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Abstract

Long-short term memory (LSTM) networks perform well in rainfall-runoff modelling or streamflow predic-
tion. Most existing work has concentrated around training networks with meteorological forcings available
with CAMELS data. There exist approaches which, in addition to the meteorological forcings, also in-
corporate static attributes of basins. Further, initial work was done to allow for uncertainty quantification
by training Bayesian LSTMs. In this paper, the mentioned approaches are combined and a new archi-
tecture to incorporate the static attributes is tested. Catchments from the novel CARAVAN dataset are
used to train an LSTM-based encoder-decoder network as found in Zhu and Laptev (2017). Static basin
attributes, which are also provided with CARAVAN, are added to the embedding produced by the encoder
and then fed through a plain feed forward neural network. Uncertainty quantification is achieved by Monte
Carlo Dropout (MCD). Achieving roughly similar loss and accuracy statics, the prediction results from this
architecture are broadly in line with existing work on deep learning in the field of hydrology.
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1 Introduction

Machine learning models have the potential to improve the understanding of many different scientific fields
(Shen, 2018). One of these fields is hydrology and with it rainfall-runoff predictions. In such predictions,
hydrologists attempt to accurately predict the discharge or streamflow. Streamflow, in turn, is the vol-
ume of water passing a point in a river over a certain time period (Gauch and Lin 2020). To achieve
this goal, meteorological data, also called "forcings," are widely used. These often include temperature,
amount of rainfall and ambient pressure measured at different time intervals. As streamflow predictions
are both temporal as well as spatial problems (Gauch and Lin 2020), a corresponding area must be
defined. This area is referred to as catchment or basin and corresponds to the area from which all pre-
cipitation will ultimately run through the designated measurement point at the river. While there have
been largely process-based models, which attempt to capture the real world physical processes in math-
ematical equations and then run simulations, data-driven approaches have emerged in the more recent
past (Gauch and Lin 2020). Kratzert et al. (2018) argue that improvements in computing power as well
as improved data availability paved the way for these new approaches. A particular class of data-driven
models employ a specific recurrent neural network (RNN) architecture which known as a Long Short-Term
Memory (LSTM) network. While this architecture was developed by Hochreitner and Schmidhuber (1997),
other work such as Gers et al. (2000) further added components to the original architecture. In their ad-
vanced form, LSTMs have been shown to be well suited for time series predictions across numerous fields
such as, among many others, heat load prediction of buildings (Wang et al 2023), detection of concrete
damage (Andrushia et al. 2022), oil production (Panja et al. 2022, Huang et al. 2022), wastewater treat-
ment (Xu et al. 2023), battery temperature prediction (Liu et al. 2024) and prediction of loads for improving
performance of computers (Jayanthi and Vallikannu 2022). Kratzert et al. (2018) first demonstrated that
the LSTM architecture is also successful in rainfall-runoff or streamflow predictions and even outperformed
some of the exisiting process-based models. Others, such as Kratzert et al. (2019), Gauch et al. (2021)
and Klotz et al. (2022) further built on this initial work and adopted the basic LSTM architecture to improve
prediction accuracy even more. This paper develops another, alternative LSTM-based architecture and
discusses its performance in streamflow predictions.

In a first effort, Kratzert et al. (2018) trained out-of-the-box, catchment-specific LSTMs. While these
models showed a good performance, Kratzert et al. (2018) also hinted at potential shortfalls. The LSTMs
exhibited a rather poor performance in dry or arid basins which are characterized by low values in stream-
flow. To mitigate this, basins were grouped based on their geographical proximity and new networks were
trained on this combined-basins data. These models, however, still performed worse when predicting
streamflow for the more arid basins. This led Kratzert et al. (2018) to hypothesize that the low correlation
of data across arid basins or regions made it difficult for the model to learn patterns.

To tackle the shortfall of bad predictions in more arid catchments one strategy is to use static catchment
attributes along with dynamic forcing data. While Kratzert et al. (2018) used only classical meteorological
forcings such as temperature and precipitation on a daily frequency, Kratzert et al. (2019) began using also
static catchment attributes such as, among others, an aridity index, the mean elevation of the catchment,
etc. These additional, constant variables are passed to the LSTM at every time step as well. Including
these attributes helped to improve the model performance. This is intuitive as for example a time se-
ries covering a period of heavy rainfall might have very different consequences for streamflow in an arid
basin than in a basin where it rains more often. This proved to be especially helpful in the setting of
Kratzert et al. (2019) as LSTMs were trained on data stemming from all basins. In addition to working with
this out-of-the-box LSTM, Kratzert et al. (2019) experimented with using a different loss function during
training. The goal of this change was to make the model more sensitive to low-flow basins. Introducing
this adopted loss function indeed improved the performance in such low-flow catchments but had rather
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small effects overall. In a third and final approach, Kratzert et al. (2019) alter the standard LSTM architec-
ture and introduce a separate input gate for the static variables. This way, static and dynamic attributes
have different routes through the networks. The routes, however, are interdependent such that given a
certain value of a static attribute, the LSTM can learn to put different weights on dynamic data. This ar-
chitectural change was rather complex but also had only limited effects on the final model performance.
Another result Kratzert et al. (2019) obtained is that the training procedure is to some degree affected by
randomness, e.g. through random weight initialization, and that training entire model ensembles helped to
mitigate effects originating from randomness, thereby further enhancing predictions.

Another shortfall of the models of Kratzert et al. (2018) and Kratzert et al. (2019) is that they only pro-
vide point estimates. Yet, especially in the field of hydrology, one can easily imagine that uncertainty
estimates are useful, e.g. when warning the population of extreme events such as heavy rainfall, flooding,
or drought. Uncertainty in predictions originates from multiple sources. Klotz et al. (2022), for instance,
distinguish epistemic and aleatoric uncertainty. The first corresponds to the model uncertainty and the
second corresponds to the uncertainty inherent to the data. Apart from the requirement of being accurate,
models that also report the associated uncertainty must also show good resolution to provide useful pre-
dictions (Klotz et al. 2022). This essentially means that uncertainty bands must be reasonable, i.e. neither
too specific nor too general, to be actually useful. Klotz et al. (2022) put forward a set of basic statistics to
assess model resolution, such as among others mean absolute deviation or variance of predictions.

To allow for uncertainty quantification, Fill (2021) trained catchment-specific models with the Bayes by
Backprop algorithm introduced by Blundell et al. (2015). This approach allows for uncertainty quantification
as distributions over weights rather than point estimates are derived. One then also obtains distributions
over predictions and can sample actual predictions from these distributions. Models trained by Fill (2021)
exhibited exceptional accuracy as well as resolution as uncertainty intervals around predictions were rea-
sonably wide. Klotz et al. (2022) also incorporated uncertainty quantification into their streamflow predici-
tion LSTM models. In contrast to Fill (2021), however, they use other approaches such as different variants
of mixture density networks and Monte Carlo dropout. Mixture density networks, are trained to return vec-
tors containing the required parameters as well as the relative weights of the distributions considered. For
example, if one chooses to combine three Gaussian distributions, the model would simply be trained to
put out vectors containing first the three means, then the three standard deviations as those are the two
parameters required to specify a Gaussian, as well as a third vector containing the three weights of the
distributions. The benefit of this approach is that one can specify any number of components and combine
different types of distributions and thereby tailor the model to typical patterns appearing in hydrological
data. Monte Carlo dropout, in turn, is yet another technique to quantify uncertainty. Compared to Bayes by
Backprop or mixture density networks, this approach is not as complex. One simply does multiple passes
through a model but deactivates certain routes with a given probability. This yields varying outputs for the
exact same input which, in turn, allows to calculate the statistics Klotz et al. (2022) suggest as resolution
benchmarks. Considering their different models, Klotz et al. (2022) found that the Monte Carlo dropout
approach yielded the worst overall results in terms of uncertainty estimates. Their hypothesis is that the
bad performance of the Monte Carlo method is mostly explained by the fact that the approach assumes a
Gaussian distribution of streamflows which, according to Klotz et al. (2022), appears to be violated in times
of extremely high or low flows. In fact, they report that especially mixture density networks with asymmetric
distributions performed well. However, they regard their MDN models as being overly confident and argue
that the MDN models omit epistemic uncertainty. Finally, Klotz et al. (2022) found that uncertainty was
lowest around low flows and was elevated during high flows.

