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A B S T R A C T   

We study how OSS project owners can manage their repositories so as to motivate particularly high-skilled coders 
to exert continuous effort after joining a project. Drawing on literature from personnel economics, we lay out 
how coders’ skill level affects their selection for a focal project in the first place. In turn, we theorize how project- 
specific norms and quality aspirations that developers learn about after joining an OSS project represent treat
ments that varyingly entice developers to contribute more code conditional on their skill level. Based on a 
custom-tailored dataset merging GitHub and Stack Overflow data for almost 50,000 contributor-project-month 
observations, we find that repository owners are able to motivate their most talented volunteer contributors 
when they (1) show no visible commercial orientation while managing their projects, (2) show generosity in 
accepting external contributions, and (3) provide fast feedback. We discuss implications for research and practice 
in the fields of community-based organizations like OSS as well as personnel economics.   

1. Introduction 

Organizational forms emphasizing self-selection, such as open source 
software (OSS) development, have become increasingly prominent in 
the literature on the organization of innovation (Puranam et al., 2014; 
Raveendran et al., 2021). Given how OSS development seemingly de
parts from traditional modes of governance, a broad array of studies has 
looked at what motivates individuals to join to such efforts (see, e.g., 
Bagozzi and Dholakia, 2006; Ghosh et al., 2002; Howison and Crow
ston, 2014; von Krogh et al., 2012). This literature finds that OSS de
velopers infer from observable project features—such as programming 
language, intended goal, or license (Belenzon and Schankerman, 2015; 
Bonaccorsi and Rossi, 2003; Crowston and Scozzi, 2002; Fang and 
Neufeld, 2009; Fershtman and Gandal, 2007; Santos et al., 2013; Sen 
et al., 2008; Stewart et al., 2006; Stewart and Gosain, 2006; Sub
ramaniam et al., 2009; von Krogh et al., 2003)—whether they will be 
able to satisfy any of the different motivational desires they may have 
(Benbya and Belbaly, 2010; David and Shapiro, 2008; Hars and Ou, 
2002; Hertel et al., 2003; Jeppesen and Frederiksen, 2006; Lakhani and 
Wolf, 2005; Lee and Cole, 2003; Lerner and Tirole, 2002; Roberts et al., 
2006; Shah, 2006): solving a problem they face (use-need), advancing 
their career or status among peers (extrinsic motivation), or deriving 

some form of enjoyment from working on the project per se (intrinsic 
motivation). In sum, if developers expect their idiosyncratic motivation 
can be satisfied at an effort level lower than their expected opportunity 
costs (i.e., the benefits of joining the specific project are higher than the 
expected costs, and also higher than the net benefits of joining another 
OSS project or doing any other activity), they should join a project. 

Notwithstanding the important insights this literature has produced, 
two important and interconnected questions stand largely unanswered. 
First, we note that prior work has focused on what motivates averagely 
gifted OSS developers to contribute to a specific project. The question of 
why potentially good or excellent contributors—those with maximal 
skills matching the project needs—would devote more of their time to 
one OSS project than to another has received scant attention at best 
(Belenzon and Schankerman, 2015; Ghosh et al., 2002; Ho and Rai, 
2017; Howison and Crowston, 2014; Roberts et al., 2006; von Krogh 
et al., 2012; Wasko and Faraj, 2005; Xu et al., 2009). Keeping highly 
skilled developers motivated after joining is OSS project managers’ ul
timate goal. After all, it is they who should make the most substantial 
contributions (Cosentino et al., 2017; Kalliamvakou et al., 2016; von 
Krogh et al., 2003; Zhang et al., 2013). Similarly, second, we note that 
works studying the effects of project features on OSS developers’ moti
vation also focuses on project selection (Fitzgerald, 2006; Howison and 
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Crowston, 2014; Sen et al., 2008). Yet, developers can only learn about 
project-specific norms and quality aspirations after they have joined a 
project (Ho and Rai, 2017; Mingers and Walsham, 2010; von Krogh 
et al., 2012). Designing the respective project features consciously 
should hence matter—to theory and OSS practitioners alike—if they 
would varyingly affect the expected attainable need, status, or learning 
outcomes and opportunity costs of developers of different skill levels. 
Accordingly, in this paper, we ask: what makes the right developer tick, 
and how may managers of OSS projects entice these individuals to be 
productive continuously through the design of their projects? 

To ground our argument, we borrow from the longstanding debate in 
the field of personnel economics that addresses the interplay between 
worker sorting and personal skill (Cadsby et al., 2007; Dohmen and 
Falk, 2011; Lazear, 2000a, 2000b).1 Seen through this lens, current OSS 
literature has shown that developers select into projects based on 
observable design parameters, such as a fit between their ideology and 
projects’ license choice (Belenzon and Schankerman, 2015; Fershtman 
and Gandal, 2007; Sen et al., 2008; Stewart et al., 2006; Stewart and 
Gosain, 2006), or between their status ambitions and a project’s (larger) 
size (Chengalur-Smith et al., 2010; Hann et al., 2013). What remains 
unclear, however, is how such selection into OSS projects affects 
skill-based sorting eventually—that is, how individuals’ motivation and 
skill jointly lead them to pick a specific project—and, in turn, how 
project managers should treat developers who have joined a project to 
leverage the full potential of the best available talent. 

We begin from the premise that individuals will, among other things, 
select into OSS projects for which they have at least some—albeit 
varying levels of—skills. This is because a certain level of competence is 
required to enjoy the programming task (and to be motivated intrinsi
cally) (Sanders, 1998; Shah, 2006; von Hippel and von Krogh, 2003) and 
to produce outputs that allow for eventual status and career advances 
(and to be motivated extrinsically) (Crowston and Scozzi, 2002; Hann 
et al., 2013; Lee et al., 2003; Subramaniam et al., 2009). Motivation and 
skill level hence jointly determine the benefits and opportunity costs 
that a developer would expect from joining a project. 

In turn, after joining, developers will find themselves treated by newly 
discovered project-level design features that embed the projects’ norms 
and quality aspirations. Yet, this treatment effect should vary across de
velopers of different skill levels conditional on how they see the benefits 
and opportunity costs from their continuous involvement with the project 
impacted. In particular, we argue that because high-skill individuals have 
a higher incentive to see their actual code contributed rather than learn 
from feedback (i.e., different benefits) as well as more outside options to 
attain their motivational benefits (i.e., different opportunity costs), they 
should prefer (vs. lower-skilled individuals) those projects which (a) more 
predictably follow the meritocratic standards of OSS, (b) more generously 
accept contributions, and (c) share feedback faster. 

For our tests, we draw on an originally compiled and custom-tailored 
dataset merging information from two major software community archi
ves—GitHub and Stack Overflow—resulting in almost 50,000 contributor- 
project-month observations. Our data contain information on both 

contributors’ programming output, as measured in their proposed code 
patches (= pull requests) sent to other GitHub projects, and contributor 
skills, as measured by the expert answers they provide on Stack Overflow. 

Our results provide a first insight into what makes the right contributor 
tick, and how crucial project-design parameters drive the efforts of 
differently skilled contributors. Conditional on the match between con
tributors’ experience and project-specific skill requirements, we find that 
projects launched by founders who have a commercial orientation attract 
lower effort levels from more highly skilled developers, whereas a higher 
acceptance rate and faster feedback time increase the efforts of highly 
skilled developers. Building on these insights, we extend current discus
sions on who contributes to OSS projects (Howison and Crowston, 2014; 
Lakhani and Wolf, 2005; von Krogh et al., 2012). In addition, we present 
adaptations of formalisms from personnel economics (Booth and Frank, 
1999; Lazear, 2000a, 2000b; Delfgaauw and Dur, 2007; Eriksson et al., 
2009), which may inform future work studying self-selection into 
dispersed teams, such as the gig economy, more broadly. 

2. Selection, sorting, and treatment in open source software 

The field of personnel economics investigates the managerial inter
play of attracting and continuously motivating skilled workers in firms 
(see, e.g., Hartog, 1986; Jovanovic, 1979; Lazear, 2001; Lazear et al., 
2012). This literature illustrates that the promise of certain incentives to 
candidates may affect their willingness to join an organization in the 
first place (selection). How the actual incentives (treatments) provided to 
staff after joining are perceived by employees eventually depends on the 
prior selection, and this perception may differ across employees. A 
company may, for instance, be aware that offering a variable pay scheme 
may attract highly driven employees. What a firm seeking to hire pro
ductive folks additionally needs to know is whether one particular 
incentive scheme—say, piecemeal—beats another—say, a tourna
ment—in meeting the other social preferences of productive individuals 
to optimally motivate them once they join (Dohmen and Falk, 2011). 
Only if the company knows how people sort across schemes, and which 
scheme motivates good people to exert effort after they have joined, can 
it advertise its compensation in the marketplace to attract top per
formers who will devote their time to the firm. 

2.1. Selection and sorting in OSS development 

OSS communities differ from traditional organizations in many ways 
(Dahlander and Frederiksen, 2012; Lakhani and Panetta, 2007; Mockus 
et al., 2002; Raymond, 1999; Stewart and Gosain, 2006). Contributors 
usually do not receive financial remuneration (O’Mahony and Ferraro, 
2007), and also do not submit themselves to traditional managerial forms of 
task allocation; rather OSS developers self-select into projects where they 
volunteer their effort (Benkler, 2002; Lakhani and Panetta, 2007; Puranam 
et al., 2014; Raveendran et al., 2021; von Hippel and von Krogh, 2003). 

Accordingly, prior research has devoted much attention to the 
question of what motivates a developer to join an OSS collective, and 
how organizations may drive these motivational stimuli to get in
dividuals to join their projects (see, e.g., von Krogh et al., 2012, for a 
review)—that is, to influence selection. Specifically, intrinsic motivations 
aside (e.g., enjoyment of the creative process, learning, or a feeling of 
community identification), extrinsic desires such as fulfilling use-needs, 
gaining status within the OSS community, and visibility for 
career-related purposes (Jeppesen and Frederiksen, 2006; Ke and 
Zhang, 2010; Lakhani and Wolf, 2005; Lerner and Tirole, 2002; Roberts 
et al., 2006) stimulate individuals working in communities. 

