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Abstract: Obligate anaerobic beer spoilage bacteria have been a menace to the brewing industry
for several decades. Technological advances in the brewing process aimed at suppressing aerobic
spoilers gave rise to problems with obligate anaerobes. In previous studies, the metabolic spectrum
of Pectinatus and Megasphaera species has been described, but their metabolism in the beer envi-
ronment remains largely unknown. We used high-performance anion exchange chromatography
with pulsed amperometric detection (HPAEC-PAD) and headspace solid-phase microextraction–
gas chromatography–mass spectrometry (HS-SPME-GCMS) to further characterize beer spoiled by
30 different strains from six beer-spoiling species of Pectinatus and Megasphaera (P. cerevisiiphilus, P.
frisingensis, P. haikarae, M. cerevisiae, M. paucivorans, and M. sueciensis). We detected differences in
carbohydrate utilization and the volatile organic compounds (volatilome) produced during beer
spoilage by all six species. We were able to show that glycerol, one of the basic components of
beer, is the common carbon source used by all strains. It appears that this carbon source allows
for anaerobic beer spoilage by Pectinatus and Megasphaera despite the spoilage-preventing intrinsic
barriers of beer (iso-α-acids, ethanol, low pH, scarce nutrients); thus, extrinsic countermeasures are
key for prevention.

Keywords: beer spoilage; Pectinatus spp.; Megasphaera spp.; carbohydrate metabolism; volatile
fatty acids

1. Introduction

Beer spoilage through bacteria has been an issue for many years [1–4]. This not only
poses an economic threat to companies but also causes a possible negative perception
of a brand due to the obnoxious flavors caused by them [5–7]. The composition of beer
represents a harsh challenge to most microorganisms because of several intrinsic barriers [8].
The isomerized α-acids derived from hops as well as the ethanol content and the low pH
confer antimicrobial properties to the final product. Beer spoilage bacteria are known to
have a series of properties to circumvent these obstacles and grow nonetheless [9–15].

Over the past decades, consistent improvement in the brewing process has increased
the importance of anaerobic beer spoilers. By decreasing the dissolved oxygen in all stages
of the process, the wort and final beer have become less susceptible to aerobic spoilers while
giving anaerobic spoilage bacteria an edge over them [16]. Anaerobic spoilage bacteria tend
to cause beer spoilage at the fermentation or maturation stage. At this point of the process,
raw materials as well as time and effort have already been applied to the production. This
causes the spoilage by obligate anaerobes to have a higher negative financial impact than
that by aerobic spoilers [17,18].

The most dreaded obligate anaerobic spoilers are representatives of the Gram-negative-
staining genera Megasphaera and Pectinatus. The genus Megasphaera comprises several
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species of strictly anaerobic, non-motile cocci, which have been isolated from the rumen
of livestock, human feces and intestines, and spoiled beer [19–22]. Brewery-associated
Megasphaera spp. are M. cerevisiae, M. paucivorans, and M. sueciensis, which are 0.4–2 µm in
size and are not spore-forming. Their original habitat remains unknown as of yet [19,21].
Pectinatus, a genus first described over forty years ago by Lee et al. [23] and emended by
Schleifer et al. [5], consists of motile, non-spore-forming rods initially isolated from spoiled
beer and salty wastewater [5,23–25]. Their size is around 0.4–0.9 × 2.0–32 µm, and the
species P. cerevisiiphilus, P. frisingensis, and P. haikarae are the only representatives isolated
from beer or the brewery environment [5,21,23,26].

These spoilage bacteria must be able to cope with nutrient scarcity, alongside their
toolset of defense mechanisms against stressors. While their ability to withstand beer-
associated stress has been the topic of research for years, the current study is the first to
address their specific carbohydrate metabolism in beer. In this study, we focused on obligate
anaerobic spoilers from six different species of the genera Pectinatus and Megasphaera.
The aim was to gain deeper insight into the carbohydrate metabolism of 30 different
strains during growth on lager beer by measuring the residual sugars and the volatiles
produced after spoilage using a high-performance anion exchange chromatography system
equipped with a pulsed amperometric detector (HPAEC-PAD) and headspace-solid phase
microextraction–gas chromatography–mass spectrometry (HS-SPME-GCMS). We intended
to bridge the gap in the descriptions of obligate anaerobic beer spoilers from the genera
Pectinatus and Megasphaera by further examining their metabolism in the beer environment
as this has been neglected by research so far.

2. Materials and Methods
2.1. Bacterial Strains and Cultivation

Bacterial strains were taken from our in-house TMW (Technische Mikrobiologie Wei-
henstephan) strain collection and are listed in Table 1. Cultivation was carried out at
30 ◦C under anaerobic conditions using modified PYG Medium (5 g/L trypticase peptone,
5 g/L peptone, 10 g/L yeast extract, 5 g/L beef extract, 5 g/L glucose, 2 g/L K2HPO4,
20 mg/L MgSO4 × 7 H2O, 40 mg/L KH2PO4, 1 mL/L Tween 80, 80 mg/L NaCl, 10 mg/L
CaCl2 × 2 H2O, 0.40 g/L NaHCO3, 250 mg/L Resazurin, 1 mL/L NBB-C, 1 µL/L Vitamin
K1, 5 mg/L Haemin solution, 0.5 g/L Cysteine-HCl × H2O). For this procedure, Hungate
tubes were filled with forming gas (5% H2, 95% N2, Westfalen AG, Münster, Germany)
prior to autoclaving and filling via a syringe through the septum. The inoculation was also
executed via a syringe.

Table 1. Overview of the strains used in this study. Superscript T indicates the respective type
of strain.

Strain Reference Genus Species Strain Discovery of Isolate Date of Sampling

DSM 20462T Megasphaera cerevisiae PAT 1 Spoiled beer, Germany before 7 June 1979

DSM 20467T Pectinatus cerevisiiphilus CCC B-1022 Spoiled beer, USA before 2 August 1979

DSM 6306T Pectinatus frisingensis V1 Turbid beer, Finland 1978

DSM 16980T Pectinatus haikarae VTT E-88329 Air of bottling hall in a brewery,
Finland 1989

DSM 16981T Megasphaera paucivorans VTT E-032341 Spoiled beer, Italy 2002

DSM 17042T Megasphaera sueciensis VTT E-97791 Spoiled beer, Sweden 1997

TMW 2.2465 Pectinatus cerevisiiphilus 33-1 Brewery environment Unknown

TMW 2.2467 Pectinatus frisingensis HBS 2 Brewery environment Unknown

TMW 2.2469 Pectinatus frisingensis Mu 2 Brewery environment Unknown

TMW 2.2471 Pectinatus frisingensis 247-2 Brewery conveyor belt Unknown
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Table 1. Cont.

