
Research Policy 51 (2022) 104368

Available online 4 October 2021
0048-7333/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

What makes the right OSS contributor tick? Treatments to motivate
high-skilled developers

Inna Smirnova a,*, Markus Reitzig b, Oliver Alexy c

a School of Information, University of Michigan, 105 S State St., Ann Arbor, MI 48109-1285, United States
b Strategic Management Subject Area, Department of Accounting, Innovation and Strategy, University of Vienna, Oskar-Morgenstern-Platz 1, Vienna 1090, Austria
c TUM School of Management, Technical University of Munich, Lichtenbergstr. 6/II, Garching b. München 85748, Germany

A R T I C L E I N F O

JEL codes:
O36
M52
L17
Keywords:
Open source software
Contributor skill
Motivation
Organizational design
Contributor effort

A B S T R A C T

We study how OSS project owners can manage their repositories so as to motivate particularly high-skilled coders
to exert continuous effort after joining a project. Drawing on literature from personnel economics, we lay out
how coders’ skill level affects their selection for a focal project in the first place. In turn, we theorize how project-
specific norms and quality aspirations that developers learn about after joining an OSS project represent treat
ments that varyingly entice developers to contribute more code conditional on their skill level. Based on a
custom-tailored dataset merging GitHub and Stack Overflow data for almost 50,000 contributor-project-month
observations, we find that repository owners are able to motivate their most talented volunteer contributors
when they (1) show no visible commercial orientation while managing their projects, (2) show generosity in
accepting external contributions, and (3) provide fast feedback. We discuss implications for research and practice
in the fields of community-based organizations like OSS as well as personnel economics.

1. Introduction

Organizational forms emphasizing self-selection, such as open source
software (OSS) development, have become increasingly prominent in
the literature on the organization of innovation (Puranam et al., 2014;
Raveendran et al., 2021). Given how OSS development seemingly de
parts from traditional modes of governance, a broad array of studies has
looked at what motivates individuals to join to such efforts (see, e.g.,
Bagozzi and Dholakia, 2006; Ghosh et al., 2002; Howison and Crow
ston, 2014; von Krogh et al., 2012). This literature finds that OSS de
velopers infer from observable project features—such as programming
language, intended goal, or license (Belenzon and Schankerman, 2015;
Bonaccorsi and Rossi, 2003; Crowston and Scozzi, 2002; Fang and
Neufeld, 2009; Fershtman and Gandal, 2007; Santos et al., 2013; Sen
et al., 2008; Stewart et al., 2006; Stewart and Gosain, 2006; Sub
ramaniam et al., 2009; von Krogh et al., 2003)—whether they will be
able to satisfy any of the different motivational desires they may have
(Benbya and Belbaly, 2010; David and Shapiro, 2008; Hars and Ou,
2002; Hertel et al., 2003; Jeppesen and Frederiksen, 2006; Lakhani and
Wolf, 2005; Lee and Cole, 2003; Lerner and Tirole, 2002; Roberts et al.,
2006; Shah, 2006): solving a problem they face (use-need), advancing
their career or status among peers (extrinsic motivation), or deriving

some form of enjoyment from working on the project per se (intrinsic
motivation). In sum, if developers expect their idiosyncratic motivation
can be satisfied at an effort level lower than their expected opportunity
costs (i.e., the benefits of joining the specific project are higher than the
expected costs, and also higher than the net benefits of joining another
OSS project or doing any other activity), they should join a project.

Notwithstanding the important insights this literature has produced,
two important and interconnected questions stand largely unanswered.
First, we note that prior work has focused on what motivates averagely
gifted OSS developers to contribute to a specific project. The question of
why potentially good or excellent contributors—those with maximal
skills matching the project needs—would devote more of their time to
one OSS project than to another has received scant attention at best
(Belenzon and Schankerman, 2015; Ghosh et al., 2002; Ho and Rai,
2017; Howison and Crowston, 2014; Roberts et al., 2006; von Krogh
et al., 2012; Wasko and Faraj, 2005; Xu et al., 2009). Keeping highly
skilled developers motivated after joining is OSS project managers’ ul
timate goal. After all, it is they who should make the most substantial
contributions (Cosentino et al., 2017; Kalliamvakou et al., 2016; von
Krogh et al., 2003; Zhang et al., 2013). Similarly, second, we note that
works studying the effects of project features on OSS developers’ moti
vation also focuses on project selection (Fitzgerald, 2006; Howison and

* Corresponding author.
E-mail addresses: innas@umich.edu (I. Smirnova), markus.reitzig@univie.ac.at (M. Reitzig), o.alexy@tum.de (O. Alexy).

Contents lists available at ScienceDirect

Research Policy

journal homepage: www.elsevier.com/locate/respol

https://doi.org/10.1016/j.respol.2021.104368
Received 27 July 2020; Received in revised form 26 July 2021; Accepted 6 September 2021

mailto:innas@umich.edu
mailto:markus.reitzig@univie.ac.at
mailto:o.alexy@tum.de
www.sciencedirect.com/science/journal/00487333
https://www.elsevier.com/locate/respol
https://doi.org/10.1016/j.respol.2021.104368
https://doi.org/10.1016/j.respol.2021.104368
https://doi.org/10.1016/j.respol.2021.104368
http://crossmark.crossref.org/dialog/?doi=10.1016/j.respol.2021.104368&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Research Policy 51 (2022) 104368

2

Crowston, 2014; Sen et al., 2008). Yet, developers can only learn about
project-specific norms and quality aspirations after they have joined a
project (Ho and Rai, 2017; Mingers and Walsham, 2010; von Krogh
et al., 2012). Designing the respective project features consciously
should hence matter—to theory and OSS practitioners alike—if they
would varyingly affect the expected attainable need, status, or learning
outcomes and opportunity costs of developers of different skill levels.
Accordingly, in this paper, we ask: what makes the right developer tick,
and how may managers of OSS projects entice these individuals to be
productive continuously through the design of their projects?

To ground our argument, we borrow from the longstanding debate in
the field of personnel economics that addresses the interplay between
worker sorting and personal skill (Cadsby et al., 2007; Dohmen and
Falk, 2011; Lazear, 2000a, 2000b).1 Seen through this lens, current OSS
literature has shown that developers select into projects based on
observable design parameters, such as a fit between their ideology and
projects’ license choice (Belenzon and Schankerman, 2015; Fershtman
and Gandal, 2007; Sen et al., 2008; Stewart et al., 2006; Stewart and
Gosain, 2006), or between their status ambitions and a project’s (larger)
size (Chengalur-Smith et al., 2010; Hann et al., 2013). What remains
unclear, however, is how such selection into OSS projects affects
skill-based sorting eventually—that is, how individuals’ motivation and
skill jointly lead them to pick a specific project—and, in turn, how
project managers should treat developers who have joined a project to
leverage the full potential of the best available talent.

We begin from the premise that individuals will, among other things,
select into OSS projects for which they have at least some—albeit
varying levels of—skills. This is because a certain level of competence is
required to enjoy the programming task (and to be motivated intrinsi
cally) (Sanders, 1998; Shah, 2006; von Hippel and von Krogh, 2003) and
to produce outputs that allow for eventual status and career advances
(and to be motivated extrinsically) (Crowston and Scozzi, 2002; Hann
et al., 2013; Lee et al., 2003; Subramaniam et al., 2009). Motivation and
skill level hence jointly determine the benefits and opportunity costs
that a developer would expect from joining a project.

In turn, after joining, developers will find themselves treated by newly
discovered project-level design features that embed the projects’ norms
and quality aspirations. Yet, this treatment effect should vary across de
velopers of different skill levels conditional on how they see the benefits
and opportunity costs from their continuous involvement with the project
impacted. In particular, we argue that because high-skill individuals have
a higher incentive to see their actual code contributed rather than learn
from feedback (i.e., different benefits) as well as more outside options to
attain their motivational benefits (i.e., different opportunity costs), they
should prefer (vs. lower-skilled individuals) those projects which (a) more
predictably follow the meritocratic standards of OSS, (b) more generously
accept contributions, and (c) share feedback faster.

For our tests, we draw on an originally compiled and custom-tailored
dataset merging information from two major software community archi
ves—GitHub and Stack Overflow—resulting in almost 50,000 contributor-
project-month observations. Our data contain information on both

contributors’ programming output, as measured in their proposed code
patches (= pull requests) sent to other GitHub projects, and contributor
skills, as measured by the expert answers they provide on Stack Overflow.

Our results provide a first insight into what makes the right contributor
tick, and how crucial project-design parameters drive the efforts of
differently skilled contributors. Conditional on the match between con
tributors’ experience and project-specific skill requirements, we find that
projects launched by founders who have a commercial orientation attract
lower effort levels from more highly skilled developers, whereas a higher
acceptance rate and faster feedback time increase the efforts of highly
skilled developers. Building on these insights, we extend current discus
sions on who contributes to OSS projects (Howison and Crowston, 2014;
Lakhani and Wolf, 2005; von Krogh et al., 2012). In addition, we present
adaptations of formalisms from personnel economics (Booth and Frank,
1999; Lazear, 2000a, 2000b; Delfgaauw and Dur, 2007; Eriksson et al.,
2009), which may inform future work studying self-selection into
dispersed teams, such as the gig economy, more broadly.

2. Selection, sorting, and treatment in open source software

The field of personnel economics investigates the managerial inter
play of attracting and continuously motivating skilled workers in firms
(see, e.g., Hartog, 1986; Jovanovic, 1979; Lazear, 2001; Lazear et al.,
2012). This literature illustrates that the promise of certain incentives to
candidates may affect their willingness to join an organization in the
first place (selection). How the actual incentives (treatments) provided to
staff after joining are perceived by employees eventually depends on the
prior selection, and this perception may differ across employees. A
company may, for instance, be aware that offering a variable pay scheme
may attract highly driven employees. What a firm seeking to hire pro
ductive folks additionally needs to know is whether one particular
incentive scheme—say, piecemeal—beats another—say, a tourna
ment—in meeting the other social preferences of productive individuals
to optimally motivate them once they join (Dohmen and Falk, 2011).
Only if the company knows how people sort across schemes, and which
scheme motivates good people to exert effort after they have joined, can
it advertise its compensation in the marketplace to attract top per
formers who will devote their time to the firm.

2.1. Selection and sorting in OSS development

OSS communities differ from traditional organizations in many ways
(Dahlander and Frederiksen, 2012; Lakhani and Panetta, 2007; Mockus
et al., 2002; Raymond, 1999; Stewart and Gosain, 2006). Contributors
usually do not receive financial remuneration (O’Mahony and Ferraro,
2007), and also do not submit themselves to traditional managerial forms of
task allocation; rather OSS developers self-select into projects where they
volunteer their effort (Benkler, 2002; Lakhani and Panetta, 2007; Puranam
et al., 2014; Raveendran et al., 2021; von Hippel and von Krogh, 2003).

Accordingly, prior research has devoted much attention to the
question of what motivates a developer to join an OSS collective, and
how organizations may drive these motivational stimuli to get in
dividuals to join their projects (see, e.g., von Krogh et al., 2012, for a
review)—that is, to influence selection. Specifically, intrinsic motivations
aside (e.g., enjoyment of the creative process, learning, or a feeling of
community identification), extrinsic desires such as fulfilling use-needs,
gaining status within the OSS community, and visibility for
career-related purposes (Jeppesen and Frederiksen, 2006; Ke and
Zhang, 2010; Lakhani and Wolf, 2005; Lerner and Tirole, 2002; Roberts
et al., 2006) stimulate individuals working in communities.

Given the above, so we argue, project-related skills of developers
should ultimately determine a good part of coders’ decisions about
whether to join a specific project or not. This is because all OSS developers
eventually seek to be productive, implying the target code itself or the
process leading to its production are the reasons for their engagement.
Specifically, individuals who hold more of the skills required to contribute

1 The personnel economics literature distinguishes sharply between selection,
sorting, and treatment. In short, individuals select (e.g., into work) based on
observable stimuli (e.g., different financial incentive schemes). In turn, sorting is
observed after selection, when designers may find that clearly discernable
groups selected different variants of the stimulus, because of varying underlying
characteristics or preferences (e.g., varying risk preferences, overconfidence
levels). Treatment, in turn, implies stimuli given to individuals after their se
lection decision. Accordingly, for the treatment to be effective, not just the
selection decision but also the sorting outcome needs to be understood by the
designer. For the entire organization to be effective, designers will need to
understand what happens across all three stages: selection, sorting, and treat
ment. While this logic has been applied primarily to standard business orga
nizations, it is transferable to organizations of all kinds. In this paper, we
present an extension for OSS projects.

I. Smirnova et al.

Research Policy 51 (2022) 104368

3

to a specific OSS project should be more likely to enjoy contributing and be
motivated intrinsically in turn (e.g., Sanders, 1998; Shah, 2006). Skill
match should also allow individuals to produce better outputs so as to
corroborate their status among peers and advance their career prospects,
hence fostering extrinsic motivation (e.g., Ferraro and O’Mahony, 2012;
Hann et al., 2013; Lee et al., 2003; von Krogh et al., 2003). Accordingly, we
expect that higher-competence individuals should find it easier to satisfy
all types of motivation (Bandura, 1977; Deci and Ryan, 1985). In the
absence of other remuneration, the ability to be productive while coding
thus becomes the key constraint on developers’ participation,2 and only
those contributors who are somewhat qualified should therefore even
tually sort across projects.

