the learning algorithm and two Jupyter notebooks
demonstrating the implementations and the testing examples discussed in Section
3.2.

• Simulation: This folder contains the visualizations of the trajectories shown in
figures 1.1, 1.2, 2.2, and 2.3.
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