Strain Reference Genus Species Strain Discovery of Isolate Date of Sampling

TMW 2.2474 Pectinatus frisingensis 245-1 Brewery facility table Unknown

TMW 2.2479 Megasphaera cerevisiae SR V 4 Brewery environment Unknown

TMW 2.2480 Megasphaera cerevisiae Sp. II 9/4 Brewery environment Unknown

TMW 2.2482 Megasphaera cerevisiae SR V 5 Brewery environment Unknown

TMW 2.2484 Megasphaera cerevisiae PAT 2a Brewery environment Unknown

TMW 2.2485 Megasphaera cerevisiae PAT 2b Brewery environment Unknown

TMW 2.453 Megasphaera cerevisiae M2 Brewery environment Unknown

TMW 2.1487 Pectinatus frisingensis 140 Brewery environment Unknown

TMW 2.1490 Pectinatus frisingensis 173 Brewery environment Unknown

TMW 2.1491 Pectinatus frisingensis 175 Brewery environment Unknown

TMW 2.1492 Pectinatus frisingensis 225 Brewery environment Unknown

TMW 2.1493 Pectinatus frisingensis 227 Brewery environment Unknown

TMW 2.1494 Pectinatus cerevisiiphilus 228 Brewery environment Unknown

TMW 2.1496 Pectinatus haikarae 233 Brewery environment Unknown

TMW 2.1500 Pectinatus frisingensis 240 Brewery environment Unknown

TMW 2.1503 Pectinatus frisingensis 260 Brewery environment Unknown

TMW 2.2489 Megasphaera paucivorans BEL B Spoiled beer, Italy 2010

TMW 2.2490 Pectinatus haikarae BIO Y21 Spoiled beer, Finland 2010

TMW 2.2491 Pectinatus frisingensis ABBC437 Brewery environment Unknown

TMW 2.2492 Pectinatus cerevisiiphilus ABBC474 Brewery environment Unknown

2.2. Beer Spoilage Assay

For the beer spoilage assay, pale lager beer (5.1% ABV, 21 IBU, pH 4.3) was roughly
degassed by inversion in bottles with twice the volume of the liquid and subsequently
degassed in an ultrasonic water bath for 30 min. After an additional 30 min in a 60 ◦C
water bath, the beer was sterile-filtered (500 mL Rapid-Flow Bottle Top Filter, 0.2 µm aPES
membrane, Thermo Fisher Scientific Inc., Waltham, MA, USA), modified, and distributed
among sterile Hungate tubes under a clean bench. All strains were inoculated in biological
triplicates to a starting concentration of 1 × 105 CFU/mL of cells from an overnight culture
and anaerobically incubated at 30 ◦C whilst turbidity was monitored using a densitometer
(Grant-Bio DEN-1B, Grant Instruments Ltd., Royston, UK). After a period of 23 days, the
final pH of all the samples was measured, and then, the samples were transferred into
reaction tubes, centrifuged, and the supernatant taken for analysis. All strains showed
growth in the lager beer used (Figure S1).

2.3. Ion Chromatography
2.3.1. Chemicals

The analytical standards, including glucose (CAS 50-99-7), fructose (CAS 57-48-7),
sucrose (CAS 57-50-1), maltose (CAS 6363-53-7), maltotriose (CAS 1109-28-0), xylose (CAS
58-86-6), ribose (CAS 50-69-1), arabinose (CAS 10323-20-3), and glycerol (CAS 56-81-5), and
the internal standard for the carbohydrate analysis, 2-deoxy-D-glucose (CAS 154-17-6),
were purchased from Sigma-Aldrich (Steinheim, Germany). Maltulose (CAS 207511-09-9)
was purchased from Genaxxon bioscience (Ulm, Germany). The 50% sodium hydroxide
solution (CAS 1310-73-2) for the eluent and methanol (CAS 67-56-1) used for dilution in
the carbohydrate analysis were obtained from VWR International (Darmstadt, Germany).
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The water used for dilution and buffers was membrane-filtrated with a micropore water
purification system (Thermo Fisher Scientific Inc., Waltham, MA, USA).

2.3.2. Carbohydrate Analysis

Carbohydrate analysis was performed using a high-performance anion exchange chro-
matography system equipped with a pulsed amperometric detector (HPAEC-PAD). This
system was composed of an ICS AS/AP autosampler, an ICS 5000 DC column compartment,
and an ICS 5000 DP pump module (all from Thermo Fisher Scientific Inc., Waltham, MA,
USA). As the stationary phase, a Dionex CarboPac PA10 column (2 mm × 250 mm) and a
Dionex CarboPac PA10 guard column (2 mm × 50 mm) were utilized for all measurements
(both Thermo Fisher Scientific Inc., Waltham, MA, USA). The PAD cell consisted of a
titanium cell body, a disposable gold working electrode, and a silver/silver chloride pH
reference electrode. The detector settings were as follows: 0.1 V at 0.00 s; 0.1 V at 0.40 s;
−2.0 V at 0.41 s; −2.0 V at 0.42 s; 0.6 V at 0.43 s; −0.1 V at 0.44 s; and −0.1 V at 0.50 s.
Data acquisition was performed with 5 data points per second, and data processing was
performed with Chromeleon 7.2 software from Thermo Fisher Scientific Inc. (Waltham,
MA, USA).

For the mobile phase, two eluents, 250 mM sodium hydroxide (A) and HPLC-grade
water (B), were utilized. Both eluents were degassed by ultrasonic treatment for at least
5 min. Once attached to the HPAEC device, the eluents were kept under a pressurized inert
helium atmosphere. The flow rate was set to 0.25 mL/min, and the gradient setting was
20% A at 0 min, 20% A at 13 min, 97% A at 14 min, 97% A at 27 min, 99% A at 28 min, 99%
A at 39 min, and 20% A at 41 min, followed by 4 min of equilibration at 20% A. For changes
in the eluent ratio, a linear curve (curve 5 in Chromeleon 7.2) was applied.