The above is not to say that all folks joining a project will be equally
skilled, however. While we expect all of them to meet minimum levels of
project-specific experience, we would still expect skill matching be
tween individuals and the projects’ need to vary vastly. Volunteer de
velopers, for example, often need not meet absolute levels of output, let
alone sustain a living from their participation (Benkler, 2002; Hann
et al., 2013), so they can afford their skills to match onto the project less
than perfectly initially, particularly when what they really aspire is to
build up the requisite skills through their very project participation
(Benbya and Belbaly, 2010; Lee and Cole, 2003; Lakhani and von Hip
pel, 2003). Coders seeking to boost their professional CV by contributing
on a project may not enjoy the same degrees of freedom, however, and
will seek to make meaningful contributions, requiring them to bring all
the skills needed from the start.

In sum, motivation and skill may not only independently affect an in
dividual’s decision to sort into a given project. The interactions between
these two effects will become more complicated when discussing the im
plications of how project managers eventually want to treat different types of
developers. Notably, project managers will appreciate an understanding of
the linkage between motivation and skill, so as to entice more contributions
from their stronger contributors. That, in turn, requires a more nuanced
understanding of the interaction between skill, motivation, and the eventual
opportunity costs of coding that developers may be facing.

2.2. Untangling treatment effects in OSS: the role of project-level norms
and aspirations

In general, opportunity costs should fall the more productive de
velopers can be while coding. That means, the more individuals can
attain their motivational goals on a given project (i.e., they expect a net
benefit of continuing to work on the project vs. doing any other activity
and vs. working on another project), the more inclined they should be to
voluntarily select into developing OSS in general, and a specific project
in particular. Following our above argument, we would thus expect that
individuals would select onto those projects where they minimize their
opportunity costs by leveraging their extant skill base (Lazear, 2000a,
2000b). At the same time, the actual opportunity costs may vary
tremendously among the differently motivated peers. The distribution of
skills among coders on a given project should thus vary greatly, the more
individuals join for a variety of reasons.

The challenge for OSS project owners now becomes motivating those
with the highest skill base best, as their opportunity costs will likely be
highest. This is because developers of higher skill levels (1) should
expect to be productive immediately (given they have all requisite skills)
and (2) more likely have outside options (given that they have a skill set
they can redeploy). Accordingly, project owners need to create

incentive-compatible3 treatments that reduce opportunity costs of code
production for higher-skilled volunteers who have selected onto the
project more than for lower-skilled ones.

Such treatments refer to those actions which project founders can
take and which will only affect developers after joining, such as all ac
tions related to the norms and quality aspirations of the project.4 As von
Krogh and colleagues (2012) explain, developers may truly learn about
these project-specific aspirations only after joining it (see also, e.g., Ho
and Rai, 2017; Lee and Cole, 2003; Mingers and Walsham, 2010),
explaining perhaps why developers spend significant time “lurking” on a
project before actively contributing (Nonnecke and Preece, 2003; von
Krogh et al., 2003). In turn, like treatments in the corporate world, key
choices about how to design and communicate these norms and aspi
rations should differently impact the expected benefits and opportunity
costs of low-skilled versus high-skilled developers, so that they differ
ently adjust their future effort levels on the focal project. Put differently,
we expect that OSS developers experience project-specific norms and
aspirations differently once they join the project.

Notably, this treatment effect is one that cannot be fully disentangled
from the coders’ skill-based selection, so we refer to it as a conditional
treatment effect henceforth (see Appendix A3 for a formal derivation of
our logic). In the following, we hypothesize such conditional treatment
effects caused by design choices project founders made to embody their
envisioned norms and aspirations, and which contributors should only
be able to capture fully after having joined the project: founders’ com
mercial intent, and the type and speed of feedback provided.

2.3. The conditional treatment effect of founders’ commercial intent

In general, OSS projects are expected to adhere to norms of meri
tocracy, fairness, and reciprocity (Bergquist and Ljungberg, 2001; Chou
and He, 2011; Daniel et al., 2018; Hann et al., 2013; Levine and Prietula,
2013; Maruping et al., 2019; O’Mahony and Ferraro, 2007; Raymond,
1999; Shah, 2006; Spaeth et al., 2015; Stewart and Gosain, 2006). The
expectation is that developers and project managers share a form of
common “hacker ethos” (Raymond, 1999), so that, in the end, the best
code should simply win.

A key part of how strongly an OSS project is expected to follow these
norms is embedded in the type of software license chosen (Belenzon and
Schankerman, 2015; Fershtman and Gandal, 2007; Sen et al., 2008;
Stewart et al., 2006; Subramaniam et al., 2009; West and O’Mahony,

2 In the field of personnel economics, the participation constraint refers to a
condition that must be met for a person to engage in a certain activity (e.g., a
minimum salary needs to be paid for a person to sign an employment contract).
In the OSS environment, the ability of developers to produce code is the
necessary requirement for them to participate, as it is code production itself that
brings about satisfaction, irrespective of why exactly they joined.

3 In personnel economics, an incentive compatible environment refers to an
arrangement that induces individuals to reveal their private information (e.g.,
skill level) and be truthful in their actions (e.g., behave in the employer’s in
terest). An important implication is that higher-skilled workers, when being
offered a contract compatible with their incentives, will find their compensa
tion packages more attractive than the packages that lower-skilled workers
would receive, and vice versa. In the context of this paper, incentive compati
bility for highly skilled workers means that high-skilled coders feel that they are
working on a project that is particularly rewarding to them, implying that it
would be less attractive to lower-skilled workers.

4 Self-evidently, tracing the selection of OSS developers into projects will
never be as clean as with workers into a corporate environment. More often
than not, developers do not formally sign on to an OSS project. They are
considered contributors from the moment they first become active on a project.
That first activity, however, is already an act of production (Raymond, 1999;
von Krogh et al., 2003). Hence, the line between selection, sorting, and treat
ment—which is clearly delineated in personnel economics—is far more blurred
in OSS production. Also note that developers engaged in OSS will likely never
observe the entire spectrum of potential repositories in which they might pro
ductively engage. As a consequence, they will never make a fully informed
choice when picking one project over another (Fitzgerald, 2006; Raymond,
1999), whereas workers in commercial markets may know the full choice set of
employment opportunities, at least in some instances. In turn, the analysis of
archival OSS data will never allow for a perfect selection control. We address
these issues more formally in our Appendix A3.

I. Smirnova et al.

Research Policy 51 (2022) 104368

4

2008). The project license is clearly communicated, and programmers
can, for example, judge easily upfront whether a license is commercially
oriented or not. Programmers may thus select into OSS projects given
their preference for specific social and work norms that a (non)com
mercial license encapsulates, and how these correspond to their indi
vidual motivation. For example, many developers may strongly feel that
software should be “free as in freedom” and avoid firm-run projects
(Stallman, 1999). Others may seek to be visible to corporate actors who
they hope will value the software product (Hann et al., 2013; Jeppesen
and Frederiksen, 2006).

After joining, however, the license type per se may say little about
the processes and structures through which OSS software is produced. In
the end, it merely implies the form of protection or openness chosen for
the output of the OSS project, and allows potential contributors to form
initial expectations about the levels of motivational stimuli and pro
ductivity levels they can achieve on a specific project.

These expectations, however, may need to be revised when de
velopers learn that a specific project might deviate from the expected
levels of meritocracy, fairness, and reciprocity. Specifically, contributors
may fear that these norms may begin to play a less dominant role if they
realize that project founders are driven by initially hard-to-spot com
mercial or status ambitions (Shah, 2006), or when project founders
unexpectedly move into salaried employment with a commercial firm
benefiting from the OSS project to become the firm’s “man on the inside”
(Dahlander and Wallin, 2006). Upon newly identifying such ambitions,
we suggest that some developers may expect that founders might
choose, if only at the margin, to manage their OSS projects in a manner
that deviates from the norms of OSS (Dahlander and O’Mahony, 2011;
Mateos-Garcia and Steinmueller, 2008; Shah, 2006).5 Below, we lay out
why this expectation should lead to highly skilled programmers
reducing their project-specific efforts more than less highly skilled ones.

Highly skilled programmers should be particularly interested in
being productive. That is, given that they already bring a “stockpile of
skills” (Shah, 2006, p. 1008), they expect a software development pro
cess that allows them to reap the motivational benefits from applying
current skills rather than acquiring new ones at high opportunity costs
(Aberdour, 2007; Mockus et al., 2002; O’Mahony and Bechky, 2008;
O’Mahony and Ferraro, 2007; Shah, 2006; von Krogh et al., 2003). In
turn, we expect that highly skilled programmers fueled by all types of
motivation should reduce their effort when founders’ commercial intent
is revealed.

More specifically, intrinsically motivated, highly skilled developers
should particularly value meritocracy as driver of the OSS programming
process (Levy, 1984; Mockus et al., 2002; Nelson et al., 2006; Raymond,
1999). They should be taken aback by any non-coding-related reason to
deviate from these norms (Mateos-Garcia and Steinmueller, 2008), in
particular when that would cause their (likely higher-quality) code to be
(unfairly) rejected. Similarly, extrinsically motivated, highly skilled
developers may reasonably believe that founders high in commercial
intent will try to catch more of the spotlight. Such developers may also
fear that founders may receive (with or without founders’ doing) the
credit for others’ work (Merton, 1968).

Less-skilled programmers, on the other hand, should more likely
continue to exert effort to the OSS project even after learning of foun
ders’ newly unearthed commercial ambitions. Intrinsically motivated,
less-skilled programmers, for example, should find it harder to tell
whether their code suggestions were rejected because of a lack of quality

or because of commercially oriented founders’ different methods of se
lection (Siggelkow and Rivkin, 2009). Further, even when (unknow
ingly) being unfairly treated, they may still value to some extent that
they are receiving feedback to help them achieve their goals of skill
development. Extrinsically motivated, lower-skilled developers, in turn,
should also be low in status in the open source community (Ferraro and
O’Mahony, 2012). They would perceive any founder as higher in status
than themselves and, hence, benefit from being associated with them
(Barabási and Albert, 1999; Grewal et al., 2006; Mallapragada et al.,
2012). Accordingly, they should be less willing to disassociate from a
founder, even after their commercial intent is revealed. Rather, if the
status of a developer depends completely on the founder (i.e., if their
skill is very low), they may even hope to gain from the status increases
for which commercially oriented founders should strive. In sum, we thus
posit as follows:

HYPOTHESIS 1 (H1). The marginal effect of project-related devel
oper skills on their project-specific programming output increases
when OSS project founders do not visibly pursue commercial intents.

2.4. The conditional treatment effect of feedback

Beyond broader social norms guiding the OSS development process,
quality aspirations and the process through which they are communi
cated are key to the culture of an OSS project (Ho and Rai, 2017; Min
gers and Walsham, 2010; von Krogh et al., 2012). Such aspirations are
strongly reflected, for example, in how a project administrator manages
the code contributions that developers volunteer, in terms of both the
speed of feedback provided and the eventual outcomes (i.e., whether a
code contribution is accepted or not). While these dimensions may well
be related,6 they should have clearly discernable effects on contributors’
continuous effort (e.g., Dahlander and O’Mahony, 2011; Dahlander and
Piezunka, 2014; Ho and Rai, 2017; Moon and Sproull, 2008; Wooten and
Ulrich, 2017; Zhang et al., 2013).

We note that feedback entails not only a first-order effect through
which developers can learn about their own skill but also a second-order
effect, meaning that developers would learn about the preferences and
processes of the project. For example, Piezunka and Dahlander (2019)
show how any feedback provided (i.e., even a rejection) increases the
likelihood that individuals who submitted an idea to a firm will do so
again—and do so in a way that the idea is more in line with the firm’s
expectations. Similarly, Riedl and Seidel (2018) elaborate how partici
pants in the online community surrounding the T-shirt design firm
Threadless do not just try to receive feedback on their own designs, but,
similar to OSS developers lurking on software projects, try to learn about
principles of what makes for a good submission on Threadless generally.
At the same time, it is evident that volunteers can experience these first-
and second-order effects, and understand and evaluate (for themselves,
through an opportunity cost lens) only after they have contributed.
Hence, like founders’ commercial intent above, feedback should repre
sent conditional treatment effect.

Specifically, we argue that if projects’ quality aspirations and the
processes guiding them are learned primarily through active participa
tion, then (1) learning about how exclusive a project is contains both
first-order and second-order feedback. Yet, as we lay out in the next
section, not only is first-order feedback more important to low-skilled
developers, they should also respond to first-order feedback differ
ently. In turn, (2) the pace at which feedback is provided drives OSS
developers’ learning about the project’s preferences. The more quickly
developers receive any feedback (i.e., irrespective of whether first-order
feedback is negative or positive), the faster they can learn about the

5 A case in point is the history of Storybook (https://medium.com/protectin
g-storybooks-future). Note also how Linus Torvalds (and other famous hackers)
were frequently the subject of conspiracy theories when in corporate employ
ment (see, e.g., https://en.wikipedia.org/wiki/Transmeta). In turn, this would
again suggest that our argument holds even if founders never actively
mismanage projects—what suffices is that developers may reasonably fear that
they might do so.

6 In short, we expect that better projects should, all else being equal, be faster
at providing feedback and be more selective in what code they would accept.
Yet, we can control for project quality, etc., in project-level fixed effect models.

