
ScienceDirect

Available online at www.sciencedirect.com

www.elsevier.com/locate/procedia
Procedia CIRP 107 (2022) 810–814

2212-8271 © 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the International Programme committee of the 55th CIRP Conference on Manufacturing Systems
10.1016/j.procir.2022.05.067

© 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the International Programme committee of the 55th CIRP Conference on Manufacturing Systems

Keywords: offline robot programming; visual servoing; reality gap; domain randomization

1. Introduction

Production industries today face a wide range of challenges.
Especially shorter product life cycles, smaller batch sizes, and
an increasing number of product variants need to be managed
[1]. As the final manufacturing step, assembly is the point at
which variants are formed and is therefore significantly
affected by these trends. Reconfigurable assembly systems
(RAS) offer the flexibility to maintain high productivity under
such challenging conditions [2]. Due to their inherent
flexibility, industrial robots are essential in the design of RAS.
Therefore, not only the number of robots used but also the
variety of tasks performed per robot system are growing
continuously, which leads to a tremendous increase in the effort
involved in robot programming [3, 4].

In practice, industrial robots are programmed either online
or offline. Play-back and Teach-in are two of the most common
online programming techniques meaning that they are
performed directly on the robot in the production environment.

Such programming procedures are relatively simple, since they
do not require knowledge of a specific programming language.
However, the robot is blocked during programming, and the
implementable complexity is highly restricted. Furthermore,
even small changes in the process may necessitate complete
reprogramming.

In contrast, offline programming generally involves
simulating the robot application, which means that
programming is mainly done at the computer, thus avoiding the
aforementioned disadvantages associated with online methods.
It is therefore the predominant method employed in industrial
practice [5]. Nevertheless, since the underlying digital planning
models do not exactly match the real world, the commissioning
of computer-generated robot programs requires extensive
manual adjustments to the conditions prevailing on-site [6].
These include the calibration of the components involved in the
process (robot, workpiece, tools, and environment) as well as
the correction of individual robot poses. Considering the rising
programming effort, this process step, in which simulation-

In55th CIRP Conference on Manufacturing Systems
Automated Commissioning of Offline-Generated Robot Programs

Lukas Tanza,*, Rüdiger Dauba

a Institute for Machine Tools and Industrial Management – Technical University of Munich
Boltzmannstr. 15, 85748 Garching

* Corresponding author. Tel.: +49-89-289-55465; fax: +49-89-289-1555. E-mail address: Lukas.Tanz@tum.de

Abstract

The flexibility of industrial robots accounts for their importance in reconfigurable production systems. Advanced methods of offline
programming based on 3D simulation promise seamless adaptation to changing circumstances. However, since digital planning
models generally do not match reality, the commissioning of computer-generated robot programs involves extensive manual
adjustment to the on-site conditions. This paper presents a concept for the automated commissioning of offline-generated robot
programs to reduce downtimes of industrial robots and to increase the process consistency of offline robot programming. The
presented approach aims for a hybrid motion control of industrial robots that automatically compensates for deviations between
simulation and reality. For this purpose, robot poses are described not only by the joint positions but also by the anticipated sensor
information. During process execution, robot poses are adjusted as required on the basis of the sensor data collected online.

This is a resupply of March 2023 as the template used in the publication of the original article contained errors. The content of the article has remained unaffected.

Lukas Tanz et al. / Procedia CIRP 107 (2022) 810–814 811

based robot code is transferred to the actual application, is
increasingly problematic.

In this paper, we present a new concept for the automated
commissioning of offline-generated robot programs. It focuses
on utilizing visual features from camera images as additional
references to describe robot poses. This information is
processed using artificial intelligence (AI) trained on synthetic
data and used to compensate for deviations between simulation
and reality. Our approach thus reduces both manual effort and
system downtimes.

The rest of the paper is structured as follows: Section 2
reviews the state of the art in robot programming and vision-
based robot control. Section 3 highlights the need for action. In
Section 4, we present our concept and discuss its crucial
aspects. Finally, Section 5 summarizes our paper and provides
an outlook of our future work.