Since the introduction of LSTMs to the field of hydrology by Kratzert et al. (2018), the community has
worked on the two overarching topics of how to include static catchment attributes and to ivestigate ap-
proaches that allow for uncertainty quantification. Coming from a completely different field, Zhu and
Laptev (2017) proposed another, alternative LSTM-based architecture which allows to feed in different
sets of variables at different stages of the model and also allows to perform reliable uncertainty quan-
tification. While they are concerned with anomaly detection in the ride hailing industry, their so called
encoder-decoder approach can also be applied in other domains. This work transfers the model sug-
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gested by Zhu and Laptev (2017) to the field of hydrology. The encoder-decoder model features three
parts. The first is an encoder which, in a pre-training step is trained in combination with a decoder. While
encoder and decoder are two separate LSTMs they are still trained together. The encoder’s task is to
encode a provided time series into an embedding. The decoder then receives this embedding as well
as a truncated sequence consisting out of some of the most recent observation of the time series and
produces a prediction by decoding the inputs. This architecture is meant to ensure that the encoder pro-
duces an effective embedding that is useful to the decoder. The embedding can be much higher in the
dimensions than the actual sequence, thereby giving the possibility to encode much more information in
it. After the encoder is trained to produce reasonable embeddings, instead of passing it to the decoder,
the embedding is first concatenated with static catchment attributes and then fed through a feed forward
network. This last network is trained to produce actual predictions. This is reminiscent of the approach
suggested Kratzert et al. (2019) who argued that their architectural changes allow the network to activate
certain routes of the dynamic data based on values of static data. In the architecture put forward by Zhu
and Laptev (2017), the model is given the ability to asses the exact same embedding differently if it orig-
inated from different catchments. The most apparent difference to the Kratzert et al. (2019) approach is
that their model receives the static attributes during every single time step of an input sequence. In the
design implemented in this paper, the model receives the static attributes at a later stage, only once it has
learnt to produce effective embeddings.

The architecture suggested by Zhu and Laptev (2017) also allows for extensive uncertainty quantifica-
tion. In contrast to Fill (2021) and Klotz et al. (2022), the work presented here does neither use the Bayes
by Backprop algorithm nor mixture density networks. Uncertainty quantification is achieved with dropout
techniques and is therefore closely related to the Monte Carlo dropout model of Klotz et al. (2022). Further,
while Klotz et al. (2022) argue that Monte Carlo dropout in its simple form omits aleatoric uncertainty, Zhu
and Laptev (2017) suggest an additional method to estimate the inherent noise of the underlying data.
This is achieved by passing observations of a separate set of data through the model and comparing pre-
dictions to corresponding ground truth values. Epistemic uncertainty is estimated by variational dropout, a
special form of Monte Carlo dropout applicable when working with LSTMs. In terms of uncertainty quan-
tification, the encoder-decoder architecture introduced by Zhu and Laptev (2017) might be considered
superior to the architectures discussed by Klotz et al. (2022) as it allows to simultaneously incorporate
multiple sources of uncertainty.

Results of the Zhu and Laptev (2017) encoder-decoder architecture are broadly in line with existing
work. The best model achieved a median Nash-Sutcliffe-Efficiency (NSE) (Nash and Sutcliffe 1970) of 0.50
across catchments. This is worse than the Kratzert et al. (2019) out-of-the box architecture which achieved
a NSE of 0.70 with a single model. This deviation might be caused by a handful extreme outliers from which
the model in the paper at hand suffered as the NSE statistics in low performing basins are far worse then
the minimums reported by Kratzert et al. (2019). When inspecting correlations between static attributes
and achieved model performance the findings of Kratzert et al. (2018) cannot be reproduced with the
Zhu and Laptev (2017) architecture implemented here. Basins in which the model performed worst are
distributed over a broad range of values of catchment aridity statistics.

In terms of uncertainty, the median normalized standard deviation of predictions was 0.87 across catch-
ments. While Fill (2021) achieved 0.12 and Klotz et al. (2022) achieved 0.13 with the Monte Carlo dropout
model, Klotz et al. (2022) also cautioned that their model was too confident, especially around high flow
volumes. As the model here captures more sources of uncertainty at the same time, it might be that
uncertainty intervals are greater.

While existing literature mostly works with the CAMELS-US dataset (see Addor et al. 2017 or New-
man et al. 2022), a novel dataset called CARAVAN was recently introduced by Kratzert et al. (2023).
CARAVAN includes many of the catchments also supplied with CAMELS-US along with meteorological
forcings as well as static catchment attributes. In this regard, the CARAVAN dataset does not differ in
the underlying data that much from CAMELS. A more detailed introduction of the data can be found in
section 4. This paper is among the first to build a data-driven surrogate model for streamflow prediction
that uses CARAVAN data.
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The rest of the paper is structured as follows. Section 2 provides a more detailed introduction to the
machine learning theory behind LSTMs and the different ways uncertainty can be incorporated. It also
discusses existing literature concerned with deep learning models in hydrology. Section 3 explains the
approach by Zhu and Laptev (2017) and how it was adopted to work in the realm of hydrology. After a brief
introduction of the novel CARAVAN dataset in section 4, results are presented and discussed in section 5.
Section 6 concludes.
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2 Theoretical Background

2.1 Long-Short Term Memory Networks

Compared to plain feed forward neural networks, recurrent neural networks (RNNs) also have feedback
loops and connections. That means in an RNN, the output of a neuron can also be used as input for a
neuron located at an earlier stage of the network. RNNs work with so called hidden states ht which store
the state of the network at time t. Equation 2.1, taken from Kratzert et al. (2018), shows a standard update
of a hidden state ht which involves combining an existing, previous hidden state ht−1 with new input
data xt via linear matrix operations involving weight matrices W and U, a bias b, as well as a non-linear
activation function g(·).

ht = g(Wxt + Uht−1 + b) (2.1)

This recurrent nature makes RNNs suited for analyses of time series data and input sequences which are
passed in correct temporal order (Rumelhart et al. 1986).

Hochreitner and Schmidhuber (1997) put forward a particular instance of RNNs, so called Long Short-
Term Memory Networks (LSTMs). These type of networks perform special operations in certain orders,
thereby allowing the network to learn long-term and non-linear patterns in the provided time series. In
addition, Hochreitner and Schmidhuber (1997) argue the LSTM operations described below disburden
the network from the vanishing or exploding gradient problem, where gradients tend to accumulate and
converge towards zero or infinity during training of the network, resulting in poor optimisation behaviour.
Following Graves et al. (2013), the involved operations in classical LSTMs can be described by the follow-
ing seven equations:

ft = σ(Wf xt + Uf ht−1 + bf ) (2.2)

c̃t = tanh(Wc̃xt + Uc̃ht−1 + bc̃) (2.3)

it = σ(Wixt + Uiht−1 + bi) (2.4)

ct = ft ⊙ ct−1 + it ⊙ c̃t (2.5)

ot = σ(Woxt + Uoht−1 + bo) (2.6)

ht = tanh(ct)⊙ ot (2.7)

ŷ = WdhT + bd (2.8)

where vectors ht−1 and ht are the hidden states of the network at time steps t− 1 and t, respectively.
Vectors ct−1 and ct are the so called cell states. All matrices W and U and vectors b are the weights and
biases used in the respective steps or gates. x is a vector of inputs, ŷ is the ultimate output of the network.
σ(x) = 1

1+e−x is the sigmoid activation function, which is non-linear, and ⊙ is used to indicate element-
wise multiplication. Fundamentally, the cell state ct corresponds to the long-term memory of the network,
and the hidden state ht constitutes the short-term memory. All equations 2.2 to 2.8 taken together are
representative of the inner mechanics of an LSTM cell.

One can then start with equation 2.2 and iteratively plug in equations into one another until one arrives
at equation 2.8. The first equation, equation 2.2, represents the forget gate which was first introduced by
Gers et al. (2000). As one can see by the multiplication in equation 2.5, the forget gate output is multiplied
with the previous cell state ct−1. If some elements in ft are small or even zero, parts of ct−1 are lost or
"forgotten." Therefore, given the new data xt as well as the stored hidden state ht−1, the forget gate ft
effectively determines which part of the long-term memory ct−1 has become irrelevant. The formation of
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Figure 2.1 LSTM cell. Illustration adopted from Gauch et al. (2021)

a new long-term memory, however, also involves a further step. In equation 2.5 one can also see that c̃t,
a new potential cell state, is also required. As in a classical RNN, the calculation of the potential new cell
state also involves the past hidden state ht−1 and the input data xt, as shown in equation 2.3. Instead
of adding c̃t in equation 2.5 directly, it is first multiplied with the output of the input gate it. The input
gate has quite a similar function as the forget gate, as given the new input data xt as well as the stored
hidden state ht−1, it determines which parts of the potential new cell state c̃t contribute to the final new
cell state ct. The update of the hidden state, shown in equation 2.7, involves ct as well as the output
of a final gate, the output gate ot. Similar to all the previous gates, given the new input data xt as well
as the stored hidden state ht−1, the output gate determines which parts of the long-term memory should
be transferred also to the short-term memory. At the final stage, a linear feed forward layer, described in
equation 2.8, is used to take the current values of the very last hidden layer hT and derive a prediction of
the time series, denoted ŷ. These operations are also illustrated in figure 2.1.

For LSTMs, the temporal order of operations is important. If for example, xt is a vector of k dimensions,
and the total sequence length is T , one begins to perform the operations described above first with x1,
then continues with x2 and so on until one arrives at xT. The LSTM calculates the predicted value(s) for
T + 1. Note, however, that during this so called "unfolding," the same weights and operations in terms of
architecture are used during every step from t = 1 until t = T . What changes during every step are the
values of the involved states ht−1, ht, ct−1, c̃t, ct and the gates ft, it, ot. The unfolding is also illustrated
in figure 2.2. Also note that while the first six LSTM equations presented above, equations 2.2 to 2.7, are

Figure 2.2 Unfolded LSTM cell. Illustration adopted from Kratzert et al. (2018)

evaluated with every new xt, the final equation, equation 2.8, is only calculated after the very last input for
the respective sequence xT has been passed through the LSTM.