I. Smirnova et al.

https://medium.com/protecting-storybooks-future
https://medium.com/protecting-storybooks-future
https://en.wikipedia.org/wiki/Transmeta

Research Policy 51 (2022) 104368

5

opportunity costs of contributing code in line with the project’s pref
erences in the future. As we argue below, we expect that the importance
of receiving such second-order feedback should be greater for high-
skilled versus low-skilled developers.

2.4.1. The conditional treatment effect of feedback type
A project’s acceptance rate is simply the share of accepted code

submissions out of all submissions. Across many high-profile OSS pro
jects (Lakhani and von Hippel, 2003; Lee and Cole, 2003), and the gig
economy more broadly (Boudreau et al., 2011; Boudreau et al., 2016;
Riedl and Seidel, 2018), this rate is comparatively low, with rejections
far outweighing acceptances. The status gains for winning such exclu
sive competitions have often been identified as an important motiva
tional driver, in particular for settings in which very highly skilled
developers can openly compete against each other, such as on platforms
like TopCoder or Kaggle. However, looking at OSS development more
broadly, we expect a trade-off between the ability to be productive (i.e.,
likely having one’s code accepted by a project with a high acceptance
rate) and potential status gains (i.e., potentially having one’s code
accepted by a project with a low acceptance rate). Once the utility of
developers increases more in seeing their output enter a project than it
does in elevating their status by working on highly selective projects, a
high acceptance rate will motivate them to contribute.

We argue that the incentive effect of having a higher expected like
lihood of code acceptance will increase as a developer’s skill level in
creases.7 When highly skilled developers discover a project’s low
acceptance rate, they should increasingly realize that they may not be
able to satisfy their motivational needs, and they should decrease their
effort accordingly.

From an intrinsic-motivation perspective, the desire of highly skilled
programmers to learn (from failure) should be much lower than their
desire for positive feedback, such as through others using their software
code (Shah, 2006). Accordingly, skilled developers should increasingly
seek other projects in which to invest their time (Benkler, 2002; Daniel
and Stewart, 2016). Similarly, even highly skilled, extrinsically moti
vated, status-oriented developers may react negatively to learning about
lower acceptance rates. This is because programmers with an established
record of performance have little need to signal the quality of their work to
their peers or to third parties. Engaging with elitist community managers
reputed to accept only a minority of the contributions they receive—while
a nuisance to any coder—is of increasingly little value to them, since being
rejected might harm their community reputation as a “coding rockstar”
(Dabbish et al., 2012, p. 1283). With their status as high-skilled pro
grammers established, they can focus on demonstrating their continued
productivity and high performance (Dabbish et al., 2012) and will be able
to do so ever better as the chances that a community accepts their con
tributions increase, all else being equal.

Less-skilled programmers, in turn, should be less discouraged by a
high rejection rate. Looking at intrinsic motivation, less-skilled pro
grammers striving for improvement will need to make costly in
vestments in order to process the feedback they receive, anyway (Riedl
and Seidel, 2018). Rather than hoping to spend time on coding exclu
sively (like their more highly skilled peers), they will first need to learn
how to interpret and apply the input of others in order to improve. Yet,
given that many aspects of quality may vary between OSS projects (von
Krogh et al., 2012), investments in learning may be hard to transfer
across projects. Hence, faced with such sunk costs and fewer outside

options, less-skilled, intrinsically motivated developers should be more
likely to continue exerting effort on a project even when rejection rates
are high (Brockner, 1992; Keil et al., 2000; Staw, 1981).

Similarly, less-skilled, extrinsically motivated programmers may also
stay longer on a project even if they learn of high rejection rates. This is
because, for them, the potential status increases from an unlikely
contribution may reasonably justify potential benefits they could
anticipate through higher persistence. On one hand, this is because
lower-skilled individuals will more likely overvalue their own compe
tence (Kruger and Dunning, 1999) and hence require more time to fully
grasp the impact of a high rejection rate. On the other hand, given just
how much they may attain from a single, near-random successful
contribution, it may even be rational for very low-skilled individuals to
continue trying (Boudreau et al., 2011; Eagly and Chaiken, 1993).
Eventually, even seeming to be contributing to projects with a reputa
tion for being highly selective may help them create a (disproportional)
record of their individual quality (Gousios et al., 2014; Hann et al.,
2013). In combination, we thus propose the following:8

HYPOTHESIS 2 (H2). The marginal effect of project-related devel
oper skills on their project-specific programming output increases as
the overall acceptance rate of code on a project increases.

2.4.2. The conditional treatment effect of feedback speed
Similarly, we suggest that the timely provision of feedback may play an

important role in varyingly stimulating the motivation of coders of different
skill levels. Here, research on online peer production communities has
illustrated contributors’ susceptibility to responses they receive from com
munity founders or administrators. Providing feedback has been shown to
increase developers’ motivations to contribute (Dahlander and Piezunka,
2014; Piezunka and Dahlander, 2019; Roberts et al., 2006; Zhang et al.,
2013), whereas the lack of a response altogether has been interpreted to
indicate poor community management (Dabbish et al., 2012; Tsay et al.,
2014a), leading to a demonstrably negative effect on peer productivity (Zhu
et al., 2013). Similarly, delayed responses to mailing-list postings have been
associated with the detachment of potential contributors from a community
(Joyce and Kraut, 2006; Kuechler, 2013).

We build on these findings to develop our third hypothesis. Mirroring
our arguments leading up to H1 and H2, we suggest that there is a dif
ferential effect of feedback time on high- versus low-skilled contributors’
expected benefits and opportunity costs. Receiving fast feedback should
be more desirable for higher-skilled than for lower-skilled coders
because the former should be able to interpret the signals the feedback
entails more accurately than the latter. As we have argued above, this is
because only by observing how project managers react to their code
contributions can higher-skilled programmers understand precisely
which quality aspirations the project follows, whether any adjustments
to their efforts are necessary, and, were adjustments required, whether
they would not rather spend their efforts elsewhere.9 Lower-skilled
programmers should similarly appreciate fast feedback. Yet, given that
they yet lack key required skills, they will first need to invest in un
derstanding the feedback, they will require more time processing it, and
they should also interpret and implement it less aptly (Kruger and

7 The world of publications in academic journals offers an interesting paral
lel. Here, H1 would imply that the editor(ial team) has a hidden agenda that
would be learned only by engaging with the journal, and discovering which
would disproportionally lead more highly skilled authors to seek other outlets.
Our argument leading up to H2 would imply that more-established scholars
should care increasingly less about publishing in elite journals—they just want
to publish, or publish so that their work can be read by others.

8 To conserve space, we have omitted the use-need argument, which would
be structurally equivalent to the points made before. (1) Lower-skilled (vs. more
highly skilled) programmers should both take longer to realize that their con
tributions will perpetually have a low acceptance chance (meaning that their
use-need will not be implemented). Yet, (2) even if they were to realize this,
given greater sunk costs and fewer outside options, they should persist longer.

9 Continuing our above parallel, H3 implies that, all else being equal (i.e.,
authors should expect to receive the same benefits from an eventual publica
tion, controlling for their quality level), we expect more highly skilled authors
to withdraw a paper more quickly, or, at least, to not submit to this journal
again, the longer the reviewing process takes.

I. Smirnova et al.

Research Policy 51 (2022) 104368

6

Dunning, 1999; Riedl and Seidel, 2018). Thus, until they have actually
developed the skills necessary to work on the focal project, their relative
increases in productivity from fast feedback should be smaller than that
of high-skilled developers. Since, as argued for H2, low-skilled de
velopers’ project-specific learning experience may be hard to transfer,
and they may even become increasingly willing to wait for feedback,
whereas more skilled developers confronted with rising opportunity
costs would simply choose to exit the focal OSS project. In sum, we posit
as follows:

HYPOTHESIS 3 (H3). The marginal effect of the project-related
developer skills on their project-specific programming output de
creases as the feedback time on code contributions to a project
increases.

3. Data and methods

3.1. Setting

For our empirical tests, we draw on contribution records from two
large software-engineering-related online platforms that allow us to
measure the relationships between individual participation, individual
performance, and community design. Specifically, we collected and
combined data from GitHub, an OSS hosting platform, and Stack
Overflow, a website featuring questions and answers (Q&As) pertaining
to a wide range of topics in computer programming and software
engineering.

GitHub is a large public OSS repository hosting site that provides
social coding tools for software developers. Specifically, GitHub com
bines programming features with those typical of social networking
websites; for example, GitHub permits developers to create personal
website profiles and to make their profile information and platform
activity feed and created code artifacts openly visible and accessible to
other GitHub users and outside individuals (Dabbish et al., 2012; Mar
low et al., 2013; Tsay et al., 2013). Within GitHub, developers can join
existing repositories through forking them and having their code ad
justments merged with the original repository.10 To that end, users first
copy the content of the original repository to their own local machine.
They can then make their independent code changes and, if desired,
send a so-called pull request with their proposed changes to the original
repository owner (Kalliamvakou et al., 2016). Original repository
owners have the authority to decide whether to include those code
changes in the main branch of the repository (by merging the pull
request) or to reject them. In addition to pull requests, contributors can
begin discussions on existing projects by opening an issue that can
relate, for example, to bug finding, a code enhancement request, or
general feedback and comments.

Stack Overflow is a Q&A online community primarily used by
computer programmers. Community members can ask coding-related
questions or provide relevant answers and technical solutions to help
their peers. In turn, community members may also give and receive up-
votes or down-votes on their postings depending on whether a contri
bution was perceived as clear, well structured, and overall helpful,
leading to vetted, individual-level and topic-specific track records of
expertise on the Stack Overflow platform.

Both the GitHub and the Stack Overflow communities allow anyone
to join who complies with the policy of a transparent working envi
ronment with freely shared user-submitted content with the entire
community. Such a joint community value-creation ideology encourages

contributors of both platforms to help solve common problems, share
responsibility and knowledge, reciprocate expertise-based feedback,
and contribute to the community’s growth (Marlow and Dabbish, 2013).

Jointly, the two hosting sites contain all data required for testing our
predictions. First, both sites permit the measurement of individuals’
actions—whether answers provided on Stack Overflow to measure skill
or, say, sent pull requests on GitHub to account for coding output.
Second, and crucially, by merging data from the two sources, we can
compute measures pertaining to the match in skills that an individual
possesses and those required for a given project without encountering
endogeneity problems that would arise when computing the measures
from a single source alone. We do so by contrasting the variation in the
programming language skills of an individual as attainable from their
Stack Overflow account and the coding language skills needed to engage
in a given GitHub project. Below, we describe how we built this joint
dataset. In turn, we discuss and correct for potential sample-selection
distortions resulting from our sampling procedure in the section
“Alternative explanations and robustness checks” in the “Results” sec
tion of this paper.

3.2. Sample construction

We downloaded publicly accessible GitHub data (https://developer.
github.com/v3/) through the GitHub API. First, we collected basic data
on all repositories created on GitHub since its inception (29 October
2007) until the end of 2009, which yielded 146,676 repositories foun
ded by 51,557 unique users. Second, we enriched these data by down
loading 622,618 pull-request and issue activities performed on these
repositories by 144,210 GitHub users for a period from the date of each
individual repository’s creation until June 2016 (end date of our data
collection). Together, we obtained data on 769,294 founding, pull-
request, and issue activities performed on 146,676 repositories by
179,356 unique11 GitHub users.

We collected Stack Overflow data in two ways. First, we downloaded
the archive officially released to the public by Stack Overflow on 13
June 2016 (https://archive.org/details/stackexchange). These data
include the official dump of Stack Overflow archival activities from the
platform’s inception (31 July 2008) until 12 June 2016. Second, we
downloaded the latest official dump (August 2012) of the Stack Over
flow archive that still contained email hash numbers of
users—important information required for the merge of GitHub and
Stack Overflow data (see below)—courtesy of the International Working
Conference on Mining Software Repositories in 2013 (http://2013.
msrConferenceorg/challenge.php).

Using the Stack Overflow user identification number as key, we
merged the two data dumps to obtain the full activity data from the
hosting site’s inception until 12 June 2016, including email hashes for
all those users registered on the website before August 2012. This left us
with data on 19,090,959 answers provided by 5,677,258 website unique
users. Of these users, 1,294,658 were identifiable via their email hash
information, accounting for 12,755,110 answers observed.

3.3. Matching GitHub and Stack Overflow data

To match user profiles from GitHub and Stack Overflow, we drew on
users’ email addresses. While leading to omissions when GitHub users
chose not to voluntarily reveal their email addresses, this approach
appears to be the only feasible way to merge the two sources (see also
Badashian et al., 2014; Vasilescu et al., 2013).

Of our GitHub data sample, 63,663 users provided email addresses
that we could then match against the Stack Overflow email hashes. We

10 Self-selection of users into OSS projects is the dominant mode of task
allocation on GitHub (see Kalliamvakou et al., 2014). GitHub also hosts private
repositories, which software corporations may use as platforms to coordinate
their co-workers, and authoritative task allocation may occur. Our data include
public repositories only, however.

11 The same GitHub user can both found their own software repository and
contribute to it; therefore, there are duplicate user records when summing all
repository-specific activities.

I. Smirnova et al.

https://developer.github.com/v3/
https://developer.github.com/v3/
https://archive.org/details/stackexchange
http://2013.msrConferenceorg/challenge.php
http://2013.msrConferenceorg/challenge.php

Research Policy 51 (2022) 104368

7

computed the respective MD5 hash numbers, compared those with the
existing Stack Overflow email hashes, and included users with identical
values in a final list. From this set, we eliminated user duplicates, such as
by adding up all activities of a GitHub user who had multiple Stack
Overflow profiles registered to the same email address. This left us with
a sample of 21,344 unique users whose activities we can trace on both
platforms (see Section 4.1. for a discussion of sample-selection bias).