Nomenclature

AI Artificial Intelligence
AOLP Automated Offline Programming
CNN Convolutional Neural Network
IBVS Image-based Visual Servoing
PBVS Pose-based Visual Servoing
RAS Reconfigurable Assembly System
TCP Tool Center Point
VS Visual Servoing

2. State of the art

2.1. Automated offline robot programming

To deal with the increasing programming effort of industrial
robots, researchers are focusing on the automated generation of
robot code. Automated offline programming (AOLP) uses
CAD models and sensor data to generate robot programs for
predefined processes such as welding [7] or dispensing [8] with
as little human intervention as possible. Two different
approaches can be distinguished. Either the real conditions are
captured by a vision sensor and the simulation is accordingly
updated [8, 9], or a calibration routine is used to compensate
for deviations between simulation and reality [7].

In [8], process knowledge is stored in a database linked to
the CAD model. Thus, after the actual part pose is determined
by processing a depth image, the functionalities of a
commercial offline programming tool are used to derive robot
poses and trajectories. The solution presented in [9] is similar,
but the programmer defines the working path in relation to the
workpiece. The robot trajectory is then created automatically.
However, these approaches require a robot application to be
running at programming time. Accordingly, the programming
and commissioning processes are highly dependent on the
system setup and cannot be prepared in advance.

In contrast, calibration-based solutions enable complete
programming in advance premised on a CAD model of the
robot cell. At commissioning time, the robot program is
adjusted to suit the on-site conditions by processing sensory
feedback. [7] considers touch sensing and laser profilometry to
determine the actual workpiece pose for a subsequent welding

process. An error function is calculated from this information
to correct the work path or rather the trajectory of the robot.
The adjustment can also be done during process execution by a
feedback control [10, 11]. However, both cases require a
continuous feature such as a weld seam, by which the robot
motion is aligned.

In conclusion, from a robotics point of view, AOLP is
mainly restricted to relatively simple processes centered on a
single workpiece and with no direct coupling between the robot
and its environment. Assembly and handling applications do
not comply with these limitations. However, they account for
more than half of all installed robot applications, which
emphasizes the need for a new solution [4].

2.2. Task-oriented programming

Task-oriented programming is an active field of research
that aims to simplify robot programming. Instead of describing
the way in which a robot is supposed to do something, the focus
is on the task itself and the goal to be achieved. By
encapsulating robot functions as reusable and parameterizable
skills, [12] presents a method that enables task-level robot
programming through simple concatenation of these skills.
This reduces the degree of expertise required for robot
programming.

Automated task programming goes one step further by
merely requiring a goal state to be provided by the end-user.
The robot system itself then decides which skills to execute so
as to reach the desired state. [13] and [14] present the three
main building blocks of such a system. The job of the task
planner is to translate the task description into a sequence of
appropriate skills. This requires a knowledge base, referred to
as the world model, which describes and continuously updates
the structure of the robot’s environment. The skill manager or
task controller provides the runtime for skill execution.

Task-oriented programming is of great value in dealing with
the increasing programming effort encountered in industrial
robotics. While commercial task-level programming solutions
already exist, the autonomous scheduling and execution of
skills is still in its infancy. One major drawback are the
sensorial capabilities required to manage the uncertainty of
reality.

2.3. Visual Servoing

As a result of the high information density, declining prices
of sensory hardware, and advances in data processing afforded
by AI, machine vision is becoming an increasingly important
aspect of industrial robotics. However, robot control based on
visual information has been the subject of research for more
than three decades. When implemented in a closed-loop, it is
commonly referred to by the term ‘visual servoing’ (VS).

Two main classes of VS exist. The first is position-based VS
(PBVS), in which the image is processed to extract the pose of
a target object, enabling the error of the robot pose to be
calculated [15]. 3D cameras are often used for this purpose. The
other class is image-based VS (IBVS), in which the control
error is determined and compensated for directly within the
feature space of the 2D image [15]. Both approaches have their

This is a resupply of March 2023 as the template used in the publication of the original article contained errors. The content of the article has remained unaffected.

