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Abstract We investigate J/ψ decays into octet baryon–
antibaryons pairs. The decay amplitudes are computed within
the collinear QCD factorisation framework. The sublead-
ing amplitude, which describes the decay of longitudinally
polarised charmonium, is computed using twist-4 three-
quark distribution amplitudes. The obtained results are used
for a qualitative analysis of the experimental data. It is found
that the polarisation parameter αB can be described with an
accuracy 10–30%, which may indicate that the pQCD con-
tribution dominates this observable.

1 Introduction

An understanding of exclusive charmonia decays still remains
challenging and includes many open questions, see e.g. Refs.
[1,2]. A description of the underlying QCD dynamics for
charmonia is complicated because the charm quark mass is
not sufficiently large. On the other hand this flaw yields a pos-
sibility to measure observables, which would be much more
difficult to access in case of heavier bottomonium. This open
a window to study many interesting interplays of the long and
short distance QCD dynamics. For instance, many observ-
ables associated with the helicity flip amplitudes, which are
strongly suppressed in the limit mQ → ∞ , in case of char-
monia decays can be accessed and experimentally studied
with a sufficiently high accuracy. The decay J/ψ → B B̄ into
baryon-antibaryon pair is the one interesting example of such
processes. The final state baryons can be easily detected and
existing big statistics of samples, which has been already col-
lected at BESIII allows one to measure not only the branching
ratio but also the polarisation parameter αB , which describes
the angular behaviour of the cross section

dN

d cos θ
= A(1 + αB cos2 θ), (1)
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where θ is the angle between the baryon or antibaryon direc-
tion and the lepton beam, A is an overall normalisation.
The value of αB is sensitive to the value of the helicity flip
amplitude, which describes the decay of the longitudinally
polarised S-wave charmonia. In the naive limit mQ → ∞
this quantity is given by αB → 1 + O(m2

B/m2
Q) [3]. The

experimental results obtained for various baryon channels
indicate that values of αB definitely differ from one, see Refs.
[4–8]. In Table 1 we summarise the existing data for the octet
baryons.

The last column in this table shows the ratio QB , which
can be related to the similar leptonic ratio

Ql = Br[ψ(2S) → ll̄]
Br[J/ψ → ll̄] × 100 = 13.21. (2)

QCD factorisation predicts that in the limit of large mass
mQ → ∞
Ql = QB + O(v2) + O(�2/m2

Q), (3)

where v is the heavy quark velocity in the quarkonium rest
frame, v2 � 1 and � is a typical hadronic scale. Therefore if
the leading-oder contribution in the expansion with respect
1/mQ works sufficiently well, one finds

QB � Ql . (4)

It turns out that this approximate equation is not well satis-
fied for many decay channels. For instance, for many mesonic
decays J/ψ → MM this ratio is strongly violated, see e.g.
Ref. [1]. From the Table 1 one can see that this criteria suf-
ficiently well works for nucleon states but for other octet
baryons QB is about factor 2 differ from Ql . However this
violation effect is not too big. For example, for some mesonic
decays this difference is about an order of magnitude. There-
fore one can expect that the leading-order description for
the baryonic decays can provide sufficiently large or perhaps
even the dominant effect.
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Table 1 The experimental data for decays J/ψ → B B̄

B Br[J/ψ →
B B̄] × 103

αB QB =
Br[ψ(2S)→B B̄]
Br[J/ψ→B B̄] ×

100

p 2.12(3) 0.59(1) [5] 13.86(3)

n 2.1(2) 0.50(4) [5] 14.6(1)

� 1.89(9) 0.47(3) [7] 20.4(1)

�0 1.17(3) −0.45(2) [7] 21.0(3)

�+ 1.5(3) −0.51(2) [8] 7.2(5)

�+ 0.97(8) 0.58(4) [6] 26.7(5)

The values of the branching ratios are taken from PDG [9]

The first realistic estimate of the value of αN was consid-
ered in Ref. [10], where it is suggested to neglect the sublead-
ing helicity flip amplitude but keep finite the ratio m2

N/M2
ψ .

Then one finds

αN � 1 − 4m2
N/M2

ψ

1 + 4m2
N/M2

ψ

� 0.46, (5)

which is a better estimate comparing with the naive limit
mQ → ∞. In Ref. [11] αN is estimated using an idea that
nucleon is the non-relativistic bound state of three quarks
and each quark carries approximately 1/3 of the nucleon
momentum. The result of this consideration yields αN �
0.66.

A more sophisticated idea has been used in Ref. [12],
where the QCD factorisation is used in order to compute the
decay amplitudes. In this framework the cc̄-pair annihilates
at short distances into three hard gluons, which create light
quark-antiquark pairs describing the long-distance collinear
overlap with outgoing nucleon and antinucleon states. The
non-perturbative physics is encoded by well defined matrix
elements, which are closely associated with hadronic wave
functions. Such framework allows one to build a systematic
description performing the expansion with respect to small
velocity v and small ratio �/mQ . The contribution of the
helicity flip amplitude is subleading and it is suppressed by
extra power �2/m2

Q because the corresponding hard subpro-
cess with massless quarks is sensitive to the orbital angular
momentum of the light quarks, which provides an additional
power suppression. In Ref. [12] the helicity flip amplitude is
obtained by introduction of the effective light quark masses,
which are taken to be mq � ximN , where xi are the longitu-
dinal momentum fractions satisfying x1 + x2 + x3 = 1. All
amplitudes, which are calculated in this model, are sensitive
to the leading-twist light-cone distribution amplitude (DA)
ϕ3(x1, x2, x3), which describes the sharing of the nucleon
longitudinal momentum between the quarks at zero trans-
verse separation. Such calculation of the helicity flip ampli-
tude can only be considered as a certain phenomenological
model.

In Ref. [13] the helicity flip amplitude for the first time
has been computed within the more systematic framework:
using the three-quark higher twist DAs, which are related to
the higher Fock components of the nucleon wave function.
Such DAs can also be interpreted as a P-wave configurations
of the three collinear constituent quarks. It turns out that the
subleading helicity flip amplitude can be computed within
the same collinear factorisation framework as the leading-
order amplitude. The obtained result has been used for the
analysis of the proton-antiproton data. The numerical esti-
mate obtained in Ref. [13] is αp � 0.71, which allows one to
conclude that the factorisation description works sufficiently
well in this case. Therefore charmonium decay data may also
provide an interesting information about the baryon twist-4
DAs.

