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Abstract

We study security functions which can serve to establish semantic security for the two central
problems of information-theoretic security: the wiretap channel, and privacy amplification for
secret key generation. The security functions are functional forms of mosaics of combinatorial
designs, more precisely, of group divisible designs and balanced incomplete block designs.
Every member of a mosaic is associated with a unique color, and each color corresponds
to a unique message or key value. Every block index of the mosaic corresponds to a public
seed shared between the two trusted communicating parties. The seed set should be as small
as possible. We give explicit examples which have an optimal or nearly optimal trade-off of
seed length versus color (i.e., message or key) rate. We also derive bounds for the security
performance of security functions given by functional forms of mosaics of designs.
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1 Introduction
1.1 Two problems of information-theoretic security

A channel W : X — Zisastochastic matrix W with rows indexed by the finite input alphabet
X and columns indexed by the finite output alphabet Z. The (x, z) entry is nonnegative
and denoted by w(z|x). The sum of the entries of every row sums to 1, hence it defines a
probability distribution on Z. For the purpose of this paper, a wiretap channel is determined by
a single channel W. The interpretation is that a sender, Alice, wants to transmit a confidential
message to a receiver, Bob, through a channel which accepts inputs from A" and whose output
is identical to the input, or whose error probability is as small as desired. An eavesdropper,
Eve, obtains a noisy version of the input symbol x € X through the channel W, in other
words, she observes a random variable distributed according to w( - |x). The task now is to
devise a security code for the transmission of confidential messages which does not decrease
the reliability of the channel to Bob, and which at the same time ensures that Eve learns
nothing about the transmitted messages. In fact, we aim for semantic security, by which we
loosely mean that the security code should guarantee security no matter how the message
is distributed on the message set. Two possible rigorous definitions of this concept will be
given below. They guarantee unconditional security, which means that no assumptions are
made on Eve’s computing power.

Another problem from information-theoretic security is privacy amplification. Here, Alice
and Bob share a random variable X living on a finite set X. Eve, the adversary, has access to
a discrete random variable Z correlated with X. The task is to apply a privacy amplification
Sunction to X such that the resulting random variable A (the secret key shared by Alice and
Bob) is distributed approximately uniformly and such that Eve has no information about A.
Again, the goal is to achieve semantic security. Although all distributions are fixed in this
setting, it makes sense to require semantic security. For instance, it guarantees that even if
Eve has the a priori knowledge that the key generated in the privacy amplification process has
one of only two possible values, she is unable to tell which of these two is the one actually
chosen. This property is sometimes called distinguishing security, but it is well-known that
it is equivalent to unconditional semantic security [4].

Practical scenarios will not in general translate directly into one of the two problems
described above. In the wiretap scenario, the physical channel from Alice to Bob will generally
be noisy as well, and an error-correcting code needs to be applied first to make the error
probability on this channel as small as possible. In this case, the input alphabet X actually is
the message set of the error-correcting code. Similarly, in secret key generation, two remote
parties will not in general share a random variable X from the outset. In order to establish
such a random variable, an information reconciliation protocol has to be performed using
communication over a public channel. Eve obtains at least part of her correlated information
Z about X as she observes the public messages exchanged during information reconciliation.

It follows that a security code or a privacy amplification function will generally be just
one component of a modular scheme which as a whole ensures both “reliability” (viz. error-
correction or information reconciliation) and semantic security as well as, in the privacy
amplification setting, approximately uniform key distribution.

The two problems above are key techniques for the generation of information-theoretic
security in communication and data storage systems. They can be building blocks for
embedded security and security-by-design of such systems. An important feature of
information-theoretic security is that it provides provable security even against attacks per-
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Fig.1 The privacy amplification scenario. The correlation between X and Eve’s observation Z here is repre-
sented by the conditional probability Pz|x. Alice and Bob are usually assumed to be connected by a public
channel over which they can exchange messages. In particular, they can use this channel to share the seed. The
arrow from S to Eve is dashed because Eve may know the seed, but this is not necessary for the operability of
the protocol

formed by a quantum computer. For this reason, the techniques developed here are of great
importance for the development of future 6G mobile communication systems [16]. A first
practical implementation is presented in [31].

1.2 Security functions

Both for the wiretap and the privacy amplification scenario, we will assume that Alice and
Bob can share an additional resource, a publicly known seed s chosen uniformly at random
from the finite seed set S. Then the basis both for security codes and privacy amplification
functions are onto functions f : X x § — A, where A is a finite set. We will call such
a function a security function. In the wiretap scenario, A will be the set of confidential
messages; in privacy amplification, it represents the range of possible key values. In fact, in
privacy amplification, f is nothing else than the privacy amplification function, i.e., given a
seed s € S and a realization x € X’ of the random variable X shared by Alice and Bob, the
secret key is chosen to be f(x, s) (see Fig. 1). For the wiretap channel, if Alice wants to send
a confidential message o € A and shares the seed s with Bob, she selects an element x from
the preimage fS_] (@) = {x : f(x,s) = a} uniformly at random and transmits x. We call this
process of selecting x the randomized inverse of f. By assumption, with high probability,
or even with certainty, Bob receives the x that was sent and decodes it into the original
confidential message ¢ = f(x, s), so the reliability of message transmission is preserved
(see Fig. 2).

The color rate of a security function f : X x § — A, both in the wiretap and in the
privacy amplification context, is given by!

_log|A|
¢ = Toglx|

(the name will be justified in the context of mosaics, see below). As f is onto, this is a number
between 0 and 1 which indicates the cost of establishing security as well as, in the privacy

1 Throughout the paper, log will denote the logarithm to base 2. When we write exp(x), we mean 2*.
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Fig.2 The wiretap scenario in the case where the channel between Alice and Bob is the identity channel. In
principle, it is immaterial where the seed is generated. In practice, Alice will generate the seed and transmit it
to Bob publicly. The arrow from S to Eve is dashed because Eve may know the seed, but this is not necessary
for the operability of the protocol

amplification scenario, approximately uniform key distribution. This is not a parameter to be
optimized. Instead, given a required security level, the channel W in the former and the joint
probability Pyz in the latter situation determine a maximal possible color rate. The question
is which f achieve or come close to this rate.

In the wiretap case, a common assumption is that Alice generates the seed, but then she has
to use the unsecured channel to transmit it to Bob. This diminishes the overall communication
rate significantly. The block rate

log|S]|
log|X|

indicates how often the unsecured channel needs to be used for the transmission of the seed.
It has been shown that in some scenarios the seed can be reused in order to make the loss of
overall communication rate negligibly small asymptotically. Nevertheless, it is important to
make the seed set S as small as possible.

The use of a seed is not as problematic in the privacy amplification setting, since it
is commonly assumed that there exists a public channel between Alice and Bob. For the
purpose of seed sharing, it is sufficient that the public channel goes in one direction only.
Usually, one still wants to keep the communication overhead on this public channel small,
and this overhead can again be measured by the block rate.

Finally, we would like security codes and privacy amplification functions to be efficiently
computable. For an underlying security function, this translates to the efficiency of comput-
ing f(x,s) and the randomized inverse f;"!(«). A precise definition of what we mean by
efficiency will be given below.

1.3 Semantic security by mosaics of designs

Semantic security can be seen as a per-message type of security. It means that the proba-
bility distribution of Eve’s observations conditional on any message or key value should be
indistinguishable from an arbitrary fixed distribution on Eve’s observation space which is
independent of the message or key distribution. This suggests to construct security functions
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f: X x8 — Awhose preimages f~!(«) for every o € A have a structure suitable for
establishing this indistinguishability.

Our goal in this paper is to systematically study security functions where every preimage
f~!(a) is the incidence relation of a balanced incomplete block design (BIBD) or a group
divisible design (GDD) with point set X and block index set S. Such a function defines
a mosaic of designs (Dy)qe4, Which is a family of designs on a common point set and a
common block index set satisfying that every pair (x,s) € X x S is incident in a unique
D, . The security function corresponding to such a mosaic will be its functional form. The
precise definitions will be given in Sect. 2.

Two aspects guide us in the construction of mosaics of designs: the trade-off of the color
rate and the block rate, and the computational complexity of the functional form and its
randomized inverse. We investigate the optimal trade-off of the color rate ¢ vs. the block
rate for functional forms of mosaics of BIBDs and GDDs. For mosaics of BIBDs with small
color rate, the block rate can at best be equal to 1. In all other cases, the minimal block rate is
approximately equal to 2p. In particular, if o < 1/2 and the mosaic consists of GDDs, then
a block rate smaller than 1 is possible.

We construct families of examples which are close to optimal, or even optimal, in terms
of this trade-off. Their color rates are distributed over the complete interval between 0 and
1, densely in all cases except for BIBDs of small color rate. Both for mosaics of BIBDs and
GDDs, we need two different families in order to obtain sufficiently variable color rates g.
In both cases, at ¢ & 1/2, the type of designs which is (close to) optimal in terms of this
trade-off changes.

To the best of our knowledge, we are the first to explicitly study semantic security for
privacy amplification. In both scenarios, we measure the amount of semantic security offered
by the functional form of a mosaic of BIBDs or GDDs using two alternative security metrics,
one of them based on total variation distance, the other on Kullback-Leibler divergence. The
upper bounds on these metrics rely on the local properties of the functional form, i.e., on
the properties of BIBDs and GDDs. The wiretap channel and the distribution of the random
variables X and Z only appear in these bounds through at most two Rényi entropies or
divergences, which gives the bounds some robustness with respect to the knowledge about
the channel or the random variables.

We evaluate the security bounds in the most frequently studied scenarios of memoryless
discrete or Gaussian wiretap channels and of privacy amplification for secret-key generation
from discrete memoryless correlated sources. Unfortunately, block rate optimal mosaics of
GDDs in the range where o is small only achieve a suboptimal security level in general.
This is not due to our construction, but holds in general. Hence a block rate of at least 1 is
necessary to achieve asymptotically perfect semantic security at the maximal message or key
rate with mosaics of BIBDs or GDDs. For the other block rate optimal constructions, the
bounds are asymptotically optimal in the benchmark scenarios. Additionally, in the case of
privacy amplification, the regularity of BIBDs and GDDs immediately implies the perfect
uniform distribution of the key generated by the functional form of a mosaic of designs.

All the mosaics we construct are explicit, by which we mean the efficient computability
of the functional form and its inverse in the usual setting of asymptotic complexity. The
examples are derived from well-known designs based on finite fields, so in some cases the
explicitness is obvious. There is one case where some work is required to show explicitness.
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1.4 Related literature

Mosaics of combinatorial designs were introduced by Gnilke, Greferath and Pavcevi¢ [17].
Our method of constructing mosaics from resolvable designs or duals thereof is essentially
due to them. The application of mosaics to construct functions with special desired properties
is new, in particular, the analysis of color and block rates and of efficient computability of
such functions. Mosaics generalize more specialized concepts like the tiling of a group
with difference sets due to Custi¢, Kréadinac and Zhou [14]. A predecessor of what now is
called mosaics was presented in [18] by Greferath and Therkelsen. General background on
combinatorial designs can be found in the reference work of Beth, Jungnickel and Lenz [8].

The idea of separating privacy amplification from information reconciliation goes back to
Bennett, Brassard and Robert [6] and Bennett, Brassard, Crépeau and Maurer [7]. Hayashi
[21] extended the idea to the construction of security codes for the wiretap channel, where
error correction is separated from the establishment of security. Like in [6,7] and [21], the
weaker strong secrecy criterion has been widely applied in information-theoretic security,
where Eve’s a priori knowledge is restricted to the true message or key distribution.

Semantic security ensures security no matter what the key or message distribution
might be. Originating in complexity-based cryptography, it was adapted for (unconditional)
information-theoretic security by Bellare, Tessaro and Vardy [4] (the shorter, published ver-
sion of which is [3]). To the authors’ knowledge, semantic security has only been considered
for wiretap channels so far. In [20], Hayashi implicitly describes a technique for achieving
semantic security for the quantum BB84 key distribution protocol.