Given the above, so we argue, project-related skills of developers 
should ultimately determine a good part of coders’ decisions about 
whether to join a specific project or not. This is because all OSS developers 
eventually seek to be productive, implying the target code itself or the 
process leading to its production are the reasons for their engagement. 
Specifically, individuals who hold more of the skills required to contribute 

1 The personnel economics literature distinguishes sharply between selection, 
sorting, and treatment. In short, individuals select (e.g., into work) based on 
observable stimuli (e.g., different financial incentive schemes). In turn, sorting is 
observed after selection, when designers may find that clearly discernable 
groups selected different variants of the stimulus, because of varying underlying 
characteristics or preferences (e.g., varying risk preferences, overconfidence 
levels). Treatment, in turn, implies stimuli given to individuals after their se
lection decision. Accordingly, for the treatment to be effective, not just the 
selection decision but also the sorting outcome needs to be understood by the 
designer. For the entire organization to be effective, designers will need to 
understand what happens across all three stages: selection, sorting, and treat
ment. While this logic has been applied primarily to standard business orga
nizations, it is transferable to organizations of all kinds. In this paper, we 
present an extension for OSS projects. 
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to a specific OSS project should be more likely to enjoy contributing and be 
motivated intrinsically in turn (e.g., Sanders, 1998; Shah, 2006). Skill 
match should also allow individuals to produce better outputs so as to 
corroborate their status among peers and advance their career prospects, 
hence fostering extrinsic motivation (e.g., Ferraro and O’Mahony, 2012; 
Hann et al., 2013; Lee et al., 2003; von Krogh et al., 2003). Accordingly, we 
expect that higher-competence individuals should find it easier to satisfy 
all types of motivation (Bandura, 1977; Deci and Ryan, 1985). In the 
absence of other remuneration, the ability to be productive while coding 
thus becomes the key constraint on developers’ participation,2 and only 
those contributors who are somewhat qualified should therefore even
tually sort across projects. 

The above is not to say that all folks joining a project will be equally 
skilled, however. While we expect all of them to meet minimum levels of 
project-specific experience, we would still expect skill matching be
tween individuals and the projects’ need to vary vastly. Volunteer de
velopers, for example, often need not meet absolute levels of output, let 
alone sustain a living from their participation (Benkler, 2002; Hann 
et al., 2013), so they can afford their skills to match onto the project less 
than perfectly initially, particularly when what they really aspire is to 
build up the requisite skills through their very project participation 
(Benbya and Belbaly, 2010; Lee and Cole, 2003; Lakhani and von Hip
pel, 2003). Coders seeking to boost their professional CV by contributing 
on a project may not enjoy the same degrees of freedom, however, and 
will seek to make meaningful contributions, requiring them to bring all 
the skills needed from the start. 

In sum, motivation and skill may not only independently affect an in
dividual’s decision to sort into a given project. The interactions between 
these two effects will become more complicated when discussing the im
plications of how project managers eventually want to treat different types of 
developers. Notably, project managers will appreciate an understanding of 
the linkage between motivation and skill, so as to entice more contributions 
from their stronger contributors. That, in turn, requires a more nuanced 
understanding of the interaction between skill, motivation, and the eventual 
opportunity costs of coding that developers may be facing. 

2.2. Untangling treatment effects in OSS: the role of project-level norms 
and aspirations 

In general, opportunity costs should fall the more productive de
velopers can be while coding. That means, the more individuals can 
attain their motivational goals on a given project (i.e., they expect a net 
benefit of continuing to work on the project vs. doing any other activity 
and vs. working on another project), the more inclined they should be to 
voluntarily select into developing OSS in general, and a specific project 
in particular. Following our above argument, we would thus expect that 
individuals would select onto those projects where they minimize their 
opportunity costs by leveraging their extant skill base (Lazear, 2000a, 
2000b). At the same time, the actual opportunity costs may vary 
tremendously among the differently motivated peers. The distribution of 
skills among coders on a given project should thus vary greatly, the more 
individuals join for a variety of reasons. 

The challenge for OSS project owners now becomes motivating those 
with the highest skill base best, as their opportunity costs will likely be 
highest. This is because developers of higher skill levels (1) should 
expect to be productive immediately (given they have all requisite skills) 
and (2) more likely have outside options (given that they have a skill set 
they can redeploy). Accordingly, project owners need to create 

incentive-compatible3 treatments that reduce opportunity costs of code 
production for higher-skilled volunteers who have selected onto the 
project more than for lower-skilled ones. 

Such treatments refer to those actions which project founders can 
take and which will only affect developers after joining, such as all ac
tions related to the norms and quality aspirations of the project.4 As von 
Krogh and colleagues (2012) explain, developers may truly learn about 
these project-specific aspirations only after joining it (see also, e.g., Ho 
and Rai, 2017; Lee and Cole, 2003; Mingers and Walsham, 2010), 
explaining perhaps why developers spend significant time “lurking” on a 
project before actively contributing (Nonnecke and Preece, 2003; von 
Krogh et al., 2003). In turn, like treatments in the corporate world, key 
choices about how to design and communicate these norms and aspi
rations should differently impact the expected benefits and opportunity 
costs of low-skilled versus high-skilled developers, so that they differ
ently adjust their future effort levels on the focal project. Put differently, 
we expect that OSS developers experience project-specific norms and 
aspirations differently once they join the project. 

Notably, this treatment effect is one that cannot be fully disentangled 
from the coders’ skill-based selection, so we refer to it as a conditional 
treatment effect henceforth (see Appendix A3 for a formal derivation of 
our logic). In the following, we hypothesize such conditional treatment 
effects caused by design choices project founders made to embody their 
envisioned norms and aspirations, and which contributors should only 
be able to capture fully after having joined the project: founders’ com
mercial intent, and the type and speed of feedback provided. 

2.3. The conditional treatment effect of founders’ commercial intent 

In general, OSS projects are expected to adhere to norms of meri
tocracy, fairness, and reciprocity (Bergquist and Ljungberg, 2001; Chou 
and He, 2011; Daniel et al., 2018; Hann et al., 2013; Levine and Prietula, 
2013; Maruping et al., 2019; O’Mahony and Ferraro, 2007; Raymond, 
1999; Shah, 2006; Spaeth et al., 2015; Stewart and Gosain, 2006). The 
expectation is that developers and project managers share a form of 
common “hacker ethos” (Raymond, 1999), so that, in the end, the best 
code should simply win. 

A key part of how strongly an OSS project is expected to follow these 
norms is embedded in the type of software license chosen (Belenzon and 
Schankerman, 2015; Fershtman and Gandal, 2007; Sen et al., 2008; 
Stewart et al., 2006; Subramaniam et al., 2009; West and O’Mahony, 

2 In the field of personnel economics, the participation constraint refers to a 
condition that must be met for a person to engage in a certain activity (e.g., a 
minimum salary needs to be paid for a person to sign an employment contract). 
In the OSS environment, the ability of developers to produce code is the 
necessary requirement for them to participate, as it is code production itself that 
brings about satisfaction, irrespective of why exactly they joined. 

3 In personnel economics, an incentive compatible environment refers to an 
arrangement that induces individuals to reveal their private information (e.g., 
skill level) and be truthful in their actions (e.g., behave in the employer’s in
terest). An important implication is that higher-skilled workers, when being 
offered a contract compatible with their incentives, will find their compensa
tion packages more attractive than the packages that lower-skilled workers 
would receive, and vice versa. In the context of this paper, incentive compati
bility for highly skilled workers means that high-skilled coders feel that they are 
working on a project that is particularly rewarding to them, implying that it 
would be less attractive to lower-skilled workers.  

4 Self-evidently, tracing the selection of OSS developers into projects will 
never be as clean as with workers into a corporate environment. More often 
than not, developers do not formally sign on to an OSS project. They are 
considered contributors from the moment they first become active on a project. 
That first activity, however, is already an act of production (Raymond, 1999; 
von Krogh et al., 2003). Hence, the line between selection, sorting, and treat
ment—which is clearly delineated in personnel economics—is far more blurred 
in OSS production. Also note that developers engaged in OSS will likely never 
observe the entire spectrum of potential repositories in which they might pro
ductively engage. As a consequence, they will never make a fully informed 
choice when picking one project over another (Fitzgerald, 2006; Raymond, 
1999), whereas workers in commercial markets may know the full choice set of 
employment opportunities, at least in some instances. In turn, the analysis of 
archival OSS data will never allow for a perfect selection control. We address 
these issues more formally in our Appendix A3. 
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2008). The project license is clearly communicated, and programmers 
can, for example, judge easily upfront whether a license is commercially 
oriented or not. Programmers may thus select into OSS projects given 
their preference for specific social and work norms that a (non)com
mercial license encapsulates, and how these correspond to their indi
vidual motivation. For example, many developers may strongly feel that 
software should be “free as in freedom” and avoid firm-run projects 
(Stallman, 1999). Others may seek to be visible to corporate actors who 
they hope will value the software product (Hann et al., 2013; Jeppesen 
and Frederiksen, 2006). 

After joining, however, the license type per se may say little about 
the processes and structures through which OSS software is produced. In 
the end, it merely implies the form of protection or openness chosen for 
the output of the OSS project, and allows potential contributors to form 
initial expectations about the levels of motivational stimuli and pro
ductivity levels they can achieve on a specific project. 

These expectations, however, may need to be revised when de
velopers learn that a specific project might deviate from the expected 
levels of meritocracy, fairness, and reciprocity. Specifically, contributors 
may fear that these norms may begin to play a less dominant role if they 
realize that project founders are driven by initially hard-to-spot com
mercial or status ambitions (Shah, 2006), or when project founders 
unexpectedly move into salaried employment with a commercial firm 
benefiting from the OSS project to become the firm’s “man on the inside” 
(Dahlander and Wallin, 2006). Upon newly identifying such ambitions, 
we suggest that some developers may expect that founders might 
choose, if only at the margin, to manage their OSS projects in a manner 
that deviates from the norms of OSS (Dahlander and O’Mahony, 2011; 
Mateos-Garcia and Steinmueller, 2008; Shah, 2006).5 Below, we lay out 
why this expectation should lead to highly skilled programmers 
reducing their project-specific efforts more than less highly skilled ones. 