Quite different idea has been developed in Refs. [14–16].
In these works the effective hadronic Lagrangian density has
been constructed using the flavour SU (3) symmetry argu-
ments. The unknown vertex couplings have been fitted from
the data. One of the main output of this analysis is the estimate
of the relative phase between the hadronic and electromag-
netic amplitudes, which are defined through cc̄ → ggg and
cc̄ → γ ∗ subprocesses, respectively. In Ref. [16] this phase
is found to be relatively closer to π/2 than to 0 or π . Qualita-
tively this does not agree with the factorisation picture, which
predicts that the hadronic amplitudes are real. Basing on this
observation it is concluded that this disagreement is perhaps
an indication that pQCD can not provide a sufficiently good
description of J/ψ decays into baryon-antibaryon pairs.

In the present work we are going to extend the analysis
of the Ref. [13] to baryon–antibaryon states from the baryon
octet. The results for the hard kernels obtained in Ref. [13]
also allows one to calculate the amplitudes for other baryons.
Therefore for such analysis one only needs the information
about the twist-3 and twist-4 DAs of the baryons. Some
moments of these DAs have been studied recently on the
lattice in Ref. [17] and these results can be used in order to
constrain the non-perturbative input.

The paper is organised as follows. In Sect. 2 we discuss the
baryon DAs and describe the models, which are used in our
calculations. The analytical expressions for the amplitudes
and observables are discussed in the Sect. 3. The discussion
of the numerical results are presented in Sect. 4. In Sect. 5 we
provide the conclusions. In Appendix we provide the useful
details about the baryon DAs, which are used in our calcula-
tions.

2 Baryon DAs

The long distance dynamics associated with the QCD hadro-
nisation into outgoing hadrons is described by the matrix
elements, which are parametrised in terms of the light-cone
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distribution amplitudes (DAs). The structure and the proper-
ties of the higher twist octet baryon DAs have already been
studied in Refs. [19–22]. Here we briefly discuss the required
twist-3 and twist-4 DAs and construct the phenomenological
models.

In the following we assume that the baryon momentum k
is directed along z-axis and can be expanded as

k = k−
n

2
+ k+

n̄

2
, k+ � k− = m2

B

k+
, k2 = m2

B . (6)

Here n, n̄ are the auxiliary light-cone vectors n2 = n̄2 = 0,
(nn̄) = 2 and

k+ = (kn), k− = (kn̄). (7)

The baryon spinors N (k, s) satisfy Dirac equations1

( /k − mB)N (k, s) = 0,

and normalised as N̄ (k, s)N (k, s′) = 2mBδss′ . It is also
convenient to introduce the large and small components Nn̄

and Nn , respectively:

Nn̄ = /̄n /n

4
N (k, s), Nn = /n /̄n

4
N (k, s) = mB

k+
/n

2
Nn̄ .

The similar relations also hold for the antibaryon spinors.
In this paper we only consider the contributions of the

three quark operators. The contributions of the quark-gluon
operators corresponds to the moments with higher conformal
spin and will be neglected [19,20]. The relevant three-quark
light-cone operators are constructed from the QCD quark
fields q = u, d, s and light-cone the Wilson lines

Wn̄[x−, z−]=P exp

{
ig

∫ 0

(z−−x−)/2
ds A+(x−n/2+sn)

}
.

(8)

The light-cone three-quark operator can be written as

Oα1α2α3(x−, y−, z−)

= εi jk qi
′

α1
(x−)Wn̄[x−, v−]i ′i q j ′

α2
(y−)

Wn̄[y−, v−] j ′ j qk′
α3

(z−)Wn̄[z−, v−]k′k, (9)

where we used short notation q(x−) ≡ q(x−n/2). The set
of indices {i jk} stands for the colour, the indices αi refer
to the Dirac structure. Following to Ref. [21] we assume the
following flavour content of the operators 〈0|qα1qα2qα3 |B〉 ≡
〈0|q1q2q3|B〉:
〈0|u1u2d3|p〉, 〈0|u1d2s3|�〉, (10)

〈0|u1d2s3|�0〉, 〈0|u1u2s3|�+〉, (11)

〈0|s1s2u3|�0〉, 〈0|s1s2d3|�−〉. (12)

1 We do not introduce for spinor the subscript indicating the baryon
B, assuming that this will be clear from the context.

For simplicity this will not be shown explicitly. For brevity
we also simplify the notation for the Dirac indices assuming
{α1, α2, α3} ≡ {1, 2, 3}.

The universal light-cone matrix elements can be defined
as [19]

〈0|O123(x−, y−, z−) |B(k)〉
= 1

4
[ /kC]12

[
γ5Nn̄

]
3 FT

[
V B

1

]

+1

4

[
/kγ5C

]
12 [Nn̄]3 FT

[
AB

1

]

+1

4

[
/kγ α⊥C

]
12

[
γ α⊥γ5Nn̄

]
3 FT

[
T B

1

]

+ mB

8k+
[ /kC]12

[
γ5 /nNn̄

]
3 FT

[
V B

2

]

+ mB

8k+
[

/kγ5C
]

12 [ /nNn̄]3 FT
[
AB

2

]

+mB

8

[
γ α⊥C

]
12

[
γα⊥γ5Nn̄

]
3 FT

[
V B

3

]

+mB

8

[
γ α⊥γ5C

]
12

[
γα⊥Nn̄

]
3 FT

[
AB

3

]

+mB

4
[C]12

[
γ5Nn̄

]
3 FT

[
SB

1

]

+mB

4

[
γ5C

]
12 [Nn̄]3 FT

[
PB

1

]

+ mB

8k+
[

/kγ α⊥C
]

12

[
/nγ α⊥γ5Nn̄

]
3 FT

[
T B

2

]

+ mB

4k+
[iσknC]12

[
γ5Nn̄

]
3 FT

[
T B

3

]

+mB

8

[
σαβC

]
12

[
σ

αβ
⊥⊥γ5Nn̄

]
3

FT
[
T B

7

]
. (13)

where we always assume that

k � k+
n̄

2
, σkn = σαβk

αnβ .