[6,7] and [21] used universal hash functions as security functions. Alternative choices in the
privacy amplification scenario with strong secrecy are e-almost dual universal hash functions
(Hayashi [22]) and strong randomness extractors (Maurer and Wolf [25]). None of these
choices guarantees perfect uniform distribution of the key. However, the seed required by
randomness extractors can be very short. Seedless extractors have been used by Cheraghchi,
Didier and Shokrollahi [11] to ensure strong secrecy for the “wiretap channel II”’, where the
eavesdropper may observe a fraction of his choosing of the transmitted codeword.

When applied as security functions in the wiretap scenario, it seems that the global property
defining universal hash functions in general is not enough to ensure semantic security. Even
with additional regularity properties (cf. [5,32]), semantic security can only be shown for
sufficiently symmetric channels. Usually, only strong secrecy is achievable.

Upper bounds on the semantic security metric for the wiretap channel which are compa-
rable to ours were given by Hayashi and Matsumoto [23, Lemma 21] and the authors [34],
using security functions of a different type. The security functions of the former paper are
defined in terms of group homomorphisms together with a regularity condition. The single
efficiently computable example given in [23, Remark 16] exhibits a block rate &~ 2, which
is worse than for mosaics of designs with an optimal trade-off of block rate vs. color rate.
The security functions of [34] are induced by decompositions of complete biregular bipartite
graphs into nearly Ramanujan graphs. A nonconstructive example of such a decomposition
into Ramanujan graphs is given with a block rate of 1 independent of the color rate.

1.5 Outline
In Sect. 2, we define and analyze mosaics of BIBDs and GDDs. In Sect. 3, we define how

we measure semantic security and give the bounds on the security metrics obtained from
functional forms of mosaics of designs. These bounds are proved in Sect. 4. In Sect. 5, we
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prove the explicitness of one of the examples of Sect. 2 for which this is not immediately
obvious.

2 Mosaics of combinatorial designs
2.1 Definitions

Let X’ and S be finite sets. An incidence structure D = (X, S, I) on (X, S) is determined by
the incidence relation I on X x S. An incidence structure (X, S, I) is called empty if [ = @.
If x Is, then x and s are called incident. The incidence matrix of an incidence structure
D = (X, S, 1) is the O1-matrix N with rows indexed by X and columns indexed by S such
that N (x, s) = 1 if and only if x and s are incident in D.

A mosaic of incidence structures on (X, S) is a family M = (Dgy)qea of nonempty
incidence structures on (X, S) such that for every pair (x, s) there exists a unique incidence
structure D, in which x and s are incident. We call A the color set of M. Every Dy, is called a
member of M. If N, is the incidence matrix of Dy, then )", 4 Ny = J, the all-ones matrix
of appropriate size.

Any function f : X xS — Ainduces a mosaic (Dgy)qe 4 of incidence structures, where x
and s are incidentin D, if and only if f(x, s) = «. We say that f is the functional form of this
mosaic. Clearly, every mosaic (Dy)gea on (X, S) has a functional form f : X x § — A.

We consider the case where every D, is a combinatorial design. In the context of designs,
we will call X the point set and S the block index set. We setv = |X|and b = |S|. A (v, k, 1)
tactical configuration on (X, §) is an incidence structure where every point x is incident with
precisely r block indices and every block index s is incident with precisely k points. It holds
that

bk = vr. @2.1)

A (v, k, X) balanced incomplete block design (BIBD) on (X, S) is an incidence structure
on (X, S) such that every s is incident with precisely k points from X and such that any
two distinct points from X are incident with precisely A > 1 common block indices. Every
(v, k, 2) BIBD is a (v, k, ) tactical configuration, where

r(k—1)=x(v—1). (2.2)

The key equality when we want to establish security using a security function which is the
functional form of a mosaic of BIBDs is that the incidence matrix N of a (v, k, ») BIBD
satisfies

NNT =@ =M1 +AJ (2.3)

(here I is the identity matrix of appropriate dimensions).

The second type of designs we consider are group divisible designs (GDDs). A
(u,m, k, L1, X2) GDD is based on a partition of X into m point classes of size u each,
so v = um. Every block index is incident with precisely k points, and two points are incident
with A1 > 0 common block indices if they are contained in the same point class and with
A2 > 1 block indices otherwise. A (u, m, k, A1, A2) GDD is a (v, k, r) tactical configuration
for r satisfying

rtk—1) = a(u— 1)+ r2(m — Du. 2.4)

@ Springer
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An equality similar to (2.3) holds for the incidence matrix N of a GDD. Let C be the 01-
matrix with rows and columns indexed by X’ which has a 1 in the (x, x’) entry if and only if
x and x’ are contained in the same point class. With a suitable ordering of the elements of X,
this is a block diagonal matrix with m all-ones matrices of size u each on the diagonal. Then

NNT = (= ADT + (M — A)C + Aad. (2.5

For a BIBD or GDD (X, S, I), the sets of the form {x : x I s}, where s € S, are usually
called blocks and the set S is identified with the multiset of blocks of the design. Occasionally,
we will also speak of blocks and call the parameter k the block size. However, we will not
identify S with a block multiset since we operate with multiple designs simultaneously.
Hence the more cumbersome term “block index set”.

All mosaics in this paper will consist of tactical configurations with the same parameters
(v, k, r). Given a mosaic (Dy)ye.a, We will use the letter a to indicate the cardinality of its
color set A. If (Dgy)qe.4 is @ mosaic of (v, k, r) tactical configurations, then

v
a=-—.
k
In fact, the examples of mosaics constructed in the present paper will exclusively consist
of BIBDs only or of GDDs only. BIBDs and GDDs together allow us to construct security
functions with a wide range of color rates between 0 and 1. For a mosaic of BIBDs with
constant block size k, note that A also has to be constant due to (2.1) and (2.2).

2.2 Some properties and examples of designs

If D = (X,S8, 1) is an incidence structure, then its dual is the incidence structure DT =
(S, X, 1 Ty where s IT x if and only if x I s. Obviously, the incidence matrix of DT is the
transpose of the incidence matrix of D. If (D) e 4 is amosaic of designs, then so is (Dg JacA-

A (v, k, r) tactical decomposition (X, S, I) is called resolvable if the block index set S
can be partitioned into subsets Sy, ..., S, such that for every j € {1,...,r},everyx € X
is incident with a unique s € &;. (It is clear that such a partition necessarily has to have
precisely r elements.) Every S; is called a parallel class and contains v/k block indices, in
particular, k divides v.

The sum of a mosaic is the incidence structure on (X', aS), where aS is the disjoint union
of a copies of S, and where a point x is incident with the «-th copy of s € S if x and s are
incident in D,. Note that the sum of a mosaic of tactical configurations is resolvable.

Two incidence structures (X, S, I) and (X', S’, I’) are called isomorphic if there exist
bijective mappings @y : X — X’ and &5 : S — &’ such that x I s if and only if
Px(x) I’ Ps(s). We also define that two mosaics (Dg)aea on (X, S) and (D],)g’ea ON
(X', 8') are isomorphic if there exist bijective mappings @y : X — X’ and &g : S — &’
and @4 : A - A suchthat x € X and s € S are incident in Dy for & € A if and only if
D x(x) and @5 (s) are incident in D 4 (a)-

A BIBD is called affine or affine resolvable if it is resolvable and if there exists a number
@ > 0 such that any two distinct non-parallel blocks have precisely p points in common.
An dffine plane is an affine BIBD with i = 1 and block size at least 2. Affine BIBDs have
the property that their number of blocks is minimal among all resolvable BIBDs with the
same number of points and parallel classes. This is a consequence of Bose’s inequality, which
states that

b>v+r—1 (2.6)
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for resolvable BIBDs [8, Corollary 8.6], and that equality holds if and only if the BIBD is
affine.

Here we give the classical examples of affine designs, on which our constructions below
will be based. This is no restriction, since all known affine BIBDs have the same parameters
as the affine-geometric ones below or are Hadamard designs [8, p. 128]. We ignore the latter
since they are limited to v/k = a = 2, which only allows a very small color rate which
vanishes asymptotically as v increases.

Let g be a prime power and t > 2. The (¢', ¢'~', ¢'~2) BIBD AG,_(t, ¢) has as block
set the vector space [F' ;, the blocks are given by the hyperplanes of this vector space, i.e., all
cosets of all (+ — 1)-dimensional subspaces, and the incidence relation is €. These designs
are affine resolvable, the parallel classes are given by the sets of nonintersecting hyperplanes.
In the case t+ = 2, one obtains the affine plane AG(2, ¢), where the hyperplanes are called
lines.

2.3 Block rate optimality

We characterize block rate optimality for mosaics of BIBDs and GDDs.

Lemma 2.1 Let (Dgy)gen be a mosaic of (v, k, \) BIBDs with a > 2 and color rate o. Then

(v — Dka?®
b>max{—— ., v 2.7
vk —1)
Setting
log(v —1) + logk —log(k — 1)
Qo(v. k) = 1 — & e
2logv
then this means for the block rate that
logh | > 20 z:fg > 00(v, k), (2.8)
logv |>1 ifo <oo(,k).

Ifo = 00(v, k), then equality holds in (2.7) ifand only if . = 1. If o < 00(v, k), then equality
holds in (2.7) and (2.8) if and only if b = v. We call a mosaic of (v, k, L) BIBDs satisfying
equality in one of these two cases block rate optimal.

Proof Using (2.1) and (2.2),

b — e — 2 — Da . (v— l)kaz.
k—1 vk —1)
Clearly, equality holds if and only if A = 1. The well-known Fisher’s inequality [8, Theorem
I1.2.6] for BIBDs states b > v if k < v, which settles (2.7).
For the proof of (2.8), observe that since a = v¢, the maximum in (2.7) is v if and only if
0 < oo(v, k). If o > 0o(v, k), then strict inequality has to hold due to v > k. O

We note that gg (v, k) quickly approaches 1/2 from below as v increases.
We also consider the block rate for GDDs. This is connected to some subclasses of GDDs.
First, we recall the classification of GDDs due to Bose and Connor [10]. A GDD is called

1) singular if r = Ay,
2) semi-regular if r > A1 and rk = vAj,

@ Springer



602 M. Wiese, H. Boche

3) regular if r > A; and rk > va,.

Every GDD falls under exactly one of these categories.

An important subclass of the semi-regular GDDs are the transversal designs, which satisty
that every block intersects every point class in precisely one point. In this case m = k and
A1 = 0. We call a transversal design with these parameters a (u, k, A) TD, where A = A.
Hanani [19] has shown that a (u, k, A) TD necessarily satisfies

au?—1
<

(2.9)

u—1"
Lemma 2.2 Let (Dy)yea be a mosaic of GDDs of constant block size k and of color rate o.
Then

logb
o8 > 2p.

logv
Equality holds if and only if every Dy, is an (a, k, 1) TD. We call such a mosaic block rate
optimal.

Proof The parameters v, b, k, r are the same for all members of the mosaic. Choose any
o € Aand assume that Dy is a (ug, My, k, Mo, A2,4) GDD. By (2.4)

b=ra
o Al,a(”a -1 +)”2,otua(ma - 1)(1
N k—1
AoV — Ug)
- k—1

Equality here implies A1 , = 0, whence also m, > k. In this case,

MoV —ug)  Aqak ! 1\ _ Aqak(mg —1)
k—1 T k-1 T mgk—1)

> Ad > a.
My

Equality holds for mq = k and A3 , = 1. Thus altogether we obtain

bzaz,

with equality as claimed in the statement. O

Unfortunately, the block rate of any mosaic one of whose members is a semi-regular GDD
cannot be much smaller than 1. This implies that the minimal possible color rate of a block
rate optimal GDD quickly approaches 1/2 from below as the number of colors increases.