Highly skilled programmers should be particularly interested in 
being productive. That is, given that they already bring a “stockpile of 
skills” (Shah, 2006, p. 1008), they expect a software development pro
cess that allows them to reap the motivational benefits from applying 
current skills rather than acquiring new ones at high opportunity costs 
(Aberdour, 2007; Mockus et al., 2002; O’Mahony and Bechky, 2008; 
O’Mahony and Ferraro, 2007; Shah, 2006; von Krogh et al., 2003). In 
turn, we expect that highly skilled programmers fueled by all types of 
motivation should reduce their effort when founders’ commercial intent 
is revealed. 

More specifically, intrinsically motivated, highly skilled developers 
should particularly value meritocracy as driver of the OSS programming 
process (Levy, 1984; Mockus et al., 2002; Nelson et al., 2006; Raymond, 
1999). They should be taken aback by any non-coding-related reason to 
deviate from these norms (Mateos-Garcia and Steinmueller, 2008), in 
particular when that would cause their (likely higher-quality) code to be 
(unfairly) rejected. Similarly, extrinsically motivated, highly skilled 
developers may reasonably believe that founders high in commercial 
intent will try to catch more of the spotlight. Such developers may also 
fear that founders may receive (with or without founders’ doing) the 
credit for others’ work (Merton, 1968). 

Less-skilled programmers, on the other hand, should more likely 
continue to exert effort to the OSS project even after learning of foun
ders’ newly unearthed commercial ambitions. Intrinsically motivated, 
less-skilled programmers, for example, should find it harder to tell 
whether their code suggestions were rejected because of a lack of quality 

or because of commercially oriented founders’ different methods of se
lection (Siggelkow and Rivkin, 2009). Further, even when (unknow
ingly) being unfairly treated, they may still value to some extent that 
they are receiving feedback to help them achieve their goals of skill 
development. Extrinsically motivated, lower-skilled developers, in turn, 
should also be low in status in the open source community (Ferraro and 
O’Mahony, 2012). They would perceive any founder as higher in status 
than themselves and, hence, benefit from being associated with them 
(Barabási and Albert, 1999; Grewal et al., 2006; Mallapragada et al., 
2012). Accordingly, they should be less willing to disassociate from a 
founder, even after their commercial intent is revealed. Rather, if the 
status of a developer depends completely on the founder (i.e., if their 
skill is very low), they may even hope to gain from the status increases 
for which commercially oriented founders should strive. In sum, we thus 
posit as follows: 

HYPOTHESIS 1 (H1). The marginal effect of project-related devel
oper skills on their project-specific programming output increases 
when OSS project founders do not visibly pursue commercial intents. 

2.4. The conditional treatment effect of feedback 

Beyond broader social norms guiding the OSS development process, 
quality aspirations and the process through which they are communi
cated are key to the culture of an OSS project (Ho and Rai, 2017; Min
gers and Walsham, 2010; von Krogh et al., 2012). Such aspirations are 
strongly reflected, for example, in how a project administrator manages 
the code contributions that developers volunteer, in terms of both the 
speed of feedback provided and the eventual outcomes (i.e., whether a 
code contribution is accepted or not). While these dimensions may well 
be related,6 they should have clearly discernable effects on contributors’ 
continuous effort (e.g., Dahlander and O’Mahony, 2011; Dahlander and 
Piezunka, 2014; Ho and Rai, 2017; Moon and Sproull, 2008; Wooten and 
Ulrich, 2017; Zhang et al., 2013). 

We note that feedback entails not only a first-order effect through 
which developers can learn about their own skill but also a second-order 
effect, meaning that developers would learn about the preferences and 
processes of the project. For example, Piezunka and Dahlander (2019) 
show how any feedback provided (i.e., even a rejection) increases the 
likelihood that individuals who submitted an idea to a firm will do so 
again—and do so in a way that the idea is more in line with the firm’s 
expectations. Similarly, Riedl and Seidel (2018) elaborate how partici
pants in the online community surrounding the T-shirt design firm 
Threadless do not just try to receive feedback on their own designs, but, 
similar to OSS developers lurking on software projects, try to learn about 
principles of what makes for a good submission on Threadless generally. 
At the same time, it is evident that volunteers can experience these first- 
and second-order effects, and understand and evaluate (for themselves, 
through an opportunity cost lens) only after they have contributed. 
Hence, like founders’ commercial intent above, feedback should repre
sent conditional treatment effect. 

Specifically, we argue that if projects’ quality aspirations and the 
processes guiding them are learned primarily through active participa
tion, then (1) learning about how exclusive a project is contains both 
first-order and second-order feedback. Yet, as we lay out in the next 
section, not only is first-order feedback more important to low-skilled 
developers, they should also respond to first-order feedback differ
ently. In turn, (2) the pace at which feedback is provided drives OSS 
developers’ learning about the project’s preferences. The more quickly 
developers receive any feedback (i.e., irrespective of whether first-order 
feedback is negative or positive), the faster they can learn about the 

5 A case in point is the history of Storybook (https://medium.com/protectin 
g-storybooks-future). Note also how Linus Torvalds (and other famous hackers) 
were frequently the subject of conspiracy theories when in corporate employ
ment (see, e.g., https://en.wikipedia.org/wiki/Transmeta). In turn, this would 
again suggest that our argument holds even if founders never actively 
mismanage projects—what suffices is that developers may reasonably fear that 
they might do so. 

6 In short, we expect that better projects should, all else being equal, be faster 
at providing feedback and be more selective in what code they would accept. 
Yet, we can control for project quality, etc., in project-level fixed effect models. 
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opportunity costs of contributing code in line with the project’s pref
erences in the future. As we argue below, we expect that the importance 
of receiving such second-order feedback should be greater for high- 
skilled versus low-skilled developers. 

2.4.1. The conditional treatment effect of feedback type 
A project’s acceptance rate is simply the share of accepted code 

submissions out of all submissions. Across many high-profile OSS pro
jects (Lakhani and von Hippel, 2003; Lee and Cole, 2003), and the gig 
economy more broadly (Boudreau et al., 2011; Boudreau et al., 2016; 
Riedl and Seidel, 2018), this rate is comparatively low, with rejections 
far outweighing acceptances. The status gains for winning such exclu
sive competitions have often been identified as an important motiva
tional driver, in particular for settings in which very highly skilled 
developers can openly compete against each other, such as on platforms 
like TopCoder or Kaggle. However, looking at OSS development more 
broadly, we expect a trade-off between the ability to be productive (i.e., 
likely having one’s code accepted by a project with a high acceptance 
rate) and potential status gains (i.e., potentially having one’s code 
accepted by a project with a low acceptance rate). Once the utility of 
developers increases more in seeing their output enter a project than it 
does in elevating their status by working on highly selective projects, a 
high acceptance rate will motivate them to contribute. 

We argue that the incentive effect of having a higher expected like
lihood of code acceptance will increase as a developer’s skill level in
creases.7 When highly skilled developers discover a project’s low 
acceptance rate, they should increasingly realize that they may not be 
able to satisfy their motivational needs, and they should decrease their 
effort accordingly. 

From an intrinsic-motivation perspective, the desire of highly skilled 
programmers to learn (from failure) should be much lower than their 
desire for positive feedback, such as through others using their software 
code (Shah, 2006). Accordingly, skilled developers should increasingly 
seek other projects in which to invest their time (Benkler, 2002; Daniel 
and Stewart, 2016). Similarly, even highly skilled, extrinsically moti
vated, status-oriented developers may react negatively to learning about 
lower acceptance rates. This is because programmers with an established 
record of performance have little need to signal the quality of their work to 
their peers or to third parties. Engaging with elitist community managers 
reputed to accept only a minority of the contributions they receive—while 
a nuisance to any coder—is of increasingly little value to them, since being 
rejected might harm their community reputation as a “coding rockstar” 
(Dabbish et al., 2012, p. 1283). With their status as high-skilled pro
grammers established, they can focus on demonstrating their continued 
productivity and high performance (Dabbish et al., 2012) and will be able 
to do so ever better as the chances that a community accepts their con
tributions increase, all else being equal. 

Less-skilled programmers, in turn, should be less discouraged by a 
high rejection rate. Looking at intrinsic motivation, less-skilled pro
grammers striving for improvement will need to make costly in
vestments in order to process the feedback they receive, anyway (Riedl 
and Seidel, 2018). Rather than hoping to spend time on coding exclu
sively (like their more highly skilled peers), they will first need to learn 
how to interpret and apply the input of others in order to improve. Yet, 
given that many aspects of quality may vary between OSS projects (von 
Krogh et al., 2012), investments in learning may be hard to transfer 
across projects. Hence, faced with such sunk costs and fewer outside 

options, less-skilled, intrinsically motivated developers should be more 
likely to continue exerting effort on a project even when rejection rates 
are high (Brockner, 1992; Keil et al., 2000; Staw, 1981). 

Similarly, less-skilled, extrinsically motivated programmers may also 
stay longer on a project even if they learn of high rejection rates. This is 
because, for them, the potential status increases from an unlikely 
contribution may reasonably justify potential benefits they could 
anticipate through higher persistence. On one hand, this is because 
lower-skilled individuals will more likely overvalue their own compe
tence (Kruger and Dunning, 1999) and hence require more time to fully 
grasp the impact of a high rejection rate. On the other hand, given just 
how much they may attain from a single, near-random successful 
contribution, it may even be rational for very low-skilled individuals to 
continue trying (Boudreau et al., 2011; Eagly and Chaiken, 1993). 
Eventually, even seeming to be contributing to projects with a reputa
tion for being highly selective may help them create a (disproportional) 
record of their individual quality (Gousios et al., 2014; Hann et al., 
2013). In combination, we thus propose the following:8 

HYPOTHESIS 2 (H2). The marginal effect of project-related devel
oper skills on their project-specific programming output increases as 
the overall acceptance rate of code on a project increases. 