LSTMs are trained in similar ways as regular neural networks. Training is essentially a repeated opti-
misation where one tries to adjust weights W and biases b to reduce a loss. This loss is calculated by
comparing the network’s predicted value of the i-th data point ŷi to the corresponding ground truth value yi
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across all n samples. In a regression setting, which involves numerical data, the loss function is usually a
function like the mean squared error (MSE), described in equation 2.9.

MSE = 1
n

n∑
i=1

(yi − ŷi)2 (2.9)

Reducing the loss is only possible if weights and biases of the model can be adjusted such that the value
of the loss function decreases. To do so, a gradient w.r.t. the weights and biases is calculated with a
method called backpropagation. Given the gradient, weights are then adjusted by a small move towards
the direction of the optimum. Exactly by which magnitude weights and biases are adjusted depends on
the learning rate, a hyperparameter. Also, as the derivatives depend on the current values of weights,
biases and inputs, the derivatives must be calculated with the data provided. Often this is impossible with
large datasets and therefore "batches" of data are sampled to use in calculation of the gradient. Such
an "optimizer" is known as stochastic gradient descent, but there exist other, more advanced optimization
algorithms that are of adaptive nature such as Adam (Kingma and Ba 2017) or AdaGrad (Duchi et al. 2011),
etc. A basic introduction to these different techniques can be found in Goodfellow et al. (2016). While the
weights and biases are updated towards optimal values during the training procedure, the chosen learning
rate, the optimizer, as well as the loss function are hyperparameters and must be chosen by the developer.
A common practice is to split the data into training, validation and test samples and train the network with
the training data only. Yet the overall goal during training is to reduce the same loss function calculated on
the validation set of samples, i.e. some samples the network has not seen during training. This is done to
prevent overfitting, which occurs if the model learns too many specific details which are only prevalent in
the training data instead of capturing general patterns. Hence to supervise the performance of the model
on unseen data one trains with the training data but one checks with help of the validation data.

2.2 Incorporating Uncertainty

Standard (R)NNs and LSTMs usually provide point estimates only. Given an input sample, a forward pass
through the network is made and a single output value is predicted. For a given model prediction, one does
not know, how confident the model is in that value. This is a significant disadvantage, especially in real-
world environmental applications like hydrology. One does not get an uncertainty estimate in form of e.g. a
confidence interval. Prediction uncertainty, however, stems from multiple sources. Zhu and Laptev (2017),
for example, distinguish three different types of uncertainties. The first type is model uncertainty which
refers to uncertainty resulting from model parameters. It is also known as epistemic uncertainty (e.g.
Klotz et al. 2022). If the model parameters are changed slightly, the output of the network can change,
yielding also different predictions.

A second type of uncertainty mentioned by Zhu and Laptev (2017) is the uncertainty inherent in the
underlying data. For example, if data stems from a normally distributed distribution with variance σ2, a
standard network would still only give a point estimate. Even if the model is perfectly confident in its
parameters, meaning low model uncertainty, this second type of uncertainty remains. A provided point
estimate always conceals the fact that there is inherent insecurity stemming from the original, underly-
ing data generation process. This type of uncertainty is also referred to as aleatoric uncertainty (e.g.
Klotz et al. 2022) and it cannot be reduced.

The third type of uncertainty Zhu and Laptev (2017) discuss is uncertainty originating from model
(mis)specification. As Zhu and Laptev (2017) are concerned with anomaly detection, this third type of
uncertainty is especially apparent in their setting. During irregular events in time series, a given model
might not be able to fit to the new circumstances. This might also be the case in a hydrological setting,
where during extreme events such as flood or drought, the entire distribution of the data generating pro-
cess possibly changes and hence the model which was trained mostly on standard events might not be
suited any longer.
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2.2.1 Bayes by Backprop

There exist different approaches to incorporate uncertainty estimations into machine learning models.
Blundell et al. (2013), for example, put forward an algorithm they named Bayes by Backprop (BBB). The
main goal is to derive an entire probability distribution over the weights w given the data D: P (w|D). This
idea is also illustrated in figure 2.3 where panel (a) shows an example of a standard neural net where all
weights are simple scalars. Panel (b) shows a Bayesian neural network where entire distributions over the
weights are calculated.

(a) Standard Neural Network trained
with standard backpropagation

(b) Bayesian Neural Network trained
with BBB

Figure 2.3 Different types of neural networks. Figure adopted from Blundell et al. (2015)

BBB requires a special loss function F (D, θ), called the variational free energy or sometimes expected
lower bound (ELBO) loss, which can be approximated as follows:

F (D|θ) ≈
n∑

i=1
log q(w(i)|θ)− log P (w(i))− log P (D|w(i)) (2.10)

In equation 2.10, q(w(i)|θ) is the variational posterior and θ is the parameter space of variational param-
eters consisting out of mean µ and standard deviation ρ such that θ = (µ, ρ). Intuitively, what this loss
function does is comparing the variational posterior distribution to the ground truth distribution P (w|D) by
means of the Kullback-Leibler (KL) divergence. P (w(i)) in equation 2.10 is a prior over the weights. This
can be chosen freely but Blundell et al. (2015) suggest using a scale mixture of two Gaussian distributions:

P (w) =
∏
j

πN(wj|0, σ2
1) + (1− π)N(wj|0, σ2

2) (2.11)

The BBB algorithm then proceeds as follows. At each step, it first samples white noise ϵ from multi-
dimensional Gaussian distribution ϵ ∼ N(0, I). Then it takes stored values µ and ρ and calculates the
weight as follows: w = µ + log(1 + exp(ρ)) ◦ ϵ. Next, the loss function is calculated as described in
equation 2.10 as f(w, D) = log q(w|θ) − log P (w)P (D|w). Then, gradients ∆µ and ∆ρ are calculated
and the variational parameters are updated:

µ← µ− α ∆µ

ρ← ρ− α ∆ρ

The prior P (w) does not change during any optimisation step.
Fortunato et al. (2017) built on the work from Blundell et al. (2015) and extended the BBB algorithm to

RNNs. Recalling again how RNNs and LSTMs are set up from section 2.1, one essential difference is that
weights are shared between different time instances. Therefore, when a gradient is calculated w.r.t. these
shared weights, it will consist out of more parts, namely one part for each time step. Also, especially with
long sequences, one must think about when exactly to calculate losses and how to adopt the loss function
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to reflect the fact that only minibatches and truncated sequences are used. Fortunato et al. (2017) suggest
distributing the KL cost among minibatches and truncated squences and to proceed as follows: For each
minibatch of truncated sequences, sample a set of weights with the help of white noise as already done in
Blundell et al. (2015). After forward and backward propagation, calculate all necessary gradients (weights
and distributional parameters). Then update the distributional parameters.

Apart from transferring the BBB algorithm to RNNs, Fortunato et al. (2017) also introduced posterior
sharpening. Instead of using the variational posterior q(w), this algorithm uses a conditional distribution
and conditions on the minibatch data: q(w|(x, y)). This can be achieved efficiently by introducing a latent
variable φ, which is then integrated out again:

q(w|(x, y)) =
∫

φ
q(w|φ, (x, y))q(φ)dφ

with vectors µ, σ, and q(φ) = N(φ|µ, σ). This then gives q(w|(x, y)) = N(w|φ−η◦gφ, σ2
0I) where η is an

additional parameter the network must learn and which Fortunato et al. (2017) interpret as a per-parameter
learning rate, σ2

0 is a hyperparameter and gφ is the gradient of the loss function w.r.t. to φ.
Zhu and Laptev (2017) discuss the BBB approach and mention drawbacks, including the change of the

loss function, the doubling of the parameters needed to estimate as well as rather complex changes to
training procedures.

2.2.2 Monte Carlo dropout

A method that is much more straightforward in its implementation, neither requiring changes to model ar-
chitecture nor to training procedures, is Monte Carlo Dropout (MCD). While MCD was a method to perform
weight regularization and prevent overfitting (Srivastava et al. 2014) originally, Gal and Ghahramani (2016)
demonstrated that one can also use MCD to quantify uncertainty. In standard NNs, the dropout algorithm
randomly selects weights and then sets them to zero, i.e. they are dropped out, hence the name. This
means that during every pass, a slightly different network architecture is used. During training, this ap-
proach helps to prevent overfitting as the network cannot rely too heavily on a specific network connection.
Yet during inference, one can also set a dropout probability and pass the same input multiple times. Each
time, different network routes are active, yielding slightly different outputs. This corresponds to a sam-
pling method for Bayesian inference and hence the name Monte Carlo Dropout (Klotz et al. 2022, Gal and
Ghahramani 2016). With this method one can obtain multiple predictions for a single sample and quantify
uncertainty with statistics such as variance, interquantile distances, etc.