Lemma 2.3 Consider a mosaic M of (v, k, r) tactical configurations and of color rate o <
1/2. Assume that its member Dy, is a (u, m, k, L1, L) semi-regular GDD. Ifloga — log(a —
1) < e, then

loghb €

=

1
ologv — o loga’
Proof From (2.1) and the semi-regularity of Dy, it follows that

k
b=a*l = 2. (2.10)

v
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Since loga = g log v, this means that

loghb log A
9% _ o4 08%2 2.11)
ologv loga
The color rate is connected to X as follows. It was shown for semi-regular GDDs in [10] that
b—1>v—m=m@u—1) (2.12)
(this generalizes Hanani’s inequality) and that m divides k, say k = c¢m. This implies u = ac,
since um = v = ak = acm. Inserting this and (2.10) in (2.12), one obtains

loga - loga

o= > 5 , (2.13)
loga +logk = loga +log(a“x, — 1) —log(ac — 1)
hence
1
log(a®ir — 1) > L loga + log(a — 1)

o
and

1

logh, > — —2)loga — e.

Q

Inserting this in (2.11) gives the result. O

Corollary 2.4 A necessary condition for a mosaic (Dgy)gea of (u, k, 1) TDs to be block rate
optimal is that the color rate o satisfies
log u

0> ——.
~ logu +log(u + 1)

Equality is attained if and only if every Dy is the dual of an affine plane.

Proof We know that that A = 1 for mosaics of block rate optimal TDs. Using this and ¢ = 1
in (2.13), which holds for arbitrary g, gives the lower bound.

Assume that equality holds, and so Hanani’s inequality holds with equality for every D,,.
According to Neumaier [27, Corollary 3.8], equality holds in Hanani’s inequality for a TD D
if and only if D is the dual of an affine BIBD. Thus every D, is the dual of an affine BIBD.
Since every Dy is a (u, k, 1) TD, any two distinct blocks of its dual DZ intersect in at most
one point, hence D is an affine plane. O

We have seen that we cannot come close to block rate optimality for rates well below 1/2
using mosaics which contain at least one semi-regular GDD. The same holds for mosaics
which have at least one regular GDD as a member, since regular GDDs satisfy b > v by
[10], so

log b - 1

ologv ~ ¢
For color rates smaller than those in Corollary 2.4, the solution is to use singular GDDs.
(However, we will see that singular block rate optimal GDDs give suboptimal bounds for
semantic security for sufficiently large point set.) Bose and Connor show in [10] that every
singular GDD is obtained by the multiplication of the points of a BIBD. We apply the same
construction in order to obtain a mosaic M = (Dgy)ye.4 of singular GDDs from a mosaic
M* = (D})qca of (v*,k*, A*) BIBDs on (X*, S*). For an arbitrary positive integer u,
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replace each point x* € X™* by a class of u copies of x*. This gives the point set X of M. The
block index set does not change, we set S = S*. A point x and a block index s are defined
to be incident in Dy if x is a copy of an x* which is incident with s in D}. Every D, has
parameters

u, m=v", k=uk*, A =r=r* i =21"

Note that all members of M have the same point class partition. We call M the u-fold point
multiple of M*.

Conversely, one shows in the same way as in [10] that every mosaic of singular GDDs
with the same parameters and the same point class partition is the u-fold point multiple of a
mosaic of BIBDs.

Lemma 2.5 Let M* = (D})qeca be a mosaic of (v*, k*, A*) BIBDs with color rate o*. For
a positive integer u, let M be the u-fold point multiple of M*. Then M has the color rate

_ o"logv”
"~ logv* +logu’
and satisfies

logb logb*

ologv  o*logv*’
Proof For the color rate, observe that a = a*, and so

loga _ loga® log v*

€= logv* +1logu  logv* logv* + logu’

as claimed. The claim about the block rates follows from v¢ = a = a* = (v*)¢" and b = b*.
O

We see that if M* is close to block rate optimality and o* > oo(v*, k*), then M is close
to block rate optimality as well. The color rates can be chosen arbitrarily small by choosing
u accordingly. A block rate optimal mosaic M* of BIBDs with color rate larger than 1/2 will
be constructed in Sect. 2.6.

2.4 Complexity

With a view towards applications, we would like to be able to find examples of mosaics
of designs whose functional form and randomized inverse are efficiently computable (in
the Turing model of computation). By efficiency, we mean that it must be possible to do
the computations in time polylogarithmic in v and b. This is compatible with the usual
requirements in coding theory, where encoding and decoding must be done in time polynomial
in the blocklength. For this asymptotic definition to make sense, we will implicitly assume
that the mosaic is part of an infinite family of mosaics where each color rate can be attained
infinitely often and where v is unbounded. This will be satisfied by all examples we give
below.

Since X and S do not necessarily have a natural representation as a set of consecutive
bit sequences, we define efficiency in terms of the functional form of an isomorphic mosaic
defined on sets of integers. The choice of integers instead of bit strings allows us to ignore
questions arising when the cardinality of a set is not a power of 2.
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For any positive integer n, we write [n] = {1, ..., n}. We call the mosaic M = (Dq)ge
explicit if there exists a mosaic M = (D) je[q) With point set [v] and block index set [b]
which is isomorphic to M and whose functional form f : [v] x [b] — [a] satisfies

M1) f (X, §) can be computed in time poly(log v, log b) (polynomial in log v and log b) for
all x € [v]and § € [b];

(M2) there exists a mapping g : [b] X [a] x [k] — [v] such that g(5, &, ) can be computed
in time poly(log b, log v) for all §, &, ¥ and which for fixed § € [b] and @ € [a] is a
bijection between [k] and fg_l ().

Remark 2.6 Condition (M2) corresponds to the usual complexity-theoretic definition of
strong explicitness of graph families [1]. Condition (M1) means the efficient distinction
between different graphs, which is only of concern in the context of mosaics.

If, in the wiretap channel case, Alice chooses the seed, which is the most likely scenario,
then the order of the choice of seed s and channel input x can be reversed. So far, we have
assumed that s is chosen first and x is chosen from f;l (v). Due to (2.1), it is equivalent to
first choose x uniformly at random from X" and then to choose s from fx’l () ={s eS8
f(x,s) = a}. We will see in one of the mosaics which we are going to construct that this
can reduce the cost of computation.

However, reversing the order of choosing s and x has a drawback. We already mentioned
above that if the channel from Alice to Bob is used to first transmit the seed and then the
confidential message, this incurs a loss of total communication rate, and that it is possible to
make up for this by reusing the seed. Since s depends on x if the latter is chosen first, seed
reuse is impossible in this case.

All functions constructed in this paper will be based on finite-field arithmetic. For real
implementations, not all finite fields are equally suitable. However, in principle, the complex-
ities are comparable. If ¢ = p' for a prime p, then IF, can be regarded as a vector space over
). If F, is represented in a polynomial basis, i.e., a basis of the form {1, 9, B2, ... 00,
then addition and subtraction in the field I, can be done in time O (log ¢). For multiplication
and division, O((logg)?) time is sufficient [26]. A polynomial basis exists for all prime
powers g [24].

2.5 A general construction

We next present a method from which all examples of mosaics below will be constructed.
A key ingredient for its construction are quasigroups. A quasigroup on the finite set A is an
array L with entries from A and rows and columns indexed by A and which satisfies

1) forevery «, y € A there is a unique S € A such that L(«, 8) = v,
2) forevery B, y € A there is a unique o € A such that L(a, 8) = y.

Every finite group is a quasigroup. If one labels the rows and columns of a quasigroup by a
set which is not necessarily the same as .4, one obtains a Latin square. Using quasigroups
instead of Latin squares is more convenient in our setting.

A quasigroup L on A and a quasigroup L on A are called isomorphic if there exists a
bijective mapping @ : A — A such that L(® (), D(B)) =D(y)foralla, B,y € A.

The following theorem was already shown in [17] for the case of resolvable BIBDs, using
Latin squares instead of quasigroups (which combinatorially amounts to the same thing). It
is based on the idea that it should be possible to obtain a mosaic if one starts with a resolvable
incidence structure, since the sum of a mosaic is resolvable.
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Theorem 2.7 Let D be a resolvable (v, k, r) tactical configuration with incidence relation
1. Let A be an index set for every parallel class of the blocks of D, and let L be a quasigroup
on A. Then there exists a mosaic M = (Dgy)qeca Where each Dy, is isomorphic to D, and
there exists a mosaic MT = (D({)%A where each Dg is isomorphic to DT.

If D is a GDD, then all D, share their point class partitions with D. If DT is a GDD,
then every Dg has the same point class partition as DT and 1 = 0.

Proof The proof essentially is a reformulation of the proof of [17] together with the obser-
vation, already mentioned above, that if one has a mosaic and passes to the dual of every
member of this mosaic, then one again obtains a mosaic. Our formulation of the proof will
make it straightforward to derive the functional form of a mosaic constructed in this way.

The block index set of D can be written as R x A, where R is an index set of cardinality
r for the parallel classes, and the blocks of each parallel class are labeled with a unique
symbol from A. Denote the point set of D by P. For every p € P andi € R there exists a
unique o € A such that p I (i, «). We define the incidence structure D, = (P, R X A, Iy)
by saying that p I, (i, B) if and only if p I (i, y) for the unique y satisfying L(8, y) = «.
This gives a mosaic. It follows directly from the construction and the quasigroup property of
L that all members of this mosaic are isomorphic to D. By dualization, one obtains a mosaic
all members of which are isomorphic to DT .

It is clear that if D is a GDD, then all D, must have the same point class partition. For D7,
the point class partition corresponds to the partition of the blocks of D into parallel classes,
which is shared by all D,. This shows that all Dg have the same point class partition with
A =0. ]

Corollary 2.8 Assume the same conditions as in Theorem 2.7. Let P be the point set of D
and R x A its block set, where R is an index set for the parallel classes and A is an index
set for the elements of any parallel class. The functional form f : P x (R x A) — A of the
mosaic M constructed in Theorem 2.7 satisfies

f(p;i,B) =L(B,y) fortheuniquey € Awithpl (i,y).
The functional form T : (R x A) x P — Aof MT satisfies fT (i, B; p) = f(p;i, ).

The explicitness of a mosaic constructed as in Theorem 2.7 follows from the explicitness
of the involved design D and the quasigroup L. This is important in those cases where
explicitness is not immediately clear from the functional form of the mosaic, like for the
mosaics M@ of the next section.

We say that a quasigroup L on A is explicit if there exists an isomorphic quasigroup L
over [a] such that

(L1) I;(é, ) can be computed in time poly(log a) for all 5: y € la],
(L2) L(B,-) = & can be solved in time poly(loga) for all 8, y € [a].

Let D = (X, S, I) be aresolvable (v, k, r) tactical configuration with S = R x A, where
‘R is an index set for the parallel classes and A for the elements of each parallel class. We call D
explicit if there exists an isomorphic resolvable tactical configuration D = ([v], [r]1x [a], )
satisfying

(D1) forevery x € [v]andi € [r], the unique & € [a] satisfying X I (1, &) can be computed
in time poly(log v, logr);

(D2) there exists a mapping g : [r] x [a] x [k] — [v] whose values are computable in time
poly(log b, log k) and which satisfies that ¥ — g(i, &, ) is a bijection between [k]
and the set of points in [v] incident in D with the block index (7, &).
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We call the dual DT of D explicit if there exists a resolvable tactical configuration D =
([v], [r] x [a], I) isomorphic to D which satisfies (D1) and

(D2)T there exists a mapping gT : [k] x [r] x [a] — [v] whose values are computable in
time poly(log b, log k) and which satisfies that (7, @) — ~gT(E, 7, @) is a bijection
between [r] x [a] and the set of blocks in [] incident in D with the point k.