The method was calibrated by injecting seven different concentrations of the analytical
standards, including glucose, fructose, saccharose, maltose, maltotriose, xylose, ribose,
arabinose, glycerol, and maltulose, in two replicates. The coefficients of correlation (R2)
were >0.99 for all compounds, and the linear ranges are listed in Table S2.

The method validation included a recovery analysis, the determination of the limit of
detection (LOD) and limit of quantification (LOQ), and a repeatability test. For the recovery
analysis, a standard mixture containing standards for all analytes was mixed with the beer
(a commercial product that was used in this study for the fermentation experiments) and
fermented beer (pooled samples fermented with all individual strains used in this study)
matrices. This was performed in sextuplicate for each matrix. The recovery rates were
83–109% for beer and 86–110% for fermented beer (see Table S2). The LOD and LOQ values
were determined from the fluctuations in the baseline and the slope of the calibration curve,
as described by Ritter et al. [27]. The LOD values were between 0.11 and 1.57 mg/L, and
the LOQ values were between 0.33 and 4.76 mg/L (see Table S2). For the repeatability test,
a standard mixture was injected 10 times over a period of approx. 24 h. All the measured
concentrations fluctuated within 5% of the average value of the respective analyte, and no
trends were observable. The shifts in the retention times were all less than 0.3%.

The sample preparation included dilution in 50% (v/v) methanol and filtration through
dead-end syringe filters (0.45 µm pore size, obtained from Macherey-Nagel, Düren, Ger-
many) prior to injection.

2.4. Headspace SPME-GCMS Measurements

Headspace solid-phase microextraction–gas chromatography–mass spectrometry (HS-
SPME-GCMS) was carried out on a gas chromatograph (GC) Trace 1310 (Thermo Scientific
Inc., Waltham, MA, USA) directly coupled to an ISQ-7000 quadrupole-mass spectrometer
(Thermo Scientific Inc., Waltham, MA, USA). The GC device was equipped with a TG-5MS
column (60 m × 0.25 mm; film thickness of 0.25 µm; Thermo Scientific Inc., MA, USA),
and the carrier gas was helium with a constant flow rate of 1.25 mL/min. The injector was
heated to 250 ◦C, the transfer line to 250 ◦C, and the ion source to 200 ◦C. The starting
temperature of 60 ◦C was maintained for 4 min, followed by heating by 5 ◦C/min to 200 ◦C
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and subsequently 10 ◦C/min to 250 ◦C, where it was held constant for 3 min. The mass
spectrometer was operated in EI mode with 70 eV, and the detection range was 3–350 Th.
The samples were analyzed in duplicates by using 5 mL of sample in a 20 mL headspace
vials and capped with a bimetal lid (8 mm hole, PTFE septum, Wagner & Munz, München,
Germany). SPME extraction was performed using an SPME-ARROW Fiber Tool (PAL) and
a Triplus RSH autosampler (Thermo Scientific Inc., Waltham, MA, USA). The applied fiber
was a stable flex ARR11-DVB/CWR/PDMS (1.1 mm; phase of 20 mm; phase diameter of
120 µm; Supelco, Bellafonte, PA, USA), which was heated to 270 ◦C for 30 min before initial
use and before and after every analysis for 1 min at 250 ◦C while being purged with helium.
The samples were extracted by introducing the SPME fiber to the sample’s headspace under
permanent stirring (40 ◦C; 100 rpm) for 30 min. Desorption took place by inserting the
fiber for 1 min into the injector at 250 ◦C. Peak detection was performed using Xcalibur 4.1
software (Thermo Scientific Inc., Waltham, MA, USA) and the NIST 11 spectral library. For
qualitative analysis, we used a method by Schnaitter et al. [28] with the modification that
the obtained peak areas were analyzed by applying ANOVA and a Dunnett comparison to
reveal significant rises in signal magnitude compared with the control (p ≤ 0.05).

2.5. pH Measurements

After ending the incubation of the replicates in Hungate tubes, aliquots were taken by
syringe and transferred into a microwell plate. The pH was measured within the wells of
the microplate using a pH meter (SevenGo, Mettler Toledo AG, Zurich, Switzerland).

2.6. Statistics and Figures

ANOVA calculation and subsequent Dunnett comparison were carried out in R (v4.3.3;
R Core Team 2023) using the packages DescTools (v0.99.50) [29] and report (v0.5.7.12) [30].
Figures were created using R in combination with the packages ggplot2 (v3.4.4) [31],
heatmaply (v1.5.0) [32], and factoextra (v1.0.7) [33] as well as OriginPro 2021 (v9.8.0.200;
OriginLab Corporation 1991–2020).

2.7. Availability of Data and Materials

The genomes of type strains used to search genes are available on the NCBI website
under their respective accession numbers as follows: Megasphaera cerevisiae DSM 20462
(NZ_FUXD01000109.1) and Megasphaera paucivorans DSM 16981 (NZ_FNHQ01000075.1).

3. Results
3.1. Residual Carbohydrates in Beer

To determine the initial nutrients available for all spoilers, we determined several
compounds in the commercial lager beer used in this study via ion chromatography. Several
sugars and sugar alcohols were assessed to depict which were present in beer and which
were eventually utilized by the anaerobic spoilage bacteria tested (Table S1).

This resulted in focusing on the following carbon sources: glycerol, arabinose, xylose,
fructose, ribose, maltulose, maltose, and maltotriose, of which glycerol, maltulose, maltose,
and maltotriose proved most abundant. Their concentrations as well as the standard
deviation in the lager beer were determined and portrayed in Figure 1. Maltose showed
a relatively high standard deviation in comparison with the other substrates; therefore,
we measured 13 commercially available lager beers from large breweries to assess the
deviation in all substrates at a wider scope.
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The sugars at low abundance in lager beers showed the following deviations among
the tested beers: arabinose (33.8 ± 8.2 mg/L), glucose (93.7 ± 35.5 mg/L), xylose
(53.6 ± 22.5 mg/L), fructose (37.5 ± 24.0 mg/L), and ribose (50.7 ± 7.8 mg/L). Compounds
at high concentrations such as glycerol (1.41 ± 0.20 g/L), maltulose (1.16 ± 0.22 g/L), mal-
tose (0.60 ± 0.93 g/L), and maltotriose (1.23 ± 0.94 g/L) showed a comparatively higher
deviation. Maltose and maltotriose showed a high divergence among all the beers tested.
It has to be mentioned that the mean total sugar concentrations of all thirteen beer samples
showed a deviation of 4.67 ± 1.96 g/L, while the beer used in our study showed a slightly
higher concentration of 6.16 ± 1.48 g/L among different batches. The lager beer used
in our work showed a high deviation in the concentrations of maltose (1.27 ± 1.24 g/L)
and maltotriose (1.81 ± 0.46 g/L) between batches as well. Measurements of the sugars
and glycerol in the control replicates of the lager beer used in the spoilage assay showed
a consistent profile of these compounds in the samples (Figure 1). The determination of
glucose was not possible because of the possible carryover of glucose from the medium
of the preculture used for inoculation. Because of its low abundance, glucose was not
considered a major contributor.