2.4.2. The conditional treatment effect of feedback speed 
Similarly, we suggest that the timely provision of feedback may play an 

important role in varyingly stimulating the motivation of coders of different 
skill levels. Here, research on online peer production communities has 
illustrated contributors’ susceptibility to responses they receive from com
munity founders or administrators. Providing feedback has been shown to 
increase developers’ motivations to contribute (Dahlander and Piezunka, 
2014; Piezunka and Dahlander, 2019; Roberts et al., 2006; Zhang et al., 
2013), whereas the lack of a response altogether has been interpreted to 
indicate poor community management (Dabbish et al., 2012; Tsay et al., 
2014a), leading to a demonstrably negative effect on peer productivity (Zhu 
et al., 2013). Similarly, delayed responses to mailing-list postings have been 
associated with the detachment of potential contributors from a community 
(Joyce and Kraut, 2006; Kuechler, 2013). 

We build on these findings to develop our third hypothesis. Mirroring 
our arguments leading up to H1 and H2, we suggest that there is a dif
ferential effect of feedback time on high- versus low-skilled contributors’ 
expected benefits and opportunity costs. Receiving fast feedback should 
be more desirable for higher-skilled than for lower-skilled coders 
because the former should be able to interpret the signals the feedback 
entails more accurately than the latter. As we have argued above, this is 
because only by observing how project managers react to their code 
contributions can higher-skilled programmers understand precisely 
which quality aspirations the project follows, whether any adjustments 
to their efforts are necessary, and, were adjustments required, whether 
they would not rather spend their efforts elsewhere.9 Lower-skilled 
programmers should similarly appreciate fast feedback. Yet, given that 
they yet lack key required skills, they will first need to invest in un
derstanding the feedback, they will require more time processing it, and 
they should also interpret and implement it less aptly (Kruger and 

7 The world of publications in academic journals offers an interesting paral
lel. Here, H1 would imply that the editor(ial team) has a hidden agenda that 
would be learned only by engaging with the journal, and discovering which 
would disproportionally lead more highly skilled authors to seek other outlets. 
Our argument leading up to H2 would imply that more-established scholars 
should care increasingly less about publishing in elite journals—they just want 
to publish, or publish so that their work can be read by others. 

8 To conserve space, we have omitted the use-need argument, which would 
be structurally equivalent to the points made before. (1) Lower-skilled (vs. more 
highly skilled) programmers should both take longer to realize that their con
tributions will perpetually have a low acceptance chance (meaning that their 
use-need will not be implemented). Yet, (2) even if they were to realize this, 
given greater sunk costs and fewer outside options, they should persist longer.  

9 Continuing our above parallel, H3 implies that, all else being equal (i.e., 
authors should expect to receive the same benefits from an eventual publica
tion, controlling for their quality level), we expect more highly skilled authors 
to withdraw a paper more quickly, or, at least, to not submit to this journal 
again, the longer the reviewing process takes. 
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Dunning, 1999; Riedl and Seidel, 2018). Thus, until they have actually 
developed the skills necessary to work on the focal project, their relative 
increases in productivity from fast feedback should be smaller than that 
of high-skilled developers. Since, as argued for H2, low-skilled de
velopers’ project-specific learning experience may be hard to transfer, 
and they may even become increasingly willing to wait for feedback, 
whereas more skilled developers confronted with rising opportunity 
costs would simply choose to exit the focal OSS project. In sum, we posit 
as follows: 

HYPOTHESIS 3 (H3). The marginal effect of the project-related 
developer skills on their project-specific programming output de
creases as the feedback time on code contributions to a project 
increases. 

3. Data and methods 

3.1. Setting 

For our empirical tests, we draw on contribution records from two 
large software-engineering-related online platforms that allow us to 
measure the relationships between individual participation, individual 
performance, and community design. Specifically, we collected and 
combined data from GitHub, an OSS hosting platform, and Stack 
Overflow, a website featuring questions and answers (Q&As) pertaining 
to a wide range of topics in computer programming and software 
engineering. 

GitHub is a large public OSS repository hosting site that provides 
social coding tools for software developers. Specifically, GitHub com
bines programming features with those typical of social networking 
websites; for example, GitHub permits developers to create personal 
website profiles and to make their profile information and platform 
activity feed and created code artifacts openly visible and accessible to 
other GitHub users and outside individuals (Dabbish et al., 2012; Mar
low et al., 2013; Tsay et al., 2013). Within GitHub, developers can join 
existing repositories through forking them and having their code ad
justments merged with the original repository.10 To that end, users first 
copy the content of the original repository to their own local machine. 
They can then make their independent code changes and, if desired, 
send a so-called pull request with their proposed changes to the original 
repository owner (Kalliamvakou et al., 2016). Original repository 
owners have the authority to decide whether to include those code 
changes in the main branch of the repository (by merging the pull 
request) or to reject them. In addition to pull requests, contributors can 
begin discussions on existing projects by opening an issue that can 
relate, for example, to bug finding, a code enhancement request, or 
general feedback and comments. 

Stack Overflow is a Q&A online community primarily used by 
computer programmers. Community members can ask coding-related 
questions or provide relevant answers and technical solutions to help 
their peers. In turn, community members may also give and receive up- 
votes or down-votes on their postings depending on whether a contri
bution was perceived as clear, well structured, and overall helpful, 
leading to vetted, individual-level and topic-specific track records of 
expertise on the Stack Overflow platform. 

Both the GitHub and the Stack Overflow communities allow anyone 
to join who complies with the policy of a transparent working envi
ronment with freely shared user-submitted content with the entire 
community. Such a joint community value-creation ideology encourages 

contributors of both platforms to help solve common problems, share 
responsibility and knowledge, reciprocate expertise-based feedback, 
and contribute to the community’s growth (Marlow and Dabbish, 2013). 

Jointly, the two hosting sites contain all data required for testing our 
predictions. First, both sites permit the measurement of individuals’ 
actions—whether answers provided on Stack Overflow to measure skill 
or, say, sent pull requests on GitHub to account for coding output. 
Second, and crucially, by merging data from the two sources, we can 
compute measures pertaining to the match in skills that an individual 
possesses and those required for a given project without encountering 
endogeneity problems that would arise when computing the measures 
from a single source alone. We do so by contrasting the variation in the 
programming language skills of an individual as attainable from their 
Stack Overflow account and the coding language skills needed to engage 
in a given GitHub project. Below, we describe how we built this joint 
dataset. In turn, we discuss and correct for potential sample-selection 
distortions resulting from our sampling procedure in the section 
“Alternative explanations and robustness checks” in the “Results” sec
tion of this paper. 

3.2. Sample construction 

We downloaded publicly accessible GitHub data (https://developer. 
github.com/v3/) through the GitHub API. First, we collected basic data 
on all repositories created on GitHub since its inception (29 October 
2007) until the end of 2009, which yielded 146,676 repositories foun
ded by 51,557 unique users. Second, we enriched these data by down
loading 622,618 pull-request and issue activities performed on these 
repositories by 144,210 GitHub users for a period from the date of each 
individual repository’s creation until June 2016 (end date of our data 
collection). Together, we obtained data on 769,294 founding, pull- 
request, and issue activities performed on 146,676 repositories by 
179,356 unique11 GitHub users. 

We collected Stack Overflow data in two ways. First, we downloaded 
the archive officially released to the public by Stack Overflow on 13 
June 2016 (https://archive.org/details/stackexchange). These data 
include the official dump of Stack Overflow archival activities from the 
platform’s inception (31 July 2008) until 12 June 2016. Second, we 
downloaded the latest official dump (August 2012) of the Stack Over
flow archive that still contained email hash numbers of 
users—important information required for the merge of GitHub and 
Stack Overflow data (see below)—courtesy of the International Working 
Conference on Mining Software Repositories in 2013 (http://2013. 
msrConferenceorg/challenge.php). 

Using the Stack Overflow user identification number as key, we 
merged the two data dumps to obtain the full activity data from the 
hosting site’s inception until 12 June 2016, including email hashes for 
all those users registered on the website before August 2012. This left us 
with data on 19,090,959 answers provided by 5,677,258 website unique 
users. Of these users, 1,294,658 were identifiable via their email hash 
information, accounting for 12,755,110 answers observed. 

3.3. Matching GitHub and Stack Overflow data 

To match user profiles from GitHub and Stack Overflow, we drew on 
users’ email addresses. While leading to omissions when GitHub users 
chose not to voluntarily reveal their email addresses, this approach 
appears to be the only feasible way to merge the two sources (see also 
Badashian et al., 2014; Vasilescu et al., 2013). 

Of our GitHub data sample, 63,663 users provided email addresses 
that we could then match against the Stack Overflow email hashes. We 

10 Self-selection of users into OSS projects is the dominant mode of task 
allocation on GitHub (see Kalliamvakou et al., 2014). GitHub also hosts private 
repositories, which software corporations may use as platforms to coordinate 
their co-workers, and authoritative task allocation may occur. Our data include 
public repositories only, however. 

11 The same GitHub user can both found their own software repository and 
contribute to it; therefore, there are duplicate user records when summing all 
repository-specific activities. 
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computed the respective MD5 hash numbers, compared those with the 
existing Stack Overflow email hashes, and included users with identical 
values in a final list. From this set, we eliminated user duplicates, such as 
by adding up all activities of a GitHub user who had multiple Stack 
Overflow profiles registered to the same email address. This left us with 
a sample of 21,344 unique users whose activities we can trace on both 
platforms (see Section 4.1. for a discussion of sample-selection bias). 

To map these users’ activities on the two platforms, we created one joint 
classification system of user activities. Each GitHub repository stipulates the 
programming language to be used by the developers working on it. We 
focused on 55 programming languages present on GitHub and used them as 
base categories for classifying the answers that a user provided on Stack 
Overflow. Each Stack Overflow answer corresponds to a particular question 
tagging a particular topic (e.g., <sql-server>, <mysql>, <ruby>).12 We 
manually matched Stack Overflow answers using the tags of their corre
sponding questions to one of the 55 base programming-language categories 
present on GitHub, drawing on the help of an experienced programmer. 
Eventually, we managed to categorize 49.5% (425,442 of 859,236) of the 
answers that all users from our matched data sample had given until June 
2016. The general Stack Overflow tags (e.g., <algorithm>, <data-types>) 
could not be categorized as referring specifically to any of the 55 program
ming languages used on GitHub; thus, we omitted their corresponding an
swers from our final dataset. 