The symbol “⊥” denotes the transverse projections with
respect to the light-like vectors: nαγ α⊥ = n̄αγ α⊥ = 0. The
symbol “FT” denotes the Fourier transformation

FT[ f ] =
∫

Dui e
−i(k1x)−i(k2 y)−i(k3z) f (u1, u2, u3), (14)

with the measure Dui = du1du2du3δ(1 − u1 − u2 − u3),
the quark momenta in (14) are defined as

ki = ui k+
n̄

2
. (15)

The defined in Eq. (13) DAs are symmetric/antisymmetric
with respect to interchange u1 ↔ u2

FB
i (x2, x1, x3) = −(−1)B F

B
i (x1, x2, x3), for

F = {S, P, A}, (16)

FB
i (x2, x1, x3) = +(−1)B F

B
i (x1, x2, x3), for

F = {V, T }, (17)

123
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with

(−1)B =
{+1 B �= �

−1 B = �
. (18)

The minimal basic set of baryon light-cone DAs can be
defined in terms of these DAs as [21,22] ( below we accept
the short notation (x1, x2, x3) ≡ (x123))

fBϕB
3±(x123) = c±

B

2

{
(V1 − A1)

B (x123)

± (V1 − A1)
B (x321)

}
, (19)

fB�B
3 (x123) = c−

B (−1)BT
B

1 (x132), (20)

�B
4±(x123) = c±

B

{
(V2 − A2)

B (x123)

±(−1)B (V3 − A3)
B (x231)

}
, (21)

�B
4±(x123) = (−1)B3c±

B

[
(T3 − T7 + S1 + P1)

B (x123)

± (T3 − T7 + S1 + P1)
B (x132)

]
, (22)

�B
4 (x123) = c−

B (T3 + T7 + S1 − P1)
B (x312), (23)

ϒ B
4 (x123) = 6c−

B T
B

2 (x321), (24)

where

c+
B =

{
1, B �= �√

2
3 , B = �

, c−
B =

{
1, B �= �

−√
6, B = �

, (25)

and fB is the normalisation coupling. The coefficients c±
B are

chosen in such way that these DAs satisfy the simple relations
in the SU (3) flavour symmetry limit [21].

For the nucleon state, the basic set of DAs can be further
simplified by the isospin relationships, namely, it is sufficient
to determine

fN ϕ3(x123) = φN
3+(x123) + φN

3−(x123)

= (V1 − A1)
N (x123), (26)

1

2
�4(x123) = 1

2

(
�N

4+ + �N
4−

)
(x123)

= (V2 − A2)
N (x123), (27)

1

2
�4(x123) = 1

2

(
�N

4+ − �N
4−

)
(x312)

= (V3 − A3)
N (x231), (28)

λ2

6
�4(x123) =

(
�N

4+ + �N
4−

)
(x123)

= (T3 − T7 + S1 + P1)
N (x123). (29)

The nucleon DAs ϕ3,�4, �4 and �4 can be defined2 in terms
of the matrix elements of the appropriately projected light-
cone operators as in Refs. [19,20]. Let us notice that some

2 We do not write the superscript “N” for these DAs following to the
notations accepted in the literature.

definitions of the DAs in Ref. [18] differ from ones in used
Ref. [20], which are also used in this paper.

The twist-4 DAs in Eqs. (21)–(24) can be decomposed into
contributions associated with the contributions of the opera-
tors with the geometrical twist-3 and twist-4. Such decompo-
sition is often referred in the literature as Wandzura-Wilczek
one. In this paper we write such decompositions in the fol-
lowing form3

�B
4±(x123) = fB�

B(3)
4± (x123) + λB

1 �̄B
4±(x123), (30)

�B
4 (x123) = f B⊥ �

B(3)
4 (x123) + λB

1 �̄B
4 (x123), B �= �,

(31)

��
4 (x123) = f��

�(3)
4 (x123) + λ�⊥�̄�

4 (x123). (32)

�B
4±(x123) = λB

2 �̄B
4±(x123), (33)

ϒ B
4 (x123) = λB

2 ϒ̄ B
4 (x123). (34)

The functions in the rhs of Eqs. (30)–(34) are dimensionless
while the couplings fB, f B⊥ , λB

1,2 and λ�⊥ have dimension

GeV2. The functions with the superscript “(3)” describe the
contribution of geometrical twist-3, i.e. these functions are
completely defined in terms of the moments of twist-3 DAs.
The explicit expressions can be found in Refs. [19,20].

The equations (19)–(24) can be easily rewritten using the
symmetry properties (16)–(17) in order to get the expressions
for the DAs {Vi , Ai , Ti , Si , Pi } in terms of the basic func-
tions {ϕB

3±,�B
3 ,�B

4±, �B
4±,�B

4 , ϒ B
4 }. Therefore the non-

perturbative input associated with the final baryon and
antibaryon states can be unambiguously described in terms
of the basic DAs. The construction of the models for these
functions are based on the truncate d conformal expansions,
see e.g. Refs. [19,20].

For the nucleon DAs we take the model set “ABO1” sug-
gested in Ref. [20]. These models have been designed in
order to describe nucleon electromagnetic FFs within the
light-cone sum rules. The twist-3 DA reads

ϕ3(x123) = 120x1x2x3 (1 + φ10P10(x123) + φ11P11(x123)

+ φ20P20(x123)+φ21P21(xi )+φ22P22(x123)) ,

(35)

where the orthogonal polynomials Pkl(xi ) are given in
Appendix. The moments φkl depends on the scale μ and
they are multiplicatively renormalisable, see the details in
Appendix. The chiral-even twist-4 DAs (27) and (28) can be
represented as

�4(x123) = fN�
(3)
4 (x123) + λ1�̄4(x123), (36)

�4(x123) = fN�
(3)
4 (x123) − λ1�̄4(x123), (37)

3 Let us notice that this choice is different from one accepted in Ref
[21].

123
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where the functions �
(3)
4 and �

(3)
4 are defined in terms of

twist-3 moments φkl . The models for the genuine twist-4
DAs reads

�̄4(x123) = 24x1x2 (1 + η10R10(x312) − η11R11(x312)) ,

(38)

�̄4(x123) = 24x1x3 (1 + η10R10(x231) + η11R11(x231)) .

(39)

The moments ηik are multiplicatively renormalisable and do
not mix with the moments from the quark-gluon DAs. The
explicit expressions for the polynomials R1i and �

(3)
4 and

�
(3)
4 are also given in Appendix. The chiral-odd DA �B

4 and
ϒ B

4 (29) do not contribute at this order because the corre-
sponding hard kernels are trivial [13].

For other baryons we consider more simple models. The
twist-3 DAs are described as

ϕB
3+(xi ) = 120x1x2x3

(
1 + φB

11P11(x123)
)

,

ϕB
3−(xi ) = 120x1x2x3 φB

10P10(x123). (40)

��
3 (x123) = 120x1x2x3 π�

10P10(x123), (41)

�B
3 (x123) = 120x1x2x3(1 + π B

11P11(x123)), B = �,�.