Theorem 2.9 Assume the conditions as in Theorem 2.7. The mosaic M constructed in The-
orem 2.7 is explicit if both D and L are explicit. Its dual M7 is explicit if DT and L are
explicit.

Proof Let D be a design as in the definition of explicitness of D and let La quasigroup as in
the definition of explicitness of L. The design M constructed from D and L is isomorphic
to M.

In order to check (M1), let f X [r] x [a] — [a] be the functional form of M. Choose
any X € [v],7 € [r] and ,3 IS [a] Then by Corollary 2.8, f()? 7 /3) = L(ﬁ y) for the
unique y satisfying x I (i, 7). By (D1), this 7 can be found in time poly(log v, logr), and
L(/S ) can be computed in time poly(loga) by (L1). Thus f x;1, ,3) can be computed in
time poly(log v, log b).

In order to check (M2), fix any (7, B) € [r] x [a] and & € [a]. By (L2), the y satisfying
L(B,7) = & can be found in time poly(loga). By (D2), there exists a mapping x +>
¢(@, 7, ) which enumerates all points incident with (7, 7) in D and whose values can be

computed in time poly(log b, log k). The set of these points equals f( ;3)

Altogether, this proves the explicitness of M. The explicitness of M is shown similarly.
O

2.6 Examples of (nearly) block rate optimal mosaics

We present four families of mosaics. Not all of these are block rate optimal, but those which
are not are arbitrarily close to optimality for sufficiently large point sets. There is a family
for each combination of the cases

1) colorrate o > 1/2 or o < 1/2 (roughly),
2) BIBD or GDD.

The sets of color rates will be dense except for the case of BIBDs with small color rates.
Inall cases we will use Theorem 2.7. Thus in every case the key is to find a single resolvable

design with the desired parameters.

BIBD and o < 1/2: For this case we build our construction on the affine designs. Fix

an integer + > 2 and a prime power g and let v, k, A etc. be the parameters of the BIBD

AG;_1(t, q). Then

g g
v:qt, bZQ(CI )’ r:q , —1
q—1 q—1

Hence the color rate of the mosaic Mt(lq) we obtain from AG;_(¢, g) with the construction
of Theorem 2.7 is

QZ;-

(1)

We have 1/t > go(v, k) only if 1 = 2. In this case, M, ; is block rate optimal since A = 1.
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If t > 3, then Mt(lq) could only be block rate optimal if it were square, which is not the
case. However, since AG,_(t, q) is affine, it is a consequence of Bose’s inequality (2.6) that
the block rate of M,(’lq) is minimal among those mosaics constructed from any of the known
resolvable BIBDs with v = g’ and color rate 1/¢. The block rate satisfies

logb 1 1 —1
oeb (i leela =Dy
logv t loggq

Thus for fixed color rate 1/¢, one gets closer to block rate optimality by increasing ¢q.

Every hyperplane of AG;_1(t,g) can be represented by a unique pair (h, o), where
a € F, and £ is a nonzero element of IF; whose first nonzero component is normalized to
1. We denote the set of these & by R. The hyperplane corresponding to (4, ) is the set of
points x satisfying & - x = «, where h - x = ), hjx;. Different & give different parallel
classes and different o with a fixed % indicate different parallel hyperplanes in the parallel
class corresponding to /.

The natural quasigroup to construct amosaic from AG,_(, g) is the additive group of IF;..
Thenapointx € IF; and an element (4, B) of the block index set are incident in D, if and only
if x is incident with (h, « — 8) in AG,_ (¢, g). The functional form f : IFf] x (RxFy) — T,

of M,(,Z) is given by

fGsh,B)=h-x+p.

This immediately shows that the family
MO = {Mz(.? 1t > 2, q prime power}

is explicit.
BIBD and ¢ > 1/2: Fix a positive integer ¢ > 2 and an integer £ between 1 and ¢. For g = 2/,
let O : ]Ff] — [, be an irreducible quadratic form, i.e., a polynomial of the form

Q(x,y) = mx? + mxy + 13y°

which cannot be factored into linear forms. Such a quadratic form exists for all g. Choose an
arbitrary subgroup H of order 2¢ of the additive group of F 4 and consider the set

X ={(x,y): Qx,y) € H}.
It was proved by Denniston [15] that X" has
v=14+Q +D2" -1 (2.14)

elements and that every line of AG(2, ¢) has either 2¢ orno points in common with X'.

We will regard X' as a subset of AG(2, g). It is not hard to see [8, Corollary VIII.5.21]
that if we denote by S the set of nontrivial intersections of lines of AG(2, ¢) with X, then
D = (X, 8, €) is a resolvable (v, k, 1) BIBD with k = 2¢. Since r = 27 + 1 by (2.2), the
set of parallel classes of D is in one-to-one relation with the set of parallel classes of lines in
AG(2,q).Infact,if £ =¢,then D = AG(2, q).

Applying Theorem 2.7, one constructs a mosaic Mt(_ze)’ y With the parameters

v=2Q2"+1-2Y, b= + D2 +1-2"7Y,

r=2"+1, k=2% r=1, a=2"+1-2"""
log2' +1-27% ¢

O Tl +1-20  i1¢
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Since A = 1, the mosaic Mz(.2e), j 18 block rate optimal and satisfies
logb logb log(2" +1
o8> _ 8% _, g2+ ) (2.15)
ologv loga log(2' +1 —2!=¢)

For every ¢ and ¢, it is possible to choose a subgroup H; ; such that the resulting family
MD =My r=21 <<

is explicit. Some work has to be done in order to show this, which we postpone to Sect. 5.
Moreover, every number between 1/2 and 1 can be approximated arbitrarily closely by the
color rates of elements of M® for sufficiently large 7 and .

GDD and o < 1/2: Fix a positive integer ¢ and a nonnegative ¢ between 0 and ¢. Denote
the elements of the explicit family M® constructed above by Mfi) (we omit the subgroups

here in order to simplify notation). Choose an integer # and let Mt(i)u

be the u-fold point
multiple of M:i). Its parameters are

u, m=2Q +1-2""Y, b= + D@2 +1-2""Y,

r=2"41, k=2%, rM=2"41, ra=1, a=2"4+1-2"¢
By Lemma 2.5, its color rate is

B log(2' +1—2'"%) N t
€= £+1log2' +1—2=t) 4 logu t+¢€+logu

and the ratio of the block rate and the color rate is given by (2.15). The color rate is smaller
than 1/2 for sufficiently large u.
Denote the point set of Mt(ze) by A* and its block index set by S*. Let f* : X* x S§* — A*

be the functional form of M t(zz)~ The point set of M 53{) , can be taken to be X = X * x [u], the
block index set and the color set remain the same as for D*, so S = S* and A = A*. The

functional form f : X x § — A of M[(? , satisfies

f(x*,i;s) =a ifandonlyif f*(x*,s) =«
for x* € X*,i € [u], s € S and @ € A. The explicitness of the family

M(”:{Mﬂ)’u:tzz,l <t<tu>1}
follows from that of M),

By the discussion in Sect. 2.3, mosaics of singular GDDs give the best approximation
to block rate optimality among mosaics of GDDs with a small color rate if the point set is
sufficiently large. The ratio of the block and the color rates is given by (2.15). All numbers
between 0 and 1 can be approximated arbitrarily well by the color rates of suitable members
of M®),

GDD and ¢ > 1/2: If one deletes some of the parallel classes from the block set of AG (2, ¢),
where ¢ is a prime power, then one obtains the dual of a transversal design. Assume we keep
k > 2 of the parallel classes of AG(2, g). Call the resulting design DT andset D = (DT)T.
The point set X of D consists of lines of AG(2, ¢) and the block index set S of D consists of
all the points of AG (2, ¢). Two points x, x" € X are incident with a common block index s
if and only if they intersect as lines in AG(2, ¢), and so parallel classes of D7 translate into
point classes of D. If x, x’ are not in the same point class of D, thenin D7 , their corresponding
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lines intersect in a unique point. In D, this means that two points from different point classes
are incident with a unique block index, and so D is a (¢, k, 1) TD.

Letting R denote the set of remaining parallel classes of lines, we construct from this
transversal design a mosaic Mk R s in Theorem 2.7, using the natural additive group
structure of IF;, on every parallel class of AG(2, q). We obtain a mosaic with

u=gq, k, b=q2, r=1, a=gq.
Thus M _ has color rate
k.q, R

_ logg
" logg +logk’

Since k ranges between 2 and g + 1, g is a number between

log g log g
——— and ——.
logg +log(qg + 1) 1+1logg

The block rate is optimal by Lemma 2.2.

The point set X’ of M, ,E ) has the structure of a Cartesian product, X = R x F,. For the
discussion of the functlonal form of the mosaic, we assume that k < ¢ and that R is given
by a subset of FF,. Then x = (c,d) € & corresponds to the line {(u,cu +d) : u € F}
in AG(2, q). The case k = g + 1 can be treated analogously and corresponds to a mosaic
whose members all are isomorphic to the dual of AG(2, ¢).

A point x = (c,d) € X and a block s = (s1,5) € § = ]le are incident in D if
cs1 +d = s;. They are incident in Dy, if cs| +d — a = s, where @ € F,. Thus

f(x,s) = f(c,d;sy,82) =82 —csy +d.

Givena € F, and s = (51, 52) € IFLZI, one can find those x € X which are incident with s by
taking any ¢ € R and solving for d = o — 52 + ¢s1. In this way, one obtains the randomized
inverse of f. This can be done efficiently if R can be enumerated efficiently. Clearly, such
an R = Ry 4 exists for every k. This gives us an explicit family

4 .
M® = {MIE,;,R;(,(, :2 <k <g+1, g prime power}.

All numbers between 1/2 and 1 can be approximated arbitrarily well by the color rates of
members of this family.
Discussion. All our examples are constructed using Theorem 2.7, hence all members of
these designs are either themselves resolvable or duals of resolvable designs. We do not
know whether mosaics of BIBDs or GDDs with constant block size exist which are not
resolvable or dually resolvable. Such a construction would be particularly relevant for cases
where mosaics of resolvable designs cannot be block rate optimal. For instance, a block rate
optimal mosaic of BIBDs with color rate smaller than 1/2 must be square, and consequently
cannot be resolvable.

It would also be desirable to construct a family of mosaics of BIBDs which is close to
block rate optimality and whose color rates are dense in the interval between 0 and 1/2.
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2.7 Related structures
2.7.1 Universal hash functions.

A function f : X x S — A s called a universal hash function if for all distinct x, x’ € X,

s flo ) =F& ) _ 1

b T a

(where, as usual, |X| = v, |S| = b and | A| = a). The left-hand side of (2.16) can be

interpreted as the probability that the values assigned to x and x’ by f “collide” if the seed

is chosen uniformly at random. Let (Dy)qe4 be the mosaic of incidence structures induced

by f as described in Sect. 2.1. Stinson [29] has shown that the maximal collision probability

of f is minimal if the sum D of (Dy)qc.4 is a BIBD (recall the definition of the sum of a
mosaic in Sect. 2.2).

(2.16)

Lemma 2.10 [29] Any onto function f : X x S — A satisfies

l{s: f(x,5) = f(x',9)} _ v—a
b “alw-1)

for at least one pair of distinct points x, x' € X. Equality holds for all distinct x, x' € X
if and only if the sum D of the mosaic of incidence structures (Dy)qeca induced by f is a
resolvable BIBD.

A universal hash function f for which the sum D of the corresponding mosaic (Dgy)geA
is a BIBD is called optimally universal. It follows immediately that a mosaic (Dy)gea Of
BIBDs with common parameters (v, k, 1) gives rise to an optimally universal hash function,
since all blocks have the same size, and for distinct x, x’ € X

s : f(s,x) = f(s,x")} = Zl{s D f(s,x) = fs,x)) =a}| = ar.
acA

This proves the first part of the following lemma.