812 Lukas Tanz et al. / Procedia CIRP 107 (2022) 810–814

advantages and disadvantages, leading to the development of
hybrid techniques combining PBVS and IBVS [16].

A VS solution designed for smartphone back shell assembly
is presented in [17]. The robot deployed carries two monocular
cameras in a so-called eye-in-hand configuration. The overlap
in the fields of view of the two cameras enables the 3D pose of
the smartphone to be reconstructed. As the robot moves
towards the smartphone, the camera images become disjoint,
and control is switched from PBVS to IBVS, using the corners
of the smartphone as image references. [18] and [19] are
examples of pure IBVS implementations. While [18] also uses
an eye-in-hand configuration to control a robot to plug a USB
connector into a hub, the authors of [19] deployed two
stationary cameras to solve a peg-in-hole task.

However, all these implementations have a common
drawback. The image processing can only be used for the
considered use case since specific features such as the corners
of a particular smartphone, the outer contours of a USB hub, or
the shape of a bolt are extracted and processed. This means that
the image processing is not scalable and needs to be revised
even in the event of only minor changes to the robot
application. To date, this necessitates a high degree of
engineering effort.

3. Motivation

Since the number of industrial robot applications continues
to grow, simplification and automation of robot programming
have become major fields of research. Despite the essential
meaning of sensor processing for those approaches its
implementation is usually neglected. However, little is
achieved when the engineering effort for robot programming is
shifted to the configuration of sensor processing.

Based on AI our concept promises the automated
configuration of application-specific image processing for
automated commissioning of robot programs. The main goal is
to integrate the generation of synthetic image data and the
identification of visual references in the workflow of
simulation-based robot programming. Subsequently, advanced
AI methods can be applied to efficiently compensate for
deviations between reality and the virtual world by VS.

4. Automated commissioning of offline-generated robot
programs

4.1. Concept Overview

The proposed concept for the automated preparation and
execution of commissioning offline-generated programs
comprises seven steps (see Fig. 1).

Step 1: First, we expand the simulation used for offline
programming by adding a virtual camera to derive a 2D
projection of the 3D simulation. The single images created
represent the robot’s perception through a hand-in-eye camera.

Step 2: Here, the simulation parameters, such as lighting
conditions or object positions, are varied. This generates
different instances of a scene, and an infinitely large data set of
synthetic images can be captured by the virtual camera. We use
guided domain randomization, as described in Section 4.2, to
ensure that the AI trained on this data (see Step 4) also applies
to real-world camera images.

Step 3: In this step, particular image features are
automatically determined as landmarks. The original robot
code is then augmented by the nominal values of these image
features as additional pose references. In terms of AI training,
the grouped landmarks of an image represent the corresponding

Fig. 1. Concept for the automated commissioning of offline-generated robot programs

Parameter A

Parameter B

Parameter C

Parameter D

Parameter EVirtual Camera
1

Simulation

Camera

Robot Application

IBVS
Controller

7

Neural
Network

2

4

Legend:

: Actual value of an
image feature

: Nominal value of
an image feature

5

6

Program

3

This is a resupply of March 2023 as the template used in the publication of the original article contained errors. The content of the article has remained unaffected.

Lukas Tanz et al. / Procedia CIRP 107 (2022) 810–814 813

image label. The automatic selection of appropriate image
features is a crucial aspect of our concept. We discuss this
further in Section 4.3.

Steps 4 and 5: In preparation for the rollout of a new robot
program, a neural network is trained to detect landmarks based
on synthetic data. At commissioning time, the neural network
interprets real-world camera images to determine the actual
landmark values. We use Convolutional Neural Networks
(CNN) since they have proven their great potential for
landmark detection in other fields of application [20,21].

Steps 6 and 7: The best fit to their nominal values is
calculated from the actual image feature manifestations.
Compensation for any deviation is then performed by IBVS.
While the motion commands from the original robot code are
executed, the IBVS acts as a supervisor that monitors the
camera data collected online and adjusts single robot poses as
needed.