3.2. Carbohydrate and Glycerol Utilization and Odor Compound Production by Megasphaera spp.
Strains during Lager Beer Spoilage

Lager beer spoilage assays were carried out in triplicate with the Megasphaera spp. and
Pectinatus spp. strains as described in the Section 2. The degradation of sugars and glycerol
varied significantly between the different species from the different genera.

Further examining the strains of each genus revealed a diverse behavior in the usage of
the substrates present in beer by strains of the genus Megasphaera (Table 2). All Megasphaera
strains showed a slight but significant degradation of glycerol by an average of 19%.
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Arabinose, on the other hand, was not a carbon source generally used in this genus, with
only three strains significantly reducing its amount in the medium. M. cerevisiae strains
TMW 2.2484 and TMW 2.2485 were able to degrade most of the arabinose (77% and 79%,
respectively), while the type strain DSM 20462T removed it from the medium completely.
None of the strains utilized xylose, but all of them degraded fructose completely with the
exception of M. cerevisiae TMW 2.2482 and M. sueciensis DSM 17042T; while the first proved
incapable of metabolizing fructose, the latter decreased it significantly but not entirely.
Ribose was utilized by only three strains (DSM 20462T, TMW 2.2482, and DSM 17042T)
and merely to a very low extent. None of the strains were able to degrade maltulose or
maltose, and maltotriose was consumed only by a small amount by strains TMW 2.2480,
TMW 2.2484, and TMW 2.2485.

Table 2. Residual carbohydrates and glycerol in biological triplicates of beer spoiled by several
species of Megasphaera after 23 days at 30 ◦C. All concentrations are in mg/L. The control consisted of
a biological triplicate of lager beer that was incubated at the same conditions. An elevated T indicates
the respective type strain. Bold letters indicate that the decrease in the respective carbohydrate was
significant. Lit.+ indicates that the source reports degradation of the carbon source. Lit.− indicates
that the source reports the species is not able to ferment the carbohydrate. The publications used are
a [19] and b [21].

Species Glycerol Arabinose Xylose Fructose Ribose Maltulose Maltose Maltotriose

Control - 1550 ± 45.8 78.8 ± 3.0 82.9 ± 1.6 71.3 ± 2.1 39.8 ± 4.7 1120 ± 12.2 3670 ± 605.6 2130 ± 35.0

DSM 20462T M. cerevisiae 1190 0.0 90.4 0.0 33.4 1040 3430 2010
TMW 2.453 M. cerevisiae 1280 64.4 89.6 0.0 38.6 1040 3400 2030
TMW 2.2479 M. cerevisiae 1250 69.0 92.6 0.0 39.6 1080 3430 2080
TMW 2.2480 M. cerevisiae 1210 71.5 87.5 0.0 42.1 1070 3280 1930
TMW 2.2482 M. cerevisiae 1310 71.0 91.6 77.0 32.6 1050 3250 2010
TMW 2.2484 M. cerevisiae 1210 18.4 89.6 0.0 41.0 1040 3340 1983
TMW 2.2485 M. cerevisiae 1190 16.6 89.1 0.0 40.0 1030 3340 1990

Lit.+ a a
Lit.− a a a a

DSM 16981T M.
paucivorans

1250 72.0 94.2 0.0 39.2 1080 3530 2160

TMW 2.2489 M.
paucivorans

1360 72.6 87.0 0.0 39.9 1030 3350 2010

Lit.+
Lit.− b b b b b b

DSM 17042T M. sueciensis 1290 68.6 87.0 53.3 33.3 1080 3470 2120
Lit.+
Lit.− b b b b b b

All representative strains from the genus Megasphaera showed a distinct output of
odors (Table 3). Among the compounds exclusively found after the growth of Megasphaera
spp. in lager beer were n-butanol, butyric acid, and caproic acid as well as ethyl nicotinoate.
A compound solely produced by M. cerevisiae strains was 2-methylbutanoic acid, whereas
3-methylbutanoic acid was produced by all Megasphaera spp. strains. Strains of the species
M. paucivorans showed the formation of 4-vinylphenol and citronellol as an exclusive trait,
while α-terpineol was only produced by M. sueciensis.
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Table 3. Volatiles detected in biological duplicates of beer spoiled by Megasphaera spp. strains after
23 days at 30 ◦C. The analysis was executed using HS-SPME GCMS. The abundance of compounds
was determined by statistically comparing the signal of samples in contrast to the control. Lit.
indicates that the source reports the production of the compound. An elevated T indicates the
respective type strain. An X indicates the presence of the particular compound. The publications
used are a [19] and b [21].
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Dimethyl sulfide X X X X X X
Propanol X X X X X X X

Ethyl acetate X
Isobutanol X X
n-Butanol X X X X X X X X X X

3-Methylbutanal X
2-Methylbutanal X X X

S-Methyl thioacetate X X X
Isobutyric acid X X X X X X X a X b X b

Ethyl-Isobutanoate X X X X X X X
Butyric acid X X X X X X X a X X b X b

Ethyl butanoate X X X X X X X X X
3-Methylbutanoic acid X X X X X X X X X X
2-Methylbutanoic acid X X X X X X X

Ethyl-2-Methyl butanoate X X X X X X X
Ethyl-3-Methyl butanoate X X X X X X

Furfural X X X X X
Hexanol X X X X X X X X
Styrene X X

Ethyl pentanoate X X X X X
Ethyl furfuryl ether X X X X X

Methional X
Dimethyl trisulfide X X X

Methionol X X X X X X X X
Caproic acid X X X X X X X a X X b X b

Ethyl hexanoate X X X X X X X X
Hexyl acetate X X X X X

Limonene X
Ethyl-5-Methylhexanoate X X

2-Acetyl1H-Pyrrol X X
Octanol X X X X X X X X

Ethyl heptanoate X X X X X X
2-Nonanol X

Heptyl acetate X
Methionyl acetate X

a-Terpineol X
4-Vinylphenol X X

Ethyl nicotinoate X X X X X X X X X X
Citronellol X X

Ethyl-2-Phenylacetat X X X X X X
Decanol X X X

Geranyl acetate X
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3.3. Carbohydrate and Glycerol Utilization and Odor Compound Production by Pectinatus spp.
Strains during Lager Beer Spoilage

The twenty strains from the genus Pectinatus showed a much more diverse metabolic
behavior (Table 4) than the Megasphaera strains.