Lemma 2.11 Let M = (Dy)qen be a mosaic of (v, k, r) tactical configurations on (X, S)
with functional form f : X x S — A.

1) Ifevery Dy is a (v, k, L) BIBD, then f is optimally universal.
2) If M consists of (u, m, k, A1, o) GDDs with a common point class partition, then

a) ifevery Dy is either semi-regular, or singular with a = 1, then f is a universal hash
function;
b) if the Dy are singular with a > 2, then f is not a universal hash function.

Proof It remains to prove the second part of the lemma. We analyze the parameters of the
mosaic. For distinct points x, x/,

s : fs,0) = f(s, X =Y s : fls,0) = f(5,x)) = ]

acA

ak if x, x" are contained in the same point class,

aiy else.
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Since a/b = 1/r and a = v/k, we have fori = 1,2

Ai 1
% < — ifandonlyif A;v <kr.
a

A singular GDD satisfies r = A, and so f is a universal hash function if and only if
v = k, which means that every block covers the whole point set. Equivalently, a = 1.

A semi-regular GDD is characterized by the equality Aov = kr. Further, (2.4) and semi-
regularity imply (A1 — A2)u = A1 —r <0, whence A1 < A, and so Ajv < kr. ]

We do not have a simple criterion for when regular GDDs induce a universal hash function.
Since a regular GDD D satisfies kr > Av by definition, one only needs to check whether
kr > Xiv. This is obviously true if A1 < Ap. If A1 > A3, then some parameter choices result
in mosaics whose functional form is a universal hash function, while this is not true for other
parameter choices.

For instance, the regular GDD R1 from Clatworthy’s list [12] has parameters v = 4, r =
4,k = 2,21 = 2, Ay = 1, and thus satisfies kr = 8 = Ajv. Since it is resolvable, an
application of Theorem 2.7 gives a mosaic of regular GDDs whose functional form is a
universal hash function.

On the other hand, the regular GDD R2 from [12] has parameters v = 4,r = 5,k =
2,21 = 3,A = 1, hence kr = 10 < 12 = Xjv. This GDD is resolvable as well, and the
functional form of the resulting mosaic is not a universal hash function.

We conclude from Lemma 2.11 that not all of the functions constructed in Sect. 2.6
are universal hash functions. The mosaics of singular GDDs from the family M® have
functional forms which are not universal hash functions. Similarly, there exist universal hash
functions which cannot be decomposed as a mosaic of BIBDs or GDDs. For instance, the
optimally universal hash function induced by the resolvable BIBD AG;_;(, q) (i.e., where
the sum of the induced mosaic is AG;_1 (¢, g)) does not have the additional substructure we
require from the security functions in this paper.

2.7.2 Orthogonal arrays

A v x b array M with entries from the alphabet A is called a (b, v, a) orthogonal array if
every 2 x b subarray of M contains each pair of entries («, ') from A exactly A = b/a>
times as a column.

If we denote the set of rows by X" and the set of columns by S, then an orthogonal array
gives rise to a function f : X x S — A which associates to the pair (x, s) the symbol from
A which is at the intersection of column s with row x. By definition, f satisfies for distinct
x,x’ € X and forany @, ¢’ € A

s : f(x,s) =a, f(x',s) =ad'}| = A.

This means that f is an e-almost strongly universal hash function for ¢ = Aa/b [30]. In
particular,

l{s: flx,9) = f(x',5) =a}| = A (2.17)

Moreover, if we set r = al, then

l{s @ fx,s) =a}f=r.
It is not in general the case that also

Hx : f(x,s) =al}| (2.18)

@ Springer



Mosaics of combinatorial designs for information-theoretic security 613

is constant in s and «.
Assume (2.18) is constant in s and « and denote this number by k. Then M gives a mosaic
of (v, k, 1) BIBDs with functional form f.

Lemma 2.12 If M is a mosaic of BIBDs induced by an orthogonal array, then a = 1.
Proof From r = al we conclude rk = vA. Then (2.2) gives r = A, hence v = k. O

Corollary 2.13 There does not exist any nontrivial orthogonal array for which (2.18) is con-
stant in o and. s.

3 Semantic security from mosaics of combinatorial designs
3.1 Distances and divergences

The degree of semantic security offered by a security function when applied to a wiretap
channel or in privacy amplification can be measured using various distances, divergences
and entropies of probability measures.

Let P, QO be probability distributions on a finite set Z. The fotal variation distance of P
and Q is

P =0l = ZIP(Z) - 0@
Z
This is a metric on the space of probability measures on Z. The x2 divergence
P(z) :
PO = Y 0@ <— - 1)
‘ 0(z)
2:0(2)>0

satisfies

IP = Qll </ x*(P, Q)+ P({z: Q(z) =0}, (3.D

which is an immediate consequence of Cauchy-Schwarz. The Kullback-Leibler divergence
of P and Q is given by

Y. P()log 53 if P({z: Q) = 0) =0,
+00 else,

D(PIIQ)={

and the Rényi 2-divergence by

2
log}", B25 if P({z: Q(2) = 0) =0,
+00 else.

Dy(P|Q) = {

They are nonnegative and related by [33]

D(P|Q) = D2(P||Q). (3.2)

It is a straightforward calculation to show that if D>(P| Q) < oo, then

x*(P, Q) = exp(D2(P[|Q)) — 1. (3.3)
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We also introduce averaged versions of these divergences. If W : X — Z is a channel, and
additionally P is a probability distribution on X and Q on Z, then we set

DW|Q|P) = Z PX)DW(-[x)Q)

xeX

and

Dy(W[QIP) =log ) P(x)exp(Da(W(-|x)] Q).

xeX

Let X, Y be discrete random variables with joint distribution Pxy. Denote the marginal
distributions by Px and Py and the conditional distribution of ¥ given the event X = x by
Py|x=x. Then the mutual information of X and Y is defined by

I(X AY) =Y Px(x)D(Pyjx=x|| Py) = D(Py|x|| Py|Px).

The bounds obtained in the privacy amplification scenario involve Rényi 2-entropy, which
for a random variable X on X is defined as

Hy(X) = —log Y Px(x)”.

3.2 Wiretap channel

Let f : X x § — A be the functional form of a mosaic (Dy)qea of (v, k, r) tactical
configurations and let W : X — Z be a wiretap channel. Assume that the confidential
messages to be transmitted are represented by the random variable A on A. The random
seed is represented by S, uniformly distributed on S and independent of A. Application of
the randomized inverse of f determines the random input X to W, and the random output
of W seen by Eve is denoted by Z. The joint probability distribution of these four random
variables is

1
Pzxsa(z, x,s,a) = ﬁw(ZM)Na(x»S)PA(a)v 3.4

where N, is the incidence matrix of Dy, .

The two security metrics by which we measure the degree of security offered by f for W
are defined in terms of the joint distribution of Z, S and A with a worst-case choice of A.
The first security metric is defined as the mutual information between the message A and the
eavesdropper’s information Z, S, maximized over all possible message distributions,

max [(AAZ,S). 3.5)
Py

The best case would be that Eve’s observations are independent of the message, no matter
what the message distribution is, in which case the mutual information would vanish. This
is not achievable in general, even for a fixed message distribution. Instead, we try to make
the maximum in (3.5) as small as possible. Like the other security criteria defined below, the
requirement that (3.5) be small does not make any assumptions on Eve’s computing power.
Thus we aim for unconditional security.

Remark 3.1 For the strong secrecy criterion mentioned in Sect. 1.4, it is assumed that the
distribution Py is fixed, so that only the corresponding I (A A Z, S) has to be small. Usually,
one takes A to be uniformly distributed on .A.
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In order to formulate the upper bound for (3.5), we need to introduce additional notation.
If U is a finite set and R : &/ — X a channel, then the usual matrix product RW of the
stochastic matrices R and W gives the channel with input alphabet ¢/ and output alphabet
Z resulting from concatenating R and W. If P is a probability measure on X', then this also
defines the probability measure PW on Z by regarding P as a channel with a single row.

The uniform distribution on any set X" is denoted by Px. Also, recall Rényi 2-divergence
defined in Sect. 3.1.

Theorem3.2 1) Let W : X — Z be a wiretap channel and let f : X x S — A be the
functional form of a mosaic of (v, k, \) BIBDs. Then

kr

r—A r
n})axexp(I(A NZ, S)) < <1 — 7> + exp(Dz(W||PXW|PX)).
A

kr

2) Let W : X — Z be a wiretap channel and let f : X x S — A be the functional
form of a mosaic of (u, m, k, A1, A2) GDDs with a common point class partition Il =
{X1, ..., Xn). Let Prp be the uniform distribution on Il and Ry : I1 — X the channel
which associates to an element X of I1 the uniform distribution on X;. Then

n}ix exp(I(A N Z, S))

- <1 =)+ —Az)u> n (A1 — A)u
kr kr

exp(D2(Rp W || Px W|Pr))

r— Al
kr

exp(D2 (W PxW|Pyx)).

This theorem is proved in Sect. 4. The main observation is Proposition 4.2, which both
for the BIBD and the GDD case states equality between exp(D2(Pz|s, A=« |l Pz|s| Ps)) and
the respective upper bounds in the statement. Since this equality for every o only depends
on Dy, it really is a statement about BIBDs and GDDs.

Clearly, a GDD with A1 = A; is a BIBD, so the first part of the theorem is implied by the
second one. The same holds for Theorems 3.3, 3.6 and 3.7 below.

An alternative measure of semantic security is formulated in terms of total variation
distance. Denote the product of probability distributions P and Q by P Q. Then, with the
random variables Z, S, A as defined in (3.4), we would like

n})axll Pzsa — PzsPall (3.6)
A

to be small. If it equals zero, then the eavesdropper’s observations are independent of the
message, for all possible message distributions.

Theorem3.3 ) Let W : X — Z be a wiretap channel and let f : X x S — A be the
functional form of a mosaic of (v, k, .) BIBDs. Then

(r—2»2) 12

1/2
max||Pzsa — PzsPall <2 ( ) (exp(D2 (W[ PxW|Px)) — 1)
A

2) Let W : X — Z be a wiretap channel and let f : X x S — A be the functional form of
a mosaic of (u, m, k, A1, Ap) GDDs with a common point class partition I1. Define Py
and R as in Theorem 3.2. Then
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max || Pzsa — PzsPall
Py

r— A
< 2( 3 exp(D2(W | PxW|Px)) + exp(D2(Rp W | PxW|Pp))

(A1 — A2)u
r kr

L= A)+ —mu)”z
kr '

This theorem is also proved in Sect. 4. It essentially follows from Theorem 3.2 and the

relations (3.1) and (3.3).
Interpretation. The importance of the bounds of Theorems 3.2 and 3.3 is that they show how
much randomness k is sufficient in the randomized inverse in order to obtain a desired level
of semantic security. Since v non-confidential messages can be reliably transmitted to Bob,
this transforms into a lower bound on the number a of confidential messages.

The bounds of Theorems 3.2 and 3.3 can be improved by “smoothing” W. This means that
the outputs of W are restricted to being “typical”, i.e., outputs of low probability are cut off.
This idea goes back to Renner and Wolf [28]. By smoothing, the conditional divergences can
be reduced substantially at the cost of a small additive term in each bound. After smoothing,
the channel will in general not be stochastic any more, but only substochastic. The proofs of
the theorems remain valid for substochastic channels since they only use the nonnegativity
of the entries of W. All that needs to be done is to generalize the Rényi divergences to
substochastic channels like in [34].

The bounds can be evaluated by comparing them with the benchmark cases of memoryless
discrete and Gaussian wiretap channels (see [9] or [34] for a definition). These wiretap
channels actually are families {W, : n > 1} of channels; the parameter n indicates the
blocklength. For these channels, a sequence of security codes achieves asymptotic optimality
as the blocklength goes to infinity if the largest possible asymptotic communication rate for
confidential message transmission, the secrecy capacity, is achieved subject to the condition
that either (3.5) or (3.6) goes to zero.