To map these users’ activities on the two platforms, we created one joint
classification system of user activities. Each GitHub repository stipulates the
programming language to be used by the developers working on it. We
focused on 55 programming languages present on GitHub and used them as
base categories for classifying the answers that a user provided on Stack
Overflow. Each Stack Overflow answer corresponds to a particular question
tagging a particular topic (e.g., <sql-server>, <mysql>, <ruby>).12 We
manually matched Stack Overflow answers using the tags of their corre
sponding questions to one of the 55 base programming-language categories
present on GitHub, drawing on the help of an experienced programmer.
Eventually, we managed to categorize 49.5% (425,442 of 859,236) of the
answers that all users from our matched data sample had given until June
2016. The general Stack Overflow tags (e.g., <algorithm>, <data-types>)
could not be categorized as referring specifically to any of the 55 program
ming languages used on GitHub; thus, we omitted their corresponding an
swers from our final dataset.

The final dataset we deploy for our statistical analysis consists of
163,003 GitHub founding, pull-request, and issue activities performed
on 35,916 repositories by 21,344 users registered on both GitHub and
Stack Overflow. The data have an unbalanced repository-user panel
structure. Time variance is captured at the repository-user level, as each
GitHub activity is timestamped upon creation. Each Stack Overflow
answer is timestamped upon posting, allowing us to capture time vari
ance also at the answer-user level.

3.4. Variables

3.4.1. Dependent variable
Our main dependent variable is contributor programming output,

measured as the monthly (logged) number of pull requests (plus one)
that a user sent to someone else’s repository in GitHub. Pull requests
contain original programming code provided by the focal user that they
request be integrated into an extant GitHub repository.13 Sending a pull
request to the owner of an extant repository is considered the prime
method of seeking to contribute in the GitHub environment (McDonald
and Goggins, 2013; Tsay et al., 2014a; Tsay et al., 2014b). It represents a
code output measure, in that contributors deem their work complete
enough to be considered for approval by a third party (Marlow and
Dabbish, 2013). To test H1 through H3, we computed the measure at the
contributor-repository-month level, which left us with 68,481 observa
tions of self-selection of 18,003 platform users into existing extant
GitHub repositories.

3.4.2. Independent variables
It is a common practice in software engineering to measure the area

of expertise of software developers by their experience and proficiency
in different programming languages; for example, focusing on pro
gramming in “web-heavy” languages like Python and JavaScript can
signal strong expertise in web development (Marlow and Dabbish,
2013). We thus compute skill match as the (logged) cumulative number

of Stack Overflow answers (plus one) in the programming language of a
GitHub repository selected for contribution that a user has given over
time (prior to the focal month) (similar to Wasko and Faraj, 2005).14 For
the tests of H1 through H3, we deploy a measure computed at the
contributor-repository-month level. For the 68,481 cases of user
self-selection, we could compute skill-match values for 59,551
contributor-repository-month records. Some observations were dropped
from the analysis because of two main constraints we faced. First, we do
not obtain data for users’ answer activity on Stack Overflow if they
created an account there later than the focal activity month of a corre
sponding GitHub contribution; thus, for some GitHub activity months, a
user’s skill information is unavailable. Second, not all GitHub re
positories from our data sample have a clearly defined programming
language mainly used for code development.

The dichotomous variable project founder’s commercial orientation,
computed at the repository level, is associated with revealed commercial
intent of the project founder. The variable takes the value 1 if a repo
sitory’s founder is considered to have a commercial affiliation, and
0 otherwise. To compute this variable, we check GitHub profiles of re
pository owners as well as the repository homepages for internet links to
outside websites. We code a repository as likely having a commercially
oriented founder if they provide an internet link to a ‘.com/.co’ website
(major search engines, social media platforms, and hosting sites
excluded) on their personal profile or on the project’s homepage (similar
to Dahlander and Wallin, 2006).

The variable project acceptance rate—computed as a cumulative
measure at the repository-month level—is associated with project
characteristics that demonstrate project owners’ selectivity in assessing
and implementing code innovations coming from externals to the proj
ect. To measure overall project acceptance rate, we calculate the (log
ged) percentage ratio (plus one) of the overall number of pull requests
that were integrated into the main code branch by a project owner (or
administrator) to all received pull requests.

The variable feedback provision time—computed as a cumulative
measure at the repository-month level—is measured as the (logged)
average number of days (plus one) that a project owner (or adminis
trator) needed to evaluate submitted pull requests—to accept (and
merge) or reject code changes proposed by external users.

Taking into account only repository-month observations where we do
have a prior stock of pull requests (to calculate the main independent vari
ables specific to H2 and H3) for our final analysis gives us data on 49,514
distinct user-repository-month observations, 28,323 distinct repository-
month level observations, and 43,695 user-level monthly observations.

3.4.3. Control variables
We control for a series of potential confounding effects—at both the

user and the repository levels—to reduce the risk of biasing our results
with unobserved heterogeneity.

For each user, we control for experience with a given project and with the
GitHub platform overall. To this end, we control for user tenure with the
GitHub platform (user GitHub tenure), computed as the number of months
since the user joined the website until a given month (the focal activity month
on any repository), and tenure (in months) with a given project (user project
tenure). We also controlled for user tenure with the Stack Overflow platform.
The measure, however, was highly correlated with user GitHub tenure and
therefore dropped from the final analysis to avoid multicollinearity prob
lems. In addition, we include the logged number of issues submitted by users

12 See http://stackoverflow.com/help/tagging.
13 Normalizing pull requests by code lines leads to too many missing values

because of the data constraints we faced. Given the nature of coding, however,
pure code length is often not indicative of code quality (elegant coding may
take fewer lines than mundane programming; see Gousios et al., 2016; Tsay
et al., 2014b, for related evidence). Therefore, we believe our dependent var
iable is a qualified measure of the coder’s programming output on GitHub.

14 We have scaled (divided by 10) all independent variables after logging for
the regression analyses. Note, however, that Tables 1 and 2 report descriptives
for and correlations between the unscaled logarithmically transformed
variables.

I. Smirnova et al.

http://stackoverflow.com/help/tagging

Research Policy 51 (2022) 104368

8

(contributor issue activity) at the user-repository-month level to account for
their contributions to a focal project other than pull requests.15 We also
control for users’ overall level of programming activity on GitHub by
counting the (logged) monthly number of issues and pull requests submitted
to other than the focal GitHub projects (contributor issue activity on other re
positories and contributor programming output on other repositories respec
tively), as contributors face a potential trade-off in allocating their time and
attention to different activities and projects on the platform (Daniel and
Stewart, 2016). Additionally, to account for the potential trade-off of coders
between contributing to OSS projects owned by somebody else and estab
lishing their own project, we include user founding experience (computed as
the logged number of repositories owned by a user) as a control variable. We
add one to all of these counts prior to logging to avoid the generation of
missing cases. Furthermore, we control for contributor rejection rate at the
user-repository-month level since the experience of getting rejected might
affect a coder’s decision to further contribute to a given project. We compute
this measure as the percentage ratio of the number of pull requests rejected
by a project owner (or administrator) to the total number of pull requests that
a user submitted to a focal project. We also control for users’ level of overall
answer activity on the Stack Overflow platform related to programming
languages other than the language required to contribute to a focal project
(contributor Stack Overflow answer activity)—computed as the (logged) cu
mulative number of answers (plus one) that a user has given over time (prior
to the focal month). Contributor Stack Overflow answer activity indicates the
developer’s overall level of engagement with the platform. A higher level of
busyness and time spent on Stack Overflow can potentially prevent con
tributors from submitting many pull requests on GitHub (Anderson et al.,
2013). Additionally, we account for the total number of followers a user has
received on GitHub up until the focal activity month (user GitHub popularity)
as a signal of general status within the GitHub community (Cosentino et al.,
2017; Tsay et al., 2014b).

For each repository, we control for project age, computed as the
number of months beginning from the repository’s date of creation until
the given month (the focal activity month on this repository). We control
for project size by counting the logged number of contributors (plus one)
affiliated with a repository. We also control for the number of issues
reported on a repository (number of issues on a project) to capture non-
programming activity occurring on the respective open source project
as well as project code quality in part, since many issues relate to bugs
discovered by project members and other community peers.

3.5. Estimation model

Given the multilevel structure of our data and the distributional
properties of our variables, we deploy a series of different models to
account for various deviations from standard Gauss-Markov assump
tions. Specifically, to account for unobserved heterogeneity and to
mitigate the risk of incurring an omitted variable bias, we run a series of
ordinary least squares (OLS) models with user fixed effects and cluster-
robust standard errors.

The results of a Hausman test indicate that the individual-level fixed-
effects models are appropriate. Given that our fixed effect is at the

individual level, this implies that our model controls for all time-
invariant unobserved individual characteristics such as major level of
education and professional occupation, main location, race, and native
tongue, as well as factors such as individuals’ original reason for joining
a project (e.g., hobbyist vs. professional).

4. Results

Tables 1 and 2 report descriptive statistics for and correlations be
tween the logarithmically transformed variables that we computed.
Table 1 shows the range for the logarithmic output by a user on a given
repository to lie between 0 and 4.17, corresponding to (exp(0)-1 =)
0 and (exp(4.17)-1 =) 64 pull requests in absolute terms, respectively.
The average monthly output by a user on a given repository is about 1
submitted pull request, indicating the unequal distribution of low and
top performers in our sample. The average user-repository skill-match
value is about 14 Stack Overflow answers given in a programming
language of a repository selected for contribution, but with values
ranging from 0 to 5,733—indicating considerable heterogeneity among
users’ proficiencies with particular programming languages required for
a project. Interestingly, 27% of project founders in our sample have
revealed their commercial orientation. Regarding pull-request accep
tance rates, the average rate within the sample is 49.4%, suggesting that
some of the repositories might be much more challenging for users to get
their contributions merged than others. Finally, repository owners spend
on average 31.5 days to evaluate incoming extant contributions, and up
to 1,077 days to make a final decision. The key variables display sig
nificant variation at both the user and the repository levels, which is
desired. Correlations are low to moderate between most of the explan
atory variables at the user-repository level, with the exception of those
variables that are systemically tied together (e.g., project size and number
of issues on a project).

Table 3 reports estimations pertaining to H1, H2, and H3. To rule out
that collinearity is affecting our coefficient estimates unduly, we
upward-test our models by sequentially adding parameters to a baseline
model of control variables (Wooldridge, 2010). Moreover, we test the
robustness of results to the exclusion of potentially collinear control
variables from the regressions. Models 1 through 3 include solely user-
and repository-specific control variables. In Model 4 we add a user’s

Table 1
Descriptive statistics.

Variable Mean Std.
Dev.

Min Max

User-repository-month level (N = 49,514)
ln(Contributor programming output+1) 0.53 0.51 0 4.17
ln(Skill match+1) 1.15 1.43 0 8.65
ln(Contributor issue activity+1) 0.34 0.43 0 7
Contributor (%) rejection rate 15.53 31.28 0 100
User project tenure (in months) 5.85 12.38 0 86.9
ln(Contributor issue activity on other

repositories+1)
0.12 0.35 0 4.73

ln(Contributor programming output on
other repositories+1)

0.17 0.47 0 4.06

ln(Contributor Stack Overflow answer
activity+1)

1.18 1.44 0 9.34

Repository level (N = 4,894)
Project founder’s commercial orientation

(dummy YES/NO)
0.27 — 0 1

Repository-month level (N = 28,323)
ln(Project acceptance rate+1) 3.43 1.39 0 4.62
ln(Feedback provision time+1) 2.65 1.49 0 6.98
ln(Project size+1) 3.69 1.52 1.1 8.91
ln(Number of issues on a project+1) 2.73 2.36 0 9.09
Project age (in months) 50.23 20.29 8.43 113.5
User-month level (N = 43,695)
ln(User founding experience+1) 0.63 1.01 0 5.45
ln(User GitHub popularity+1) 3.22 1.55 0 9.94
User GitHub tenure (in months) 42.34 20.91 0 113.33

15 On GitHub, developers use issues to track problems or suggest enhancement
ideas while using the repository’s code. GitHub developers clearly distinguish
them from pull requests: “If you don’t think you can contribute back a patch,
open a new issue. If you think you can make some patch to fix the issue, fork the
repo, and make a pull request” (see https://stackoverflow.com/questions/
9563881/etiquette-of-github-contributing-pull-requests-vs-new-issue). Hence,
anyone can raise issues on GitHub, and responsible/capable developers will
take them forward to fix any problems that exist with the current repository’s
code base. We therefore use contributor issue activity as a control variable rather
than as an alternative dependent variable. Readers may note, however, that
regressions using contributor issue activity as a dependent variable are less sig
nificant but point in the same direction as our main results reported in Table 3.

I. Smirnova et al.

https://stackoverflow.com/questions/9563881/etiquette-of-github-contributing-pull-requests-vs-new-issue
https://stackoverflow.com/questions/9563881/etiquette-of-github-contributing-pull-requests-vs-new-issue

Research Policy 51 (2022) 104368

9

project-specific skill-match variable. As expected, we find a strong
positive relationship between the skill match of a contributor for a
specific project and their programming output on that project (0.18%
increase in output when our independent variable ln(Skill match+1)/10
increases by 1%, p-value = 0.000), a finding in line with Casalnuovo
et al. (2015). In Model 5 we include key independent measures of
different project characteristics that account for different incentives
provided to coders of different skill levels to steer their contributions. In
line with our expectations, project acceptance rate shows a positive and
significant association with user-repository monthly output (p-value =
0.000), whereas feedback provision time is negatively correlated with a
single contributor’s monthly programming output (p-value = 0.000).