(42)

The twist-3 moments {φB
10, φ

B
11, π

B
�, π B

11} in Eqs.(40)-(42)
also enter in the expressions for the twist-4 DAs in Eqs. (30)–
(32), more details can be found in Appendix. For the genuine
twist-4 parts we use the following models

�̄B
4+(x123) = 24 x1x2

(
−ηB

11

)
R11(x312), (43)

�̄B
4−(x123) = 24 x1x2

(
1 + ηB

10R10(x312)
)

, (44)

�̄�
4 (x123) = 24x1x2

(
1 + ζ�

10R10(x132)
)
, (45)

�̄B
4 (xi ) = 24 x1x2

(
−ζ B

11

)
R11(x312), B = �,�. (46)

The described DAs in the limit of exact flavour symmetry
SU (3) (mu = md = ms) must satisfy [21]

�N∗
i+ = ��∗

i+ = ��∗
i+ = ��∗

i+ = �N∗
i = �B∗

i , i = 3, 4

(47)

�N∗
i− = ��∗

i− = ��∗
i− = ��∗

i− = ��∗
i , i = 3, 4. (48)

In terms of the moments this gives

f ∗
N = f ∗

� = f ∗
� = f �∗⊥ = f �∗⊥ , (49)

λ∗
1 = λ�∗

1 = λ�∗
1 = λ�∗

1 = λ�∗⊥ , (50)

φ∗
10 = φ�∗

10 = φ�∗
10 = φ�∗

10 = π�∗
10 , (51)

η∗
10 = η�∗

10 = ηB∗
10 = ζ�∗

10 , (52)

η∗
11 = η�∗

11 = η�∗
11 = η�∗

11 = ζ�∗
11 = ζ�∗

11 . (53)

These relations are useful in the phenomenological analy-
sis. The numerical values of the required moments will be
discussed later.

The analytical result for the helicity flip amplitude, which
involves the twist-4 DAs, can be described in terms of the
so-called auxiliary DAs, which are the linear combinations
of the basic DAs. Such combinations naturally appear in the
calculation of hard kernels and allows one to derive a com-
pact analytical expressions for the amplitudes. These auxil-
iary DAs can be defined in terms of the matrix elements of
the twist-4 operators with the transverse derivative, see the
details in Ref. [13]. The corresponding operators are defined
using the gauge invariant collinear fields, which have definite
scaling behaviour within the effective field theory framework

χ(x−) = W †
n̄ (x−)

n̄n

4
q(x−),

Wn̄(x−) = P exp

{
ig

∫ 0

−∞
ds A+(x−n/2 + sn)

}
. (54)

Then the auxiliary DAs can be introduced through the fol-
lowing light-cone matrix elements

〈0| [i∂α⊥χ(x−)
]
C /nχ(y−)χ3(z−) |B(k)〉

= k+mB
[
γ α⊥γ5Nn̄

]
3 FT

[
V B

1

]
, (55)

〈0| χ(x−)C /n
[
i∂α⊥χ(y−)

]
χ3(z−) |B(k)〉

= k+mB
[
γ α⊥γ5Nn̄

]
3 FT

[
V B

2

]
. (56)

〈0| [i∂α⊥χ(x−)
]
C /nγ5χ(y−)χ3(z−) |B(k)〉

= k+mB
[
γ α⊥Nn̄

]
3 FT

[
AB

1

]
, (57)

〈0| χ(x−)C /nγ5
[
i∂α⊥χ(y−)

]
χ3(z−) |B(k)〉

= k+mB
[
γ α⊥Nn̄

]
3 FT

[
AB

2

]
. (58)

〈0| [i∂α⊥χ(x−)
]
C /nγ ν⊥χ(y−)χ3(z−) |B(k)〉

= k+mB gαν⊥
[
γ5Nn̄

]
3 FT

[
T B

21

]
(59)

+k+mB
[
iσνα⊥⊥γ5Nn̄

]
3 FT

[
T B

41

]
, (60)

〈0| χ(x−)C /nγ ν⊥
[
i∂α⊥χ(y−)

]
χ3(z−) |B(k)〉

= k+mB gαν⊥
[
γ5Nn̄

]
3 FT

[
T B

22

]

+k+mB
[
iσνα⊥⊥γ5Nn̄

]
3 FT

[
T B

42

]
, (61)

where the colour and the flavour structure of the opera-
tors are the same as described before. The DAs in the
rhs of these equations can be expressed in terms of DAs
{Vi , Ai , Ti , Si , Pi }B using the Lorentz symmetry and QCD
equations of motion. This gives [13,20]

4V B
i (x123) = x3 (V2 + A2)

B (x123)

+(−1)i
[
(x1 − x2)V

B
3 (x123) + x̄3A

B
3 (x123)

]

+ m3

mB

(
V B

1 (x123) + (−1)i AB
1 (x123)

)

+(−1)i+12
m1 − m2

mB
T B

1 (x123), (62)
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4AB
i (x123) = −x3 (V2 + A2)

B (x123)

+(−1)i
[
(x1 − x2)A

B
3 (x123) + x̄3V

B
3 (x123)

]

+ m3

mB

(
AB

1 (x123) + (−1)i V B
1 (x123)

)

+(−1)i+12
m1 + m2

mB
T B

1 (x123), (63)

(T21 + T41)
B (x123) = x1

2
(T3 − T7 + S1 + P1)

B (x123)

−1

2

m1

mB

(
V B

1 + AB
1

)
, (64)

(T22 + T42)
B (x123) = x2

2
(T3 − T7 − S1 − P1)

B (x123)

−1

2

m2

mB

(
V B

1 − AB
1

)
, (65)

(T21 − T41)
B (x123) = x1

2
(T3 + T7 + S1 − P1)

B (x123)

+1

2

m1

mB

(
AB

1 − V B
1

)
, (66)

(T22 − T42)
B (x123) = x2

2
(T3 + T7 − S1 + P1)

B (x123)

−1

2

m2

mB

(
V B

1 + AB
1

)
, (67)

where the quark masses mi correspond to the quarks q1q2q3

in the matrix elements in Eqs. (10)–(12). The contributions
with the quark masses appears after application QCD equa-
tions for the quark fields, see more details in Ref. [13]. In what
follow we assume mu = md � 0 and ms �= 0. Therefore the
terms with ms represent the part of the SU (3)-breaking cor-
rections. Because the auxiliary DAs are uniformly defined
for all baryons, the description of decay amplitudes for dif-
ferent baryon states uses the same hard kernels, which are
obtained for the nucleon case in Ref. [13].