Table 4. Residual carbohydrates and glycerol detected in biological triplicates in beer spoiled by
Pectinatus spp. strains for 23 days at 30 ◦C. All concentrations are in mg/L. The type strains are
indicated by an elevated T. The control was a triplicate of lager beer that was not inoculated but
otherwise treated as the samples. Bold letters indicate that the decrease in the respective carbohydrate
was significant. An asterisk indicates a result from duplicates. Lit.+ indicates that the source reports
degradation of the carbon source. Lit.− indicates that the source reports the species is not able to
ferment the carbohydrate. The publications used are a [5], b [6], and c [21].

Species Glycerol Arabinose Xylose Fructose Ribose Maltulose Maltose Maltotriose

Control - 1550 ± 45.8 78.8 ± 3.0 82.9 ± 1.6 71.3 ± 2.1 39.8 ± 4.7 1120 ± 12.2 3670 ± 605.6 2130 ± 35.0

DSM 20467T P. cerevisiiphilus 69.8 0.0 0.0 0.0 29.2 1020 2510 2140
TMW 2.2465 P. cerevisiiphilus 0.0 0.0 0.0 0.0 41.7 968 2280 1790
TMW 2.1494 P. cerevisiiphilus 83.1 64.8 0.0 0.0 36.4 965 2130 1620
TMW 2.2492 P. cerevisiiphilus 0.0 58.3 0.0 0.0 32.9 925 2240 1730

Lit.+ a a
Lit.− a

DSM 6306T P. frisingensis 62.9 0.0 103 0.0 0.0 637 895 2160
TMW 2.2471 P. frisingensis 0.0 0.0 107 0.0 38.3 356 254 2020
TMW 2.1487 P. frisingensis 0.0 18.6 95.9 0.0 32.4 685 835 1850
TMW 2.1491 P. frisingensis 0.0 18.5 93.9 0.0 34.3 387 207 1520
TMW 2.1493 P. frisingensis 0.0 7.63 98.5 0.0 46.2 657 814 1810
TMW 2.1500 P. frisingensis 0.0 3.07 105 0.0 29.5 379 312 1960
TMW 2.1503 P. frisingensis 0.0 3.66 108 0.0 43.8 525 613 2060
TMW 2.2491 P. frisingensis 81.1 0.0 88.8 0.0 37.6 704 1120 1790
TMW 2.2467 P. frisingensis 0.0 0.0 94.6 0.0 60.8 934 2260 1780
TMW 2.2469 P. frisingensis 0.0 0.0 96.0 0.0 61.1 1050 2230 1830
TMW 2.2474 P. frisingensis 0.0 0.0 0.0 * 0.0 46.0 792 1340 1930
TMW 2.1490 P. frisingensis 0.0 8.72 90.7 0.0 57.5 1020 2090 1560
TMW 2.1492 P. frisingensis 0.0 7.33 95.3 0.0 56.5 766 2250 1550

Lit.+ b a a
Lit.− a

DSM 16980T P. haikarae 0.0 0.0 6.37 19.5 38.3 1000 2160 1950
TMW 2.1496 P. haikarae 136 81.1 0.0 * 14.4 33.6 968 2090 1870
TMW 2.2490 P. haikarae 189 71.9 137 * 42.7 35.5 925 2120 1920

Lit.+ c c c c c
Lit.− c

All investigated strains from the genus Pectinatus could utilize the glycerol present in
lager beer as a carbon source, with the majority depleting it entirely. The highest residue
in glycerol was measured in beer spoiled by TMW 2.2490, which left 12% of the substrate
behind. Arabinose utilization showed a more diverging pattern. While all P. frisingensis
strains proved a high capability to metabolize it, the strains belonging to other Pectinatus
species differed vastly in their ability to use it. Two of four P. cerevisiiphilus strains degraded
arabinose entirely, whereas the other two only slightly degraded arabinose. Within the
species P. haikarae, the type strain utilized arabinose completely, while the other two P.
haikarae strains were the only strains of the genus that did not significantly degrade this
pentose. Only six strains were able to metabolize xylose by a significant amount, of which
four belonged to the species P. cerevisiiphilus (TMW 2.1494, DSM 20467T, TMW 2.2465,
TMW 2.2492) and one to P. haikarae (DSM 16980T). P. frisingensis TMW 2.2474 decreased the
xylose content of the medium completely but was the only 1 of 13 P. frisingensis strains to
degrade xylose significantly. All strains of all three Pectinatus species showed high capacity
for fructose utilization. While all P. cerevisiiphilus and P. frisingensis strains depleted the
available fructose completely, the P. haikarae strains just partially utilized between 40% and
80% of this monosaccharide. Ribose degradation was quite variable among the Pectinatus
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strains. Of the type strains of P. cerevisiiphilus and P. frisingensis, the former reduced the
ribose by about one-third, while the latter degraded this pentose completely. On the other
hand, several strains of these two species neglected ribose, as well as all of the P. haikarae
strains. Some P. frisingensis strains even showed an increase in ribose (TMW 2.1490, TMW
2.1493, TMW 2.2467, and TMW 2.2469). The utilization of the disaccharide maltulose was
also variable among the strains investigated.