Per our theorizing, in Models 6, 7, and 8 we introduce the individual
interactions of skill match and the project-design parameters meant to
varyingly incentivize effort levels of higher- versus lower-skilled coders.
Model 9 tests the joint significance of all three proposed interactions in a
single specification, controlling for user fixed effects. For a given user,
we find a negative relationship between skill match and monthly pro
gramming output when the user self-selects into GitHub projects of
founders who revealed their commercial orientation (suggesting a
roughly 0.12% decrease in user programming output, p-value = 0.033)—
just as we propose in H1. Per H2, we find a significant positive effect of
skill match on user’s monthly programming output when users choose
projects that give them an opportunity to have their code patches
accepted and their individual performance widely established. The log-
log specification of our regression model implies that a 1% increase in
the interaction term leads to a 0.50% increase in the (logged) monthly
number of pull requests that a user sends to the repository (p-value =
0.006). We observe a negative relationship between skill match and
programming output when a user self-selects into a project with a longer
wait time for feedback on whether their proposed code will be approved
for integration into the core branch (0.36% decrease in user program
ming output, p-value = 0.020), giving us support for H3.

Fig. 1a and b through Fig. 3 illustrate the marginal effects predicted in
Model 9 of the regression table (Table 3) at various levels of skill match,
ranging from its minimum value till the 90th percentile of its distribution
(most of our data points are located at the lower distributional levels).

Per Fig. 1a, which illustrates the marginal effect for H1, we find that
the slope of skill match is statistically different (p-value < 0.1) between
projects run by founders with commercial orientation and by founders
who do not pursue commercial intents at the very low and very high
(above the 95th percentile of the distribution) levels of skill match.
Fig. 1b plots the difference in predicted coding output of coders working
on projects with commercially versus non-commercially oriented foun
ders at a particular level of our skill-match independent variable. The
results suggest that individuals who completely lack the skills needed for
working on a given project tend to stick to founders who are interested
in pursuing commercial ambitions. As coders’ skill level increases,
however, the output difference between two types of projects becomes
more negative—top coders (compared with their low-skilled peers)
exert greater effort on GitHub projects of founders who do not show
commercial ambitions.

With regard to the marginal effects for project acceptance rate (H2)
and feedback provision time (H3) plotted in Figs. 2 and 3 respectively, we
find that the simple slopes are statistically significant at various skill-
match levels and point to the expected directions: as the value of our
independent variable ln(Skill match+1)/10 increases, the relationship
of project acceptance rate on coder’s output increases (p-value = 0.000)
whereas the effect of feedback provision time becomes more negative (p-
value = 0.000), suggesting the stronger effects of both feedback type and
speed on higher- versus lower-skilled coders’ productivity. In particular,
when pull-request acceptance rate on the project increases by 10% from
its average value, coder’s predicted programming output is increased by

Table 2
Correlations.

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

User-repository-month level
(N=49,514)

1 ln(Contributor programming
output+1)

1

2 ln(Skill match+1) 0.07 1
3 Project founder’s commercial

orientation (dummy YES/
NO)

-0.04 -0.02 1

4 ln(Project acceptance
rate+1)

0.03 0.07 -0.01 1

5 ln(Feedback provision
time+1)

-0.06 0.01 -0.01 0.15 1

6 ln(Contributor issue
activity+1)

-0.54 0.03 0.03 0.05 0.04 1

7 Contributor (%) rejection
rate

0.26 0.03 -0.03 -0.15 0.01 -0.19 1

8 User project tenure (in
months)

0.17 0.19 -0.05 0.14 0.04 0.08 0.14 1

9 ln(User founding
experience+1)

0.05 0.12 -0.02 -0.04 -0.11 -0.03 0.02 0.11 1

10 ln(Contributor issue activity
on other repositories+1)

-0.04 0.07 0.01 -0.02 -0.02 0.09 -0.01 0.02 0.13 1

11 ln(Contributor
programming output on
other repositories+1)

0.15 0.12 -0.03 0.01 -0.03 -0.10 0.04 0.06 0.13 0.26 1

12 ln(Contributor Stack
Overflow answer activity+1)

-0.02 0.43 -0.03 0.03 0.04 0.06 -0.02 0.05 0.01 0.07 0.01 1

13 ln(Project size+1) -0.09 0.10 -0.03 0.24 0.32 0.18 0.08 0.22 -0.09 -0.01 -0.03 0.03 1
14 ln(Number of issues on a

project+1)
-0.31 0.07 0.02 0.16 0.15 0.45 -0.05 0.17 -0.06 0.01 -0.08 0.02 0.73 1

15 Project age (in months) -0.01 0.12 -0.06 0.26 0.36 0.08 -0.01 0.29 -0.14 -0.04 -0.02 0.08 0.48 0.35 1
16 ln(User GitHub

popularity+1)
0.16 0.22 -0.06 0.08 0.02 -0.05 0.07 0.28 0.42 0.16 0.20 0.14 0.08 0.01 0.12 1

17 User GitHub tenure (in
months)

0.08 0.18 -0.07 0.21 0.21 -0.01 0.01 0.36 0.31 0.03 0.05 0.11 0.26 0.13 0.67 0.41 1

I. Smirnova et al.

Research Policy 51 (2022) 104368

10

Table 3
User-repository monthly output and repository-specific characteristics.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
DV: Contributor programming output (natural log) User FE User FE User FE User FE User FE User FE User FE User FE User FE Tobit

H1: ln(Skill matchþ1) (/10) x Project founder’s
commercial orientation (dummy YES/NO)

-0.11 -0.12 -0.12

(0.054) (0.054) (0.028)
[0.036] [0.033] [0.000]

H2: ln(Skill matchþ1) (/10) x ln(Project acceptance
rateþ1) (/10)

0.44 0.50 0.55

(0.172) (0.181) (0.113)
[0.010] [0.006] [0.000]

H3: ln(Skill matchþ1) (/10) x ln(Feedback provision
timeþ1) (/10)

-0.29 -0.36 -0.38

(0.146) (0.156) (0.100)
[0.046] [0.020] [0.000]

Project founder’s commercial orientation (dummy YES/
NO)

0.00 0.02 0.00 0.00 0.02 0.01

(0.006) (0.008) (0.006) (0.006) (0.008) (0.005)
[0.950] [0.050] [0.940] [0.957] [0.047] [0.066]

ln(Project acceptance rate+1) (/10) 0.18 0.18 0.14 0.18 0.13 0.15
(0.019) (0.019) (0.025) (0.019) (0.026) (0.019)
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

ln(Feedback provision time+1) (/10) -0.16 -0.16 -0.16 -0.13 -0.12 -0.14
(0.023) (0.023) (0.023) (0.024) (0.024) (0.018)
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

ln(Skill match+1) (/10) 0.18 0.14 0.17 -0.02 0.23 0.09 0.05
(0.044) (0.050) (0.056) (0.064) (0.072) (0.070) (0.049)
[0.000] [0.004] [0.002] [0.789] [0.002] [0.180] [0.357]

ln(Contributor Stack Overflow answer activity+1) (/10) -0.19 -0.10 -0.09 -0.09 -0.10 -0.09 -0.10 -0.08
(0.052) (0.057) (0.071) (0.070) (0.070) (0.071) (0.070) (0.016)
[0.000] [0.080] [0.182] [0.188] [0.159] [0.185] [0.165] [0.000]

ln(User founding experience+1) (/10) -0.14 -0.18 — — — — — -0.06
(0.386) (0.390) (0.031)
[0.717] [0.650] [0.061]

ln(Contributor issue activity on other repositories+1) (/10) -0.04 -0.04 0.04 0.04 0.04 0.04 0.04 -0.08
(0.084) (0.083) (0.090) (0.090) (0.090) (0.090) (0.090) (0.055)
[0.606] [0.655] [0.651] [0.623] [0.641] [0.655] [0.618] [0.160]

ln(Contributor programming output on other
repositories+1) (/10)

-0.18 -0.18 -0.27 -0.27 -0.27 -0.27 -0.27 0.13

(0.184) (0.179) (0.181) (0.180) (0.180) (0.181) (0.179) (0.044)
[0.332] [0.307] [0.143] [0.142] [0.140] [0.143] [0.139] [0.004]

Contributor (%) rejection rate (/10) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

ln(Contributor issue activity+1) (/10) -4.03 -4.04 -4.03 -4.39 -4.39 -4.39 -4.39 -4.39 -5.38
(0.209) (0.236) (0.236) (0.297) (0.296) (0.296) (0.296) (0.296) (0.048)
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

User project tenure (in months) (/10) 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.04
(0.005) (0.006) (0.005) (0.006) (0.006) (0.006) (0.006) (0.006) (0.002)
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

ln(Project size+1) (/10) 0.57 0.20 0.19 0.19 0.20 0.20 0.20 0.19 0.19 0.14
(0.043) (0.041) (0.045) (0.045) (0.046) (0.046) (0.046) (0.046) (0.046) (0.017)
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

ln(Number of issues on a project+1) (/10) -0.89 -0.40 -0.40 -0.40 -0.30 -0.30 -0.30 -0.30 -0.30 -0.28
(0.034) (0.033) (0.037) (0.036) (0.038) (0.038) (0.038) (0.038) (0.038) (0.011)
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Project age (in months) (/10) 0.03 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01
(0.008) (0.007) (0.009) (0.009) (0.012) (0.012) (0.012) (0.012) (0.012) (0.007)
[0.000] [0.048] [0.012] [0.014] [0.436] [0.440] [0.421] [0.458] [0.449] [0.150]

Project age (in months) (/10), squared 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
[0.637] [0.697] [0.303] [0.305] [0.256] [0.260] [0.248] [0.272] [0.271] [0.114]

ln(User GitHub popularity+1) (/10) -0.08 -0.14 -0.16 -0.20 -0.24 -0.24 -0.23 -0.24 -0.23 0.20
(0.136) (0.115) (0.139) (0.139) (0.139) (0.139) (0.139) (0.139) (0.139) (0.017)
[0.575] [0.223] [0.259] [0.143] [0.086] [0.085] [0.092] [0.091] [0.098] [0.000]

User GitHub tenure (in months) (/10) 0.04 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.00
(0.008) (0.007) (0.008) (0.008) (0.009) (0.009) (0.009) (0.009) (0.009) (0.002)
[0.000] [0.000] [0.001] [0.004] [0.066] [0.064] [0.067] [0.069] [0.068] [0.811]

Constant 0.04 0.38 0.46 0.47 0.63 0.62 0.64 0.62 0.63 0.57
(0.048) (0.044) (0.056) (0.056) (0.058) (0.058) (0.057) (0.058) (0.058) (0.026)
[0.354] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Time dummies (year) YES YES YES YES YES YES YES YES YES YES
Observations 68,481 68,481 59,551 59,551 49,514 49,514 49,514 49,514 49,514 49,514
Adj. R-squared 0.17 0.31 0.29 0.29 0.22 0.22 0.22 0.22 0.22 —

Notes. Panel regressions where robust standard errors clustered at the user level are reported in parentheses and p-values are reported in square brackets. Note that
because of the rescaling of independent variables (/10), the coefficient estimates for testing interaction effects correspond to the true coefficients multiplied by 100.
Note that for multicollinearity reasons, the variable User founding experience gets dropped from Models 5 through 9. DV, dependent variable.

I. Smirnova et al.

Research Policy 51 (2022) 104368

11

1.2% for the averagely talented (i.e., skill-match is fixed at the mean)
programmers.16 For excellent (i.e., skill-match at the 90th percentile)
developers, in turn, coder’s predicted output increases by about 1.8%
when project acceptance rate increases by 10% from its mean. In a similar
vein, when feedback is provided 10% faster than the average provision
time, predicted programming output for the averagely skilled developers
increases by 0.8%, while it increases by 1.1% for very highly skilled
developers.

Finally, because our dependent variable is censored toward its lower
bound, in Model 10 of Table 3 we also present a tobit model. In addition, in
results available upon request, we reran all models from Table 3 using
bootstrapped standard errors (instead of clustering at the user level) and

deploying project-level (instead of user-level) fixed effects (which control for
time-invariant project characteristics such as software’s intended goal or
quality). Our results remain unchanged and similar in size to the findings
reported herein.

4.1. Alternative explanations and robustness checks

Despite giving robust evidence supporting our main theoretical
predictions, we cannot rule out that alternative explanations may ac
count for our findings. Below, we critically discuss issues pertaining to
sample construction and unobserved heterogeneity.

As described in the “Data and methods” section, our rich sample may
still suffer from selection bias due to constraints when matching GitHub
and Stack Overflow users to compute our independent variable skill
match. Overall, we could match about 12% (21,344 of 179,356) of
GitHub users with their Stack Overflow accounts, meaning that our re
sults might be specific to users active on both platforms in parallel and
not generalizable to the overall GitHub community. To assess this pos
sibility, we ran two sets of further models (both reported in the Online
Appendix).