The final dataset we deploy for our statistical analysis consists of 
163,003 GitHub founding, pull-request, and issue activities performed 
on 35,916 repositories by 21,344 users registered on both GitHub and 
Stack Overflow. The data have an unbalanced repository-user panel 
structure. Time variance is captured at the repository-user level, as each 
GitHub activity is timestamped upon creation. Each Stack Overflow 
answer is timestamped upon posting, allowing us to capture time vari
ance also at the answer-user level. 

3.4. Variables 

3.4.1. Dependent variable 
Our main dependent variable is contributor programming output, 

measured as the monthly (logged) number of pull requests (plus one) 
that a user sent to someone else’s repository in GitHub. Pull requests 
contain original programming code provided by the focal user that they 
request be integrated into an extant GitHub repository.13 Sending a pull 
request to the owner of an extant repository is considered the prime 
method of seeking to contribute in the GitHub environment (McDonald 
and Goggins, 2013; Tsay et al., 2014a; Tsay et al., 2014b). It represents a 
code output measure, in that contributors deem their work complete 
enough to be considered for approval by a third party (Marlow and 
Dabbish, 2013). To test H1 through H3, we computed the measure at the 
contributor-repository-month level, which left us with 68,481 observa
tions of self-selection of 18,003 platform users into existing extant 
GitHub repositories. 

3.4.2. Independent variables 
It is a common practice in software engineering to measure the area 

of expertise of software developers by their experience and proficiency 
in different programming languages; for example, focusing on pro
gramming in “web-heavy” languages like Python and JavaScript can 
signal strong expertise in web development (Marlow and Dabbish, 
2013). We thus compute skill match as the (logged) cumulative number 

of Stack Overflow answers (plus one) in the programming language of a 
GitHub repository selected for contribution that a user has given over 
time (prior to the focal month) (similar to Wasko and Faraj, 2005).14 For 
the tests of H1 through H3, we deploy a measure computed at the 
contributor-repository-month level. For the 68,481 cases of user 
self-selection, we could compute skill-match values for 59,551 
contributor-repository-month records. Some observations were dropped 
from the analysis because of two main constraints we faced. First, we do 
not obtain data for users’ answer activity on Stack Overflow if they 
created an account there later than the focal activity month of a corre
sponding GitHub contribution; thus, for some GitHub activity months, a 
user’s skill information is unavailable. Second, not all GitHub re
positories from our data sample have a clearly defined programming 
language mainly used for code development. 

The dichotomous variable project founder’s commercial orientation, 
computed at the repository level, is associated with revealed commercial 
intent of the project founder. The variable takes the value 1 if a repo
sitory’s founder is considered to have a commercial affiliation, and 
0 otherwise. To compute this variable, we check GitHub profiles of re
pository owners as well as the repository homepages for internet links to 
outside websites. We code a repository as likely having a commercially 
oriented founder if they provide an internet link to a ‘.com/.co’ website 
(major search engines, social media platforms, and hosting sites 
excluded) on their personal profile or on the project’s homepage (similar 
to Dahlander and Wallin, 2006). 

The variable project acceptance rate—computed as a cumulative 
measure at the repository-month level—is associated with project 
characteristics that demonstrate project owners’ selectivity in assessing 
and implementing code innovations coming from externals to the proj
ect. To measure overall project acceptance rate, we calculate the (log
ged) percentage ratio (plus one) of the overall number of pull requests 
that were integrated into the main code branch by a project owner (or 
administrator) to all received pull requests. 

The variable feedback provision time—computed as a cumulative 
measure at the repository-month level—is measured as the (logged) 
average number of days (plus one) that a project owner (or adminis
trator) needed to evaluate submitted pull requests—to accept (and 
merge) or reject code changes proposed by external users. 

Taking into account only repository-month observations where we do 
have a prior stock of pull requests (to calculate the main independent vari
ables specific to H2 and H3) for our final analysis gives us data on 49,514 
distinct user-repository-month observations, 28,323 distinct repository- 
month level observations, and 43,695 user-level monthly observations. 

3.4.3. Control variables 
We control for a series of potential confounding effects—at both the 

user and the repository levels—to reduce the risk of biasing our results 
with unobserved heterogeneity. 

For each user, we control for experience with a given project and with the 
GitHub platform overall. To this end, we control for user tenure with the 
GitHub platform (user GitHub tenure), computed as the number of months 
since the user joined the website until a given month (the focal activity month 
on any repository), and tenure (in months) with a given project (user project 
tenure). We also controlled for user tenure with the Stack Overflow platform. 
The measure, however, was highly correlated with user GitHub tenure and 
therefore dropped from the final analysis to avoid multicollinearity prob
lems. In addition, we include the logged number of issues submitted by users 

12 See http://stackoverflow.com/help/tagging.  
13 Normalizing pull requests by code lines leads to too many missing values 

because of the data constraints we faced. Given the nature of coding, however, 
pure code length is often not indicative of code quality (elegant coding may 
take fewer lines than mundane programming; see Gousios et al., 2016; Tsay 
et al., 2014b, for related evidence). Therefore, we believe our dependent var
iable is a qualified measure of the coder’s programming output on GitHub. 

14 We have scaled (divided by 10) all independent variables after logging for 
the regression analyses. Note, however, that Tables 1 and 2 report descriptives 
for and correlations between the unscaled logarithmically transformed 
variables. 
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(contributor issue activity) at the user-repository-month level to account for 
their contributions to a focal project other than pull requests.15 We also 
control for users’ overall level of programming activity on GitHub by 
counting the (logged) monthly number of issues and pull requests submitted 
to other than the focal GitHub projects (contributor issue activity on other re
positories and contributor programming output on other repositories respec
tively), as contributors face a potential trade-off in allocating their time and 
attention to different activities and projects on the platform (Daniel and 
Stewart, 2016). Additionally, to account for the potential trade-off of coders 
between contributing to OSS projects owned by somebody else and estab
lishing their own project, we include user founding experience (computed as 
the logged number of repositories owned by a user) as a control variable. We 
add one to all of these counts prior to logging to avoid the generation of 
missing cases. Furthermore, we control for contributor rejection rate at the 
user-repository-month level since the experience of getting rejected might 
affect a coder’s decision to further contribute to a given project. We compute 
this measure as the percentage ratio of the number of pull requests rejected 
by a project owner (or administrator) to the total number of pull requests that 
a user submitted to a focal project. We also control for users’ level of overall 
answer activity on the Stack Overflow platform related to programming 
languages other than the language required to contribute to a focal project 
(contributor Stack Overflow answer activity)—computed as the (logged) cu
mulative number of answers (plus one) that a user has given over time (prior 
to the focal month). Contributor Stack Overflow answer activity indicates the 
developer’s overall level of engagement with the platform. A higher level of 
busyness and time spent on Stack Overflow can potentially prevent con
tributors from submitting many pull requests on GitHub (Anderson et al., 
2013). Additionally, we account for the total number of followers a user has 
received on GitHub up until the focal activity month (user GitHub popularity) 
as a signal of general status within the GitHub community (Cosentino et al., 
2017; Tsay et al., 2014b). 

For each repository, we control for project age, computed as the 
number of months beginning from the repository’s date of creation until 
the given month (the focal activity month on this repository). We control 
for project size by counting the logged number of contributors (plus one) 
affiliated with a repository. We also control for the number of issues 
reported on a repository (number of issues on a project) to capture non- 
programming activity occurring on the respective open source project 
as well as project code quality in part, since many issues relate to bugs 
discovered by project members and other community peers. 

3.5. Estimation model 

Given the multilevel structure of our data and the distributional 
properties of our variables, we deploy a series of different models to 
account for various deviations from standard Gauss-Markov assump
tions. Specifically, to account for unobserved heterogeneity and to 
mitigate the risk of incurring an omitted variable bias, we run a series of 
ordinary least squares (OLS) models with user fixed effects and cluster- 
robust standard errors. 

The results of a Hausman test indicate that the individual-level fixed- 
effects models are appropriate. Given that our fixed effect is at the 

individual level, this implies that our model controls for all time- 
invariant unobserved individual characteristics such as major level of 
education and professional occupation, main location, race, and native 
tongue, as well as factors such as individuals’ original reason for joining 
a project (e.g., hobbyist vs. professional). 

4. Results 

Tables 1 and 2 report descriptive statistics for and correlations be
tween the logarithmically transformed variables that we computed. 
Table 1 shows the range for the logarithmic output by a user on a given 
repository to lie between 0 and 4.17, corresponding to (exp(0)-1 =) 
0 and (exp(4.17)-1 =) 64 pull requests in absolute terms, respectively. 
The average monthly output by a user on a given repository is about 1 
submitted pull request, indicating the unequal distribution of low and 
top performers in our sample. The average user-repository skill-match 
value is about 14 Stack Overflow answers given in a programming 
language of a repository selected for contribution, but with values 
ranging from 0 to 5,733—indicating considerable heterogeneity among 
users’ proficiencies with particular programming languages required for 
a project. Interestingly, 27% of project founders in our sample have 
revealed their commercial orientation. Regarding pull-request accep
tance rates, the average rate within the sample is 49.4%, suggesting that 
some of the repositories might be much more challenging for users to get 
their contributions merged than others. Finally, repository owners spend 
on average 31.5 days to evaluate incoming extant contributions, and up 
to 1,077 days to make a final decision. The key variables display sig
nificant variation at both the user and the repository levels, which is 
desired. Correlations are low to moderate between most of the explan
atory variables at the user-repository level, with the exception of those 
variables that are systemically tied together (e.g., project size and number 
of issues on a project). 