Theorems 3.2 and 3.3 show that security functions given by suitable mosaics of BIBDs or
of semi-regular GDDs achieve asymptotic optimality when applied to memoryless discrete or
Gaussian wiretap channels after smoothing each W,,. This holds even if the channel between
Alice and Bob is not perfect, in which case the W, are concatenations of an encoder and a
memoryless channel. For the proof, one proceeds like in [34]. Functional forms of block rate
optimal mosaics of singular GDDs turn out to be suboptimal security functions, as discussed
below.

We would like to stress, however, that the theorems hold without any further structural
assumptions on the channel W. For a targeted level of security and a given channel, they can
be used to determine an achievable communication rate at which confidential messages can
be sent through the channel using an efficiently computable security code.

Note that both in Theorems 3.2 and 3.3, the wiretap channel enters into the upper bounds
only through the conditional Rényi 2-divergences. This gives some robustness against channel
variations or limited channel knowledge.

The bounds in the GDD case. Assume that N is the incidence matrix of a (u, m, k, A1, A2)
GDDand w € R¥ a nonnegative vector. Set Apnax = max{Ay, Az}. Then

wINNTw < (r — dmax)wT w + Amax (w7 )2 (3.7)

In the proofs of the GDD cases of Theorems 3.2 and 3.3 , the relation (2.5) is used with
equality. By using (3.7) instead of (2.5), one obtains an upper bound of the same form as
that obtained in the BIBD case of the theorems, with A replaced by Amax. Since the point
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class decomposition of X’ associated with the applied mosaic of GDDs will not in general
have any special relation to the channel, using this looser upper bound might save the work
of estimating the additional Rényi divergence or entropy and give a bound which, for the
benchmark cases and for mosaics of BIBDs or of semi-regular GDDs, is asymptotically
equivalent to the one appearing in the theorems.

The GDD bounds of Theorems 3.2 and 3.3 can also be simplified without using the
upper bound (3.7) by taking the type of the members of the mosaic M = (Dy)qe4 into
consideration.

In the case where the members of M are singular GDDs, every D, is induced by a BIBD
D} . Since the point class partitions of all D, are the same, all D} have the same parameters
v*, k*, A* and form a mosaic of BIBDs. The coefficients of Dy (W || Px W|Px) vanish, hence
only the divergence involving the point class partition is relevant. In Theorem 3.2, the two
nonzero coefficients have the form

P A PR
1-— pE and proret (3.9)
In Theorem 3.3, both remaining coefficients equal (r* — A*)/k*r*.
Semi-regular GDDs satisfy vk = lov. Hence if M consists of semi-regular GDDs, then
the three coefficients in Theorem 3.2, in the order of their appearance, equal
. — r— Al r— A
’ kr kr
For the case where A| = 0, in particular, in the case of transversal designs, the same coeffi-
cients become

(3.9

I 1
1, ——, -—.

k' k
The coefficients obtain a similarly simple form in Theorem 3.3.
Suboptimality of singular GDDs. When applied in Theorems 3.2 and 3.3, approximately
block rate optimal mosaics of singular GDDs with a small color rate and a sufficiently large
point set achieve strictly lower color rates than mosaics of BIBDs or of semi-regular GDDs at
the same security level. In particular, they turn out to be asymptotically suboptimal in the case
of memoryless discrete or Gaussian wiretap channels, where the size of the point set goes to
infinity with increasing blocklength. This means that asymptotically optimal sequences of
security functions given by mosaics of BIBDs or GDDs for these channels have block rates
at least 1.

We only discuss Theorem 3.2 here, the situation is analogous in Theorem 3.3. We begin

with the following simple lemma which is the basis of our discussion.

Lemma 3.4 For a wiretap channel W : X — Z and a partition IT = {X), ..., X} of X
into sets of size u, it holds that
Dy(W||PxW|Px) —logu < Dy(RpW || PxW|Prr) < Da(W|| PxW|Px).

Equality is possible on both sides. It holds on the left-hand side if and only if for every z € Z
and 1 <i < m, there exists at most one x € X; such that w(z|x) > 0. Equality holds on the
right-hand side if and only if for every 7z € Z and every 1 < i < m, the entries w(z|x) are
constant for x ranging over X;.

If one applies Theorem 3.2 with a mosaic of semi-regular GDDs, then one sees from (3.9)
that a security level maxp, (A A Z, S) smaller than § > 0 is achieved by choosing log k
equal to Dy (W || Px W|Px) + log(1/8). This results in the color rate
_ Dy(W||Px W|Pyx) + log(1/6)

logv '

o=1
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The same holds in the simpler situation of mosaics of BIBDs.

Now assume that 0 < 1/2. By Sect. 2.3, the only possibility to achieve a security level
smaller than § for the same channel W with an approximately block rate optimal mosaic
could be a mosaic M of singular GDDs which is the u-fold multiple of a mosaic M* of
block rate optimal BIBDs and of color rate o*. When Theorem 3.2 is applied with the
security function determined by M, the D> (W || Px W|Px) term vanishes in the upper bound
of Theorem 3.2. By (3.8), a security level smaller than § is achieved by choosing log k* equal
to Do(Rp W || PxW|Pr)+1log(1/68), and without any further information about the channel,
this latter expression can be as large as Dy (W|| Px W|Px) + log(1/5) by Lemma 3.4.

For the color rate ¢ of M, this means that

log u

:l_logkzl_logk*+logu <5-

. (3.10)
logv logv logv

This is at most p. In fact, for fixed g, it is easy to see that log u/ log v is bounded from below
for large v. This is because the approximate block rate optimality of M requires o* to be at
least go(v*, k™), which tends to 1/2 as v* grows. And if v* is kept small, then u necessarily
has to be large.

The loss of color rate as in (3.10) can be avoided if one knows that equality is satisfied
in the left-hand inequality of Lemma 3.4 for a certain partition /7. However, an application
of this in the security bounds would require knowledge of Dy(R W Px W|Prr) and the
adaptation of the point class partition of the GDDs to that of the wiretap channel, which is
not necessary in the case of mosaics of BIBDs or of semi-regular GDDs.

3.3 Privacy amplification

Now we turn to privacy amplification. Assume that the random variable X is shared by Alice
and Bob and that Eve observes a random variable Z correlated with X. Without loss of
generality, we assume that Pz(z) > 0 for all z € Z. Moreover, Alice and Bob both are given
the functional form f : X xS — A of amosaic (Dy)qe4 0f (v, k, r) tactical configurations.
In order to generate a secret key, Alice and Bob observe a realization x of X, choose a seed
s € S uniformly at random, and take @« = f(x, s) as the secret key. Denote the random
variable generated by applying f as described above by A. The joint distribution of X, Z, §
and A is

1
Pxzsa(x,z,s,a) = EPXZ(X,Z)Na(X,S), (3.1

where N, is the incidence matrix of D, . The key A should be nearly uniformly distributed on
A and semantically secure with respect to Eve’s observation. The first condition is satisfied
perfectly.

Lemma 3.5 The distribution of A is uniform on A.

Proof Note that Noj = rj, where j denotes the all-ones vector of appropriate dimension.
Hence, considering Py as a vector in RY and using (2.1),

Py(a) = Z Pxzsa(x,z,s,a)

X,2,8
1

! . ok
=E;PX(X)NQ(X’S)J(S)=ZP;N“J=EP;]=;=;-
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For semantic security, we can again use total variation distance or mutual information as the
security measure. One equivalent formulation of semantic security is the indistinguishability
of two possible realizations of the secret. In terms of total variation distance, this means that
for any two distinct &, @’ € A, one wants

| Pzsia=a — Pzsja=a|
to be uniformly small. By the triangle inequality, this is true if
| Pzsja=« — Pz Psl| (3.12)

is small, uniformly in @ € A.
For any point class partition I7T = {X7, ..., &}, } of X', we define the random variable X 7
whose conditional distribution given Z is

Pyxpiz(ilz) = Pxjz(X|2).
Then we have the following result.

Theorem 3.6 1) Let Pxzsa be the joint distribution (3.11) generated by the functional form
of a mosaic of (v, k, \) BIBDs. Then

— 1

r 12 ) 1/2
max|| Pzsja=a — PzPs| < (7) <a2_mmz RSSO *)
acA r k

2) Let Pxzs be the joint distribution (3.11) generated by the functional form of a mosaic
of (u,m, k, A1, L2) GDDs with a common point class partition I1. Then

max || Pzsja=a — Pz Ps||
acA

< max] AU T2 - mxiz= | A1 = A2) (i z=2)
T zeZ r r
=)+ =)
kr '

This is proved in Sect. 4 as a consequence of the next theorem.

If we prefer to measure the indistinguishability of key values with respect to Kullback-
Leibler divergence, we should ensure that there exists a probability measure Q on Z x S such
that Pzgja—q is close to Q in terms of Kullback-Leibler divergence, uniformly in o € A.
This is analogous to (3.12). If we choose Q = Pz Ps, then we have the following bound.

Theorem 3.7 1) Let Pxzsa be the joint distribution (3.11) generated by the functional form
of a mosaic of (v, k, \) BIBDs. Then

a(r —A . _ r— A
max exp(D(Pzsja=all Pz Ps)) < gfmm"’ Hh(X12=2) 4 (1 - ) )
acA r kr

2) Let Pxzsa be the joint distribution (3.11) generated by the functional form of a mosaic
of (u, m, k, A1, X2) GDDs with a common point class partition I1. Then

D(Pzsja=all Pz P
E‘Eaj‘e"l’( (Pzs|a=« | Pz Ps))

< max{Mg%(X\zzz) 4 =)y xpiz=s)
7€Z r r
N (1 = A) 4+ —)»2)14>}.
kr
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The theorem is proved in Sect. 4. As in the wiretap case, its core is Proposition 4.4, proving
the equality of exp(D2(Ps|z=;, A=« | Ps)) with the z-term in the upper bound.

Remark 3.8 The strong secrecy criterion usually applied in information theoretic security
for secret key generation assumes that the adversary’s a priori knowledge is restricted to the
true key distribution. A security function which establishes semantic security also guarantees
strong secrecy, since

I(A/\Z,S) SmajD(PZS|A=a”PZPS)- (3.13)
oe

We prove this inequality. It is straightforward to check that for any pair of random variables
X,Y on X x )Y and any probability measure Q on ), one has

I(X NY) = D(Pxyl||Px Py) = Z Px (x)D(Py|x=x[|Q) — D(Py|| Q).

We use this with Y = (Z, §), X = A and Q = Pz Ps. Then
I(ANZ,S) = D(PzsallPzsPa)

=Y Pa(@)D(Pzsia=a|| Pz Ps) — D(Pzs|| Pz Ps)

o

= max D(Pzs|a=all Pz Ps).

This shows (3.13).

Interpretation. The interpretation of Theorems 3.6 and 3.7 is analogous to that of Theo-
rems 3.2 and 3.3 . The number of interest is a, the size of the key space. Theorems 3.6 and
3.7 give a lower bound on the maximal possible a given a required degree of security, and
show that this lower bound is achievable using the functional form of a mosaic of BIBDs or
GDDs.

It is proved in [7, Corollary 4] that

exp(I(A A S|Z = 7)) < a2~ mine Ih(X1Z=2) 4

if the security function is a universal hash function. The upper bound is very similar to the
one proved in the first part of Theorem 3.7 for mosaics of BIBDs or of semi-regular GDDs,
but only gives strong secrecy. (The conditioning on the event Z = z is also possible in our
setting, see (4.7).) It follows that these mosaics yield the same key size as universal hash
functions, but resulting in a stronger notion of security and generating a perfectly uniformly
distributed key. Mosaics of singular GDDs only involve the min, H>(X7|Z = z) term and
are discussed in more detail below.