3 Decay amplitudes

The decay amplitude J/ψ(P) → B(k)B̄(k′) is defined as

M = (
εψ

)
μ

N̄ (k)

{
γ μ AB

1 + (k′ + k)ν
iσμν

2mB
AB

2

}
V (k′),

(68)

where N̄ and V denote the baryon and antibaryon spinors,
respectively. The charmonium polarisation vector ε

μ
ψ ≡

ε
μ
ψ(P, λ) satisfies

∑
λ

ε
μ
ψ(P, λ)εν

ψ(P, λ) = −gμν + PμPν

M2
ψ

, (69)

where P2 = M2
ψ . The observables can be conveniently

described in terms of linear combinations

GB
M = AB

1 + AB
2 , GB

E = AB
1 + M2

ψ

4m2
B

AB
2 , (70)

which are similar to the Sachs redefinition for the electro-
magnetic FFs. These amplitudes can be computed within the
standard factorisation framework. The resulting expressions
can be written as

GB
M/E = fψ

m2
c

f 2
B

m4
c

(παs)
3 10

81
(1 + δ�B) J B

M/E , (71)

where fψ is the charmonium coupling defined below in Eq.
(79), αs is the QCD coupling and δ�B = 1 if B = �

and δ�B = 0 if B �= �. The leading-order dimensionless
convolution integrals read

J B
M = 1

4 f 2
B

∫
Dxi

x1x2x3

∫
Dyi

y1y2y3{
(V1 − A1)

B (x123) (V1 − A1)
B (y123)

x1y3

D1D3

+T B
1 (y123)T

B
1 (x123)

2x1y2

D1D2

}
, (72)

where

Di = xi (1 − yi ) + (1 − xi )yi . (73)

This result has been obtained already long time ago, see e.g.
Refs. [23–25].

The second amplitude GB
E has been computed in Ref. [13]

for the nucleon case. This result can be easily generalised to
other baryons taking into acount the universality of the defini-
tions of the baryon DAs (55)–(67). Corresponding integrals
read

J B
E = 2

f 2
B

∫
Dyi

1

y1y2y3

∫
Dxi

1

x1x2x3

1

D1D2D3

×
{

(A1 − V1)
B (x123) (A1 + V1)

B (y123) x1(x2(y2 − y3) − ȳ1y2)

+ (A1 + V1)
B (x123) (A1 − V1)

B (y123) x2(x2 − y2)(y1 − y3)

+ (T21 − T41)
B (x123)T

B
1 (y123) 2x3(x2(y1 − y2) + y2 ȳ3)

}
,

(74)

where ȳi = 1−yi . Recall that we only consider twist-4 three-
quark operators and neglect the contributions from twist-4
quark-gluon operators.

The factor (1 + δ�B) in Eq. (71 ) takes into account the
correct symmetry coefficients: the diagrams with two identi-
cal fermion lines have the symmetry coefficient 1/2. Notice
also that �-baryon DAs are defined as in Ref. [21]

DA� ≡ DA�− = −DA�+ = √
2DA�0

, (75)

which is also taken into account in Eq. (71).
The expression for the amplitude GN

E given in Ref. [13]
agrees with one given in Eq. (71). The properties of the DAs
and the hard kernels allow one to simplify the expression for
the integrand in Eq. (74) excluding the contributions with
A2,V2 and T22 − T42. The integralJ B

E is well defined that

123
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can be easily seen using the following observation: all DAs
in the integrand in Eq. (74) have the following structure

DA(x123) = x1x2x3 ×
∑
ki≥0

Ck1k2k3 xk1
1 xk2

2 xk3
3 . (76)

Therefore the singular denominator (x1x2x3y1y2y3)
−1 is

compensated that eliminates a possibility to get the endpoint
singularities. The resulting integrals for J B

M,E can be easily
computed numerically using standard integration packages
accessible in Wolfram Mathematica.

Let us also mention that the baryon integrals J B
M,E for dif-

ferent baryons are equal to each other in the exact SU (3)

limit. The formal consideration of this point obviously
involves the identities in Eqs. (47) and (48). However these
equations do not lead to a simple analytical expressions at
the end. In addition the equality of the integrals in the SU (3)

limit imposes non-trivial relations between the different the
hard kernels in Eqs. (72) and (74). It has been explicitly ver-
ified that all such relations are satisfied, which provides a
powerful check of the obtained analytical expressions.

4 Phenomenology

In the previous section we described the hadronic ampli-
tudes, which are associated with the three gluon annihila-
tion J/ψ → 3g → B B̄. In order to confront theoreti-
cal predictions with the experimental data one has also to
take into account the electromagnetic decay process J/ψ →
γ ∗ → B B̄. Corresponding amplitudes are described by the
baryon electromagnetic time-like form factors (FFs). There
are strong indications that these quantities are dominated by
long distance dynamics and therefore can not be accurately
computed in pQCD. In this work we assume that such con-
tributions provide a sizeable but not very large or dominant
effect and therefore can be ignored at the first step. There-
fore our main task is to study the numerical effect provided by
the three-gluon mechanism to the branching ratio and to the
ratio γ B = |GB

E /GB
M |, which completely defines the angular

behaviour through the parameter α
g
B

α
g
B =

⎛
⎝1 − 4m2

B

M2
ψ

∣∣∣∣∣
GB
E

GB
M

∣∣∣∣∣
2
⎞
⎠

⎛
⎝1 + 4m2

B

M2
ψ

∣∣∣∣∣
GB
E

GB
M

∣∣∣∣∣
2
⎞
⎠

−1

, (77)

where the superscript “g′′ indicates that this is pure hadronic
contribution associated with the three-gluon annihilation
subprocess.

One more correction is described by the combined annihi-
lation J/ψ → γ ∗gg → B B̄ . We estimate this contribution
as a higher order correction and therefore it will be excluded
from the current analysis.