4.2. Synthetic data generation

Generating a sufficient amount of real-world data for CNN
training would be more costly than manual commissioning. So
instead, synthetic images derived from the simulation are
required. However, since a simulation is just a simplified
version of reality, knowledge gained from simulated
experience cannot be transferred directly to reality. This is
commonly referred to as the reality gap.

In recent years, researchers have developed a number of
strategies to bridge the reality gap. Among the most promising
ones, particularly with vision-based robot applications, is
domain randomization presented by [22]. In a simulation used
for CNN training, rather than faithfully modeling reality,
parameters that are hard to control and likely to interfere with
image processing, such as lighting conditions or surface
textures, are subjected to intense variation. This forces the
network to learn a representation of the images that is as
independent of those parameters as possible. The successful
application of the CNN to real-world data has demonstrated the
potential of this approach [22]. However, the achieved result
quality decreases if the simulation is too heavily randomized.
This is also shown in [23], in which performance loss is
observed when too much randomization exists in simulation-
based training of a deep-reinforcement learning agent for the
robotic handling of deformable objects.

We adapt the domain randomization approach in our
concept. To avoid performance loss caused by excessive
undirected randomization, we distinguish between heuristic
and diffuse parameters (see Fig. 2). While both parameter types
are likely to disturb image processing, only the scattering of
heuristic parameters can be estimated at programming time.
Diffuse parameters are handled in the manner already familiar
from domain randomization, i.e., scatter is selected to be
unrealistically large. In contrast, heuristic parameters are
evaluated in more detail. The aim is to obtain a reasonable
assessment of the underlying value range and probability
distribution.

Representative use cases are selected and analyzed from the
vast number of robot-based assembly and handling
applications. In particular, the effects of uncertainty in the
individual components on the overall system are assessed by a

Figure 2. Classification of uncertainty effects

cause-effect analysis based on the various data generated when
engineering a new robot application. As indicated in Fig. 2, the
primary sources are construction data, datasheets, experimental
research studies, and implicit expert knowledge. Evaluation of
this information results in a prioritized list of uncertainty
effects based not only on their extent but also on their
predictability and the existing data basis. Whereas diffuse
parameters in the simulation represent uncertainty effects that
are hard to model, well-described influences affect the
simulation via heuristic parameters with a realistic value
distribution. However, insufficient data does not automatically
lead to diffuse parameters. According to their priority,
underlying uncertainty effects are further investigated. Here,
we perform a CAD analysis of simple, task-specific structures
such as assembly fixtures to quantify position inaccuracies. For
application-specific components that are more complex (e.g., a
particular robot), experimental studies are considered.

4.3. Image feature selection

In addition to the data, labels are required to train the CNN.
In scientific studies, a target object’s pose is commonly chosen
for this purpose. However, since parts are usually processed in
a constraint position, the assumption that a sufficient amount
of a part's features will be within the camera's field of view does
not apply to industrial applications. Neither is the use of
artificial landmarks such as QR codes or apriltags appropriate,
as it would require a significant manual effort to attach them to
the robot's environment. We therefore concentrate on natural,
application-specific image features as landmarks.

According to [16, 24] and taking the nominal distances
between feature points into account, at least three image points
are required to determine the six degrees of freedom of an
industrial robot. However, the fact that the exact characteristics
of the label or rather the values of the image features in the real
environment are unpredictable at programming time makes the
selection difficult. Due to reflections or positioning
inaccuracies, it is possible that certain image features are not
even visible in the actual camera image. Furthermore, a holistic
consideration of the deviations between simulation and reality
is essential. Otherwise, there is a risk of overfitting local
outliers. Consequently, more than just the theoretically

Construction
data

Datasheets Experimental
studies

Experts

Prioritized uncertainty influences

Sufficient
data base

Statistical description of
heuristic parameters

Randomization of
diffuse parameters

Poor
data base

Experimental
studies

CAD
analysis

This is a resupply of March 2023 as the template used in the publication of the original article contained errors. The content of the article has remained unaffected.