If Alice and Bob are connected by a public two-way channel without rate constraint,
the secret-key capacity in the benchmark case of a memoryless discrete source model can
be achieved by a sequential key distillation protocol guaranteeing semantic security, using
functional forms of mosaics of BIBDs or suitable GDDs in the privacy amplification step
(cf. [9, Theorem 4.5]).

The bounds in the GDD case. By applying (3.7), the bounds for the GDD cases of Theo-
rems 3.6 and 3.7 can be given the same form as the ones for the BIBD case, with X replaced
by Amax-

If the mosaic consists of singular GDDs, then the coefficient of the Hy(X|Z = z) term
vanishes. The second and third terms in Theorem 3.7 are

a(r* — 1% r* —*

and —
7 )
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where, like in the wiretap scenario, k*, r*, A*™ are parameters of the underlying BIBDs.
In the case of semi-regular GDDs, one has, in the order of their appearance, the three
terms
a(r —Ap) a(r —Xyp)

)

r ur

0.

In particular, for transversal designs, one obtains
a, —1, O.

Similar simplifications are possible for the bounds of Theorem 3.6.
Suboptimality of singular GDDs. As in the wiretap scenario, mosaics of singular GDDs are
suboptimal compared with mosaics of BIBDs or of semi-regular GDDs since they require a
larger k in order to achieve a comparable security level.

The reasons are analogous to those for the wiretap case, based on the inequalities

Hy(X|Z =272)—logu < Ho(Xn|Z =2) < Hy(X|Z =2) (3.14)

for any partition IT = {X1, ..., A}, } of X into sets of size u, and any z € Z. The condition for
equality in the right-hand inequality is that there exist at most one x per &; with Py |z (x|z) >
0. On the left-hand side, equality holds if and only if Pyz(-|z) is constant on each X; for
every z.

With a mosaic of BIBDs or of semi-regular GDDs, a key size log a approximately equal
to ming H>(X|Z = z) + log(1/§) gives a security level §.

Now assume that the security function is given by a mosaic of singular GDDs. If one only
knows min, H>(X|Z = z), then the largest possible key size loga by which to guarantee
a security level of § is Hy(X|Z = z) — logu + log(1/§). The key can be chosen larger if
one also knows min, Hy(X7|Z = z). However, the same key size as in the case of BIBDs
or semi-regular GDDs is achievable only if there exists a partition IT such that equality is
satisfied on the right-hand side of (3.14). If one knows that the joint distribution Pxz has
this property for a partition I7, then a mosaic of singular GDDs incurs no rate loss, but the
security function has to be adapted to I7.

4 Proofs of the security results
4.1 Proof of Theorems 3.2 and 3.3

We first prove Theorem 3.2. It is sufficient to do the proof for mosaics of GDDs. We start
with an upper bound on maxp, I(A A Z, S) in terms of Kullback-Leibler divergence. The
all-ones vector of suitable dimension will be denoted by j, and for each z € Z, we let w, be
the z-th column of W

Lemma 4.1 For every joint distribution (3.4),
I(ANZ,S) <max D(Pzis,a=a |l Pz| Ps),
acA
and the right-hand side of this inequality is independent of Py.

Proof The inequality is the statement of [34, Corollary 16], whose proof we will just sketch
here. The independence of A and S implies /(A A Z, S) < I(A, S A Z) using elementary
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properties of mutual information. The right-hand mutual information can be expressed as

1
5 XEZS(;PA(a)D(Pzw:s,A:aan) < max D(Pzjs A=l Pz| Ps).

This gives the claimed inequality.
In order to prove that the upper bound is independent of P4, we note that (3.4) and (2.1)
imply

1
Pz(z) = Z Pa@uwi Noj = —w; j = (PxW)(@) (4.1)
otE.A

Thus Pz is independent of P4. Since Ps and Pz|s a4—, do not depend on Py either, this
proves the lemma. O

Note that, since the eavesdropper also knows S, the validity of (4.1) is not enough to
guarantee security.

If we want to use (2.3) or (2.5), we need to pass from Kullback-Leibler to Rényi 2-
divergence. By Lemmas 4.1 and (3.2), it is sufficient to show that the upper bound of
Theorem 3.2 is an upper bound for

max Dy (Pzis, a=all Pz| Ps). 4.2)
acA

P75, A=« 1s fully determined by N, and W. Hence for each of the divergence terms in (4.2)
it is no longer important that N, is the incidence matrix of a member of a mosaic. It follows
that Theorem 3.2 is a consequence of the following equality.

Proposition 4.2 Let N be the incidence matrix of a (u, m, k, L1, A2) GDD with point set X,
block index set S and point class partition I1, and let W : X — Z be a wiretap channel.
Define the random variables Z, X, S on Z x X x S by

1
Pzxs(z,x,s) = ﬁw(zpc)N(x,s). 4.3)
Then

exp(D2(Pzs|| Pz| Ps))
_ (1 =)+ (= Au
- kr

(A1 — A)u
>+ 2 exp(Da(Ry W[ P W | Pry))

— A
exp(D2(W | PxW|Px)).

Proof Asin (4.1), one shows that Pz = Py W. Since also

(w! N)(s)

Pzs(zls) = k ,

we can apply (2.5) and obtain

exp(Dz(PZ|s | Pz| Ps))

(wIN)(s)?
Yy ey
seS zeZ we
1 wZTNNTwZ
T kr w!'j

€Z
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r—»XM lUZTwZ Al — A wZTsz Ao .
= E = + E ; — E J-
T T
kr ZowrJ kr Zowd k —

Now, observe that

Z w wz _ ! Z Z w(Z|X) _ eXp(Dz(W||PXW|PX))

€Z xeX ez (PXw)( )

In the second summand, we have

(5 T wieo)’
P W)

= uexp(D2(RpW||PxW|Pr)).

I D))

ez Wi i=1zeZ
For the third summand, we observe that Zz sz j =vand

v =kr —(r —Xi1) — (A1 — Au, 4.4)

which follows from (2.4). Inserting all this above yields the claimed equality. O

Turning to the proof of Theorem 3.3, we first state the following simple analog of
Lemma 4.1.

Lemma4.3 ([13], Lemma 2)
|Pzsa — PzsPall < 2||Pzsa — PzPsPal. 4.5)

By (4.1), Pz(z) = 0 only if z is not reachable with positive probability from any input of
W. Thus

Pzs1a=a({(z,5) : Pz(z)Ps(s) = 0}) = 0.

Hence one can apply (3.1) and (3.3) to upper-bound the right-hand side of (4.5) by

2max|| Pzsja=q¢ — Pz Ps|| < 2 max \/XZ(PZS\A:a — Pz Ps)
aeA acA

=2 max \/CXP(D2(PZS\A:01 | Pz Ps)) —

= 2max \Jexp(Da(Pzis.a=all P2I Ps) -
Theorem 3.3 now follows from Proposition 4.2.
4.2 Proof of Theorems 3.6 and 3.7

We start by proving Theorem 3.7. Define the RY -vector p. by

pz(x) = Pxz(x,2).

From (3.11), Lemmas 3.5 and (2.1), it follows that
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a . ar
Pziale) =a ) Pxzsa(x,z,5,0) = 4 pl Naj =

X,

plj=plj. (4.6)

In particular, Z is independent of A. (Of course, since the eavesdropper also knows S, this is
not yet enough to guarantee security.) A straightforward computation gives

D(Pzs1a=«llPzPs) < Izréazx D(Ps|z=z,A=a |l Ps)- 4.7)

As in the wiretap case, one passes to Rényi 2-divergence, and so it remains to bound

Dy (Ps|z=z,A=a || Ps),

uniformly in z and «.

We compute Psjz—; a—q as follows. Recall the assumption that Pz(z) > O forall z € Z.
Let € Aand s € S. The uniform distribution of A and (4.6) imply that Pz4(z,a) =
a”! psz. Hence, again applying (2.1),

ay . Pxzsa(x,z,s,a)
plj

Ps17=z,4=a(s) =

(P! No)(s)

rplj

a
= Px7(x,2)Ny(x,s) = 4.8
prTijj xz (X, 2)Na(x, 5) (4.8)
This only depends on the incidence matrix Ny, and so as in the wiretap case, we can reduce
the proof of Theorem 3.7 to a proposition which holds for GDDs without any reference to
mosaics.

Proposition 4.4 Let N be the incidence matrix of a (u, m, k, L1, A2) GDD with point set X,
block index set S and point class partition I1. Let Z be a finite set and define the random
variables X, Z, S on X, Z, S, respectively, by their joint distribution

Pxzs(x,z,5) = %PXZ(X, N (x,s). 4.9)
Then
exp(D2(Ps|z=:||Ps)) = 71)01;)\1)2_”2("'2:1) + 71)()\1]; 42) y i1 2=0)
N <1 =)+ —?»z)u> _
kr

Proof As in (4.8), it holds that Pg 7 (s|z) = (pI N)(s)/rp! j. Using (2.5), one obtains

exp(D2(Ps|z=:|| Ps))
_ 3 LN
r3(plJj)?
B vaTNNTpZ
ke (pl))?
= rpr e (= 20pl b+ G = 2pT Cpe 1201 7)
_ WA o mxiz=o | Y TR o xpiz=e) | VA2

kr kr kr

The proof is complete upon replacing the last summand using (4.4). O

@ Springer



Mosaics of combinatorial designs for information-theoretic security 625

This completes the proof of Theorem 3.7.
In order to prove Theorem 3.6, we can appeal to the case where security is measured using
divergence, just like in the wiretap case. It is a straightforward computation to show that

| Pzsja=a — Pz Psll < max|| Psjz=z,aA=« — Ps||
for all « € A. Using (3.1) and (3.3), we see that Theorem 3.6 follows from Proposition 4.4.

Remark 4.5 Let N be the incidence matrix of a (v, k, r) tactical decomposition for which
there exist nonnegative numbers ¢ and d such that

wI'NNTw < cwTw +dw’ j)? (4.10)

for all nonnegative vectors w. Propositions 4.2 and 4.4 can be generalized for such matrices,
with an inequality instead of an equality.

Let W : X — Z be a wiretap channel and define the random variables Z, X, S on
Z x X x S asin (4.3). Proceeding as in the proof of Proposition 4.2, one can show that

dv c
exp(D2(Pzisl| Pz Ps)) < — + —

Dr(W||PxW|P .
=4 kreXp( L (W[ PxW|Px))

Similarly, in privacy amplification with source distribution Pxz and with the seed jointly
distributed with Z according to (4.9), one obtains
ac,__ _ ad
exp(Da(Psz=c||Ps)) = —27 X279 4 ==,
proceeding as in the proof of Proposition 4.4.
For example, if NN has largest eigenvalue 11| and second-largest eigenvalue 17, then

wI NNTw < Mszw + u(wTj)z.
v

Mosaics of such matrices were studied in the wiretap scenario in [34].

Another example of a matrix satisfying (4.10) arises from the incidence matrix of a
(u,m, k, L1, A2) GDD, see (3.7).

Theorems 3.2, 3.3, 3.6 and 3.7 can also be generalized to mosaics of tactical configurations
whose incidence matrices satisfy (4.10), since the reduction of the theorems to Proposi-
tions 4.2 and 4.4 only used that the security functions are functional forms of mosaics of
tactical configurations.

5 Explicitness of Denniston’s BIBD

Letz >2and 1 < ¢ <. Setg = 2'. Recall that Denniston’s design D, defined in Sect. 2.6,
has the point set

X ={(x,y) €F, : Q(x,y) € H},
where Q is an irreducible quadratic form and H a subgroup of I, of order £. We will consider

[, as a t-dimensional vector space over IF», which makes H an ¢-dimensional subspace of
IF,. The blocks of D are given by the nontrivial intersections of lines of AG(2, g) with X
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Proposition 5.1 There exists an H such that D is explicit.