For the branching ratio we also use simplified expression

Br [J/ψ → B B̄] = 1

�J/ψ

Mψβ

12π
|GB

M |2
(

1 + 2m2
B

M2
ψ

γ 2
B

)
,

(78)

where γB = ∣∣GB
E

∣∣ /|GB
M |, β =

√
1 − 4m2

B/M2
ψ and the total

widh �J/ψ = 93 MeV.
The amplitudes GB

M/E depend on the non-perturbative
parameters, which describe the overlap with initial and final
hadrons. The charmonium matrix element is defined in
NRQCD as

〈0| χ†
ω(0)γ μψω(0) |J/ψ(P)〉 = ε

μ
ψ fψ, (79)

where the coupling fψ is related with the quarkonium radial
wave function at the origin

fψ = √
2Mψ

√
3

2π
R10(0). (80)

The value R10(0) has been estimated in the various potential
models and in this work we use the estimate obtained for the
Buchmüller-Tye potential [27]

|R10(0)|2 � 0.81 GeV3, (81)

which implies the charm quark mass to be mc = 1.48 GeV.
The baryon and antibaryon matrix elements are defined in

terms of DAs as described above. The model ABO1 is dis-
cussed in Ref. [20], the corresponding set of the parameters
allows one to get reliable description of the electromagnetic
nucleon form factors. The advantage of this model is that cor-
responding twist-3 and twist-4 DAs provide the unified theo-
retical description. However this model does not fix the nor-
malisation coupling fN . In this work we take fN (4GeV2) =
4.80×10−3 GeV2 , which is consistent with the sum rule cal-
culation from Refs. [23–25]. This value is sufficiently larger
than the lattice result f lat

N (4GeV2) = 3.54 × 10−3 GeV2.
The DAs for other octet baryons are not well known yet.

The twist-3 moments have been investigated within the vari-
ous frameworks, see e.g. Refs. [23–26]. However these con-
siderations do not include the higher twist DAs. Recently
some of the twist-3 and twist-4 moments have been calcu-
lated on the lattice in Ref. [17]. These results are quite inter-
esting however the obtained values for the nucleon DAs are
sufficiently different from the ABO1 model. In some cases
this provides a substantial numerical effect and leads to a
strong disagreement with the experimental data. For instance,
for nucleon the largest numerical effect is related with the
relatively small value of the coupling fN obtained in Ref.
[17]. Nevertheless we use the results from Ref. [17] as a first
guess for baryons �,�,� and modify the values of some
parameters in order to get a more reliable description if the
discrepancy with the data are large.
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The twist-4 DAs depend explicitly from the strange quark
mass, see Eqs. (62)–(67). For this mass we take the value
ms(2 GeV2) = 100 MeV.

The values of different parameters are given in Table 2 for
twist-3 and twist-4 DAs, respectively.

We will refer to these DAs as to unmodified set.
In order to provide reliable estimates for the amplitude GB

E
one also needs to estimate the twist-4 moments, which are
not yet been studied. The twist-4 moments {ηB

10, η
B
11, ζ

B
10, ζ

B
11}

(except the nucleon case) are not known. Therefore to a first
guess we take for these parameters the same values as for the
nucleon neglecting the SU (3)-breaking effects. Further we
modify them in order to improve the description of the data.
The corresponding set of DAs will be referred as modified
ones.

Our numerical calculations show that the value of GB
E is

quite sensitive to the parameters ηB
11 and ζ B

11. Therefore these
unknown parameters will be modified while the computed
λB

1 and λB⊥ will remain unchanged.
The value of the amplitude GB

M is quite sensitive to the
normalisation coupling fB . One finds sufficiently strong dis-
agreement between the lattice data and the sum rules esti-
mates not only for nucleon but also for other baryons. The
lattice results also indicate about strong SU (3)-breaking
effects. These observations can be interpreted as a presence
of uncertainties in the numerical values of fB . Therefore the
couplings fB will be also modified in order to improve a
qualitative description.

The DAs parameters depends on the factorisation scale
μF , more details about this dependence can be found in
Appendix. The branching ratios strongly depend on the QCD
coupling αs(μ

2
R), where the scale μR ∼ mc. In the given

analysis we consider μF = μR = μ and perform the
estimates for the two values of the scale μ2 = 2m2

c and
μ2 = 1.5 GeV2 in order to see the value of the correspond-
ing uncertainty.

The obtained numerical results are presented in the
Table 3.

In order to estimate the branching ratios we use in Eq. (78)
the experimental value for the ratio γ B , which can be eas-
ily obtained from the data for αB . Therefore in this case the
only unknown quantity is the |GB

M |2, which is dominated by
the leading power contribution. The values of the power sup-
pressed term ∼ |γ B

exp|2 in Eq. (78) are shown in last column
of Table 3. For nucleon this term is only about 13%, which
is not large comparing with other expected uncertainties. For
heavier � this term increases to 22%. However for � this
term is enhanced and its numerical value becomes even larger
than one. This enhancement is related with the large value
γ �

exp ∼ 2, which is the direct consequence of the negative
polarisation parameter α� < 0, see Table 1. This observa-
tion allows one to conclude that for the �-channel the value

of the branching ratio is not dominated by the amplitude GB
M

as for all other baryons.
The resulting description of GB

M shows that for the large
scale μ2 = 2m2

c the obtained branching ratios are about factor
2–3 below the data. For the small scale μ2 = 1.5 GeV2 the
agreement with the data is much better. The main source of
the large sensitivity to the scale dependence in present case is
the value of the αs(μ

2). Notice that this uncertainty cancels
in the ratio γ B

g , which becomes quite stable.
The results for the proton-antiproton decay have been dis-

cussed in Ref. [13]. In Table 3 we also added the information
for the neutron-antineutron channel. The experimental value
of γn is somewhat larger than γp, but the experimental errors
for γn are also larger. Potentially this relatively small differ-
ence can be attributed to the mixing with electromagnetic
FFs. From the SU (2) symmetry it follows that γ

p
g = γ n

g .
Numerically the obtained γ N

g is less by 20 − 30% than γ
p

exp

or γ n
exp, respectively. This is rather good result taking into

account the underlying uncertainties. Qualitatively it shows
that the leading-order contribution to γ N

g is sufficiently large
and indicates that the factorised contribution provides already
a reliable description.

The unmodified DAs in Table 2 provide for �-baryon a
relatively small value of the branching ratio, which is about
factor 2 smaller than the experimental one. At the same time,
the obtained value of γ �

g is a bit larger than γ �
exp. This may

indicate that the amplitude G�
M is underestimated. There-

fore in order to make the description more similar to the
nucleon case, one can modify the following one parameter:
f� → 5.5 × 10−3. 4 The larger value f� increases G�

M and
at the same time this reduces the value of G�

E . After that the
obtained results better agrees with the data and qualitatively
better overlaps with the description for the nucleon channel.
The modified value of f� is larger than the value obtained
from the sum rule in Ref. [23–25]: f� = 4.69×10−3 GeV2.
However the SU (3) violation effect in this case is rather mild
( f� − fN )/ fN ≈ 0.15.