In the context of LSTMs, there is one more detail related to dropout. As described in section 2.1, LSTMs
are unfolded over time steps. If one decides to apply dropout, one must decide whether to drop out the
exact same weight during every time step or unfolding, or whether at each step the dropout is applied from
scratch meaning every weight has the same probability of being dropped out. The former variant, were
the exact same weight is deactivated for the entire sequence is known as variational dropout (Gal and
Ghahramani 2016) and is used by Zhu and Laptev (2017).

2.2.3 Mixture density networks

Mixture density networks (MDN) as introduced by Bishop (1994) combine multiple probability distributions,
called components. These are then combined via a weighted mean. The components can be chosen
freely, e.g. one can chose to combine three Gaussian distributions with two Laplacians. The weights then
correspond to the probability of each component. As described by Klotz et al. (2022), the MDN approach
can be implemented by designing a network not to return a direct prediction but the respective component
weights together with parameters of the chosen distributions. In the above example, instead of returning
a point estimate, the model would return a vector with means for Gaussians and Laplacians, a second
vector with scale parameters of the two distributions and a third vector with weights of the respective
distributions. All this information can be used to derive a point estimate by sampling from the obtained
mixture distribution, along with uncertainty bands or other statistics.
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2.3 LSTMs in Hydrology

While LSTMs concerned with numerical data are often trained with the MSE loss (see section 2.1), the
quality of time series predictions in hydrology is usually measured by different metrics. The most popular is
the Nash–Sutcliffe-Efficiency (NSE), introduced by Nash and Sutcliffe (1970). It is calculated as described
in equation 2.12 where T is the total number of time steps, Qobs,t is the observed value of the time series
at time step t, Qpred,t is the predicted value at time step t and Qobs is the mean of the observed values
over all time steps.

NSE = 1−
∑T

t=1 (Qobs,t −Qpred,t)2∑T
t=1

(
Qobs,t −Qobs

)2 (2.12)

The NSE ranges from −∞ to 1.00, where 1.00 indicates a perfect prediction. Newman et al. (2015) put
forward an NSE of greater than 0.80 as an indicator for a well-performing model. In hydrology, the variable
of interest, Q, is usually the streamflow measured in cubic meters per second. Many models are concerned
with predicting the streamflow based on meteorological forcings such as mean precipitation, temperature,
pressure, etc. This prediction is often called rainfall-runoff predicition or, alternatively, streamflow prediciton
(Gauch and Lin 2020). For this, a given land area is split into so called basins or catchments. The idea of
a basin is that all rainfall will eventually pass a certain point (Gauch and Lin 2020). This point is equipped
with a gauging station which is used to measure how much streamflow is running through.

Long-Short Term Memory (LSTM) networks have been proven to be capable of handling hydrological
processes an provide useful rainfall-runoff predictions (Kratzert et al. 2018, Kratzert et al. 2019, Kratzert et
al. 2020, Gauch et al. 2021, Nevo et al. 2022 and Klotz et al. 2022). While many approaches use LSTMs
in principle, many different LSTM variants and architecture configurations have been applied.

Kratzert et al. (2018) first applied LSTMs in the field of hydrology and mostly focused on training basin-
specific networks for 241 CAMELS US (see Addor et al. 2017, Newman et al. 2022 for a detailed descrip-
tion of the dataset) catchments spanning four different hydrological units (HUCs). An LSTM architecture
with two stacked and 20 hidden layers was chosen. During training, Kratzert et al. (2018) evaluated
the model performance against the MSE and used a batch size of 512. Sequences of length 365 were
passed and a dropout probability of ten percent was used. As a basic result of these basin-specific
LSTMs, Kratzert et al. (2018) found that the LSTMs in general either outperformed or matched the per-
formance of the benchmark, the process-based Soil Moisture Accounting Model + Snow17 (SC-SMA +
Snow17). On average, the catchment specific models achieved a NSE of 0.63. Apart from the main result,
Kratzert et al. (2018) also found LSTMs underestimated peaks more strongly compared to the process-
based benchmark. Another potentially relevant result is that LSTMs perform worse in dry, arid basins
where there is a streamflow of zero for a high number of consecutive days.

2.3.1 Regionalization

Regionalization, in the context of hydrology, refers to training a single model for multiple catchments.
Kratzert et al. (2018) performed first regionalization attempts by, in addition to basin-specific networks,
also training HUC-specific models. HUCs are groups of catchments, where the grouping is based on
geographical properties. For example, many catchments are grouped together as they lie next to the same
river. Results from these regional models showed a mixed picture. Across all basins, the HUC-specific
models of Kratzert et al. (2018) showed little differences in results compared to basin-specific ones. The
variance, however, increased as the respective regional models performed better in almost all basins of
the New-England HUC but it underperformed basin-specific models in about 20 percent of all catchments.
One potential reason put forward by Kratzert et al. (2018) might be that streamflows are more correlated
in the New England HUC than in other HUCs. Kratzert et al. (2018) therefore hypothesized, that regional
LSTMs might be far better in predicting streamflows across multiple basins if the streamflows are highly
correlated. Kratzert et al. (2018) further found that while basin-specific LSTMs rather underestimated the
actual streamflow, regional models showed more balanced over- and underestimations.
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In a final variation of their approach, Kratzert et al. (2018) continued training regional models with basin-
specific data only. This strategy tries to first make the model learn the general patterns across basins
before learning the nuances of processes governing the discharge in the respective basin. This fine tuned
hybrid variant again improved the model accuracy compared to both purely basin-specific and purely HUC-
specific models. With this last strategy a mean NSE of 0.68 across all 241 basins was achieved.

In another study, Kratzert et al. (2019) also performed regionalization and trained three different variants
of LSTMs on 531 CAMELS US catchments. While they also experimented with a different loss function,
they used the MSE in all the models for comparison. After a grid search over possible parameters of the
LSTM implementations, they found a single stacked LSTM layer with 256 hidden states and a sequence
length of 270 to work best. During training, a dropout rate of 40 percent was used to prevent overfitting.

The first model architecture was a simple, out-of-the-box LSTM which was trained on input sequences
of all basins and achieved an average NSE across basins of about 0.36 with 44 basins having a negative
NSE.

Kratzert et al. (2019) extended their approach and enriched their data with static basin attributes, such
as, among many others, mean elevation and forest fraction. This static data is constant across all se-
quences of a given basin. Passing these attributes along the dynamic, time-varying data helped to lift the
average NSE to 0.71 and lowered the number of basins where the NSE turned out to be negative to only
six basins.

Finally, Kratzert et al. (2019) manipulated the internal architecture of an LSTM cell to allow dynamic
and static inputs to flow through different input gates of the cell. The idea behind this approach was to
enable the network to selectively enable and disable certain parts of the flow of dynamic inputs based
on the respective static inputs. On the one hand, the model can learn to activate the same LSTM parts
for hydrologically similar basins and on the the other hand, it can also learn to tell apart the exact same
meteorological forcings occurring in different basins. Additionally, it can learn to incorporate information
or processes that are equal across both all basins as well as similar basins. Similarity, in the case of
this differently-configured LSTM, can be thought of as an embedding. Compared to the out-of-the-box
architecture fed with both dynamic and static inputs, however, this architectural change slightly decreased
the basin-averaged NSE to 0.68 and yielded a number of basins with negative NSE of six.

Kratzert et al. (2019) also benchmark their models against process-based models such as the VIC
(Liang et al.1994) as well as the mHM (Samaniego et al. 2010, Kumar et al. 2013). These two models
were also regionally calibrated on data from 447 basins. Even the out-of-the box LSTM without the static
attributes outperformed the two process-based models as it achieved an average NSE of 0.71 across
these 447 basins. The VIC, in contrast, achieved an NSE of 0.17 and the mHM an NSE of 0.44. Both
process-based models outperformed the LSTM in less than five percent of the basins.

Concerning the relevance of the static features, Kratzert et al. (2019) used the method of Morris (Mor-
ris 1991) to provide a feature ranking of relevance. This method uses the fact that neural networks are
functions that are differentiable. Thus one can calculate the derivatives w.r.t. specific input features and
use the results to rank the input features across their relevance. Kratzert et al. (2019) found that vege-
tational indices as well as soil features are ranked lowest. In contrast, climate indices such as aridity or
mean precipitation and topological indices like catchment area or mean catchment elevation are ranked
high. This is in line with most of the results obtained by others such as Addor et al. (2018).

2.3.2 Uncertainty-aware models

As discussed in subsection 2.2, there exist implementations of LSTMs that allow for quantification of un-
certainty in obtained predictions. These approaches have also been applied in the hydrological domain
where uncertainty quantification is particularly relevant and useful.

Klotz et al. (2022) trained LSTMs which are fed both static catchment attributes and meteorological
forcings. Three MDNs as described in section 2.2.3 and a MCD model as described in section 2.2.2. All
models were trained with basins provided with the CAMELS US dataset. The training loss for the MCD
model was also the MSE, the hidden size of the LSTM was 500. The MDN models were trained with 250
hidden units. All models were trained for 30 epochs on data originating from all 531 CAMELS basins. The
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MCD model trained by Klotz et al. (2022) achieved a basin-average NSE of 0.65 and therefore slightly
underperformed the MDN models which achieved average NSEs between 0.69 and 0.75.

