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1. Introduction

Production industries today face a wide range of challenges. 
Especially shorter product life cycles, smaller batch sizes, and 
an increasing number of product variants need to be managed 
[1]. As the final manufacturing step, assembly is the point at 
which variants are formed and is therefore significantly 
affected by these trends. Reconfigurable assembly systems 
(RAS) offer the flexibility to maintain high productivity under 
such challenging conditions [2]. Due to their inherent 
flexibility, industrial robots are essential in the design of RAS. 
Therefore, not only the number of robots used but also the 
variety of tasks performed per robot system are growing 
continuously, which leads to a tremendous increase in the effort 
involved in robot programming [3, 4].

In practice, industrial robots are programmed either online 
or offline. Play-back and Teach-in are two of the most common 
online programming techniques meaning that they are 
performed directly on the robot in the production environment. 

Such programming procedures are relatively simple, since they 
do not require knowledge of a specific programming language. 
However, the robot is blocked during programming, and the 
implementable complexity is highly restricted. Furthermore, 
even small changes in the process may necessitate complete 
reprogramming.

In contrast, offline programming generally involves 
simulating the robot application, which means that
programming is mainly done at the computer, thus avoiding the 
aforementioned disadvantages associated with online methods. 
It is therefore the predominant method employed in industrial 
practice [5]. Nevertheless, since the underlying digital planning 
models do not exactly match the real world, the commissioning 
of computer-generated robot programs requires extensive 
manual adjustments to the conditions prevailing on-site [6]. 
These include the calibration of the components involved in the 
process (robot, workpiece, tools, and environment) as well as 
the correction of individual robot poses. Considering the rising 
programming effort, this process step, in which simulation-
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based robot code is transferred to the actual application, is 
increasingly problematic.

In this paper, we present a new concept for the automated 
commissioning of offline-generated robot programs. It focuses 
on utilizing visual features from camera images as additional 
references to describe robot poses. This information is 
processed using artificial intelligence (AI) trained on synthetic 
data and used to compensate for deviations between simulation 
and reality. Our approach thus reduces both manual effort and 
system downtimes.

The rest of the paper is structured as follows: Section 2 
reviews the state of the art in robot programming and vision-
based robot control. Section 3 highlights the need for action. In 
Section 4, we present our concept and discuss its crucial 
aspects. Finally, Section 5 summarizes our paper and provides 
an outlook of our future work.

Nomenclature

AI Artificial Intelligence
AOLP Automated Offline Programming
CNN Convolutional Neural Network
IBVS Image-based Visual Servoing
PBVS Pose-based Visual Servoing
RAS Reconfigurable Assembly System
TCP Tool Center Point
VS Visual Servoing

2. State of the art

2.1. Automated offline robot programming 

To deal with the increasing programming effort of industrial 
robots, researchers are focusing on the automated generation of 
robot code. Automated offline programming (AOLP) uses 
CAD models and sensor data to generate robot programs for 
predefined processes such as welding [7] or dispensing [8] with 
as little human intervention as possible. Two different 
approaches can be distinguished. Either the real conditions are 
captured by a vision sensor and the simulation is accordingly 
updated [8, 9], or a calibration routine is used to compensate 
for deviations between simulation and reality [7].

In [8], process knowledge is stored in a database linked to 
the CAD model. Thus, after the actual part pose is determined 
by processing a depth image, the functionalities of a 
commercial offline programming tool are used to derive robot 
poses and trajectories. The solution presented in [9] is similar, 
but the programmer defines the working path in relation to the 
workpiece. The robot trajectory is then created automatically. 
However, these approaches require a robot application to be 
running at programming time. Accordingly, the programming 
and commissioning processes are highly dependent on the 
system setup and cannot be prepared in advance.

In contrast, calibration-based solutions enable complete 
programming in advance premised on a CAD model of the 
robot cell. At commissioning time, the robot program is 
adjusted to suit the on-site conditions by processing sensory
feedback. [7] considers touch sensing and laser profilometry to 
determine the actual workpiece pose for a subsequent welding 

process. An error function is calculated from this information 
to correct the work path or rather the trajectory of the robot. 
The adjustment can also be done during process execution by a 
feedback control [10, 11]. However, both cases require a 
continuous feature such as a weld seam, by which the robot 
motion is aligned.

In conclusion, from a robotics point of view, AOLP is 
mainly restricted to relatively simple processes centered on a 
single workpiece and with no direct coupling between the robot 
and its environment. Assembly and handling applications do 
not comply with these limitations. However, they account for 
more than half of all installed robot applications, which 
emphasizes the need for a new solution [4].

2.2. Task-oriented programming

Task-oriented programming is an active field of research 
that aims to simplify robot programming. Instead of describing 
the way in which a robot is supposed to do something, the focus 
is on the task itself and the goal to be achieved. By
encapsulating robot functions as reusable and parameterizable 
skills, [12] presents a method that enables task-level robot 
programming through simple concatenation of these skills. 
This reduces the degree of expertise required for robot 
programming.