The proof of this proposition will be done in the subsections following below. We first
observe that the proposition implies that the mosaic Mt(.zz)y g Whose members are isomorphic
to D is explicit. This follows from Theorem 2.9 together with the efficiency of addition and
subtraction on the cyclic group Z,, which serves as the color set for the mosaic.

5.1 Characterization of X and S

Denote by L.y = {(x,cx +d) : x € F,} the line in AG(2, g) with slope ¢ € F,; and
intercept d € . This are all lines of AG (2, q) except the “vertical”” ones with infinite slope,
givenby Lo g = {(d, y) : y € F}, for any d € . For these lines, we call d the intercept.

For the characterization of X and S, we choose H arbitrary. Note that 0 € X'. Thus every
line L. (c € Fy U {oo}) has nontrivial intersection &, with &". Since any two of these lines
only meet in 0, the union of all these X, has precisely

v=1+Q + DR —1) =2 42t 2t

elements, and so X’ must equal the union of all X, by (2.14). Now assume ¢ € ;. An element
(x, cx) of L is contained in X, if and only if

x?(n1 + me +n3c?) € H,

or equivalently, x2e 1 +nac+ 773c2)‘1 H (the irreducibility of Q ensures that n1 + n2c +
3¢ is nonzero). In an analogous way one sees that (0, y) € X if and only if y? € n3_] H.

Lemma 5.2 The set X is given by the disjoint union

1
{o.onpu {(x,cx) cx #0,x% € —ZH}
ceF, N1+ nac + n3c

U{(O,y):y#O,yzeiH}.
N

Next we turn to S. We already noted in Sect. 2 that the parallel classes of D are in
one-to-one correspondence with those of AG(2, q), i.e., with the slopes from F, U {o0}.

For the description of the elements of a parallel class, we need the (absolute) trace of an
element x of F, defined by

Tr(x) =x +x2+-~-+x2H.

The trace is an [F-linear form from IF; onto ;. Every linear form & from I, to [F; corresponds
to a unique element B € I, such that & (x) = Tr(Bx) forall x € I, (see [24, Theorem 2.23]).
We denote by H the (t — £)-dimensional subspace of IF, consisting of those elements whose
corresponding linear form vanishes on H.

We will also use the following facts on polynomials. The first one is [24, Theorem 2.25],
the second one is elementary.

Fact5.3 1) The polynomial x> + x + «, with & € F,, has a root in [, if and only if
Tr(x) = 0.

2) Let F(x) = ax’+fx+ybea polynomial over F. Then F(c) = 0if and only if ac/B
is a root of
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We have the following lemma.
Lemma 5.4 For any c € F, U {00}, denote by U, the set of those d € ¥ for which L. 4 has
nonempty intersection with X. If ¢ € Fy, then
n

U=d#0:d>¢ —2
‘ [ 7 ¢7ll+’726‘+773€2

Hi] U {0}. (5.1)
If ¢ = oo, then
772
U, = {d £0:d7% ¢ rﬁHi} U {0}.
3

Proof We use Fact 5.3. Let ¢,d € F,. For L. we already know that it has nonempty
intersection with X', so assume d # 0. Then L. 4 has nonempty intersection with X" if and
only if the polynomial

F(x) = (1 + mc + n3c?)x* + nadx + mp3d*

assumes a value in H for some x € IF,. By Fact 5.3, this is the case if and only if there exists
a z € H such that

(1 + mac + n3¢?) (n3d?* + z)
Tr 5 =0.
nyd?
2

The term inside the trace can be written as

(m +me+n3cHz  mnz (e n3c
) S i e N A
nyd n3 n2 n2

The sum inside the large brackets has trace zero since Tr(«) + Tr(e?) = Oforall o € F,.
The trace of (n113)/ n% equals 1 due to the irreducibility of Q. It follows that 7 € H satisfies
F(x) = z for some x € F, if and only if

2
Tr (m +772;:Jg7136 )z _ L
nzd

Hence a nonzero d € IF,; is not contained in U, if and only if

+ n2c + n3c?
(1 '722 ! m )eH{
nzd
which immediately shows (5.1). The proof for ¢ = oo is analogous. O

5.2 Property (D1)

D is explicit if it satisfies properties (D1) and (D2) formulated in Sect. 2.5. Here we show
that it satisfies (D1) for suitable H. Let ® = {1, 9, 02, 19"1} be a polynomial basis of
IF,. We take H as the spanof 1, ..., ol Let o [k] — FS be a bijection which in time
poly(log k) associates to every number from [k] a unique element of H, represented in terms
of ®, such that @5 (0) = 0.
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Denote by @ : [¢ + 1] — IF’2 U {oo} a poly(log ¢) time bijection between [¢ + 1] and
the set of slopes R = IF; U {oo}, where @ (7) for any i € [¢] is the representation in the basis
© of a unique element of ;.

Arithmetic operations in IF; can be performed efficiently in &, as well as the computation
of the square root [2, Corollary 7.1.2]. Hence using @ and @, one obtains a mapping
Dy i [v] > }F’z which to every element of [v] associates the ®@-representation of a unique
element of X’ (see Lemma 5.2). This mapping is computable in time poly(log v).

To the basis @ there exists a dual basis Z = {{1, ..., §;} satisfying
Tr(gi9)) = 8.
H* isthe span of {Z¢, . .., &,—1}. Denote by T the change-of-basis matrix representing every

gi in terms of ©. Then for any ¢, there exists a bijective mapping @y, : [a] — F} which to
any element of [a] first associates the Z-representation of an element of (F, \ H Ly u{o},
then changes the basis to @ using 7', and finally does the necessary arithmetic to obtain an
element of U,. The values of this mapping can be computed in time poly(¢) = poly(loga).

Now assume we are given numbers X € [v] and i € [¢ + 1], corresponding to the point
(x,cx) € X and the parallel class ¢ € F, U {oo} via @y and @. We want to find the
intercept d such that (x, ¢x) € L¢ 4. If c € Fy, thend = (¢ + ¢)x. If ¢ = oo, thend = x. It
is straightforward to do these computations in ®@. The result is transformed to a number from
[a] via @&J. The representation of d in [a] can be found from inputs X and 7 in poly(log v)
time.

5.3 Property (D2)

Let (c,d) € S be given. We want to find the set B, 4 of those elements of X which are
incident with (¢, d) in D. For d = 0, we have L. 4 = X, U {0}. Now we consider the case
d # 0. Let

Rea =6 €R: LegNX: # 0).

Once we know the set R 4, we can for every ¢ € R 4 find the unique point at the intersection
of L4 and Az. If ¢ € Fy, this point has the form (x, ¢x) for

d
c+¢

X =

(clearly, ¢ # ¢). If ¢ = oo, the point at the intersection of L. 4 and X, is given by (0, d).
For ¢ € Fy, define the set

2
Hoy = :Z cH :Tr<(m + e+ n3c )z> _ 1}

nyd>

and, for every z € H, 4, the polynomial

(md® + 22)(z + n3d?)

Gea(w) = w? +w +
C ﬂ%d“

For ¢ = o0, we set
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— . n3z | _
Heg= {z € H.Tr(n%dz) = 1}

and define, for all z € H, 4, the polynomial

nad*(md?* + z)

)
Geaaw) = w? +w+ =—50

All H. 4 are nonempty due to the proof of Lemma 5.4.

Lemmas.5 Ifc € Fy and md* ¢ H, then

2
n2d-w

Rea=3——= :wrootof Geyq., 7 € H, .

c,d {Z T 773d2 f c,d,z c,d}

Ifc e ¥, and md* € H, then
d*w + mc?
Red = {L S 1w r00t of Geoa,zy 2 € Hea \ {773d2}} U {M oo} .
z+n3d m

If ¢ = oo, then
w
Red = {7127 cwroot of Ged.z, 2 € Hc,d} .
n3

Proof We start with the case ¢ € F, and n3d? ¢ H. There exists an x € F, such that
(x,¢x) € Xz N L. 4 if and only if
@ € ! H
2+ T g4 mi+ e

which is equivalent to the existence of a z € H such that

(z + 3d>)& + mad?E + md® + Pz = 0. (5.2)

By Fact 5.3.2), ¢ is a root of this equation if and only if n;ld_2(z + n3d2)5 isarootof G 4. ;.

It follows from the proof of Lemma 5.4 that the set of z € H for which G 4, ; has a root
in [F; necessarily is equal to H. 4. One can also check this directly using Fact 5.3. Write the
constant term of G 4,; as

mns  (n1 + mc +n3c)z cz 2P
7 T+ 2 7t =54
m nyd md nyd

As in the proof of Lemma 5.4, one concludes that the set of z € H where G 4, has aroot in
IF, is given by H, 4, as claimed. Each root w of G 4 ; gives aroot ¢ of (5.2), and this gives
the claimed form of R 4.

Now assume ¢ € F, and n3d? € H.Then (5.2) has two distinct roots as in the previous case
unless z = 13d?, in which case the quadratic term vanishes. This gives ¢ = (1 + med)/m
(the irreducibility of Q ensures 17 # 0). One checks directly that co € R 4.

The case ¢ = oo is treated analogously to the first case. O

Remark 5.6 We note that for distinct z, z’ € H, 4, the roots of the corresponding G 4, and
G 4,7 are different. This follows from a simple counting argument. Assume ¢ € I, and
n3d2 ¢ H, the other cases are analogous. Since |R¢ 4| = |Bcql = 2t we know from the
proof of Lemma 5.5 that the total number of roots of G 4 ; as z ranges over H. 4 is 2L,
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Now G 4,; has two distinct roots in I, for every z € H. g4, for if G¢ 4;(w) = 0, then
Gea,z(w+ 1) = 0. Moreover, H, 4 is the coset of an (¢ — 1)-dimensional subspace of H.

It remains to check that (D2) is satisfied. Let 7 € [¢ + 1] correspond to a parallel class
and k € [a] to an element of this parallel class. Through the mapping @, one associates to
i aslope ¢ € F, U{oo}. Then &y, (k) gives an intercept d such that (¢, d) € S, where both ¢
and d are represented in the basis ©. It remains to show that the set R 4 can be enumerated
in polylogarithmic time. The first task is to find H,. 4. We shall use that if § = Zf;(l) Biti
and z = Y"1Z( 29, then Tr(B2) = 3"1Z§ Bizi.

Assume that ¢ € F, and n3d®> ¢ H (which can be checked by representing 734> in the
basis Z). The other cases are similar. Using the ®-representations of ¢ and d, compute

B = m + me + n3c?
nyd>
Transform the result to Z. Now assume that 8 = Z;;(l) Bi¢;i. Since H, 4 is nonempty, the
linear form z — Tr(Bz) does not vanish on H. Hence f; = 1 forsome 0 <i < ¢ — 1,
say B¢r—1 = 1. One can now enumerate the @-representations of all elements of H. 4 by
enumerating all sequences 2o, . .., z¢—2 and choosing z,_; such that Zf;o Bizi = 1.
Given z € H, 4, it remains to find both roots of G, 4 ;. This means that one has to solve
the inhomogeneous linear equation

(md* + 2)(md* + ¢*2)

~2 ~
c"+c=
n3d?

If ¢ satisfies this equation, then ¢ + 1 is the other solution. This equation can be solved in
polylogarithmic time in ¢, and so it is possible to find the points of X" incident with (¢, d) in
polylogarithmic time.

Remark 5.7 In the way they were described here, it appears obvious that property (D1)
requires less computation than (D2) for Denniston’s BIBD, although both operations have the
same complexity class. For the computation of the functional form, only the former operation
is necessary.

For the computation of the randomized inverse of the functional form, recall that it is
possible, as pointed out in Sect. 2.4, to first choose the point from X uniformly at random,
and then to choose an s € S such that f(x, s) = « if « is the message to be transmitted. In
this approach, it is sufficient to randomly choose ¢ € R and then to solve for the intercept
d € Aasin (D1).
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