814 Lukas Tanz et al. / Procedia CIRP 107 (2022) 810–814

required set of image features are needed to obtain an
overdetermined system of equations that can be solved by the
least squared error method.

In order to define an appropriate label, all features of a
geometrical class, such as corners and midpoints, are extracted
from the simulated scene. The transformation of the virtual
camera then derives their image manifestations. Theoretically,
all these features can be grouped as one label. Pre-processing
is considered as a way of reducing the data load and avoiding
the problems associated with this. Potentially poor image
features are filtered, and the label size is reduced, by applying
assessment criteria and thresholds. From our perspective, two
different types of evaluation (or a combination of both) would
seem reasonable. The first option is to consider the subsequent
visual servoing feedback loop. The criteria are concerned with
the following aspects:

• Uniqueness: To avoid ambiguity errors, the image features
must be locally unique.

• Detectability: The image features must be detectable under
varying environmental conditions.

• Controllability: A distinct robot motion for deviation
compensation must be derivable.

Assuming that the process is mainly driven by the robot, the
second reasonable option is to consider the Euclidean distance
between features and the TCP. In this case, the number of
landmarks decreases as the TCP distance increases.

5. Conclusion and Outlook

The concept presented here promises to efficiently
compensate for deviations between simulation and reality by
utilizing image features as additional references for describing
robot poses. This accelerates the commissioning of offline-
generated robot code and reduces the required manual effort.
Therefore, we described solution strategies for the crucial
aspects of data generation and labeling. By advancing domain
randomization to guided domain randomization, we retain
useful data patterns in the synthetic image data. Thus, we
expect increasing accuracy and precision in the task of
landmark detection. However, the identification of robust
natural landmarks without the possibility of analyzing real-
world data or at least the environmental conditions prevailing
on-site remains a major challenge.

The practical applicability of our concept requires a high
degree of automation of the single process steps to avoid
additional effort. While this is already given for the CNN
training and the randomization of diffuse parameters we will
focus on methods and guidelines to determine heuristic
parameters. Furthermore, we will experimentally evaluate
different approaches for landmark selection. Therefore, the
concept is intended to be tested with typical assembly and
handling operations. By deliberate manipulations of the
environmental conditions and statistical analysis, the reliability
and application limits will be also investigated. In a later step,
we plan to consider different neural network structures. For
instance, linking region-specific networks shows great
potential for facial landmark detection [25].

References

[1] Lasi, H., Fettke, P., Kemper, H.-G., Feld, T. Hoffmann, M., 2014.
Industry 4.0, Bus Inf Syst Eng 6, pp. 239-242.

[2] Koren, Y., Gu, X., Guo, W., 2018. Reconfigurable manufacturing
systems: Principles, design, and future trends, Front. Mech. Eng. 13,
pp. 121-136.

[3] International Federation of Robotics, 2018. Artificial Intelligence in
Robotics. Retrieved from https://ifr.org/papers.

[4] Müller, C., Kutzbach, N., 2019. World Robotics 2019 - Industrial
Robots. VDMA Services GmbH, Frankfurt.

[5] Hägele, M., Nilsson, K., Pires, J. N., Bischoff, R., 2016. Industrial
Robotics, in “Springer handbook of robotics” B. Siciliano, O. Khatib,
Editors. Springer, Berlin Heidelberg, pp. 1385-1422.

[6] Villani, V., Pini, F., Leali, F., Secchi, C., Fantuzzi, C., 2018. Survey on
Human-Robot Interaction for Robot Programming in Industrial
Applications, IFAC-PapersOnLine 51, pp. 66-71.

[7] Larkin, N., Short, A., Pan, Z., van Duin, S., 2018. Automated
Programming for Robotic Welding, in “Transactions on Intelligent
Welding Manufacturing” S. Chen, Y. Zhang, Z. Feng, Editors. Springer,
Singapore, pp. 48-59.