Table 3 reports estimations pertaining to H1, H2, and H3. To rule out 
that collinearity is affecting our coefficient estimates unduly, we 
upward-test our models by sequentially adding parameters to a baseline 
model of control variables (Wooldridge, 2010). Moreover, we test the 
robustness of results to the exclusion of potentially collinear control 
variables from the regressions. Models 1 through 3 include solely user- 
and repository-specific control variables. In Model 4 we add a user’s 

Table 1 
Descriptive statistics.  

Variable Mean Std. 
Dev. 

Min Max 

User-repository-month level (N = 49,514)     
ln(Contributor programming output+1) 0.53 0.51 0 4.17 
ln(Skill match+1) 1.15 1.43 0 8.65 
ln(Contributor issue activity+1) 0.34 0.43 0 7 
Contributor (%) rejection rate 15.53 31.28 0 100 
User project tenure (in months) 5.85 12.38 0 86.9 
ln(Contributor issue activity on other 

repositories+1) 
0.12 0.35 0 4.73 

ln(Contributor programming output on 
other repositories+1) 

0.17 0.47 0 4.06 

ln(Contributor Stack Overflow answer 
activity+1) 

1.18 1.44 0 9.34 

Repository level (N = 4,894)     
Project founder’s commercial orientation 

(dummy YES/NO) 
0.27 — 0 1 

Repository-month level (N = 28,323)     
ln(Project acceptance rate+1) 3.43 1.39 0 4.62 
ln(Feedback provision time+1) 2.65 1.49 0 6.98 
ln(Project size+1) 3.69 1.52 1.1 8.91 
ln(Number of issues on a project+1) 2.73 2.36 0 9.09 
Project age (in months) 50.23 20.29 8.43 113.5 
User-month level (N = 43,695)     
ln(User founding experience+1) 0.63 1.01 0 5.45 
ln(User GitHub popularity+1) 3.22 1.55 0 9.94 
User GitHub tenure (in months) 42.34 20.91 0 113.33  

15 On GitHub, developers use issues to track problems or suggest enhancement 
ideas while using the repository’s code. GitHub developers clearly distinguish 
them from pull requests: “If you don’t think you can contribute back a patch, 
open a new issue. If you think you can make some patch to fix the issue, fork the 
repo, and make a pull request” (see https://stackoverflow.com/questions/ 
9563881/etiquette-of-github-contributing-pull-requests-vs-new-issue). Hence, 
anyone can raise issues on GitHub, and responsible/capable developers will 
take them forward to fix any problems that exist with the current repository’s 
code base. We therefore use contributor issue activity as a control variable rather 
than as an alternative dependent variable. Readers may note, however, that 
regressions using contributor issue activity as a dependent variable are less sig
nificant but point in the same direction as our main results reported in Table 3. 
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project-specific skill-match variable. As expected, we find a strong 
positive relationship between the skill match of a contributor for a 
specific project and their programming output on that project (0.18% 
increase in output when our independent variable ln(Skill match+1)/10 
increases by 1%, p-value = 0.000), a finding in line with Casalnuovo 
et al. (2015). In Model 5 we include key independent measures of 
different project characteristics that account for different incentives 
provided to coders of different skill levels to steer their contributions. In 
line with our expectations, project acceptance rate shows a positive and 
significant association with user-repository monthly output (p-value =
0.000), whereas feedback provision time is negatively correlated with a 
single contributor’s monthly programming output (p-value = 0.000). 

Per our theorizing, in Models 6, 7, and 8 we introduce the individual 
interactions of skill match and the project-design parameters meant to 
varyingly incentivize effort levels of higher- versus lower-skilled coders. 
Model 9 tests the joint significance of all three proposed interactions in a 
single specification, controlling for user fixed effects. For a given user, 
we find a negative relationship between skill match and monthly pro
gramming output when the user self-selects into GitHub projects of 
founders who revealed their commercial orientation (suggesting a 
roughly 0.12% decrease in user programming output, p-value = 0.033)— 
just as we propose in H1. Per H2, we find a significant positive effect of 
skill match on user’s monthly programming output when users choose 
projects that give them an opportunity to have their code patches 
accepted and their individual performance widely established. The log- 
log specification of our regression model implies that a 1% increase in 
the interaction term leads to a 0.50% increase in the (logged) monthly 
number of pull requests that a user sends to the repository (p-value =
0.006). We observe a negative relationship between skill match and 
programming output when a user self-selects into a project with a longer 
wait time for feedback on whether their proposed code will be approved 
for integration into the core branch (0.36% decrease in user program
ming output, p-value = 0.020), giving us support for H3. 

Fig. 1a and b through Fig. 3 illustrate the marginal effects predicted in 
Model 9 of the regression table (Table 3) at various levels of skill match, 
ranging from its minimum value till the 90th percentile of its distribution 
(most of our data points are located at the lower distributional levels). 

Per Fig. 1a, which illustrates the marginal effect for H1, we find that 
the slope of skill match is statistically different (p-value < 0.1) between 
projects run by founders with commercial orientation and by founders 
who do not pursue commercial intents at the very low and very high 
(above the 95th percentile of the distribution) levels of skill match. 
Fig. 1b plots the difference in predicted coding output of coders working 
on projects with commercially versus non-commercially oriented foun
ders at a particular level of our skill-match independent variable. The 
results suggest that individuals who completely lack the skills needed for 
working on a given project tend to stick to founders who are interested 
in pursuing commercial ambitions. As coders’ skill level increases, 
however, the output difference between two types of projects becomes 
more negative—top coders (compared with their low-skilled peers) 
exert greater effort on GitHub projects of founders who do not show 
commercial ambitions. 

With regard to the marginal effects for project acceptance rate (H2) 
and feedback provision time (H3) plotted in Figs. 2 and 3 respectively, we 
find that the simple slopes are statistically significant at various skill- 
match levels and point to the expected directions: as the value of our 
independent variable ln(Skill match+1)/10 increases, the relationship 
of project acceptance rate on coder’s output increases (p-value = 0.000) 
whereas the effect of feedback provision time becomes more negative (p- 
value = 0.000), suggesting the stronger effects of both feedback type and 
speed on higher- versus lower-skilled coders’ productivity. In particular, 
when pull-request acceptance rate on the project increases by 10% from 
its average value, coder’s predicted programming output is increased by 

Table 2 
Correlations.  

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

User-repository-month level 
(N=49,514)                  

1 ln(Contributor programming 
output+1) 

1                 

2 ln(Skill match+1) 0.07 1                
3 Project founder’s commercial 

orientation (dummy YES/ 
NO) 

-0.04 -0.02 1               

4 ln(Project acceptance 
rate+1) 

0.03 0.07 -0.01 1              

5 ln(Feedback provision 
time+1) 

-0.06 0.01 -0.01 0.15 1             

6 ln(Contributor issue 
activity+1) 

-0.54 0.03 0.03 0.05 0.04 1            

7 Contributor (%) rejection 
rate 

0.26 0.03 -0.03 -0.15 0.01 -0.19 1           

8 User project tenure (in 
months) 

0.17 0.19 -0.05 0.14 0.04 0.08 0.14 1          

9 ln(User founding 
experience+1) 

0.05 0.12 -0.02 -0.04 -0.11 -0.03 0.02 0.11 1         

10 ln(Contributor issue activity 
on other repositories+1) 

-0.04 0.07 0.01 -0.02 -0.02 0.09 -0.01 0.02 0.13 1        

11 ln(Contributor 
programming output on 
other repositories+1) 

0.15 0.12 -0.03 0.01 -0.03 -0.10 0.04 0.06 0.13 0.26 1       

12 ln(Contributor Stack 
Overflow answer activity+1) 

-0.02 0.43 -0.03 0.03 0.04 0.06 -0.02 0.05 0.01 0.07 0.01 1      

13 ln(Project size+1) -0.09 0.10 -0.03 0.24 0.32 0.18 0.08 0.22 -0.09 -0.01 -0.03 0.03 1     
14 ln(Number of issues on a 

project+1) 
-0.31 0.07 0.02 0.16 0.15 0.45 -0.05 0.17 -0.06 0.01 -0.08 0.02 0.73 1    

15 Project age (in months) -0.01 0.12 -0.06 0.26 0.36 0.08 -0.01 0.29 -0.14 -0.04 -0.02 0.08 0.48 0.35 1   
16 ln(User GitHub 

popularity+1) 
0.16 0.22 -0.06 0.08 0.02 -0.05 0.07 0.28 0.42 0.16 0.20 0.14 0.08 0.01 0.12 1  

17 User GitHub tenure (in 
months) 

0.08 0.18 -0.07 0.21 0.21 -0.01 0.01 0.36 0.31 0.03 0.05 0.11 0.26 0.13 0.67 0.41 1  
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Table 3 
User-repository monthly output and repository-specific characteristics.   