The P. frisingensis strains utilized between 6% and 68% of the maltulose present in the
medium, whereas strains of the other two species, i.e., P. cerevisiiphilus and P. haikarae, only
consumed between 9 and 17% and 11 and 18%, respectively, of this disaccharide within their
species. All three species yield strains that did not significantly utilize maltulose (TMW
2.1490, DSM 20467T, DSM 16980T, and TMW 2.2469). The most abundant sugar in beer,
i.e., maltose, was significantly utilized by all Pectinatus strains. The strains of the species P.
cerevisiiphilus consumed between 32% and 42%, the representatives of the species P. haikarae
consumed between 41% and 43%, and the strains of P. frisingensis degraded between 38%
and 94% of the maltose present. Maltotriose served as another reliable carbon source, being
significantly decreased by most strains by approximately 15% and by P. haikarae strains by
10%, with the exception of only a few strains from the species P. frisingensis (TMW 2.1503,
DSM 6306T, TMW 2.2471, TMW 2.2479) and P. cerevisiiphilus (DSM 20467T).

All Pectinatus spp. strains produced a flavor profile distinct from that of their Megas-
phaera counterparts (Table 5). They all produced propanoic acid and ethyl propanoate.
Also, all Pectinatus strains except one P. haikarae strain (TMW 2.1496) produced isobutyric
acid and geraniol, and most strains produced acetic acid with the exception of a few P.
cerevisiiphilus (DSM 20467T, TMW 2.2465) and P. haikarae (TMW 2.1496) strains that did not
produce acetic acid.

Table 5. Volatiles present in biological duplicates of beer spoiled by Pectinatus spp. strains. The
analysis was executed after 23 days at 30 ◦C using HS-SPME GCMS. The abundance of compounds
was determined by statistically comparing the signal of samples with the control. An elevated T
indicates the respective type strain. Lit. indicates that the source reports the production of the
compound. An X indicates the presence of the particular compound. The publications used are a [5],
b [6], and c [21].
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Methyl mercaptan X
Dimethyl sulfide X X X X X X X X X X

Propanol X X
Acetic acid X X a, b X X X X X X X X X X X X X a, b X X c

Ethyl acetate X X
Isobutanol X X X X

3-Methylbutanal X X X
2-Methylbutanal X
Propanoic acid X X X X a, b X X X X X X X X X X X X X a, b X X X c

Ethyl propanoate X X X X X X X X X X X X X X X X X X X X
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Table 5. Cont.
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Propyl acetate X X X X X X X X X
Isobutyric acid X X X X X X X X X X X X X X X X X X X
Isobutyl acetate X X X X X
2,3-Butandiol X X X X X X X
Butyric acid X X X X X X X X X X

3-Methyl-2-Buten-1-thiol X X X X
3-Methyl butyric acid X X X X X X X

Furfural X X X X X X X X X X X X X
Ethyl furfuryl ether X X X X X X X X X X

Methional X X
Ethyl-4-Methyl pentanoate X

1-Octen-3-ol X X X X X X X X X X X
Methionol X X X

Caproic acid X
Myrcen X X X X X X X X X X X X X X X
Octanol X

Ethyl heptanoate X X X X X X X X X X X X X X
Linalool X

Ethyl-6-Methyl heptanoate X X
a-Terpineol X X X X X X X X X X X X X

Nerol X X X X X X X X X
Geraniol X X X X X X X X X X X X X X X X X X X

4-Vinyl guajacol X
Methyl-E-geranate X
Citronellyl acetate X

Ethyl dihydrocinnamate X
3-Methylbutyl octanoate X
2-Methylbutyl octanoate X

A compound that was characteristic of P. frisingensis was α-terpineol. It was only
found in beer spoiled by strains of this species with the exception of the beer spoiled by M.
sueciensis. Another monoterpenoid that was only produced by P. frisingensis was nerol, even
though not all strains produced it. The P. haikarae strain TMW 2.2490 uniquely produced
2-methylbutyl octanoate, 3-methylbutyl octanoate, 4-vinyl guajacol, methyl-E-geranate,
and ethyl-4-methyl pentanoate. Furthermore, this strain together with another P. haikarae
strain, DSM 16980T, were the only ones to produce methional.

3.4. Change in pH after Spoilage

To help further contextualize the results obtained, in particular concerning the utiliza-
tion of residual carbohydrates and glycerol in lager beer by strains of the genera Megasphaera
and Pectinatus, we conducted pH measurements in all spoiled beers to assess the final pH
after spoilage. The change in pH seemed to be related to the genus, as Megasphaera spp.
strains generally increased the pH, whereas members of the Pectinatus genus decreased the
pH (Figure 2). The M. paucivorans and M. sueciensis strains had a higher capacity to elevate
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the pH in comparison with their M. cerevisiae counterparts. The strains that decreased the
pH the furthest all belong to the species P. frisingensis.
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4. Discussion
4.1. Residual Carbohydrates in Beer

The measured constitution of the lager beer used for the beer spoilage assay was
similar to the previously described contents of beer [34,35]. While the amounts of maltose
are in a reasonable range, the observed standard deviation in the measurements was rather
high [34–36]. This might be process-related and could be coupled to yeast performance
since yeasts are harvested and used several times depending on the yeast handling of the
brewery. While the attenuation of yeast during fermentation has been the topic of research
in the past years, the view of its dependency on repitching is controversial [37–40].

The intrinsic barriers of beer (ethanol, low pH, and iso-α-acids) are key for the preven-
tion of microbial growth and therefore spoilage. Beer spoilage bacteria possess mechanisms
to tolerate those stressors, but in order to grow, they need suitable carbon sources. By
measuring the residual carbohydrates and glycerol in spoiled beer, we wanted to reveal
the carbon sources targeted by beer-spoiling Pectinatus spp. and Megasphaera spp. strains.
Glycerol is among the three main components introduced by yeast fermentation next
to ethanol and CO2. Its content measured in the present work is in line with previous
findings [41,42]. The “smoothness” it imparts on the taste of the final beverage is widely
acknowledged [43,44]. While glycerol helps the yeast retain cellular function under osmotic
stress [45,46], it is also a consequence of sustaining the redox potential by oxidizing excess
NADH via glycerol synthesis [47]. Since glycerol is generally present in beer, it may serve
as an important substrate for the growth of all the spoilers examined in this study.
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Another sugar that proved to be important for the discrimination of obligate anaerobic
beer spoilers was maltulose. The occurrence of maltulose has been known for about
seventy years now [48,49]. It is formed as a by-product during starch saccharification in
the commercial production of glucose [48–51] or directly from maltose in a pressurized
buffer system [51]. In food quality control, maltulose serves as a quality criterion [52–54].
Aside from its selective production it most likely emerges during mashing and boiling from
the thermal load in the brewing process, eventually residing in the cast wort. Maltulose
has been shown to be metabolized by a wide variety of yeast strains but not necessarily
by all strains [55]. Therefore, residual maltulose is a common constituent in finished beer
and an important carbohydrate for some of the obligate anaerobic spoilers investigated in
this study. Strikingly, the role of maltulose as a carbon source for beer spoilage bacteria
has been neglected so far. Since there are no maltulose-specific enzymes described in the
literature, its degradation might be linked to maltose degradation and a cross-reactivity of
the respective catabolic enzymes towards maltulose [56,57].