In the first set, we compared the distributions of our key variables
deployed in regressions reported in Table 3 within our sample and across
the universe of GitHub—to the extent possible. To that end, we ran a

Fig. 1. (a). Predicted marginal effect of project founder’s commercial orien
tation on user-repository monthly output (b). Difference in the predicted output
of coders working on projects with commercially vs. non-commercially ori
ented founders.

Fig. 2. Predicted marginal effect of project acceptance rate on user-repository
monthly output.

Fig. 3. Predicted marginal effect of feedback provision time on user-repository
monthly output.

16 For the averagely skilled developers, we first predicted the output when
fixing our project acceptance rate variable at its average value (while keeping
all other independent variables fixed at their means), which resulted in the
predicted logged programming output being equal to 0.5282. Next, we pre
dicted the coding output given our project acceptance rate variable fixed at its
(mean+10%) value, which corresponded to 0.5346. We then used these two
output results to arrive at the increase in the predicted output of about
((0.5346-0.5282)/0.5282 =) 1.2%. We followed similar logic when computing
all the marginal effects reported in the paper.

I. Smirnova et al.

Research Policy 51 (2022) 104368

12

logistic model for the inclusion of an observation in our sample (dummy
set to 1 if a user is included in our final dataset, and 0 otherwise) at the
user-repository-month level (see Online Appendix Table A1). The results
show that users in our dataset have a longer tenure with GitHub, as we
collected the data on users and repositories registered at the very
beginning of the platform’s existence; as expected, users from our
sample also have more followers. Similarly, we find that our merged
dataset consists of repositories that are larger and better established in
terms of popularity among community members. At the same time, re
pository owners in our sample accept on average more incoming pull
requests and assess incoming contributions more slowly than the whole
population of GitHub data. Based on this model alone, it is difficult for us
to determine whether the effects we obtain on our sample would be
reduced or exacerbated if we were to extend our analysis to the full
GitHub universe. Under the assumption of a relatively similar user-
activity distribution in the full sample, we believe our findings would
remain stable.

In the second set of models, we sought to assess the bias in our re
ported findings by explicitly modeling the sample-selection distortion
we incur from being unable to match the entirety of GitHub users to
Stack Overflow data. We followed a standard two-step Heckman
approach: after estimating the selection equation at the first stage, we ran
a second-stage user fixed-effects OLS model (to tease out time-invariant
heterogeneity) with the inverse Mills ratio included as a regressor. The
findings appear to corroborate those shown in Table 3 (see Online Ap
pendix Table A2). Constructing samples as above, we find that in
teractions between skill match and our key variables for testing H1
through H3 in Stage 2 regressions of the Heckman model that mirrors
Table 3 are statistically significant and economically comparable to the
findings reported in the paper. Overall, the above findings suggest that
the sample-selection distortions do not bias our results in ways that
would prevent us from generalizing about our findings.

Finally, to look at issues of reverse causality, we estimated re
gressions using (a) lagged dependent variable(s). We find close to no
indication that skill matching (the independent variable) could also be
seen as driven by contributor’s performance (the dependent variable).

5. Discussion and conclusion

5.1. Summary of results

In this paper, we set out to extend an established debate asking why
people would join and contribute to OSS projects. Going beyond
established arguments on developers’ motivation to make an initial
contribution, we set out to inquire what OSS managers can do to
leverage continuously the best of the talent volunteering to work on their
projects, irrespective of their developers’ particular motivations. We
theorized and found that higher-skilled as compared with lower-skilled
programmers would show higher relative effort levels when (a) project
founders had no visible corporate affiliation, and when (b) the project
had a high acceptance rate and (c) fast feedback times. Based on these
insights, in the following, we derive theoretical contributions on the
organization of OSS projects, and gig-like organizations more broadly.

5.2. Implications for theory

Our first set of contributions speaks to the literature on OSS projects
and their design and management. Since the original musings on what
makes developers in OSS tick (e.g., Raymond, 1999), a series of aca
demic authors have inquired into why individuals would work in OSS (e.
g., Ghosh et al., 2002; Lakhani and Wolf, 2005) or on a specific OSS
project (Howison and Crowston, 2014; von Krogh et al., 2012). While
this work has contributed greatly to our understanding of the initial
motivation of average OSS developers, it falls short of inquiring how this
motivation might (a) change after joining and (b) vary between de
velopers of different skill levels.

To answer these questions—so as to be able to say what makes the
right developer tick—we try to shift the focus of this debate—in the
words of the personnel economics literature we bring to this con
text—away from the initial selection toward the treatment that happens
afterwards. Through this lens, we see clear indications of skill-based
sorting, with individuals becoming more productive on projects to
which they bring the respective skill. In line with Shah’s (2006) anec
dotal evidence, our results clearly suggest that experienced developers
will increasingly seek OSS projects in which they may be productive,
quickly.

This observation, in turn, points to the importance of looking at
factors which would allow highly skilled individuals to remain pro
ductive after joining—treatments. Here, first, our results extend prior
work showing that average OSS developers avoid projects that follow a
commercial ideology (Elliott and Scacchi, 2008; Stallman, 1999; Stew
art and Gosain, 2006). We find that when a commercial orientation is
revealed post-joining, highly skilled developers show less effort on such
projects. Interestingly, second, we see that this effect could not be
compensated by some form of exclusivity, which could be communi
cated to a restrictive selection, such as in a corporate tournament. Even
while high-skilled developers may knowingly be willing to select them
selves into highly competitive environments (as in Boudreau et al.,
2011; Boudreau et al., 2016; Chen et al., 2020), when they find that the
chance of their efforts being accepted is decreasing, they are more likely
to reduce effort. Finally, we found a strong moderating effect of feed
back time on the effort of highly skilled developers. Indeed, feedback
provision and speed are increasingly seen by innovation scholars as key
ingredients in working successfully in open models of innovation (Pie
zunka and Dahlander, 2019; Riedl and Seidel, 2018). Yet, as we have
argued, it is likely not the actual feedback (i.e., learning about their
skills and how to improve them) that matters to highly skilled de
velopers but learning about key project preferences.

Jointly, these three findings suggest that highly skilled developers
evaluate transparency and consistency more favorably: given that they
have more outside options than low-skilled developers, in discovering
that the norms of a project are different from what may reasonably be
expected, they are much more likely to leave. Conceptually, this would
imply that in OSS-like settings that emphasize self-selection, not only
should managers be transparent in communicating their project-specific
norms and quality aspirations; they should try to be as comprehensive as
possible in laying out these ambitions and the design features they have
chosen accordingly, so that few unexpected treatments would occur
post-joining. By sharing comprehensively how the project works (and,
possibly, adjusting the respective process accordingly in advance),
project managers may not only shift selection and sorting to their
benefit; they should also maximize the odds of both attracting and
retaining the most qualified individuals. In turn, such pre-emptive
transparency could also help address the issue that time to provide
feedback on specific contributions is a scare resource, in particular as
crowds of contributors may grow infinitely larger (Piezunka and Dah
lander, 2015).17

Our second contribution is to the field of personnel economics
(Cadsby et al., 2007; Dohmen and Falk, 2011; Lazear, 2000a, 2000b).
More specifically, we extend both extant theory and empirical testing
approaches to a novel context that becomes increasingly relevant to the
field: new work (Ollo-Lopez et al., 2010). Broadly speaking, the term
captures the entirety of modern and flexible organization for work,
encompassing novel approaches to the division of labor and integration
of effort (Puranam et al., 2014). While the field has recently made some
advances in understanding which factors beyond traditional payment
schemes impact on the selection of workers into and productivity within

17 For example, like academic journals, OSS projects could communicate their
“key expectations” to volunteers publicly—including information about what
will happen when code submissions do not follow such rules initially.

I. Smirnova et al.

Research Policy 51 (2022) 104368

13

environments—such as technology and age (see, e.g., Schøne, 2009)—
there is still a dearth of comprehensive knowledge as to how
non-monetary incentive schemes influence both selection into and per
formance after joining specific types of organizations. Our findings,
gained from a setting that shares many similarities with new models of
for-profit work—such as emphasis on self-selection, the need to establish
creative and maintain dispersed teams described in the literatures on
information systems (Faraj et al., 2011; Wasko and Faraj, 2000, 2005)
and innovation management (Bernstein et al., 2016; Criscuolo et al.,
2014)—fill part of this lacuna in the theory of personnel economics.
Consequently, we suggest to consider communicating non-monetary
rewards such as feedback cultures and the acceptance of contributions
from individuals as part of the hiring process to exploit the potential of
these levers not only to increase worker productivity but also to affect
their selection positively.

Moreover, we believe that our study bears some interesting take-
aways for scholars working empirically on issues of hiring and treat
ing employees. In many modern settings—e.g., crowdsourcing (Afuah
and Tucci, 2012; Majchrzak and Malhotra, 2020)—the formal act of
selecting into a work environment is substituted for by the de-facto act of
contributing. As such, the line between selection and treatment becomes
near-indistinguishable and extant methods of identification the two
types of effects no longer map onto empirical realities. To these scholars,
we have presented a different type of empirical approach—suggesting,
in essence to interpret the interaction term of a selection and a treatment
parameter as a so-called conditional treatment effect. We believe that
this technique may be seen as a first step for our colleagues to better
empirically analyze a new category of workplace environments in which
contributors participate outside classic Simonian labor contracts
(Simon, 1951). For this literature specifically, we also present some
initial formalism in Appendix A3, which we hope this scholarship may
extend in the future.

5.3. Limitations

Beyond potential shortcomings in our sampling and matching pro
cedure, a few concerns remain that may limit the generalizability of our
findings. Foremost, we assumed that people would select into projects
based on skill, but we admit that eventual sorting may also be affected
by other, unobserved variables. However, these variables should not be
systematically correlated with project-related skill and as such merely
add to rather than revoke our insights. Second, we are limited in our
insights not just by the data we can match across our datasets but also by
the period of time for which we can do so reliably. We cannot rule out
that the growth of both GitHub and Stack Overflow may have coincided
with, or led to, changes in coding standards or evaluation norms that
could have been picked up by our key moderating variables. At the same
time, given that GitHub was acquired by Microsoft in 2018, some
external events happening over a longer period may have been
extremely hard to account for reliably in our data.

We further concede that our commercial intent variable may fail to
capture some of the nuance for which a detailed manual coding of every
project page and founder profile would allow. While manual inspection
shows that most of the links we have coded as symbolizing a commercial
intent indeed do so, of course, we cannot fully capture the nuance of just
how strong said intent would be. From a random sample of links we
inspected manually, we estimate that our rate of false positives should
not be higher than 10-15%. In turn, given we focus only on ‘.com/.co’ in
the domain name, we may also be missing a series of developers with
clear commercial intent who link to different kinds of webpages, such as
‘.net’ or ‘.de.’

Regarding our musings on feedback type and code acceptance rates,
we note that our argument may not fully extend to contexts of intense
status-competition, in which highly-skilled developers may actually try
to differentiate from their equally skilled peers by solving particularly
tough challenges, as exemplified by platforms like TopCoder or Kaggle.

Similarly, we need to point out that while our conceptual argument
suggests that lower rejection rates may attract better developers,
empirically, there should likely be a lower bound to what kind of con
tributions should be accepted—an ‘anything goes’ attitude will likely
also not attract talent.18

Finally, while the user-project-month structure of our panel data
allows us to minimize concerns of unobserved heterogeneity, we may be
falling short of fully incorporating more social explanations for coding
activity, such as personal ties between project members and/or between
project members and the founder (Casalnuovo et al., 2015; Grewal et al.,
2006; Hahn et al., 2008).

5.4. Implications for practice

These limitations notwithstanding, we believe our results have
important implications for practice. First, they should be seen as
encouraging OSS project founders and repository managers to commu
nicate clearly their project skill needs. To the extent that they ever
wanted to affect selection directly, they would have to think about
communicating management practices to current and future contribu
tors. For example, commercial intent need not have a bad effect per se,
as long as the commercial behavior is consistent with its communication
and volunteers’ perception of it. That may include firms both credibly
ceding control over OSS projects they initiated (as IBM did when they
transitioned to a more open Eclipse Foundation model) as well as clearly
demarking spheres and modes of influence of projects in which they
want to play a significant role (such as IBM’s work in Linux or node.js).
Second, the kind of parameters we have identified may be adjusted over
time. Accordingly, should project founders and administrators identify
that they do not yet attract the kind of contributors they want, they may
choose to adapt key project parameters, their communication, or both.
For example, our results suggest that lowering the rejection rate for
contributions may help attract effort from more highly skilled people.
While this sounds like a particularly interesting way to get a project off
the ground, project managers would need to make sure that these in
dividuals do not become outnumbered by less-skilled people taking the
same opportunity. Finally, our insights related to feedback time further
buttress the importance of communication. While evaluation of code’s
quality is important, project managers need to ensure that developers
are not left in the dark about what happens with their contributions and
why, so that developers do not take their efforts elsewhere. As projects
mature and grow, that should increasingly imply that project founders
need to acquire talent to support them in keeping feedback times short.
Overall, we see our results as an encouragement to OSS practitio
ners—whether individual hobbyists or corporate teams—to become
more conscientious about the organizational structures they design, and
how these will impact the continuous effort of their potential
contributors.

CRediT authorship contribution statement

Inna Smirnova: Conceptualization, Methodology, Investigation,
Formal analysis, Visualization, Writing – original draft, Writing – review
& editing. Markus Reitzig: Conceptualization, Methodology, Formal
analysis, Writing – original draft, Writing – review & editing. Oliver
Alexy: Conceptualization, Methodology, Writing – original draft,
Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence

18 We are indebted to our careful reviewers for pointing out this important set
of limitations.

I. Smirnova et al.

Research Policy 51 (2022) 104368

14

the work reported in this paper.