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
DV: Contributor programming output (natural log) User FE User FE User FE User FE User FE User FE User FE User FE User FE Tobit            

H1: ln(Skill matchþ1) (/10) x Project founder’s 
commercial orientation (dummy YES/NO)      

-0.11   -0.12 -0.12       

(0.054)   (0.054) (0.028)       
[0.036]   [0.033] [0.000] 

H2: ln(Skill matchþ1) (/10) x ln(Project acceptance 
rateþ1) (/10)       

0.44  0.50 0.55        

(0.172)  (0.181) (0.113)        
[0.010]  [0.006] [0.000] 

H3: ln(Skill matchþ1) (/10) x ln(Feedback provision 
timeþ1) (/10)        

-0.29 -0.36 -0.38         

(0.146) (0.156) (0.100)         
[0.046] [0.020] [0.000] 

Project founder’s commercial orientation (dummy YES/ 
NO)     

0.00 0.02 0.00 0.00 0.02 0.01      

(0.006) (0.008) (0.006) (0.006) (0.008) (0.005)      
[0.950] [0.050] [0.940] [0.957] [0.047] [0.066] 

ln(Project acceptance rate+1) (/10)     0.18 0.18 0.14 0.18 0.13 0.15      
(0.019) (0.019) (0.025) (0.019) (0.026) (0.019)      
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

ln(Feedback provision time+1) (/10)     -0.16 -0.16 -0.16 -0.13 -0.12 -0.14      
(0.023) (0.023) (0.023) (0.024) (0.024) (0.018)      
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

ln(Skill match+1) (/10)    0.18 0.14 0.17 -0.02 0.23 0.09 0.05     
(0.044) (0.050) (0.056) (0.064) (0.072) (0.070) (0.049)     
[0.000] [0.004] [0.002] [0.789] [0.002] [0.180] [0.357] 

ln(Contributor Stack Overflow answer activity+1) (/10)   -0.19 -0.10 -0.09 -0.09 -0.10 -0.09 -0.10 -0.08    
(0.052) (0.057) (0.071) (0.070) (0.070) (0.071) (0.070) (0.016)    
[0.000] [0.080] [0.182] [0.188] [0.159] [0.185] [0.165] [0.000] 

ln(User founding experience+1) (/10)   -0.14 -0.18 — — — — — -0.06    
(0.386) (0.390)      (0.031)    
[0.717] [0.650]      [0.061] 

ln(Contributor issue activity on other repositories+1) (/10)   -0.04 -0.04 0.04 0.04 0.04 0.04 0.04 -0.08    
(0.084) (0.083) (0.090) (0.090) (0.090) (0.090) (0.090) (0.055)    
[0.606] [0.655] [0.651] [0.623] [0.641] [0.655] [0.618] [0.160] 

ln(Contributor programming output on other 
repositories+1) (/10)   

-0.18 -0.18 -0.27 -0.27 -0.27 -0.27 -0.27 0.13    

(0.184) (0.179) (0.181) (0.180) (0.180) (0.181) (0.179) (0.044)    
[0.332] [0.307] [0.143] [0.142] [0.140] [0.143] [0.139] [0.004] 

Contributor (%) rejection rate (/10)  0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02   
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)   
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

ln(Contributor issue activity+1) (/10)  -4.03 -4.04 -4.03 -4.39 -4.39 -4.39 -4.39 -4.39 -5.38   
(0.209) (0.236) (0.236) (0.297) (0.296) (0.296) (0.296) (0.296) (0.048)   
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

User project tenure (in months) (/10)  0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.04   
(0.005) (0.006) (0.005) (0.006) (0.006) (0.006) (0.006) (0.006) (0.002)   
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

ln(Project size+1) (/10) 0.57 0.20 0.19 0.19 0.20 0.20 0.20 0.19 0.19 0.14  
(0.043) (0.041) (0.045) (0.045) (0.046) (0.046) (0.046) (0.046) (0.046) (0.017)  
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

ln(Number of issues on a project+1) (/10) -0.89 -0.40 -0.40 -0.40 -0.30 -0.30 -0.30 -0.30 -0.30 -0.28  
(0.034) (0.033) (0.037) (0.036) (0.038) (0.038) (0.038) (0.038) (0.038) (0.011)  
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

Project age (in months) (/10) 0.03 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01  
(0.008) (0.007) (0.009) (0.009) (0.012) (0.012) (0.012) (0.012) (0.012) (0.007)  
[0.000] [0.048] [0.012] [0.014] [0.436] [0.440] [0.421] [0.458] [0.449] [0.150] 

Project age (in months) (/10), squared 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00  
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)  
[0.637] [0.697] [0.303] [0.305] [0.256] [0.260] [0.248] [0.272] [0.271] [0.114] 

ln(User GitHub popularity+1) (/10) -0.08 -0.14 -0.16 -0.20 -0.24 -0.24 -0.23 -0.24 -0.23 0.20  
(0.136) (0.115) (0.139) (0.139) (0.139) (0.139) (0.139) (0.139) (0.139) (0.017)  
[0.575] [0.223] [0.259] [0.143] [0.086] [0.085] [0.092] [0.091] [0.098] [0.000] 

User GitHub tenure (in months) (/10) 0.04 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.00  
(0.008) (0.007) (0.008) (0.008) (0.009) (0.009) (0.009) (0.009) (0.009) (0.002)  
[0.000] [0.000] [0.001] [0.004] [0.066] [0.064] [0.067] [0.069] [0.068] [0.811] 

Constant 0.04 0.38 0.46 0.47 0.63 0.62 0.64 0.62 0.63 0.57  
(0.048) (0.044) (0.056) (0.056) (0.058) (0.058) (0.057) (0.058) (0.058) (0.026)  
[0.354] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

Time dummies (year) YES YES YES YES YES YES YES YES YES YES 
Observations 68,481 68,481 59,551 59,551 49,514 49,514 49,514 49,514 49,514 49,514 
Adj. R-squared 0.17 0.31 0.29 0.29 0.22 0.22 0.22 0.22 0.22 — 

Notes. Panel regressions where robust standard errors clustered at the user level are reported in parentheses and p-values are reported in square brackets. Note that 
because of the rescaling of independent variables (/10), the coefficient estimates for testing interaction effects correspond to the true coefficients multiplied by 100. 
Note that for multicollinearity reasons, the variable User founding experience gets dropped from Models 5 through 9. DV, dependent variable. 
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1.2% for the averagely talented (i.e., skill-match is fixed at the mean) 
programmers.16 For excellent (i.e., skill-match at the 90th percentile) 
developers, in turn, coder’s predicted output increases by about 1.8% 
when project acceptance rate increases by 10% from its mean. In a similar 
vein, when feedback is provided 10% faster than the average provision 
time, predicted programming output for the averagely skilled developers 
increases by 0.8%, while it increases by 1.1% for very highly skilled 
developers. 

Finally, because our dependent variable is censored toward its lower 
bound, in Model 10 of Table 3 we also present a tobit model. In addition, in 
results available upon request, we reran all models from Table 3 using 
bootstrapped standard errors (instead of clustering at the user level) and 

deploying project-level (instead of user-level) fixed effects (which control for 
time-invariant project characteristics such as software’s intended goal or 
quality). Our results remain unchanged and similar in size to the findings 
reported herein. 

4.1. Alternative explanations and robustness checks 

Despite giving robust evidence supporting our main theoretical 
predictions, we cannot rule out that alternative explanations may ac
count for our findings. Below, we critically discuss issues pertaining to 
sample construction and unobserved heterogeneity. 

As described in the “Data and methods” section, our rich sample may 
still suffer from selection bias due to constraints when matching GitHub 
and Stack Overflow users to compute our independent variable skill 
match. Overall, we could match about 12% (21,344 of 179,356) of 
GitHub users with their Stack Overflow accounts, meaning that our re
sults might be specific to users active on both platforms in parallel and 
not generalizable to the overall GitHub community. To assess this pos
sibility, we ran two sets of further models (both reported in the Online 
Appendix). 

In the first set, we compared the distributions of our key variables 
deployed in regressions reported in Table 3 within our sample and across 
the universe of GitHub—to the extent possible. To that end, we ran a 

Fig. 1. (a). Predicted marginal effect of project founder’s commercial orien
tation on user-repository monthly output (b). Difference in the predicted output 
of coders working on projects with commercially vs. non-commercially ori
ented founders. 

Fig. 2. Predicted marginal effect of project acceptance rate on user-repository 
monthly output. 

Fig. 3. Predicted marginal effect of feedback provision time on user-repository 
monthly output. 

16 For the averagely skilled developers, we first predicted the output when 
fixing our project acceptance rate variable at its average value (while keeping 
all other independent variables fixed at their means), which resulted in the 
predicted logged programming output being equal to 0.5282. Next, we pre
dicted the coding output given our project acceptance rate variable fixed at its 
(mean+10%) value, which corresponded to 0.5346. We then used these two 
output results to arrive at the increase in the predicted output of about 
((0.5346-0.5282)/0.5282 =) 1.2%. We followed similar logic when computing 
all the marginal effects reported in the paper. 
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logistic model for the inclusion of an observation in our sample (dummy 
set to 1 if a user is included in our final dataset, and 0 otherwise) at the 
user-repository-month level (see Online Appendix Table A1). The results 
show that users in our dataset have a longer tenure with GitHub, as we 
collected the data on users and repositories registered at the very 
beginning of the platform’s existence; as expected, users from our 
sample also have more followers. Similarly, we find that our merged 
dataset consists of repositories that are larger and better established in 
terms of popularity among community members. At the same time, re
pository owners in our sample accept on average more incoming pull 
requests and assess incoming contributions more slowly than the whole 
population of GitHub data. Based on this model alone, it is difficult for us 
to determine whether the effects we obtain on our sample would be 
reduced or exacerbated if we were to extend our analysis to the full 
GitHub universe. Under the assumption of a relatively similar user- 
activity distribution in the full sample, we believe our findings would 
remain stable. 

In the second set of models, we sought to assess the bias in our re
ported findings by explicitly modeling the sample-selection distortion 
we incur from being unable to match the entirety of GitHub users to 
Stack Overflow data. We followed a standard two-step Heckman 
approach: after estimating the selection equation at the first stage, we ran 
a second-stage user fixed-effects OLS model (to tease out time-invariant 
heterogeneity) with the inverse Mills ratio included as a regressor. The 
findings appear to corroborate those shown in Table 3 (see Online Ap
pendix Table A2). Constructing samples as above, we find that in
teractions between skill match and our key variables for testing H1 
through H3 in Stage 2 regressions of the Heckman model that mirrors 
Table 3 are statistically significant and economically comparable to the 
findings reported in the paper. Overall, the above findings suggest that 
the sample-selection distortions do not bias our results in ways that 
would prevent us from generalizing about our findings. 

Finally, to look at issues of reverse causality, we estimated re
gressions using (a) lagged dependent variable(s). We find close to no 
indication that skill matching (the independent variable) could also be 
seen as driven by contributor’s performance (the dependent variable). 

5. Discussion and conclusion 

5.1. Summary of results 

In this paper, we set out to extend an established debate asking why 
people would join and contribute to OSS projects. Going beyond 
established arguments on developers’ motivation to make an initial 
contribution, we set out to inquire what OSS managers can do to 
leverage continuously the best of the talent volunteering to work on their 
projects, irrespective of their developers’ particular motivations. We 
theorized and found that higher-skilled as compared with lower-skilled 
programmers would show higher relative effort levels when (a) project 
founders had no visible corporate affiliation, and when (b) the project 
had a high acceptance rate and (c) fast feedback times. Based on these 
insights, in the following, we derive theoretical contributions on the 
organization of OSS projects, and gig-like organizations more broadly. 