The utilization of maltotriose by yeasts is determined by its uptake, which is regulated
by the transporters responsible for the intracellular uptake of maltose [58–60]. This varies
among yeast strains because of the different activity of transporters and therefore creates
alternating concentrations of the trisaccharide, representing another useful carbohydrate
source if degradable by spoilage strains [59].

4.2. Carbohydrate and Glycerol Metabolism by Megasphaera spp.

The sugars and sugar alcohols metabolized by Megasphaera spp. only partially coincide
with what is described in the literature [19,21,22]. A reason for this could be the use
of different strains as the strains described in previous reports are mostly type strains,
which were also applied in this study in addition to strains not previously described.
Furthermore, this study differs from previous publications by application of an HPAEC-
PAD to quantify the residual sugars whereas previous studies applied growth experiments
with the respective carbohydrates as a sole source [19,21,22]. Referring to the overview of
carbon sources utilized by Megasphaera spp. (Table 2), it becomes apparent that the strains
mainly metabolize glycerol, while the decrease in maltose was not significant. Previous
investigations that studied the ability to use maltose [19,21] did not include such a large
variety of strains as that used by us and applied a qualitative approach that did not allow
for observing minor differences in maltose during spoilage.

Despite only employing glycerol, the strains of this genus all grew, suggesting addi-
tional carbohydrate-independent metabolic routes, which is also suggested by the increase
in pH of the spoiled beer (Figure 2). Several types of decarboxylases are known to be
involved in the acid stress response of microorganisms [61–63] but have so far not been
described in beer-spoilage strains of the genus Megasphaera. We hypothesize that beer-
spoiling members of this genus could harbor decarboxylases metabolizing free amino
acids, e.g., arginine, glutamate, lysine, or glutamine, that are known to be present in
wort and beer [42]. A review of the available genomes of the type strains at the National
Center for Biotechnology Information (NCBI) revealed arginine decarboxylases via annota-
tion or BLAST search using a known amino acid sequence, supporting our assumptions
(NZ_FUXD01000109, LOCUS_10910; NZ_FNHQ01000075, LOCUS_02800). In addition,
an ornithine decarboxylase was found in both type strain genomes (NZ_FUXD01000109,
LOCUS_03460; NZ_FNHQ01000075, LOCUS_07150, LOCUS_03910). Arginine as well as
ornithine are common ingredients in beer [64,65], and it can be hypothesized that addi-
tional ornithine could result from arginine decarboxylation and therefore further fuel the
observed alkalization. Perhaps the higher extent to which M. paucivorans alkalized the beer
during incubation correlates with a higher abundance of decarboxylases in order to combat
the acid stress posed by beer, but this remains to be studied in more detail.

The odors solely produced by Megasphaera spp. are in line with what has been reported
in the literature [19–22]. While there is no report about the production of n-butanol so far,
butyric acid is known to be the major fermentation product of the type species of the genus
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Megasphaera, i.e., M. elsdenii [22]. While the metabolism of M. elsdenii is known to produce
mainly butyric acid from glucose, we were able to verify the literature by showing that the
beer-spoiling species of Megasphaera all are incapable of using glucose while still producing
butyric acid [19–22]. We were also able to validate caproic acid as a common volatile fatty
acid among the beer-spoiling representatives of the genus Megasphaera [19,21]. In addition,
we were able to detect compounds previously not reported to be produced by strains of the
genus, i.e., ethyl nicotinoate and 3-methylbutanoic acid, which were found with the strains
of all species, i.e., 2-Methylbutanoic acid only for M. cerevisiae strains, 4-vinylphenol and
citronellol solely for M. paucivorans, and α-terpineol as an exclusive trait of M. sueciensis.
The production of H2S reported in the literature [21] could not be measured because of the
detection range, which served the purpose of excluding noise signals from air but, in this
case, also excluded H2S.

4.3. Carbohydrate and Glycerol Metabolism by Pectinatus spp.

The metabolic spectrum of Pectinatus spp. has been described to some degree, but it
lacks the beer and wort-specific perspective. There is a clear superiority of P. frisingensis
over other Pectinatus sp. in terms of the metabolic versatility in (partially) utilizing glycerol
and carbohydrates present in beer (Table 4). While the ability of P. frisingensis and P.
cerevisiiphilus to metabolize glycerol, arabinose, xylose, fructose, and ribose has been
mentioned [5], substrate utilization remains unclear for P. haikarae for all tested sugars
except xylose [21]. The good growth on PYF reported by Juvonen and Suihko (2006) [21]
suggests that the species can utilize fructose, which coincides with our results. Maltose was
described as a carbon source for several strains of P. frisingensis; however, only the type
strain and one other strain (DSM 6306T and TMW 2.2469) were part of our study, and their
results are in agreement with previously reported results [5]. Furthermore, our results are
in line with the results of a publication that used genomic prediction, which stated that
Pectinatus strains are able to use fructose, glycerol, and ribose [66] even though not all did.
Another finding from this paper was the presence of xylose transporters in the genomes
despite the prediction that beer-spoiling Pectinatus spp. strains were not able to metabolize
xylose. Our results are in contrast to the reported prediction by Kramer et al. yet in line
with the literature as they showed a significant decrease in xylose in all P. cerevisiiphilus
strains, in two P. haikarae strains, and in one P. frisingensis strain [5,21,66]. All other strains of
P. frisingensis did not metabolize xylose. We observed a significant increase in xylose among
this species ranging from 7 to 30%. A possible explanation for this result could be the
degradation of arabinoxylan-releasing xylose units while utilizing the arabinose units. The
abundance of arabinoxylan in several beer styles has been shown [67,68], but degradation
has not been described so far, and this remains to be further investigated. The increase in
D-ribose in some P. frisingensis strains might be related to the production of pentose by the
strains, as reported for other microorganisms [69–71]; however, further experiments are
needed to study this observation in more detail. In addition to this, we showed that all
species of the genus Pectinatus were able to use maltose significantly, which contradicts
previously reported cases [21,66] but aligns with others [23]. Maltulose and maltotriose,
on the other hand, have not been mentioned in the literature so far but proved to be a
useful carbon source for several members of the genus even though not all strains showed
a significant decrease. The superior growth in beer of Pectinatus spp. over Megasphaera spp.
seen in the experiments is most likely due to the broader spectrum of carbon sources used.