For the �-decay channel the numerical results are differ-
ent: the unmodified DAs provide sufficiently large branch-
ing ratio (only for the small scale μ ) but the corresponding
value of γ �

g is about factor 2 smaller. Therefore in order
to improve the description it is natural to reduce the value
f� → 4.5 × 10−3 and to increase the values η�

11 → 0.23
and ζ�

11 → 0.23. This improves the description of γ �
g but also

implies sufficiently large SU (3)-breaking corrections for �.
The modified values of η�

11 and ζ�
11 are about factor two larger

then ones for other baryons. At the same time the modified
value f� is in a good agreement with the value obtained from
the sum rules f� = 4.65 × 10−3 [23–25] .

4 We assume that the values of the modified parameters are given at the
same normalisation as in Table 2.
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Table 2 The parameters, which define the twist-3 and twist-4 models of the baryon DAs (upper and bottom tables, respectively)

B fB , GeV2 φ10 φ11 φ20 φ21 φ22 f B⊥ , GeV2 π B
10 π B

11

N 4.80 × 10−3 0.047 0.047 0.069 −0.024 0.15 − − −
� 4.87 × 10−3 0.125 0.050 0 0 0 − 0.044 −
� 5.31 × 10−3 0.017 0.037 0 0 0 5.14 × 10−3 − −0.017

� 6.11 × 10−3 0.057 −0.0023 0 0 0 6.29 × 10−3 − 0.063

B λB
1 , GeV2 ηB

10 ηB
11 λB⊥, GeV2 ζ B

10 ζ B
11

N −30 × 10−3 −0.037 0.127 − − 0.127

� −42 × 10−3 −0.037∗ 0.127∗ −52 × 10−3 −0.037∗ −
� −46 × 10−3 −0.037∗ 0.127∗ − − 0.127∗

� −49 × 10−3 −0.037∗ 0.127∗ − − 0.127∗

All values are given at the scale μ2 = 4 GeV2. The values, which are obtained from the naive SU (3)-symmetry are shown by the asterisk

Table 3 The results of the numerical calculations in comparison with the experimental data

B Brexp × 103 Br × 103 γ B
exp γ B

g
2m2

B
M2

ψ

|γ B
exp|2

p 2.12(3) 0.47 − 1.43 0.83(2) 0.66 − 0.68 0.13

n 2.09(2) 0.95(6)

� 1.89(9)
0.27∗ − 0.81∗
0.45 − 1.32

0.83(4)
0.75∗ − 0.76∗
0.69 − 0.69

0.18

�0 1.17(3)

{
0.51∗ − 1.42∗
0.41 − 1.14

2.11(5)

{
1.06∗ − 1.11∗
1.68 − 1.77

1.53

�+ 1.5(3) 2.27(5) 1.31

�+ 0.97(8)
0.52∗ − 1.48∗
0.26 − 0.74

0.61(5)
0.61∗ − 0.61∗
0.59 − 0.59

0.22

The obtained values are shown for the the scale interval 2m2
c < μ2 < 1.5 GeV2. The table includes results for the unmodified and modified DAs.

The unmodified results are shown with the asterisks

In case of the �-decay channel the unmodified DAs pro-
vide somewhat larger values for the branching ratio and for
γ �
g . In order to reduce these numbers the following values

have been modified f� → 5.1 × 10−3, f ⊥
� → 5.29 × 10−3

and η�
11 → 0.11, ζ�

11 → 0.11. The new value f� is more
close to the sum rules result [23–25] f� → 4.83 × 10−3 and
such modification also reduces the effect from the SU (3)-
breaking corrections, which is observed for the lattice data.

5 Conclusions

The decay amplitudes for the process J/ψ → B B̄ have
been computed within the QCD collinear factorisation frame-
work for the octet baryon states. The obtained results have
been used for a qualitative phenomenological analysis. The
primary goal of presented consideration is to estimate the
numerical contributions provided by the factorised ampli-
tudes and to study their dependence on the models for the
baryon light-cone distribution amplitudes. In this analysis we
do not consider the effect from the mixing with the baryon

electromagnetic decays, which potentially can also provide
a numerical impact.

The obtained results show that the branching fractions for
all baryons can be reasonably described for the relatively
low normalisation scale μ2 � 1.5 GeV2 only. Moreover, the
qualitative description of the branching fractions can be con-
siderably improved if the values for the leading-twist baryon
coupling fB , which are obtained from the lattice calculations,
are modified. Such modification is very important for the
nucleon channel and also allows one to improve the descrip-
tion for other baryons. Finally the modified set of the cou-
plings fB turns out to be more close to the sum rule estimates
obtained in Refs. [23–25]. For this modified set the expected
SU (3) breaking effects are smaller than for the lattice data.

The obtained ratios GB
E /GB

M describe the experimental
data within the 10–30% accuracy, which is quite reason-
able taking into account different theoretical uncertainties.
This indicates that the obtained contributions provide suffi-
ciently large numerical effect for this observables. The ratios
GB
E /GB

M weakly depend on the choice of the QCD renormali-
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sation scale because the strong coupling αs and charm quark
mass mc cancel in the ratio.

The value of the amplitude GB
E is sufficiently large, so that

the ratio GB
E /GB

M ∼ 0.6 to 0.8. The convolution integrals for
GB
E are quite sensitive to the shape of the twist-4 DAs, which

can be interpreted as three quark state in a P-wave. The twist-
4 moments ηB

11 and ζ B
11 for �, � and � have been estimated

using SU (3) symmetry and the data. In the given analysis
the matrix elements of twist-4 quark-gluon operators are not
included because they contribute to higher order moments,
which are not considered in the used models for twist-4 DAs.

The experimental data indicate that the value of |G�
E /G�

M |
is about factor 2–3 larger comparing with other octet baryons.
This leads to the interesting observation: the power sup-
pressed contribution in expression for width, see Eq. (78),
is strongly enhanced and provides the very large numerical
effect for the branching ratio. The dynamic origin of this
effect is not clear. In order to describe this effect within the
considered framework it is necessary to assume sufficiently
large SU (3)-breaking corrections. This implies that the twist-
4 parameters η�

11 and ζ�
11, are about factor 2 larger comparing

with for the nucleon ones. It remains unclear whether one
can explain this enhancement of |G�

E /G�
M | by some intrin-

sic properties of the baryon wave functions or perhaps this
effect may also be related with the hadron dynamics at large
distances such as final state interactions.