Acknowledgement

All authors would like to acknowledge funding from the Austrian
Science Fund (FWF) [Grant P 25768-G16]. Special thanks go to Menaka
Sattmann for her support in creating the database.

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.respol.2021.104368.

References

Aberdour, M., 2007. Achieving quality in open-source software. IEEE Softw. 24 (1),
58–64.

Afuah, A., Tucci, C.L., 2012. Crowdsourcing as a solution to distant search. Acad.
Manage. Rev. 37 (3), 355–375.

Anderson, A., Huttenlocher, D., Kleinberg, J., Leskovec, J., 2013. Steering user behavior
with badges. In: Proceedings 22nd International Conference on World Wide Web.
(Rio de Janeiro, Brazil), pp. 95–106.

Badashian, A.S., Esteki, A., Gholipour, A., Hindle, A., Stroulia, E., 2014. Involvement,
contribution and influence in github and stack overflow. In: Proceedings Annual
International Conference on Computer Science and Software Engineering.
(Markham, Ontario, Canada), pp. 19–33.

Bagozzi, R.P., Dholakia, U.M., 2006. Open source software user communities: a study of
participation in Linux user groups. Manage. Sci. 52 (7), 1099–1115.

Bandura, A., 1977. Self-efficacy: toward a unifying theory of behavioural change.
Psychol. Rev. 84 (2), 191–215.

Barabási, A.L., Albert, R., 1999. Emergence of scaling in random networks. Science 286
(5439), 509–512.

Belenzon, S., Schankerman, M., 2015. Motivation and sorting of human capital in open
innovation. Strat. Manage. J. 36 (6), 795–820.

Benbya, H., Belbaly, N., 2010. Understanding developers’ motives in open source
projects: a multi-theoretical framework. Commun. AIS 27 (30), 589–610.

Benkler, Y., 2002. Coase’s penguin, or, Linux and “the nature of the firm”. Yale Law J.
112 (3), 369–446.

Bergquist, M., Ljungberg, J., 2001. The power of gifts: organizing social relationships in
open source communities. Inf. Syst. J. 11 (4), 305–320.

Bernstein, E., Bunch, J., Canner, N., Lee, M., 2016. Beyond the holacracy hype. Harv.
Bus. Rev. 94 (7), 38–49.

Bonaccorsi, A., Rossi, C., 2003. Why open source software can succeed. Res. Policy 32
(7), 1243–1258.

Boudreau, K.J., Lacetera, N., Lakhani, K.R., 2011. Incentives and problem uncertainty in
innovation contests: an empirical analysis. Manage. Sci. 57 (5), 843–863.

Boudreau, K.J., Lakhani, K.R., Menietti, M., 2016. Performance responses to competition
across skill levels in rank-order tournaments: field evidence and implications for
tournament design. RAND J. Econ. 47, 140–165.

Brockner, J., 1992. The escalation of commitment to a failing course of action: toward
theoretical progress. Acad. Manage. Rev. 17 (1), 39–61.

Booth, A.L., Frank, J., 1999. Earnings, productivity, and performance-related pay.
J. Labor Econ. 17 (3), 447–463.

Cadsby, C.B., Song, F., Tapon, F., 2007. Sorting and incentive effects of pay for
performance: an experimental investigation. Acad. Manag. J. 50 (2), 387–405.

Casalnuovo, C., Vasilescu, B., Devanbu, P., Filkov, V., 2015. Developer onboarding in
GitHub: the role of prior social links and language experience. In: Proceedings 10th
Joint Meeting on Foundations of Software Engineering. (Bergamo, Italy),
pp. 817–828.

Chen, L., Xu, P., Liu, D., 2020. Effect of crowd voting on participation in crowdsourcing
contests. J. Manage. Inf. Syst. 37 (2), 510–535.

Chengalur-Smith, I., Sidorova, A., Daniel, S., 2010. Sustainability of free/libre open
source projects: a longitudinal study. J. Assoc. Inf. Syst. 11 (11), 657–683.

Chou, S.W., He, M.Y., 2011. Understanding OSS development in communities: the
perspectives of ideology and knowledge sharing. Behav. Inf. Technol. 30 (3),
325–337.

Cosentino, V., Izquierdo, J.L.C., Cabot, J., 2017. A systematic mapping study of software
development with GitHub. IEEE Access 5, 7173–7192.

Criscuolo, P., Salter, A., Ter Wal AL, 2014. Going underground: bootlegging and
individual innovative performance. Organ. Sci. 25 (5), 1287–1305.

Crowston, K., Scozzi, B., 2002. Open source software projects as virtual organisations:
competency rallying for software development. IEE Proc.-Softw. 149 (1), 3–17.

Dabbish, L., Stuart, C., Tsay, J., Herbsleb, J., 2012. Social coding in GitHub: transparency
and collaboration in an open software repository. In: Proceedings ACM 2012
Conference on Computer Supported Cooperative Work. (ACM, Seattle, Washington,
USA), pp. 1277–1286.

Dahlander, L., Frederiksen, L., 2012. The core and cosmopolitans: a relational view of
innovation in user communities. Organ. Sci. 23 (4), 988–1007.

Dahlander, L., O’Mahony, S., 2011. Progressing to the center: coordinating project work.
Organ. Sci. 22 (4), 961–979.

Dahlander, L., Piezunka, H., 2014. Open to suggestions: how organizations elicit
suggestions through proactive and reactive attention. Res. Policy 43 (5), 812–827.

Dahlander, L., Wallin, M.W., 2006. A man on the inside: unlocking communities as
complementary assets. Res. Policy 35 (8), 1243–1259.

Daniel, S.L., Maruping, L.M., Cataldo, M., Herbsleb, J., 2018. The impact of ideology
misfit on open source software communities and companies. MIS Q. 42 (4),
1069–1096.

Daniel, S., Stewart, K., 2016. Open source project success: resource access, flow, and
integration. J. Strat. Inf. Syst. 25 (3), 159–176.

David, P.A., Shapiro, J.S., 2008. Community-based production of open-source software:
what do we know about the developers who participate? Inf. Econ. Policy 20 (4),
364–398.

Deci, E.L., Ryan, R.M., 1985. Intrinsic Motivation and Self-Determination in Human
Behavior. Plenum Press, New York.

Delfgaauw, J., Dur, R., 2007. Signaling and screening of workers’ motivation. J. Econ.
Behav. Org. 62 (4), 605–624.

Dohmen, T., Falk, A., 2011. Performance pay and multidimensional sorting:
productivity, preferences, and gender. Am. Econ. Rev. 101 (2), 556–590.

Eagly, A.H., Chaiken, S., 1993. The Psychology of Attitudes. Harcourt Brace Jovanovich
College Publishers.

Elliott, M.S., Scacchi, W., 2008. Mobilization of software developers: the free software
movement. Inf. Technol. People 21 (1), 4–33.

Eriksson, T., Teyssier, S., Villeval, M., 2009. Self-selection and the efficiency of
tournaments. Econ. Inquiry 47 (3), 530–548.

Fang, Y., Neufeld, D., 2009. Understanding sustained participation in open source
software projects. J. Manage. Inf. Syst. 25 (4), 9–50.

Faraj, S., Jarvenpaa, S.L., Majchrzak, A., 2011. Knowledge collaboration in online
communities. Organ. Sci. 22 (5), 1224–1239.

Ferraro, F., O’Mahony, S., 2012. Managing the boundaries of an “open” project. In:
Padgett, J.F., Powell, W.W. (Eds.), The Emergence of Organizations and Markets.
Princeton University Press, Princeton, NJ, pp. 540–565.

Fershtman, C., Gandal, N., 2007. Open source software: motivation and restrictive
licensing. Int. Econ. Econ. Policy 4 (2), 209–225.

Fitzgerald, B., 2006. The transformation of open source software. MIS Q. 30 (3),
587–598.

Ghosh, R.A., Glott, R., Krieger, B., Robles, G., 2002. Free/Libre and Open Source
Software: Survey and Study. International Institute of Infonomics, University of
Maastricht, Maastricht, The Netherlands.

Gousios, G., Pinzger, M., Deursen, A.V., 2014. An exploratory study of the pull-based
software development model. In: Proceedings 36th International Conference on
Software Engineering. (Hyderabad, India), pp. 345–355.

Gousios, G., Storey, M.A., Bacchelli, A., 2016. Work practices and challenges in pull-
based development: the contributor’s perspective. In: Proceedings 38th International
Conference on Software Engineering. (Austin, Texas, USA), pp. 285–296.

Grewal, R., Lilien, G.L., Mallapragada, G., 2006. Location, location, location: how
network embeddedness affects project success in open source systems. Manage. Sci.
52 (7), 1043–1056.

Hahn, J., Moon, J.Y., Zhang, C., 2008. Emergence of new project teams from open source
software developer networks: impact of prior collaboration ties. Inf. Syst. Res. 19 (3),
369–391.

Hann, I.H., Roberts, J.A., Slaughter, S.A., 2013. All are not equal: an examination of the
economic returns to different forms of participation in open source software
communities. Inf. Syst. Res. 24 (3), 520–538.

Hars, A., Ou, S., 2002. Working for free? Motivations for participating in open-source
projects. Int. J. Electron. Comm. 6 (3), 25–39.

Hartog, J., 1986. Allocation and the earnings function. Empir. Econ. 11 (2), 97–110.
Hertel, G., Niedner, S., Herrmann, S., 2003. Motivation of software developers in open

source projects: an internet-based survey of contributors to the Linux kernel. Res.
Policy 32 (7), 1159–1177.

Ho, S.Y., Rai, A., 2017. Continued voluntary participation intention in firm-participating
open source software projects. Inf. Syst. Res. 28 (3), 603–625.

Howison, J., Crowston, K., 2014. Collaboration through open superposition: a theory of
the open source way. MIS Q. 38 (1), 29–50.

Jeppesen, L.B., Frederiksen, L., 2006. Why do users contribute to firm-hosted user
communities? The case of computer-controlled music instruments. Organ. Sci. 17
(1), 45–63.

Jovanovic, B., 1979. Job matching and the theory of turnover. J. Polit. Econ. 87 (5),
972–990.

Joyce, E., Kraut, R.E., 2006. Predicting continued participation in newsgroups.
J. Comput.-Med. Commun. 11 (3), 723–747.

Kalliamvakou, E., Damian, D., Singer, L., German, D.M., 2014. The Code-Centric
Collaboration Perspective: Evidence from GitHub. Technical Report DCS-352-IR,
University of Victoria.

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D.M., Damian, D., 2016.
An in-depth study of the promises and perils of mining GitHub. Empir. Softw. Eng.
21 (5), 2035–2071.

Ke, W., Zhang, P., 2010. The effects of extrinsic motivations and satisfaction in open
source software development. J. Assoc. Inf. Syst. 11 (12), 784–808.

Keil, M., Tan, B.C., Wei, K.K., Saarinen, T., Tuunainen, V., Wassenaar, A., 2000. A cross-
cultural study on escalation of commitment behavior in software projects. MIS Q. 24
(2), 299–325.

Kruger, J., Dunning, D., 1999. Unskilled and unaware of it: How difficulties in
recognizing one’s own incompetence lead to inflated self-assessments. J. Pers. Soc.
Psychol. 77 (6), 1121–1134.

Kuechler, J.V., 2013. The Emergent Qualities of Diversity in Free and Open Source
Software Communities: a Critical Review and Theoretical Discussion. PhD
dissertation. Oregon State University.

I. Smirnova et al.

https://doi.org/10.1016/j.respol.2021.104368
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0001
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0001
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0002
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0002
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0003
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0003
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0003
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0004
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0004
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0004
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0004
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0005
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0005
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0006
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0006
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0007
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0007
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0008
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0008
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0009
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0009
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0010b
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0010b
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0011
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0011
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0012
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0012
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0013
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0013
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0014
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0014
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0015
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0015
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0015
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0016
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0016
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0017
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0017
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0018
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0018
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0019
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0019
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0019
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0019
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0020
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0020
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0021
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0021
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0022
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0022
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0022
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0023
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0023
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0024
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0024
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0025
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0025
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0026
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0026
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0026
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0026
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0027
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0027
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0028
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0028
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0029
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0029
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0030
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0030
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0031
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0031
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0031
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0032
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0032
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0033
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0033
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0033
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0034
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0034
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0035
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0035
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0036
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0036
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0037
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0037
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0038
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0038
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0039
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0039
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0040
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0040
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0041
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0041
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0003a
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0003a
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0003a
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0043
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0043
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0044
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0044
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0045
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0045
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0045
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0046
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0046
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0046
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0047
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0047
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0047
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0048
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0048
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0048
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0049
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0049
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0049
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0050
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0050
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0050
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0051
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0051
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0052
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0053
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0053
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0053
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0054
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0054
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0055
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0055
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0056
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0056
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0056
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0057
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0057
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0058
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0058
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0059
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0059
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0059
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0060
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0060
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0060
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0061
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0061
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0062
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0062
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0062
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0063
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0063
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0063
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0064
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0064
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0064

Research Policy 51 (2022) 104368

15

Lakhani, K.R., Panetta, J.A., 2007. The principles of distributed innovation. Innovations
2 (3), 97–112.