The peculiarity of Pectinatus spp. exclusively producing the volatiles propanoic acid
and acetic acid is confirmed by the literature [5,21,23]. The formation of ethyl propanoate
by all studied strains of the genus Pectinatus has not been reported so far. In addition to this,
our study was able to show that two strains of the species P. cerevisiiphilus (DSM 20467T,
TMW 2.2465) and one P. haikarae strain (TMW 2.1496) did not produce acetic acid in contrast
to the bulk of strains. This may be due to the lack of a gene or a defective gene needed
to produce this compound. α-terpineol, a compound solely present in beer spoiled by P.
frisingensis strains, is a monoterpenoid alcohol that is widely applied for its aroma attributes.
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It is also found in beer, and the microbial production during spoilage might be derived from
other monoterpenoid hop compounds such as limonene and pinenes [72,73]. M. sueciensis
also produced this compound in spoiled beer. Nerol is another monoterpenoid alcohol
whose level increased in beer spoiled by P. frisingensis with the exception of a few strains.
Much like α-terpineol, this is another example of a terpenoid alcohol that can be produced
by the geraniol metabolism of yeast during fermentation, as well as by beer spoilers during
spoilage, as the levels were significantly increased compared with the control [72]. The
most unique Pectinatus strains proved to be P. haikarae, which produced several volatiles
that strains from none of the other species were able to produce. This study was able to
highlight this species’ ability to produce 2-methylbutyl octanoate, 3-methylbutyl octanoate,
4-vinyl guajacol, methyl-E-geranate, ethyl-4-methyl pentanoate, and methional exclusively,
which has not been reported so far. Methional, which is usually associated with aged lager
beer [74], surprisingly was only found in beer spoiled by P. haikarae and therefore was not
produced by aging because of the incubation conditions. The only volatile output that has
been reported is propionic and acetic acid from fructose as well as acetoin and H2S [21].

The overall notable decrease in pH during beer spoilage by Pectinatus spp. originated
from the consortium of different acids produced during growth (Figure 2), which aligns
well with the literature [5,21,23]. This finding highlights the overall higher acid tolerance
of strains from Pectinatus spp. in contrast to the Megasphaera spp. strains.

In order to distinguish the strains by considering all of their metabolized carbohy-
drates, a principal component analysis (PCA) was conducted on the residual carbohydrates
of all strains (Figure 3).
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strains cluster in close proximity to the control beer, fortifying the marginal utilization of all carbohy-
drates by strains of the genus. The bottom cluster harbors most strains of the genus Pectinatus that
show a significant but similar utilization of glycerol and maltose, whereas the P. frisingensis strains in
the upper right corner show the highest degradation of maltose and therefore group as a separate
cluster. All samples were biological triplicates that were incubated for 23 days at 30 ◦C, and the
control was an unspoiled lager beer treated the same way as the spoiled samples.

The PCA resulted in three distinct clusters, of which one harbors the control as well
as all Megasphaera strains, coinciding with their observed carbohydrate metabolism. The
second cluster on the bottom of the figure incorporates most strains of all three species
of the genus Pectinatus that show a significant utilization of maltose and glycerol. The
P. frisingensis strains that show a far higher degradation of maltose in comparison with
the other strains of the genus are clustered at the upper right of Figure 3. Another PCA
was performed for the produced volatiles (Figure 4). Factoring in all volatiles detected,
it revealed a clear separation of the genera. In contrast to the PCA performed with the
residual carbohydrates, in this PCA, the M. cerevisiae strains cluster, whereas the strains of
the other two species (M. paucivorans, M. sueciensis) dissociate from this cluster based on a
more versatile output of sulfuric compounds. Looking at the Pectinatus spp. strains in the
figure, it becomes apparent that there are also two clusters whose separation is based on the
diversity of the organic acids and scents produced. Interestingly, species or strain diversity
is more evident in carbohydrate utilization compared with volatilome composition.
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Figure 4. Principal component analysis revealing a genus specificity of the volatilomes of both
Pectinatus spp. and Megasphaera spp. The difference in Pectinatus species is caused by the production
of organic acids and diverse volatile compounds. All M. cerevisiae are distinctly clustered, and M.
paucivorans and M. sueciensis are separated because of a more diverse production of sulfuric compounds.
All samples were biological triplicates that were incubated for 23 days at 30 ◦C, and the control was an
unspoiled lager beer treated the same way as the spoiled samples.
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5. Conclusions

This study is the first to show that the examined strains from the genera Pectinatus
and Megasphaera utilize glycerol and display distinct patterns of carbohydrate utilization
as well as volatile production during beer spoilage. This is a novel finding in the field of
obligate anaerobic beer spoilers as these microorganisms have been profoundly studied in
a laboratory context but to a lesser extent in the beer environment, which is their habitat
of origin. We were able to show that the spoilage organisms studied here tolerate beer’s
intrinsic antimicrobial barriers and that growth is enabled by a specific adaptation to
the substrate. This highlights the importance of extrinsic barriers (brought about by, e.g.,
mashing, wort boiling, pasteurization, sterile filtration, and cold storage) in beer production
as they apparently represent the most effective means of preventing spoilage by Pectinatus
and Megasphaera.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/microorganisms12102045/s1, Table S1: Tested compounds to
identify the substrates eligible for anaerobic beer spoilage bacteria. All compounds were used in
establishing the ion chromatography method eventually used; Table S2: Results from the validation
of the carbohydrate analysis; Figure S1: Growth curves of the candidate strains. The diagrams show
a growth of all strains and a vast difference between the various species. A superscript T indicates
the respective type strain. Strains were anaerobically incubated for 23 days at 30 ◦C.
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