Automated task programming goes one step further by 
merely requiring a goal state to be provided by the end-user. 
The robot system itself then decides which skills to execute so 
as to reach the desired state. [13] and [14] present the three 
main building blocks of such a system. The job of the task 
planner is to translate the task description into a sequence of 
appropriate skills. This requires a knowledge base, referred to 
as the world model, which describes and continuously updates 
the structure of the robot’s environment. The skill manager or 
task controller provides the runtime for skill execution.

Task-oriented programming is of great value in dealing with 
the increasing programming effort encountered in industrial 
robotics. While commercial task-level programming solutions 
already exist, the autonomous scheduling and execution of 
skills is still in its infancy. One major drawback are the 
sensorial capabilities required to manage the uncertainty of 
reality.

2.3. Visual Servoing 

As a result of the high information density, declining prices 
of sensory hardware, and advances in data processing afforded 
by AI, machine vision is becoming an increasingly important 
aspect of industrial robotics. However, robot control based on 
visual information has been the subject of research for more 
than three decades. When implemented in a closed-loop, it is 
commonly referred to by the term ‘visual servoing’ (VS).

Two main classes of VS exist. The first is position-based VS 
(PBVS), in which the image is processed to extract the pose of 
a target object, enabling the error of the robot pose to be 
calculated [15]. 3D cameras are often used for this purpose. The
other class is image-based VS (IBVS), in which the control 
error is determined and compensated for directly within the 
feature space of the 2D image [15]. Both approaches have their 
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advantages and disadvantages, leading to the development of
hybrid techniques combining PBVS and IBVS [16].

A VS solution designed for smartphone back shell assembly 
is presented in [17]. The robot deployed carries two monocular 
cameras in a so-called eye-in-hand configuration. The overlap 
in the fields of view of the two cameras enables the 3D pose of 
the smartphone to be reconstructed. As the robot moves 
towards the smartphone, the camera images become disjoint,
and control is switched from PBVS to IBVS, using the corners 
of the smartphone as image references. [18] and [19] are 
examples of pure IBVS implementations. While [18] also uses 
an eye-in-hand configuration to control a robot to plug a USB 
connector into a hub, the authors of [19] deployed two 
stationary cameras to solve a peg-in-hole task.

However, all these implementations have a common 
drawback. The image processing can only be used for the 
considered use case since specific features such as the corners 
of a particular smartphone, the outer contours of a USB hub, or 
the shape of a bolt are extracted and processed. This means that
the image processing is not scalable and needs to be revised 
even in the event of only minor changes to the robot 
application. To date, this necessitates a high degree of
engineering effort.

3. Motivation

Since the number of industrial robot applications continues 
to grow, simplification and automation of robot programming 
have become major fields of research. Despite the essential
meaning of sensor processing for those approaches its 
implementation is usually neglected. However, little is 
achieved when the engineering effort for robot programming is 
shifted to the configuration of sensor processing.

Based on AI our concept promises the automated 
configuration of application-specific image processing for 
automated commissioning of robot programs. The main goal is 
to integrate the generation of synthetic image data and the 
identification of visual references in the workflow of 
simulation-based robot programming. Subsequently, advanced 
AI methods can be applied to efficiently compensate for
deviations between reality and the virtual world by VS.

4. Automated commissioning of offline-generated robot 
programs 

4.1. Concept Overview

The proposed concept for the automated preparation and 
execution of commissioning offline-generated programs 
comprises seven steps (see Fig. 1).

Step 1: First, we expand the simulation used for offline 
programming by adding a virtual camera to derive a 2D 
projection of the 3D simulation. The single images created 
represent the robot’s perception through a hand-in-eye camera.

Step 2: Here, the simulation parameters, such as lighting 
conditions or object positions, are varied. This generates 
different instances of a scene, and an infinitely large data set of 
synthetic images can be captured by the virtual camera. We use 
guided domain randomization, as described in Section 4.2, to 
ensure that the AI trained on this data (see Step 4) also applies 
to real-world camera images.

Step 3: In this step, particular image features are
automatically determined as landmarks. The original robot 
code is then augmented by the nominal values of these image 
features as additional pose references. In terms of AI training, 
the grouped landmarks of an image represent the corresponding

Fig. 1. Concept for the automated commissioning of offline-generated robot programs

Parameter A

Parameter B

Parameter C

Parameter D

Parameter EVirtual Camera
1

Simulation

Camera

Robot Application

IBVS
Controller

7

  
  
  
 

  
  
  
 

  
  
  
 

Neural
Network

2

4

Legend:
  

   

: Actual value of an
image feature 

: Nominal value of
an image feature

5

6

Program

   
   
   
 

3

This is a resupply of March 2023 as the template used in the publication of the original article contained errors. The content of the article has remained unaffected.



Lukas Tanz  et al. / Procedia CIRP 107 (2022) 810–814 813

image label. The automatic selection of appropriate image 
features is a crucial aspect of our concept. We discuss this 
further in Section 4.3.