5.2. Implications for theory 

Our first set of contributions speaks to the literature on OSS projects 
and their design and management. Since the original musings on what 
makes developers in OSS tick (e.g., Raymond, 1999), a series of aca
demic authors have inquired into why individuals would work in OSS (e. 
g., Ghosh et al., 2002; Lakhani and Wolf, 2005) or on a specific OSS 
project (Howison and Crowston, 2014; von Krogh et al., 2012). While 
this work has contributed greatly to our understanding of the initial 
motivation of average OSS developers, it falls short of inquiring how this 
motivation might (a) change after joining and (b) vary between de
velopers of different skill levels. 

To answer these questions—so as to be able to say what makes the 
right developer tick—we try to shift the focus of this debate—in the 
words of the personnel economics literature we bring to this con
text—away from the initial selection toward the treatment that happens 
afterwards. Through this lens, we see clear indications of skill-based 
sorting, with individuals becoming more productive on projects to 
which they bring the respective skill. In line with Shah’s (2006) anec
dotal evidence, our results clearly suggest that experienced developers 
will increasingly seek OSS projects in which they may be productive, 
quickly. 

This observation, in turn, points to the importance of looking at 
factors which would allow highly skilled individuals to remain pro
ductive after joining—treatments. Here, first, our results extend prior 
work showing that average OSS developers avoid projects that follow a 
commercial ideology (Elliott and Scacchi, 2008; Stallman, 1999; Stew
art and Gosain, 2006). We find that when a commercial orientation is 
revealed post-joining, highly skilled developers show less effort on such 
projects. Interestingly, second, we see that this effect could not be 
compensated by some form of exclusivity, which could be communi
cated to a restrictive selection, such as in a corporate tournament. Even 
while high-skilled developers may knowingly be willing to select them
selves into highly competitive environments (as in Boudreau et al., 
2011; Boudreau et al., 2016; Chen et al., 2020), when they find that the 
chance of their efforts being accepted is decreasing, they are more likely 
to reduce effort. Finally, we found a strong moderating effect of feed
back time on the effort of highly skilled developers. Indeed, feedback 
provision and speed are increasingly seen by innovation scholars as key 
ingredients in working successfully in open models of innovation (Pie
zunka and Dahlander, 2019; Riedl and Seidel, 2018). Yet, as we have 
argued, it is likely not the actual feedback (i.e., learning about their 
skills and how to improve them) that matters to highly skilled de
velopers but learning about key project preferences. 

Jointly, these three findings suggest that highly skilled developers 
evaluate transparency and consistency more favorably: given that they 
have more outside options than low-skilled developers, in discovering 
that the norms of a project are different from what may reasonably be 
expected, they are much more likely to leave. Conceptually, this would 
imply that in OSS-like settings that emphasize self-selection, not only 
should managers be transparent in communicating their project-specific 
norms and quality aspirations; they should try to be as comprehensive as 
possible in laying out these ambitions and the design features they have 
chosen accordingly, so that few unexpected treatments would occur 
post-joining. By sharing comprehensively how the project works (and, 
possibly, adjusting the respective process accordingly in advance), 
project managers may not only shift selection and sorting to their 
benefit; they should also maximize the odds of both attracting and 
retaining the most qualified individuals. In turn, such pre-emptive 
transparency could also help address the issue that time to provide 
feedback on specific contributions is a scare resource, in particular as 
crowds of contributors may grow infinitely larger (Piezunka and Dah
lander, 2015).17 

Our second contribution is to the field of personnel economics 
(Cadsby et al., 2007; Dohmen and Falk, 2011; Lazear, 2000a, 2000b). 
More specifically, we extend both extant theory and empirical testing 
approaches to a novel context that becomes increasingly relevant to the 
field: new work (Ollo-Lopez et al., 2010). Broadly speaking, the term 
captures the entirety of modern and flexible organization for work, 
encompassing novel approaches to the division of labor and integration 
of effort (Puranam et al., 2014). While the field has recently made some 
advances in understanding which factors beyond traditional payment 
schemes impact on the selection of workers into and productivity within 

17 For example, like academic journals, OSS projects could communicate their 
“key expectations” to volunteers publicly—including information about what 
will happen when code submissions do not follow such rules initially. 
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environments—such as technology and age (see, e.g., Schøne, 2009)— 
there is still a dearth of comprehensive knowledge as to how 
non-monetary incentive schemes influence both selection into and per
formance after joining specific types of organizations. Our findings, 
gained from a setting that shares many similarities with new models of 
for-profit work—such as emphasis on self-selection, the need to establish 
creative and maintain dispersed teams described in the literatures on 
information systems (Faraj et al., 2011; Wasko and Faraj, 2000, 2005) 
and innovation management (Bernstein et al., 2016; Criscuolo et al., 
2014)—fill part of this lacuna in the theory of personnel economics. 
Consequently, we suggest to consider communicating non-monetary 
rewards such as feedback cultures and the acceptance of contributions 
from individuals as part of the hiring process to exploit the potential of 
these levers not only to increase worker productivity but also to affect 
their selection positively. 

Moreover, we believe that our study bears some interesting take- 
aways for scholars working empirically on issues of hiring and treat
ing employees. In many modern settings—e.g., crowdsourcing (Afuah 
and Tucci, 2012; Majchrzak and Malhotra, 2020)—the formal act of 
selecting into a work environment is substituted for by the de-facto act of 
contributing. As such, the line between selection and treatment becomes 
near-indistinguishable and extant methods of identification the two 
types of effects no longer map onto empirical realities. To these scholars, 
we have presented a different type of empirical approach—suggesting, 
in essence to interpret the interaction term of a selection and a treatment 
parameter as a so-called conditional treatment effect. We believe that 
this technique may be seen as a first step for our colleagues to better 
empirically analyze a new category of workplace environments in which 
contributors participate outside classic Simonian labor contracts 
(Simon, 1951). For this literature specifically, we also present some 
initial formalism in Appendix A3, which we hope this scholarship may 
extend in the future. 

5.3. Limitations 

Beyond potential shortcomings in our sampling and matching pro
cedure, a few concerns remain that may limit the generalizability of our 
findings. Foremost, we assumed that people would select into projects 
based on skill, but we admit that eventual sorting may also be affected 
by other, unobserved variables. However, these variables should not be 
systematically correlated with project-related skill and as such merely 
add to rather than revoke our insights. Second, we are limited in our 
insights not just by the data we can match across our datasets but also by 
the period of time for which we can do so reliably. We cannot rule out 
that the growth of both GitHub and Stack Overflow may have coincided 
with, or led to, changes in coding standards or evaluation norms that 
could have been picked up by our key moderating variables. At the same 
time, given that GitHub was acquired by Microsoft in 2018, some 
external events happening over a longer period may have been 
extremely hard to account for reliably in our data. 

We further concede that our commercial intent variable may fail to 
capture some of the nuance for which a detailed manual coding of every 
project page and founder profile would allow. While manual inspection 
shows that most of the links we have coded as symbolizing a commercial 
intent indeed do so, of course, we cannot fully capture the nuance of just 
how strong said intent would be. From a random sample of links we 
inspected manually, we estimate that our rate of false positives should 
not be higher than 10-15%. In turn, given we focus only on ‘.com/.co’ in 
the domain name, we may also be missing a series of developers with 
clear commercial intent who link to different kinds of webpages, such as 
‘.net’ or ‘.de.’ 

Regarding our musings on feedback type and code acceptance rates, 
we note that our argument may not fully extend to contexts of intense 
status-competition, in which highly-skilled developers may actually try 
to differentiate from their equally skilled peers by solving particularly 
tough challenges, as exemplified by platforms like TopCoder or Kaggle. 

Similarly, we need to point out that while our conceptual argument 
suggests that lower rejection rates may attract better developers, 
empirically, there should likely be a lower bound to what kind of con
tributions should be accepted—an ‘anything goes’ attitude will likely 
also not attract talent.18 

Finally, while the user-project-month structure of our panel data 
allows us to minimize concerns of unobserved heterogeneity, we may be 
falling short of fully incorporating more social explanations for coding 
activity, such as personal ties between project members and/or between 
project members and the founder (Casalnuovo et al., 2015; Grewal et al., 
2006; Hahn et al., 2008). 

5.4. Implications for practice 

These limitations notwithstanding, we believe our results have 
important implications for practice. First, they should be seen as 
encouraging OSS project founders and repository managers to commu
nicate clearly their project skill needs. To the extent that they ever 
wanted to affect selection directly, they would have to think about 
communicating management practices to current and future contribu
tors. For example, commercial intent need not have a bad effect per se, 
as long as the commercial behavior is consistent with its communication 
and volunteers’ perception of it. That may include firms both credibly 
ceding control over OSS projects they initiated (as IBM did when they 
transitioned to a more open Eclipse Foundation model) as well as clearly 
demarking spheres and modes of influence of projects in which they 
want to play a significant role (such as IBM’s work in Linux or node.js). 
Second, the kind of parameters we have identified may be adjusted over 
time. Accordingly, should project founders and administrators identify 
that they do not yet attract the kind of contributors they want, they may 
choose to adapt key project parameters, their communication, or both. 
For example, our results suggest that lowering the rejection rate for 
contributions may help attract effort from more highly skilled people. 
While this sounds like a particularly interesting way to get a project off 
the ground, project managers would need to make sure that these in
dividuals do not become outnumbered by less-skilled people taking the 
same opportunity. Finally, our insights related to feedback time further 
buttress the importance of communication. While evaluation of code’s 
quality is important, project managers need to ensure that developers 
are not left in the dark about what happens with their contributions and 
why, so that developers do not take their efforts elsewhere. As projects 
mature and grow, that should increasingly imply that project founders 
need to acquire talent to support them in keeping feedback times short. 
Overall, we see our results as an encouragement to OSS practitio
ners—whether individual hobbyists or corporate teams—to become 
more conscientious about the organizational structures they design, and 
how these will impact the continuous effort of their potential 
contributors. 
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