Fill (2021) used an implementation by Esposito (2020) to train basin-specific bayesian LSTMs using
the BBB algorithm of Blundell et al. (2015) and Fortunato et al. (2017). Three different LSTM variants,
that differ w.r.t. the prediction horizon as well as whether past streamflows are included or not, were
implemented. Models were trained with two stacked layers, each with 50 hidden units for 50 epochs. The
most successful model was a model that predicted one time step into the future and got past discharges
as an input. It achieved an average NSE of 0.81. Compared to most of the studies mentioned above
(Kratzert et al. 2018, Kratzert et al. 2019, Klotz et al. 2022) that study trained basin-specific models and
therefore might be superior in predicting streamflows.

2.3.3 Training LSTMs in a hydrology context

Kratzert et al. (2018) trained an LSTM with 20 hidden units and noted that especially for LSTMs with a low
number of hidden units, initialization of weights matters. They tackle this problem by training ensemble
models. In this approach, multiple architecturally equivalent LSTMs are trained and for the final prediction
the average of all outputs is used. Kratzert et al. (2019) also train ensembles to account for the initialization
error. They found that using ensembles in predictions lowered the number of basins for which the NSE
was below zero.

Kratzert et al. (2019) train models on 531 catchments. For this, they introduce a basin-averaged NSE as
new loss function. They argue this is necessary because if data of multiple basins is taken into account,
the linear relationship between the MSE loss function (specified in equation 2.9) and the NSE (specified
in equation 2.12) breaks down. This happens because the NSE is a normalized variant of the MSE and
if data originates from more than one basin, the normalization constant changes. A direct consequence
is that when regional models are trained with an MSE loss, basins with low average discharges are au-
tomatically less relevant during training as the model already assumes it performs reasonably in those
basins, resulting in lower gradient adjustments and ultimately in a low model performance in these basins
when evaluated against the NSE. In their work, Kratzert et al. (2019) found that using the basin-averaged
NSE as a loss function compared to the MSE indeed improved the performance in basins where the NSE
statistic was low. The effect, however was of small magnitude when LSTMs which also considered static
catchment attributes were considered. For example, the simple out-of-the-box LSTM which received both
meteorological forcings and static attributes achieved a mean NSE of 0.71 across basins when trained
with the MSE loss and a mean NSE of 0.72 when trained with the basin-averaged NSE as a loss function.
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3 Methodology

3.1 Encoder-Decoder Model

In the context of ride sharing, Zhu and Laptev (2017) used an LSTM-based encoder-decoder model to
predict the number of trips for the American ride-hailing services company Uber Technologies, Inc in a
handful American mega cities. The benefit of the encoder-decoder architecture, which is explained in
more detail below, is that it allows for extensive uncertainty quantification in predictions. As outlined in
section 2.2 above, Zhu and Laptev (2017) mention three different components of uncertainty: First, model
uncertainty which is sometimes referred to as epistemic uncertainty and second, inherent noise in the
data, sometimes referred to as aleatoric uncertainty. The main advantage of their approach is that it also
takes into account the third type of uncertainty, which results from model miss-specification. The goal
of this work is to implement a similar strategy in the hydrological realm as uncertainty quantification is
also of crucial importance in hydrological predictions. Zhu and Laptev (2017) are particularly concerned
with anomaly detection. In their setting, regime changes in the data generation process might occur
on special days such as Christmas Eve, New Year or Labor Day during which the ride hailing services
company often experiences spikes in the number of requested rides. Zhu and Laptev (2017) argue that
during such events, data might be generated from a different distribution and a model fitted on regular
days might result in systematically wrong predictions. Their model, takes into account this model miss-
specification. Extreme events also occur in the hydrological setting. One can easily imagine times of
extreme precipitation such as Hurricanes or severe droughts. Thus, the approach might also be superior
in the field of hydrology.

3.1.1 Model parts

There are three main components of the Zhu and Laptev (2017) encoder-decoder model: 1. the encoder,
2. the decoder and 3. a simple feed forward neural network. This architecture implements the following
logic. Every input sequence {xt}t = x1, x2, ..., xT−1, xT of length T is first passed through the encoder
LSTM. After passing the last day of the input sequence, the hidden and cell states of the encoder LSTM
are passed to the decoder. The decoder uses these passed states to initialize another, new LSTM. The
dimension of these passed states depend on the chosen sizes of the LSTMs and are fixed. They are also
named the embedding of the input sequence. The newly initialized LSTM is trained to predict the actual
target day(s), xT+1, xT+2, ..., xT+F−1, xT+F. The decoder LSTM takes as an input also parts of the
sequence {xt}, namely xT−F+1, xT−F, ..., xT−1, xT. In the field of hydrology it is common to predict the
streamflow of the next day. This approach was also taken here, so in this case F = 1. In other words, the
output sequence has a length of one. Then, the decoder LSTM, with the help of the embedding, predicts
yT +1 based on the input xT. The architecture is also illustrated in figure 3.1. This model architecture
is meant to guarantee that the encoder generates a useful embedding of the provided sequence. In
other fields such as natural language processing, such encoder-decoder models are also referred to as
sequence-to-sequence (seq-2-seq) models and the embedding is often referred to as the context vector
(Sutskever et al. 2014). This perspective also gives a nice interpretation in the field of hydrology. Taken for
itself, it is quite hard to predict the next day’s streamflow from the last day’s meteorological forcings. Yet
when the decoder also receives the context, meaning an encoded version of the past T days’ forcings, it
should make it easier to predict the streamflow.

Although this follows standard implementation of an encoder-decoder, Zhu and Laptev (2017) propose
to use the embedding in a different way. Once the encoder-decoder setup is trained in a first "pre-training"
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Figure 3.1 Encoder Decoder Approach. Figure adapted from Zhu and Laptev (2017).

step, they use the trained encoder to create embeddings of training sequences and then pair the em-
beddings with the respective external features. The external features, in their case, are factors like city
population growth. In the field of hydrology, the static attributes are used. This concatenated input of
embedding plus static catchment attributes is then fed through a standard feed forward network which is
trained to make the actual prediction of the next day’s streamflow. The entire approach is illustrated in
figure 3.1.

3.1.2 Uncertainty estimation

In this framework, uncertainty can be estimated using Monte Carlo Dropout techniques described in sec-
tion 2.2.2. A neural network can be described by a mathematical function fW(·) where f represents the
chosen architecture and W is the entire parameter set of weights and biases. As described in more detail
above, Bayesian neural networks start with a prior on the parameters P (W) and, given the data D, try to
find an optimal posterior distribution P (W|D). Following Zhu and Laptev (2017), given a new datapoint
x∗, the predictive distribution can be obtained by

p(y∗|x∗) =
∫

W
P (y∗|fW(x∗)) P (W|D) dW (3.1)

Given this predictive distribution, the total prediction uncertainty can be obtained from the law of total
variance:

Var(y∗ | x∗) = Var [E(y∗ |W, x∗)] + E [Var(y∗ |W, x∗)] (3.2)

= Var(fW(x∗)) + σ2 (3.3)

The first term, Var(fW(x∗)) captures the uncertainty stemming from uncertainty from model parame-
ters W. Zhu and Laptev (2017) argue that this part truly encompasses two sources of uncertainty: uncer-
tainty stemming from model parameter values (epistemic uncertainty) as well as uncertainty from model
miss-specification (wrong architecture f(·)). The second term, σ2, captures the third type of uncertainty,
namely the uncertainty inherent to the data generating process (aleatoric uncertainty). This third type
cannot be minimized, even with a perfectly specified and trained model.

The first two types of uncertainty can be quantified with the help of MCD. A given input sample, de-
noted xi, is passed first through the encoder. The obtained embedding is then passed through the feed-
forward network. During these passes, variational dropout is activated in the encoder stage. In the feed
forward network stage, dropout is activated, too. With dropouts, if the same xi is passed through the
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network, one obtains different outputs. Assume the entire procedure is repeated R times. Then one ob-
taines {ŷ1, ŷ2, ..., ŷR−1, ŷR}. These values can then be used to estimate the uncertainties from model
miss-specification and the uncertainty stemming from model uncertainty w.r.t. the involved parameters,
both captured in Var(fW(xi)):

Var
(
fW(xi)

)
= 1

R

R∑
r=1

(ŷr − ¯̂y)2 (3.4)

where ¯̂y = 1
R

∑R
r=1 ŷr is the sample mean. The uncertainty from model miss-specification is captured by

the encoder-decoder approach. During training, the encoder learns to construct a reasonable embedding
of provided training samples. If, during inference, an unusual sample is passed, the embedding should
vary more because the encoder has never seen such a sample. This is particularly useful in the case of
anomaly detection as in Zhu and Laptev (2017) but also in the context of hydrology and extreme events
like flooding or drought.