[8] Maiolino, P., Woolley, R., Branson, D., Benardos, P., Popov, A.,
Ratchev, S., 2017. Flexible robot sealant dispensing cell using RGB-D
sensor and off-line programming, Comput. Integr. Manuf. 48,
pp. 188-195.

[9] Bedaka, A.K., Vidal, J., Lin, C.-Y., 2019. Automatic robot path
integration using three-dimensional vision and offline programming,
Int. M. Adv. Manuf. Technol. 102, pp. 1935-1950.

[10] Graaf, M., 2007. Sensor-guided robotic laser welding, Twente,
University of Twente.

[11] Huang, Y., Xiao, Y., Wang, P., Li, M., 2013. A seam-tracking laser
welding platform with 3D and 2D visual information fusion vision
sensor system, Int. J. Adv. Manuf. Technol. 67, pp. 415-426.

[12] Crosby, M., Rovida, F., Pedersen, M. R., Petrick, R. P. A., Krüger, V.,
2016. Planning for robots with skills, PlanRob, ICAPS, London,
pp. 49-57.

[13] Rovida, F., Crosby, M., Holz, D., Polydoros, A.S., Großmann, B., P. A.,
R., Krüger, P., Krüger, V., 2017. SkiROS - A Skill-Based Robot Control
Platform on Top of ROS, in “Studies in Computational Intelligence” A.
Koubaa, Editor. Springer, Cham, pp. 121-160.

[14] Heuss, L., Reinhart, G., 2020. Integration of Autonomous Task
Planning into Reconfigurable Skill-Based Industrial Robots, ETFA,
IEEE, Vienna, pp. 1293-1296.

[15] Hutchinson, S., Hager, G.D., Corke, P.I., 1996. A tutorial on visual
servo control, IEEE Trans. Robot. 12, pp. 651-670.

[16] Chaumette, F., Hutchinson, S., Corke P., 2016. Visual Servoing, in
“Springer handbook of robotics” B. Siciliano, O. Khatib, Editors.
Springer, Berlin Heidelberg, pp. 841-866.

[17] Chang, W.-C., 2018. Robotic assembly of smartphone back shells with
eye-in-hand visual servoing, Robot. Comput. Integr. Manuf. 50,
pp. 102-113.

[18] Song, H.-C., Kim, M.-C., Song, J.-B., 2015. USB assembly strategy
based on visual servoing and impedance control, URAI, IEEE, Goyang
city, pp. 114-117.

[19] Ma, Y., Liu, X., Zhang, J., de Xu, Zhang, D., Wu, W., 2020. Robotic
grasping and alignment for small size components assembly based on
visual servoing, Int. J. Adv. Manuf. Technol. 106, pp. 4827-4843.

[20] Kunz, F., Stellzig-Eisenhauer, A., Zeman, F., Boldt, J., 2020.
Evaluation of a fully automated cephalometric analysis using a
customized convolutional neural network, J Orofac Orthop. 81,
pp. 52-68.

[21] Feng, Z.-H., Kittler, J., Awais, M., Huber, P., Wu, X.-J. 2018. Wing
Loss for Robust Facial Landmark Localisation with Convolutional
Neural Networks, CVPR, IEEE, Salt Lake City, pp. 2235-2245.

[22] Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.,
2017. Domain randomization for transferring deep neural networks
from simulation to the real world, IROS, IEEE, Vancouver, pp. 23-30.

[23] Matas, J., James, S., Davison, A. J., 2018. Sim-to-Real Reinforcement
Learning for Deformable Object Manipulation, PMLR 87,
pp. 734-743.

[24] Feddema, J.T., Lee, C., Mitchell, O.R., 1991. Weighted selection of
image features for resolved rate visual feedback control, IEEE Trans.
Robot. 7, pp. 31-47.

[25] Chandran, P., Bradley, D., Gross, M., Beeler, T., 2020. Attention-
Driven Cropping for Very High Resolution Facial Landmark Detection,
CVPR, IEEE, pp. 5861-5870.

This is a resupply of March 2023 as the template used in the publication of the original article contained errors. The content of the article has remained unaffected.