Lakhani, K.R., von Hippel, E., 2003. How open source software works: “free” user-to-user
assistance. Res. Policy 32 (6), 923–943.

Lakhani, K.R., Wolf, R., 2005. Why hackers do what they do: understanding motivation
and effort in free/open source software projects. In: Feller, J.R., et al. (Eds.),
Perspectives on Free and Open Source Software. MIT Press, Cambridge, MA,
pp. 3–21.

Lazear, E.P., 2000a. The power of incentives. Am. Econ. Rev. 90 (2), 410–414.
Lazear, E.P., 2000b. Performance pay and productivity. Am. Econ. Rev. 90 (0),

1346–1361.
Lazear, E.P., 2001. Educational production. Q. J. Econ. 116 (3), 777–803.
Lazear, E.P., Malmendier, U., Weber, R.A., 2012. Sorting in experiments with application

to social preferences. Am. Econ. J. 4 (1), 136–163.
Lee, G.K., Cole, R.E., 2003. From a firm-based to a community-based model of knowledge

creation: the case of the Linux kernel development. Organ. Sci. 14 (6), 633–649.
Lee, S., Moisa, N., Weiss, M., 2003. Open source as a signalling device-an economic

analysis. Working Paper Series: Finance & Accounting. Johann Wolfgang Goethe-
Universität Frankfurt am Main.

Lerner, J., Tirole, J., 2002. Some simple economics of open source. J. Ind. Econ. 50 (2),
197–234.

Levine, S.S., Prietula, M.J., 2013. Open collaboration for innovation: principles and
performance. Organ. Sci. 25 (5), 1414–1433.

Levy, S., 1984. Hackers: Heroes of the Computer Revolution. Anchor Press/Doubleday,
Garden City, NY.

Majchrzak, A., Malhotra, A., 2020. Unleashing the Crowd: Collaborative Solutions to
Wicked Business and Societal Problems. Palgrave Macmillan, Cham, Switzerland.

Mallapragada, G., Grewal, R., Lilien, G., 2012. User-generated open source products:
founder’s social capital and time to product release. Mark. Sci. 31 (3), 474–492.

Marlow, J., Dabbish, L., 2013. Activity traces and signals in software developer
recruitment and hiring. In: Proceedings Conference on Computer Supported
Cooperative Work. (San Antonio, Texas, USA), pp. 145–156.

Marlow, J., Dabbish, L., Herbsleb, J., 2013. Impression formation in online peer
production: activity traces and personal profiles in GitHub. In: Proceedings
Conference on Computer Supported Cooperative Work. (San Antonio, Texas, USA),
pp. 117–128.

Maruping, L.M., Daniel, S.L., Cataldo, M., 2019. Developer centrality and the impact of
value congruence and incongruence on commitment and code contribution activity
in open source software communities. MIS Q. 43 (3), 951–976.

Mateos-Garcia, J., Steinmueller, W.E., 2008. The institutions of open source software:
examining the Debian community. Inf. Econ. Policy 20 (4), 333–344.

McDonald, N., Goggins, S., 2013. Performance and participation in open source software
on GitHub. In: Proceedings CHI’13 Extended Abstracts on Human Factors in
Computing Systems. (Paris, France), pp. 139–144.

Merton, R.K., 1968. The Matthew effect in science: the reward and communication
systems of science are considered. Science 159 (3810), 56–63.

Mingers, J., Walsham, G., 2010. Toward ethical information systems: the contribution of
discourse ethics. MIS Q. 34 (4), 833–854.

Mockus, A., Fielding, R.T., Herbsleb, J.D., 2002. Two case studies of open source
software development: Apache and Mozilla. ACM Trans. Softw. Eng. Methodol. 11
(3), 309–346.

Moon, J.Y., Sproull, L.S., 2008. The role of feedback in managing the Internet-based
volunteer work force. Inf. Syst. Res. 19 (4), 494–515.

Nelson, M., Sen, R., Subramaniam, C., 2006. Understanding open source software: a
research classification framework. Commun. AIS 17 (1), 266–287.

Nonnecke, B., Preece, J., 2003. Silent participants: getting to know lurkers better. From
usenet to CoWebs. Springer, London, pp. 110–132.

Ollo-Lopez, A., Bayo-Moriones, A., Larraza-Kintana, M., 2010. The relationship between
new work practices and employee effort. J. Ind. Relat. 52 (2), 219–235.

O’Mahony, S., Bechky, B.A., 2008. Boundary organizations: enabling collaboration
among unexpected allies. Adm. Sci. Q. 53 (3), 422–459.

O’Mahony, S., Ferraro, F., 2007. The emergence of governance in an open source
community. Acad. Manage. J. 50 (5), 1079–1106.

Piezunka, H., Dahlander, L., 2015. Distant search, narrow attention: how crowding alters
organizations’ filtering of suggestions in crowdsourcing. Acad. Manage. J. 58 (3),
856–880.

Piezunka, H., Dahlander, L., 2019. Idea rejected, tie formed: organizations’ feedback on
crowdsourced ideas. Acad. Manage. J. 62 (2), 503–530.

Puranam, P., Alexy, O., Reitzig, M., 2014. What’s “new” about new forms of organizing?
Acad. Manage. Rev. 39 (2), 162–180.

Raveendran, M., Puranam, P., Warglien, M., 2021. Division of labor through self-
selection. Organ. Sci. In press.

Raymond, E., 1999. The Cathedral & the Bazaar: Musings on Linux and Open Source by
an Accidental Revolutionary. O’Reilly & Associates, Sebastopolous, CA.

Riedl, C., Seidel, V.P., 2018. Learning from mixed signals in online innovation
communities. Organ. Sci. 29 (6), 1010–1032.

Roberts, J.A., Hann, I., Slaughter, S.A., 2006. Understanding the motivations,
participation, and performance of open source software developers: a longitudinal
study of the Apache projects. Manage. Sci. 52 (7), 984–999.

Sanders, J., 1998. Linux, open source, and software’s future. IEEE Softw. 15 (5), 88–91.
Santos, C., Kuk, G., Kon, F., Pearson, J., 2013. The attraction of contributors in free and

open source software projects. J. Strat. Inf. Syst. 22 (1), 26–45.
Schøne, P., 2009. New technologies, new work practices and the age structure of the

workers. J. Popul. Econ. 22 (3), 803–826.
Sen, R., Subramaniam, C., Nelson, M.L., 2008. Determinants of the choice of open source

software license. J. Manage. Inf. Syst. 25 (3), 207–240.
Shah, S.K., 2006. Motivation, governance, and the viability of hybrid forms. Manage. Sci.

52 (7), 1000–1014.
Siggelkow, N., Rivkin, J.W., 2009. Hiding the evidence of valid theories: how coupled

search processes obscure performance differences among organizations. Adm. Sci. Q.
54 (4), 602–634.

Simon, H.A., 1951. A formal theory of the employment relationship. Econometrica 19
(3), 293–305.

Spaeth, S., von Krogh, G., He, F., 2015. Research note—perceived firm attributes and
intrinsic motivation in sponsored open source software projects. Inf. Syst. Res. 26
(1), 224–237.

Stallman, R., 1999. The GNU operating system and the free software movement. In:
DiBona, C., Ockman, S., Stone, M (Eds.), Open Sources: Voices from the Open Source
Revolution. O’Reilly & Associates, Sebastopol, CA, pp. 53–70.

Staw, B.M., 1981. The escalation of commitment to a course of action. Acad. Manage.
Rev. 6 (4), 577–587.

Stewart, K.J., Ammeter, A.P., Maruping, L.M., 2006. Impacts of license choice and
organizational sponsorship on user interest and development activity in open source
software projects. Inf. Syst. Res. 17 (2), 126–144.

Stewart, K.J., Gosain, S., 2006. The impact of ideology on effectiveness in open source
software development teams. MIS Q. 30 (2), 291–314.

Subramaniam, C., Sen, R., Nelson, M.L., 2009. Determinants of open source software
project success: a longitudinal study. Decis. Support Syst. 46 (2), 576–585.

Tsay, J., Dabbish, L., Herbsleb, J., 2013. Social media in transparent work environments.
In: Proceedings 6th International Workshop on Cooperative and Human Aspects of
Software Engineering. (San Francisco, USA), pp. 65–72.

Tsay, J., Dabbish, L., Herbsleb, J., 2014a. Let’s talk about it: evaluating contributions
through discussion in GitHub. In: Proceedings 22nd International Symposium on
Foundations of Software Engineering. (ACM, Hong Kong, China), pp. 144–154.

Tsay, J., Dabbish, L., Herbsleb, J., 2014b. Influence of social and technical factors for
evaluating contribution in GitHub. In: Proceedings 36th International Conference on
Software Engineering. (Hyderabad, India), pp. 356–366.

Vasilescu, B., Filkov, V., Serebrenik, A., 2013. StackOverflow and GitHub: associations
between software development and crowdsourced knowledge. In: Proceedings
International Conference on Social Computing. (Washington DC, USA), pp. 188–195.

von Hippel, E., von Krogh, G., 2003. Open source software and the “private-collective”
innovation model: Issues for organization science. Organ. Sci. 14 (2), 209–223.

von Krogh, G., Haefliger, S., Spaeth, S., Wallin, M.W., 2012. Carrots and rainbows:
Motivation and social practice in open source software development. MIS Q. 36 (2),
649–676.

von Krogh, G., Spaeth, S., Lakhani, K.R., 2003. Community, joining, and specialization in
open source software innovation: a case study. Res. Policy 32 (7), 1217–1241.

Wasko, M.M., Faraj, S., 2000. “It is what one does”: why people participate and help
others in electronic communities of practice. J. Strat. Inf. Syst. 9 (2-3), 155–173.

Wasko, M.M., Faraj, S., 2005. Why should I share? Examining social capital and
knowledge contribution in electronic networks of practice. MIS Q. 29 (1), 35–57.

West, J., O’Mahony, S., 2008. The role of participation architecture in growing
sponsored open source communities. Ind. Innov. 15 (2), 145–168.

Wooldridge, J., 2010. Econometric Analysis of Cross-Section and Panel Data, second ed.
MIT Press, Cambridge, MA.

Wooten, J.O., Ulrich, K.T., 2017. Idea generation and the role of feedback: Evidence from
field experiments with innovation tournaments. Prod. Oper. Manag. 26 (1), 80–99.

Xu, B., Jones, D.R., Shao, B., 2009. Volunteers’ involvement in online community based
software development. Inf. Manage. 46 (3), 151–158.

Zhang, C., Hahn, J., De, P., 2013. Research note—Continued participation in online
innovation communities: does community response matter equally for everyone? Inf.
Syst. Res. 24 (4), 1112–1130.

Zhu, H., Zhang, A., He, J., Kraut, R.E., Kittur, A., 2013. Effects of peer feedback on
contribution: a field experiment in Wikipedia. In: Proceedings Conference on Human
Factors in Computing Systems. (Paris, France), pp. 2253–2262.

I. Smirnova et al.

http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0065
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0065
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0066
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0066
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0067
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0067
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0067
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0067
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0068
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0069
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0069
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0070
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0071
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0071
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0072
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0072
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0073
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0073
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0073
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0074
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0074
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0075
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0075
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0076
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0076
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0077
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0077
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0078
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0078
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0079
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0079
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0079
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0080
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0080
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0080
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0080
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0081
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0081
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0081
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0082
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0082
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0083
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0083
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0083
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0084
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0084
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0085
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0085
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0086
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0086
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0086
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0087
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0087
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0088
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0088
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0089
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0089
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0090
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0090
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0091
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0091
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0092
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0092
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0093
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0093
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0093
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0094
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0094
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0095
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0095
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0096
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0096
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0097
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0097
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0098
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0098
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0099
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0099
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0099
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0100
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0101
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0101
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0102
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0102
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0103
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0103
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0104
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0104
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0105
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0105
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0105
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0106
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0106
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0107
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0107
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0107
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0108
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0108
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0108
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0109
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0109
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0110
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0110
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0110
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0111
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0111
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0112
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0112
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0113
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0113
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0113
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0114
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0114
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0114
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0115
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0115
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0115
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0116
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0116
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0116
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0117
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0117
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0118
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0118
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0118
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0119
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0119
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0120
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0120
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0121
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0121
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0122
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0122
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0123
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0123
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0124
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0124
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0125
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0125
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0126
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0126
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0126
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0127
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0127
http://refhub.elsevier.com/S0048-7333(21)00165-7/sbref0127

	What makes the right OSS contributor tick? Treatments to motivate high-skilled developers
	1 Introduction
	2 Selection, sorting, and treatment in open source software
	2.1 Selection and sorting in OSS development
	2.2 Untangling treatment effects in OSS: the role of project-level norms and aspirations
	2.3 The conditional treatment effect of founders’ commercial intent
	2.4 The conditional treatment effect of feedback
	2.4.1 The conditional treatment effect of feedback type
	2.4.2 The conditional treatment effect of feedback speed

	3 Data and methods
	3.1 Setting
	3.2 Sample construction
	3.3 Matching GitHub and Stack Overflow data
	3.4 Variables
	3.4.1 Dependent variable
	3.4.2 Independent variables
	3.4.3 Control variables

	3.5 Estimation model

	4 Results
	4.1 Alternative explanations and robustness checks

	5 Discussion and conclusion
	5.1 Summary of results
	5.2 Implications for theory
	5.3 Limitations
	5.4 Implications for practice

	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgement
	Supplementary materials
	References