Special to the approach of Zhu and Laptev (2017) is that they estimate the inherent uncertainty, σ2, from
an independent held-out validation set of samples X = {x1, x2, ..., xV−1, xV}, Y = {y1, y2, ..., yV −1, yV }.
If fŴ(·) is the trained model, then σ2 can be approximated by

σ2 = 1
V

V∑
v=1

(
ŷv − fŴ(xv)

)2
(3.5)

3.1.3 Inference

To come up with a point estimate as well as an uncertainty measure one performs the algorithm described
in algorithm 1. It requires a trained encoder e(·), a trained feed forward network h(·) an input sequence
{xt}t with the corresponding static catchment attributes ζ from the basin the sequence originates from
and two hyperparameters, namely the dropout probability p and the number of Monte Carlo draws R.
A respective sequence is first passed through the encoder to obtain an embedding. The embedding
is concatenated with the static input features and both are passed through the feed forward prediction
network. This procedure is repeated R times such that R predictions ŷr are obtained. As a dropout
probability p is active during this inference forward pass, the predictions vary slightly and the final prediction
for the sequence, ŷt+1, is obtained by calculating the average of all predictions ŷr.
The uncertainty of ŷt+1 is a combination of two components. The first component η2

1 can be obtained
by calculating the variance of the R predictions. The second component, η2

2 , is obtained independently,
from the validation set. For this uncertainty component, predictions are derived for the validation period
sequences and they are compared to the ground truth values. Finally, algorithm 1 returns the point estimate
as well as the standard deviation.

3.1.4 Model implementations

Starting from scratch, the very first implementation of the encoder-decoder approach followed the archi-
tecture from Fill (2021). This included choosing only one stacked layer, 50 hidden units, and a sequence
length of 30 days. Then, after some experiments with both simpler as well as more complex model archi-
tectures, the hyperparameters from Kratzert et al. (2019) were investigated. This was considered to be
reasonable as Fill (2021) trained basin-specific networks but Kratzert et al. (2019) performed regionaliza-
tion by training their LSTMs on data from multiple basins. Their setup was considerably more complex
compared to Fill (2021) as Kratzert et al. (2019) used 256 hidden units and a sequence length of 269 days
to predict the 270th day. Playing around with the network complexity as a form of informal hyperpa-
rameter search, architectures between the Fill (2021) and Kratzert et al. (2019) settings were chosen.
Klotz et al. (2022) even chose a higher number of hidden units yet this was not implemented as early
results were rather seen as indicative of the model being too complex rather than being too simple. This
also ruled out the settings from Kratzert et al. (2018) of two stacked layers, 20 hidden layers and sequence
lengths of 365. All trained encoder-decoder models had a single stacked layer. Hyperparameter search in



16

Algorithm 1 Inference. Adopted from Zhu and Laptev (2017)

Inputs: trained encoder e(·), trained feed forward network h(·), dropout probability p, number of Monte
Carlo iterations R, input sequence {xt}t, static catchment attributes ζ, validation set of V observations
{x1, ..., xV} with corresponding targets {y1, ..., yV }
Result: prediction ŷt+1, predictive uncertainty η
Procedure:
for r = 1 to R do

gr ← Variational Dropout(e(xt), p)
zr ← Concatenate(gr, ζ)
ŷr ← Dropout(h(zr), p)

end
// prediction
ŷt+1 ← 1

R

∑R
r=1 ŷr

// model uncertainty and miss-specification
η2

1 ← 1
R

∑R
r=1 (ŷr − ŷt+1)2

// inherent noise
for xv in validation set {x1, ..., xV} do

ŷV ← h(e(xv))
end
η2

2 ← 1
V

∑V
v=1 (ŷv − yv)2

// total prediction uncertainty
η ←

√
η2

1 + η2
2

return ŷt+1, η

the works mentioned showed that adding a second stacked layer is not that helpful. Concerning the other
hyperparameters, Klotz et al. (2022) and Fill (2021) were followed by using a batch size of 256 and similar
to Klotz et al. (2022) a learning rate of 0.001 was chosen. Adam was chosen as an optimizer.

Zhu and Laptev (2017) mention that they worked with variational dropout in the encoder-decoder. As
discussed in section 2.2.2, variational dropout is a variant of MCD, adopted for RNNs. By relying on an
existing implementation by Viviano (2021), this variant was also chosen here.

Different to existing work in the field, one of the approaches considered included changes in streamflow
rather than predicting actual levels. Separate encoder-decoder networks were trained on changes and on
levels. Yet this route also showed daunting early results and was not further explored.

The pre-training step involves training the encoder-decoder network only. As is described in algorithm 1,
the encoder produces an embedding, which is then concatenated with the static basin features. This con-
catenated vector is then used as training data for the feed forward prediction network. For this prediction
network, multiple architectures were considered as well. Here, the very first attempt also involved a com-
plex architecture of four hidden layers with 256, 128, 64 and 32 neurons, respectively. The complexity was
then decreased step by step. Next, only three hidden layers with 128, 64 and 32 neurons were considered.
After that, models with two hidden layers were implemented. First, one with 64 and 32 neurons, then with
32 and 16, then with 16 and 8, then with 8 and 4 until ultimately a model with as few as 4 and 2 neurons
was implemented. Table 5.1 provides an overview of the feed forward architecture iterations that were
considered. Brief experiments with using dropout as a regularization technique were also carried out.

3.2 Soft- and Hardware

All software that was used is open-source. Python 3.8.10 (van Rossum 1995) was chosen as a program-
ming language, PyTorch (Paszke et al. 2019) was the library used to implement the deep learning models.
While mostly the standard neural network classes were used, changes to implement variational dropout
were required in case of the LSTM class. However, these changes were mostly taken from an existing
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implementation by Viviano (2021). Preprocessing of data was carried out with Pandas (McKinney 2010),
Numpy (Harris et al. 2020) and sci-kit learn (Pedregosa et al. 2011). All charts were created with Matplotlib
(Hunter 2007).

Computations were carried out on a high-performance server with a single-socket AMD EPYC 7402
server-class CPU at 2.80 GHz clock frequency. Total RAM was 256 GiB. The available GPU consisted out
of four high-end NVIDIA RTX 3080 GPUs, each having 10 GiB of video memory (VRAM). The SSD storage,
was connected via Non-Volatile Memory Express (NVMe) on a PCIe Gen4 interface. The combination of
EPYC CPU, multiple RTX 3080 GPUs and the NVMe SSD storage made this setup ideal for implementing
deep learning models such as the encoder-decoder approach. In a dataset with over two million samples,
training the encoder-decoder with a batch size of 256 samples took on average 107 seconds per epoch
with this setup. With an average of circa 20 seconds per epoch, the feed-forward network trained faster.
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4 Data

CARAVAN is an open-source dataset published by Kratzert et al. (2023). It aims at providing standardized,
large-scale and open-access hydrological data. It provides meteorological and streamflow data at a daily
frequency as well as static attributes for the included basins. While CARAVAN spans over multiple coun-
tries, this paper focuses on US catchments. In the original CAMELS US dataset, as it is maintained by the
US National Center for Atmospheric Research (NCAR) (see also Addor et al. 2017 or Newman et al. 2022),
there are 671 hydrological basins located in the United States. These basins have land areas between
4 km2 and 25,000 km2. Kratzert et al. (2023), however, focused on basins with land area between 100 km2

and 2,000 km2, of which there are 482.
Starting with these 482 CAMELS US basins, the data is split randomly into three different subsets. This

train-test split is common practice when training machine learning models. Out of 482 basins, about 60
percent or 264 basins are selected to be used during training. The remaining 218 basins are further
split into validation and test catchments. Next, the 264 training basins are divided further into training,
validation and test periods. For all basins, data begins on January 1st, 1980 and ends on December 30th
2014 yielding a total of 12,783 days per basin. For each of the 264 training basins, the first 60 percent
of days, or the days between January 1st 1980 and May 25th 2001 are selected as train periods. From
the similar 264 basins, the days between May 26th 2001 and March 12th 2008 or about 20 percent of the
days are selected to be the validation set. The last remaining 20 percent, corresponding to days between
March 13th 2008 and December 31st 2014 are selected to be in the test dataset. This procedure makes
sure that there remain both, days as well as basins which the model has never seen during training. After
these splits, the training set contains the first 7,816 days of 264 basins, yielding about two million training
samples.

From the 38 available meteorological forcings in CARAVAN, only the following five forcings are passed
as inputs to the respective models:

1. Sum of the total precipitation,

2. Mean of the surface net solar radiation mean,

3. Maximum temperature at 2m above ground,

4. Minimum temperature at 2m above ground and

5. Mean of surface pressure.

Fill (2021) added a sine signal as this provides the network with further temporal information and is sup-
posed to support model accuracy. This approach is mimicked here by adding the following, sixth variable:

6. Sine signal with yearly frequency

Finally, the model also receives the streamflow values of the sequence days that are not the target day.
This gives a seventh input variable:

7. Streamflow values.

To clarify, an example of a input sequence might be of length 30. If the 31st day is the target day, the model
receives 30 days of inputs xt ∈ R7 to predict the streamflow of day 31. For all models, the streamflow
from CARAVAN is used as a target variable. In some cases, models were trained to predict changes in
streamflow rather than actual levels. For this approach, first differences of the streamflow were calculated.
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In addition to these time-varying forcings, also static catchment attributes at the catchment level are
used. These are also made available within CARAVAN. Here, all available data from ERA5-Land, which
Kratzert et al. (2023) gathered from the Google Earth Engine repository, are used. These are the following
ten climate indices:

1. Mean daily precipitation in mm per day,

2. Mean daily potential evaporation in mm per day,

3. Aridity index, ratio of mean potential evaporation and mean precipitation,

4. Fraction of precipitation falling as snow

5. Mean annual moisture index in range [−1, 1],

6. Moisture index seasonality in range [0, 2],

7. Frequency of high precipitation days,

8. Average duration of high precipitation events ,

9. Frequency of low precipitation days and

10. average duration of low precipitation events.