Steps 4 and 5: In preparation for the rollout of a new robot 
program, a neural network is trained to detect landmarks based 
on synthetic data. At commissioning time, the neural network
interprets real-world camera images to determine the actual 
landmark values. We use Convolutional Neural Networks 
(CNN) since they have proven their great potential for 
landmark detection in other fields of application [20,21].

Steps 6 and 7: The best fit to their nominal values is 
calculated from the actual image feature manifestations. 
Compensation for any deviation is then performed by IBVS. 
While the motion commands from the original robot code are 
executed, the IBVS acts as a supervisor that monitors the 
camera data collected online and adjusts single robot poses as 
needed.

4.2. Synthetic data generation

Generating a sufficient amount of real-world data for CNN 
training would be more costly than manual commissioning. So 
instead, synthetic images derived from the simulation are 
required. However, since a simulation is just a simplified 
version of reality, knowledge gained from simulated 
experience cannot be transferred directly to reality. This is 
commonly referred to as the reality gap.

In recent years, researchers have developed a number of 
strategies to bridge the reality gap. Among the most promising 
ones, particularly with vision-based robot applications, is 
domain randomization presented by [22]. In a simulation used 
for CNN training, rather than faithfully modeling reality, 
parameters that are hard to control and likely to interfere with 
image processing, such as lighting conditions or surface 
textures, are subjected to intense variation. This forces the 
network to learn a representation of the images that is as 
independent of those parameters as possible. The successful 
application of the CNN to real-world data has demonstrated the 
potential of this approach [22]. However, the achieved result 
quality decreases if the simulation is too heavily randomized. 
This is also shown in [23], in which performance loss is 
observed when too much randomization exists in simulation-
based training of a deep-reinforcement learning agent for the 
robotic handling of deformable objects.

We adapt the domain randomization approach in our 
concept. To avoid performance loss caused by excessive 
undirected randomization, we distinguish between heuristic 
and diffuse parameters (see Fig. 2). While both parameter types 
are likely to disturb image processing, only the scattering of 
heuristic parameters can be estimated at programming time. 
Diffuse parameters are handled in the manner already familiar 
from domain randomization, i.e., scatter is selected to be 
unrealistically large. In contrast, heuristic parameters are 
evaluated in more detail. The aim is to obtain a reasonable
assessment of the underlying value range and probability
distribution.

Representative use cases are selected and analyzed from the 
vast number of robot-based assembly and handling 
applications. In particular, the effects of uncertainty in the 
individual components on the overall system are assessed by a 

Figure 2. Classification of uncertainty effects 
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required set of image features are needed to obtain an 
overdetermined system of equations that can be solved by the 
least squared error method.

In order to define an appropriate label, all features of a 
geometrical class, such as corners and midpoints, are extracted 
from the simulated scene. The transformation of the virtual 
camera then derives their image manifestations. Theoretically, 
all these features can be grouped as one label. Pre-processing 
is considered as a way of reducing the data load and avoiding 
the problems associated with this. Potentially poor image 
features are filtered, and the label size is reduced, by applying 
assessment criteria and thresholds. From our perspective, two 
different types of evaluation (or a combination of both) would 
seem reasonable. The first option is to consider the subsequent 
visual servoing feedback loop. The criteria are concerned with 
the following aspects:

• Uniqueness: To avoid ambiguity errors, the image features 
must be locally unique.

• Detectability: The image features must be detectable under 
varying environmental conditions.

• Controllability: A distinct robot motion for deviation 
compensation must be derivable.

Assuming that the process is mainly driven by the robot, the 
second reasonable option is to consider the Euclidean distance 
between features and the TCP. In this case, the number of 
landmarks decreases as the TCP distance increases.

5. Conclusion and Outlook 

The concept presented here promises to efficiently 
compensate for deviations between simulation and reality by 
utilizing image features as additional references for describing
robot poses. This accelerates the commissioning of offline-
generated robot code and reduces the required manual effort.
Therefore, we described solution strategies for the crucial 
aspects of data generation and labeling. By advancing domain 
randomization to guided domain randomization, we retain 
useful data patterns in the synthetic image data. Thus, we 
expect increasing accuracy and precision in the task of 
landmark detection. However, the identification of robust 
natural landmarks without the possibility of analyzing real-
world data or at least the environmental conditions prevailing 
on-site remains a major challenge.

The practical applicability of our concept requires a high 
degree of automation of the single process steps to avoid 
additional effort. While this is already given for the CNN 
training and the randomization of diffuse parameters we will 
focus on methods and guidelines to determine heuristic 
parameters. Furthermore, we will experimentally evaluate 
different approaches for landmark selection. Therefore, the 
concept is intended to be tested with typical assembly and 
handling operations. By deliberate manipulations of the 
environmental conditions and statistical analysis, the reliability 
and application limits will be also investigated. In a later step,
we plan to consider different neural network structures. For 
instance, linking region-specific networks shows great 
potential for facial landmark detection [25].
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