In conclusion let us briefly discuss different effects, which
can be important for a more advanced analysis. Account-
ing for interference with electromagnetic amplitudes can
improve phenomenological analysis. New data obtained for
baryon time-like electromagnetic form factors allows one to
improve the estimate of this effect, this work is in progress.

From the given analysis it also follows that the obtained
description gives reliable estimates at some relatively low
scale only. The scale ambiguity can be better understood
performing the calculation of the next-to-leading QCD cor-
rections. Such calculation will allow one to clarify an appli-
cability of the collinear factorisation in exclusive charmonia
decays. However the computation of the next-to-leading cor-
rections is quite challenging because it involves a big number
of the various one-loop diagrams.

In order to see a size of possible hadronic effects one can
compute the power corrections to the leading-order ampli-
tude GB

M . Such calculation also involves three-quark twist-4
and twist-5 DAs, which have been already studied in the liter-
ature [18,20]. One can not exclude that the three-quark twist-
4 DAs also provide a large power correction of order �2/m2

c
to the amplitude GB

M . If this is correct then the description of
the decay observables will be considerably improved.

In addition to the studied decay mechanism there is one
more contribution associated with the soft-overlap configu-
ration of the final baryon-antibaryon state. In this case the
heavy quark-antiquark pair annihilates into three hard inter-

mediate gluons, which then create light quark and antiquark
jets. The hadronisation of the jets into baryon and antibaryion
involves interactions with the soft quarks and closely associ-
ated with the dynamical hard-collinear scale μhc ∼ √

�mc,
where � is a typical hadronic scale. Taking into account the
realistic value of the charm mass mc one concludes that μhc

is quite small. Therefore such soft-overlap matrix element
can be considered as non-factorisable in the light-quark sec-
tor. It is not difficult to show that such contribution is of
the same order in 1/mc as the factorisable collinear one,
see e.g. Ref. [28]. The corresponding hard coefficient func-
tion is described by the two-loop diagrams and also propor-
tional to α3

s . Unlike the collinear factorisation contribution,
such decay amplitude has nontrivial imaginary phase associ-
ated with the cuts perturbative diagrams. The hard-collinear
matrix element(s) can be unambiguously defined within the
soft-collinear effective theory. Such decay mechanism can
also provide a tangible numerical effect and therefore needs
to be studied. This work is postponed for a future.
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Appendix

For a convenience we provide in this Appendix additional
important details, which complete the full description of the
DAs given in Sect. 2. Let us mention that our notation coin-
cides with the notation from Ref. [20]. The twist-3 DAs are
defined in Eqs. (35) and (19)–(42). The corresponding poly-
nomials Pik(x123) are orthogonal, see e.g. Ref. [19]. They
are defined as

P10(xi ) = 21(x1 − x3), P11(xi ) = 7(x1 − 2x2 + x3), (1)
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P20(xi ) = 63

10

[
3(x1 − x3)

2 − 3x2(x1 + x3) + 2x2
2

]
, (2)

P21(xi ) = 63

2
(x1 − 3x2 + x3)(x1 − x3), (3)

P22(xi ) = 9

5

[
x2

1 + 9x2(x1 + x3) − 12x1x3 − 6x2
2 + x2

3

]
.

(4)

The moments φB
ik are multiplicatively renormalisable and

their evolution is given by

φB
ik(μ

2) = φB
ik(μ

2
0)

(
αs(μ

2)

αs(μ
2
0)

)γik/β0

, (5)

where β0 = 11 − 2
3n f and the anomalous dimensions γik

read

γ10 = 20

9
, γ11 = 8

3
, γ20 = 32

9
, γ21 = 40

9
, γ22 = 14

3
.

(6)

The parameters π B
1i in Eqs. (41) and (42) have the same

anomalous dimensions as φB
1i . The anomalous dimensions

for the normalisation couplings

γ fB = γ f B⊥
= 2

3
. (7)

The twist-4 DAs, which are defined in Eqs. (38), (39) and
(43)–(46) include the folowign polynomials

R10(x1, x2, x3) = 4 (x1 + x2 − 3/2x3) ,

R11(x1, x2, x3) = 20

3
(x1 − x2 + x3/2) . (8)

The general expressions for the geometrical twist-3 con-
tributions (or Wandzura–Wilczek part) in the twist-4 DAs
can be found in Ref. [20]. Here we only provide the explicit
formulas for the described models of twist-3 DAs. This gives
for the functions in Eqs. (36) and (37)

�
(3)
4 (x123) = 40x1x2 (1 − 2x3)

− 20x1x2

∑
k=0,1

φ1k

(
3 − ∂

∂x3

)
x3P1k(x123)

− 12x1x2

∑
k=0,1,2

φ2k

(
4 − ∂

∂x3

)
x3P2k(x123).

(9)

�
(3)
4 (x123) = 40x1x3 (1 − 2x2)

− 20x1x3

∑
k=0,1

φ1k

(
3 − ∂

∂x2

)
x2P1k(x213)

(10)

− 12x1x3

∑
k=0,1,2

φ2k

(
4 − ∂

∂x2

)
x2P2k(x213).

(11)

Notice that the differentiations must be computed with the
unmodified expressions of the polynomials Pnk(xi ) in Eqs.
(1) and (4) and only after that one can apply the condition
x1 + x2 + x3 = 1.

The similar contributions in Eqs. (30), (31) and (32) are
given by

�
B(3)
4+ (x123) = 40x1x2 (1 − 2x3)

−20x1x2φ11

(
3 − ∂

∂x3

)
x3P11(x123), (12)

�
B(3)
4− (x123) = −20x1x2 φ10

(
3 − ∂

∂x3

)
x3P10(x123).

(13)

�
B(3)
4 (x123) = 40x1x2 (1 − 2x3)

−20x1x2π
B
11

(
3 − ∂

∂x3

)
x3P11(x123). (14)

�
�(3)
4 (x123) = −20x1x2 π�

10

(
3 − ∂

∂x3

)
x3P10(x123).

(15)

All the twist-4 moments are multiplicatively renormalis-
able with the following anomalous dimensions

γ B
λ1 = γ B

λ⊥ = −2, γ B
η10 = γ B

ζ10 = 20/9,

γ B
η11 = γ B

ζ11 = 4. (16)
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