All variables, time-varying and static, were standardized by subtracting their respective mean and di-
viding by their standard deviation (LeCun et al. 2012). These two summary statistics are calculated in
the training set but are used to standardize the validation and test sets as well, a standard practice in the
machine learning field. After standardization, the variables are then brought into the applicable shapes to
be passed through LSTM networks. Mainly, this means creating sequences of desired length, i.e. splitting
the entire 7,816 training days per basin into sequences of length of for example 30 days, 270 days, etc.
and then passing these individual sequences through the respective models.
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5 Results

5.1 Encoder-Decoder Part

In the very first approach, the encoder was implemented with one stacked layer, 50 hidden units and using
sequence lengths of 30 days. As a target variable, the change in streamflow versus the previous day was
chosen. The initial setup already showed an ever decreasing error on the training set. This was read as
a positive signal that the model is correctly wired and capable of capturing patterns and/or details in the
training data. For the validation data, however, this was not the case. The error was relatively constant
across many training epochs. There are multiple possible reasons for this, one being that the model is too
complex and, from the very beginning, overfits to the training data. Another possible reason might be that
the model architecture is inadequate as these initial hyperparameter settings were taken from Fill (2021)
who trained networks for single basins. In contrast, other authors such as Kratzert et al. (2019) who trained
models on data from multiple basins used far more complex architectures. Both of these directions were
investigated, using less and more complex architectures. While most existing studies stopped training after
relatively small number of epochs, models here were trained longer initially to see if the models just take
longer to train. Yet the observed behaviour did not change noticeably, even after 500 epochs of training.
Across all tested architectures, the training error decreased over the epochs while the validation error
remained constant at elevated levels. Even more concerning, the validation error did not change much
between training the respective models between 20 and 500 epochs. This observation is illustrated in
Figure 5.1 panel (a), which shows the training and validation losses over the first 20 epochs for an encoder-
decoder model trained with changes in streamflow as targets. Here, settings from Kratzert et al. (2019)
were implemented by choosing sequence lengths of 270, a single stacked layer and 256 hidden units. At
the 20th epoch, this model had an MSE of about 0.28 with the training data and an MSE of about 0.66 with
the validation data.

None of the existing studies discussed above fitted a model to predict changes in streamflow. Therefore,
after the initial experiments, this approach was also changed. To align with the existing literature, the target
variable was changed to streamflow levels rather than differences. This decreased both the training as well
as the validation errors. However, the observation of a non-decreasing validation error was also observed
in case of levels. Existing PyTorch LSTM implementations do not feature variational dropout as discussed
in section 2.2.2. Therefore, the model architecture had to be modified using an existing implementation
by Viviano (2021) and making minor changes. To make sure nothing in these changes prevented the
validation error from falling, also an out-of-the box LSTM was trained to compare its performance. The
results are depicted in figure 5.1 panel (b). After 18 epochs, this LSTM had a training MSE of 0.16 and a
validation MSE of 0.29.

As this observation of non-decreasing validation errors prevailed also in levels, and with both more
complex as well as with simpler architectures, the Kratzert et al. (2019) settings were chosen to proceed
with. Their study is closest to work done here. The final implementation, which was used to generate the
embeddings, was trained for 20 epochs, as also done by Kratzert et al. (2019). It featured 256 hidden
layers and a single stacked layer. The sequence length was also aligned with Kratzert et al. (2019) and
again chosen to be 270. At the end of training, this model showed a MSE of 0.13 on the training set and
a MSE of just below 0.30 on the validation set. The respective training curves are shown in figure 5.1. In
general, the errors had lower values in the case of predicting streamflow levels. Further, the more complex
architectures shown in figure 5.1 panels (b) and (c) also had lower levels of errors compared to simpler
counterparts.
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After generating embeddings for the train and validation sequences with the encoder, they were con-
catenated with standardized static attributes from the catchments the sequence was taken from. This data
was then taken to train feed-forward networks.

(a) Encoder decoder with changes as
targets

(b) Out of the box LSTM (c) Final encoder decoder model used

Figure 5.1 Training and validation losses across selected models.

5.2 Feed-Forward Network Part

In these feed-forward networks, also different levels of complexity were taken into consideration. First, one
network with four hidden layers with 256, 128, 64, 32 neurons each, and one with three hidden layers with
128, 64, 32 neurons each were trained. Yet after 200 epochs of training both networks still showed a MSE
validation error of about 0.3. This was read as an evidence that the model should again be reduced in
terms of complexity. The same was true for a network with 64 and 32 neurons. It achieved a training loss
of 0.07 after 200 epochs but the validation loss remained at circa 0.36. Also with 32 and 16 neurons, the
validation loss remained at 0.33 after 200 epochs. Even with as low as 8 and 4 neurons per respective
hidden layer, the error in the validation set remains constant at roughly 0.32. It still prevails with 4 and 2
neurons where after 200 epochs of training, the training error is down to 0.17 but the error in the validation
set remains at 0.34. Table 5.1 shows an overview of the models and their respective performance.

Model Hidden layers Layer sizes
Validation error
at 200th epoch

I 4 256, 128, 64, 32 0.30
II 3 128, 64, 32 0.30
III 2 64, 32 0.36
IV 2 32, 16 0.33
V 2 8, 4 0.32
VI 2 4, 2 0.34

Table 5.1 Feed forward architectures considered

As all of the models showed more or less a similar level of MSEs, model IV from table 5.1 was chosen
as the final model.

5.3 Complete Model

To do inference as described in algorithm 1, one must do multiple passes R through the model. Here,
R = 5, R = 10, and R = 20 were considered. Ultimately, R = 20 where chosen as early results were
most promising with this number of passes. It also relied on Fill (2021) who fitted a MCD model and found
one and two iterations to perform significantly worse than five or ten iterations. The dropout rates for the
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Statistic
Minimum Maximum

Mean Median
Value Recorded in basin Value Recorded in basin

NSE -64626.10 08190500 0.96 13011900 -251.60 0.50
MSE 0.08 04063700 64.39 12141300 4.75 1.82

RMSE 0.27 04063700 8.03 12141300 1.73 1.35

MAD absolute 0.56 02112360 2.03 09386900 0.80 0.71
normalized 0.42 05487980 829.63 08190500 5.73 0.60

Variance
absolute 0.69 04127997 27.15 09497980 3.52 2.39

normalized 0.07 03604000 921,080.55 08190500 3580.67 0.40

Standard Deviation
absolute 0.74 04127997 3.34 09386900 1.15 1.02

normalized 0.16 03604000 555.21 08190500 3.88 0.45

Eta
absolute 0.79 04122200 10.38 08200000 2.14 1.68

normalized 0.26 07362100 554.63 08190500 4.33 0.87

Table 5.2 Model performance statistics

encoder LSTM and for the feed forward neural network were chosen to be ten percent. This was in line with
the recommendation of Zhu and Laptev (2017) who found that the uncertainty estimation is little changed
by varying dropout probabilities.

To get a feeling of the nature of the results, figure 5.2 shows two hydropgraphs, i.e. the streamflow
over time. While ground truth streamflow values are depicted in blue, the prediction of the model is shown
in red, a ±1σ interval in grey. Panel (a) shows the hydrograph of a basin in which the model performed
well, namely the "Umatilla River above Meacham Creek, NR Gibbon", Oregon, with an NSE of approxi-
mately 0.91. Panel (b) shows a negative example of the outlier basin "Nueces Rv at Laguna", Texas, with
an NSE of as low as -74.96.

(a) Good model performance (b) Bad model performance

Figure 5.2 Hydrographs

In the greater picture, the model performed worst in the basin with the id 08190500 in the CARAVAN
dataset. This is the "W Nueces Rv nr Brackettville" catchment in Texas. While for this catchment an NSE
of -64626.10 was achieved, in the next-best basin, a NSE of -1019.54 was recorded. Excluding the "W
Nueces Rv nr Brackettville" catchment, the average NSE already improved to -6.82. Overall, in 32 out
of 264 catchments, an NSE below -1.00 was recorded, in 44 an NSE below zero. Table 5.2 shows an
overview of these figures. In contrast, the model performed best in catchment 13011900, the "Buffalo Fork
AB Lava Creek NR Moran" catchment in Wyoming, where an NSE of about 0.96 was achieved. In a total of
67 catchments, the NSE was above 0.70, in 41 catchments NSEs exceeded the 0.80 threshold. Figure 5.3
shows the cumulative density of the achieved NSEs across basins.

If the predictions are truncated, i.e. setting predictions with values below zero to equal zero, the statis-
tics shown in table 5.2 improve marginally. For example, the average NSE improves to around -241.09.
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Without truncation, the model predicted a higher streamflow value than the actually recorded one in about
63.1 percent of test days.

The overall results are broadly in line with prior work done in the field. The basin-specific models
trained by Kratzert et al. (2018) achieved a slightly better median NSE of 0.65. The lowest NSE in their
model, however, was -0.42 which is far better than the minimum recorded in this work. This, however,
is expected as basin-specific models usually achieve better results as they can be fitted to basin-specific
circumstances. Yet also the HUC-specific models of Kratzert et al. (2018) achieved a similar level of
median NSE compared to basin-specific ones. Data from basins of a similar HUC, however, tend to
have a higher correlation among each other, what might be a reason for the good performance of these
models. Effectively, this situation gives the model a higher amount of training data. In their most advanced
architecture, Kratzert et al. (2018) train models on data from multiple basins and then fine-tune it with
basin-specific data only. In this approach, a median NSE of 0.72 is achieved, considerably higher than the
median of 0.50 in this work. Fill (2021), who also trained basin-specific models achieved a median NSE
of 0.81 in the most advanced setting, also outstripping the encoder-decoder architecture presented here.

In the regional models, Kratzert et al. (2019) also take into account static catchment attributes. Con-
ceptually, this is perhaps the closest study to the work done here. Their model achieved a median NSE
of 0.73 and there were six basins with a NSE below zero. This performance is better than the one of
the architecture presented here. From this, one can conclude that the model architecture from Zhu and
Laptev (2017), as it was implemented and trained here, did not help to improve the performance meaning-
fully. The biggest difference from the implementation of Kratzert et al. (2019) to the one implemented here
is that their best-performing model sees the static attributes at every time-step of the respective sequence.
In the architecture presented here, the static attributes are only concatenated with the embedding at the
final step, once the input sequence has already been passed through the encoder. This might be the
reason for the considerably poorer performance. Other major differences are that Kratzert et al. (2019)
had a larger training set. Here, some basins were excluded to see how the model performs on data from
unseen basins. Answering this question, unfortunately, was out of scope for now.

Figure 5.3 Cumulative distribution of achieved NSEs. NSEs below -1.00 are clipped to -1.00 for better scale of the
chart.

As the worst performance of the model was achieved in catchments in Texas, this is reminiscent of
the Kratzert et al. (2018) hypothesis that a deep learning model performs poorly in basins where there
are little day-to-day changes in streamflow. For example, in figure 5.2 panel (b) one can see that the
actual streamflow (blue) is more or less constant and close to zero for the entire prediction horizon. The
encoder-decoder model, however, sometimes predicts unusually high streamflow which greatly contributes
to the poor performance considering the NSE statistic. Kratzert et al. (2018), who trained basin-specific
networks, encountered a similar phenomenon. They also reported that performance was worse in more
arid basins and especially in basins where the streamflow was rather constant. They note that for such
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catchments existing benchmarking models, such as the SAC-SMA+Snow17 in their case, performed even
worse than the LSTMs. Their hypothesis for the this behaviour is that flows in these basins are not as
highly correlated. Therefore, they assumed that training models involving data of multiple basins helps to
mitigate this problem. In fact, Kratzert et al. (2019), who trained single models on multiple catchments,
found that three counter-measures helped to achieve better NSE values in those catchments. The first
counter measure was including static catchment attributes. While for Kratzert et al. (2019) this had the
greatest impact on performance regarding NSE, it appears to be less helpul here. Again, the most obvious
difference is that while their model sees the static attribute during every unfolding steps, ours only gets
the static attributes in the very final step. The second improvement suggested by Kratzert et al. (2019)
was changing the loss-function to be more sensitive towards low streamflow values. This helped but
the magnitude of the improvement was far lower than the one achieved from adding static attributes. A
third approach was changing the LSTM architecture to include certain input gates for static attributes.
Again, the actual improvements were of low magnitude. As all this is centered around arid basins, and
the first results from table 5.2 appear in line with this explanation, this was investigated in more detail by
inspecting correlations between achieved NSE values and the respective static attributes of a basin. These
correlations are captured by scatterplots which are depicted in figure 5.4.

Figure 5.4 Correlations of chatchment NSE values and static catchment attributes. Basins with an NSE below -1.00
have been excluded for better scale. 232 catchments remained. Basins with an NSE of above 0.80 are marked with
green squares, basins with NSEs below 0 with red crosses.

Especially the basins with NSEs above 0.80 are distributed over the full ranges of the respective attribute.
Basins at the low end of the NSE spectrum are somewhat more arid, for example in terms of mean daily
precipitation, and have more high precipitation days. However the picture is far from obvious. Therefore,
the limitations in the model of this paper are likely to stem from different sources as the ones put forward
in studies by Kratzert et al. (2019) and Kratzert et al. (2018), at least partially.
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Regarding the uncertainty, Klotz et al. (2022) suggest some benchmarking metrics to assess the res-
olution or precision of a model. Those include the mean absolute deviation (MAD), the variance and the
standard deviation of predictions. Fill (2021) normalizes these parameters by dividing by the similar statis-
tic calculated on the respective target sequences. Both versions, normalized and absolute are reported
in table 5.2. As the encoder-decoder approach from Zhu and Laptev (2017) uses an additional compo-
nent in the uncertainty quantification, also the final standard deviation from this approach, η, is presented.
While the model achieves a median MAD of 0.71 across basins, the median of average η across all basins
is 1.68. The MCD model of Klotz et al. (2022) achieved a MAD of 0.39 and a standard deviation of 0.38
of the predictions. The underlying sequences of Klotz et al. (2022), however, had a standard deviation
of 2.85. The authors mention that the MCD model was overly confident, especially in high flow periods.
Additionally, Klotz et al. (2022) caution that their models take only one source of uncertainty into account.
In this regard, the encoder-decoder architecture trained here performed better as the median of normal-
ized η, which is the average η in a basin divided by the standard deviation of the observed streamflows
in a basin, was 0.87. The greatest normalized η of 554.63 was observed in basin 08190500, "W Nueces
Rv nr Brackettville", Texas, which is also the basin with the worst NSE. The next-smaller normalized η was
65.10, all others were below 28.00. Again, as in the NSE accuracy statistic, the encoder-decoder model
seems to suffer from extreme outliers. Naturally, very high values of normalized η are in part also a result
of small variance in basin streamflow. This is especially prevalent for basins with streamflow of close to or
equal to zero for a long time.

Figure 5.5 Cumulative distribution of normalized η. The two outliers were clipped to a value of 30.00 for better scale.

Figure 5.5 shows a cumulative distribution of η across basins. In his best model configuration, Fill (2021)
achieved a normalized MAD of 0.17 and a normalized standard deviation of 0.12. Compared to these two
studies, the uncertainty bands produced by the encoder-decoder model are a bit wider. With no actual
streamflow value lying outside the ±1σ-interval around the predicted value ŷi, however, the uncertainty
bands nicely bracketed the respective predictions.
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6 Conclusion

The LSTM-based encoder-decoder approach put forward in Zhu and Laptev (2017) was successfully im-
plemented as a surrogate, data-driven streamflow prediction model in the hydrological realm. In terms of
accuracy, the model architecture slightly underperformed existing studies as a median NSE of 0.50 was
achieved. The model suffered especially from a handful of outlier catchments where negative NSEs were
recorded. In terms of uncertainty quantification, the model performed well. Especially high streamflow
events were captured and reliably bracketed by the uncertainty bands. Half of the achieved uncertainty
bands were smaller than 0.87 times the standard deviation of the underlying, ground truth streamflow.
While there were basins where the model performed excellently in terms of accuracy and resolution, the
whole approach seemed to suffer from extreme outliers. In contrast to existing work, bad performing basins
were not particularly arid ones when considering static catchment attributed. More likely, the poor perfor-
mance in the respective basins stemmed from inadequate hyperparameters. A more formal and extensive
grid search over possible parameter values should be of great value and might potentially enhance the
model performance in these outlier basins. In particular, the phenomenon of non-decreasing validation
errors for the encoder should also be studied further. As the overall architecture does not differ so much
from existing work, a probable measure for improvement is using a high dropout rate during training. Fur-
ther, to squeeze every bit of performance out of this architecture, one could also adopt the loss function
and make the model more sensitive to low flow regimes. Even though this did not prove to be too useful
in other work, it might help this model. Also, training ensembles might further help to alter results. This,
however, is unlikely as the model is rather complex and especially small models tend to suffer from ini-
tialization problems (Kratzert et al. 2018). To further investigate uncertainty intervals one could research
how the use of the dropout rate during performance affects uncertainty intervals in this data and model
context. To better be able to compare obtained results, it would also be helpful to train other architec-
tures on the CARAVAN dataset and review their performance on this novel data compilation. From the
results presented in this paper, it seems that the strength of the encoder-decoder architecture lies rather
on the resolution and uncertainty quantification side. After all, this paper transferred the encoder-decoder
architecture to the hydrology realm but there remains ample room for hyperparameter tuning that has the
potential to significantly improve model performance.
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