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Abstract
In the early stages of engineering design, multitudes of feasible designs can be generated using structural optimization
methods by varying the design requirements or user preferences for different performance objectives. Data mining such
potentially large datasets is a challenging task. An unsupervised data-centric approach for exploring designs is to find
clusters of similar designs and recommend only the cluster representatives for review. Design similarity can be defined not
only on a purely functional level but also based on geometric properties, such as size, shape, and topology. While metrics
such as chamfer distance measure the geometrical differences intuitively, it is more useful for design exploration to use
metrics based on geometric features, which are extracted from high-dimensional 3D geometric data using dimensionality
reduction techniques. If the Euclidean distance in the geometric features is meaningful, the features can be combined with
performance attributes resulting in an aggregate feature vector that can potentially be useful in design exploration based on
both geometry and performance. We propose a novel approach to evaluate such derived metrics by measuring their similarity
with the metrics commonly used in 3D object classification. Furthermore, we measure clustering accuracy, which is a state-
of-the-art unsupervised approach to evaluate metrics. For this purpose, we use a labeled, synthetic dataset with topologically
complex designs. From our results, we conclude that Pointcloud Autoencoder is promising in encoding geometric features
and developing a comprehensive design exploration method.

Keywords Design exploration · Topology optimization · Design representatives · Data mining · Cluster analysis ·
Geometric similarity

1 Introduction

Recent advances in high-performance computing and
simulation tools enable numerical optimization techniques
to support engineers by automatically generating a large
set of concepts satisfying design requirements. Topology
optimization (TO) [1–6] is the most flexible type of
optimization to generate novel structural concepts; it
optimizes material layout subject to a volume constraint
in a given design domain for an objective, e.g., structural
compliance under specific loads and supports. One of

This project has received funding from Honda Research Institute
Europe GmbH, Germany.

� Nivesh Dommaraju
nivesh.dommaraju@tum.de

Extended author information available on the last page of the article.

the popular gradient-based TO methods is a density-
based approach using SIMP (Solid Isotropic Material with
Penalization) using optimality criteria (OC) update schemes
[1]. Figure 1 shows exemplary structures obtained using
SIMP. Despite the origins in structural mechanics, TO has
found applications in a wide range of physical disciplines
such as fluid mechanics [7], electromagnetics [8], and
acoustics [9]; it is widely used in the aerospace and
automotive industry, civil engineering, materials science,
and biomechanics.

Using TO, multiple designs can be generated using
different methods which can be classified into the following
three groups:

– Parameter sampling. Novel designs can be generated by
varying the material properties, constraints, boundary
conditions, and hyperparameters of the optimization
algorithm. For example, in TO, changing the allowed
mass in a prescribed design domain results in a new
design (Fig. 1). Furthermore, the problem description,
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Fig. 1 TO designs optimized for structural compliance and con-
strained to different volume fractions in the cubic design space. The
optimization objective is structural compliance of the design under

two fixed loads, shown by white arrows, with a fixed boundary. The
allowed volume fraction is ranging from 0.3 to 0.1, from left to right

e.g., the boundary conditions, can also be varied without
changing the final design objective. For example, while
designing a component to support a fixed load using,
say, three support legs, one can change the allowed
fraction of load in the supports to obtain a new design
[10].

– Multiobjective optimization. In practice, designs may
need to be optimized for multiple objectives, e.g.,
energy absorption under crash loads, and structural
stiffness under smaller static loads. Multiobjective TO
[11] with conflicting objectives yields a set of Pareto-
optimal designs, where choosing a design with better
performance for one objective results in performance
deterioration of another objective.

– Multimodal optimization. Highly complex and nonlin-
ear objectives are normally multimodal, i.e., they have
several local optima. Since not all the constraints are
known in the early development phase, having a set
of local optima is useful, in case some of them vio-
late the unknown constraints in the future. Such designs
can be identified using evolutionary algorithms [12] or
by restarting gradient-based optimization algorithms,
such as TO, from different initial configurations [13],
converging to a different optimum in each of the runs.

The aforementioned methods can potentially generate
multitudes of designs in the early product development
phases. A challenging task is to explore the different con-
cepts and identify a few interesting designs for further
review. A selection of designs can be done based on expe-
rience, manufacturing cost, or design performance. For
instance, the dream lens tool [10] is an interactive frame-
work that guides a designer to a set of interesting designs
using, for example, range constraints on performance. For
Pareto-optimal designs obtained in multiobjective optimiza-
tion, the decision-maker (DM) can select designs of interest,

based on the relative importance of different objectives [14,
15]. However, in practice, it is difficult to define objec-
tively the intent of a DM, especially with a large number
of objectives [16]. Hagg et al. [17] propose an unsuper-
vised data-centric approach for exploring designs by finding
clusters of similar designs based on performance, e.g., the
drag coefficient of an airplane. The medoids of different
clusters are interpreted as representative designs, which can
be recommended to an engineer for review and further
development. In this study, we use this automated approach
to explore designs. However, the engineer still needs to
choose the features, metrics, and clustering methods, which
determine the final recommended designs.

Along with the performance of a design, differences
in geometric properties such as size, shape, and topology
are also important, especially at the early stages of prod-
uct development. Quantifying the geometrical differences
allows the identification of similar designs and their repre-
sentatives in a dataset [18]. Furthermore, metrics for geo-
metrical differences allow the use of similarity-controlled
optimization methods [19, 20] to yield designs similar to
a set of reference designs, which might be desirable due
to economic reasons, manufacturing limitations, or ease
of integration into the existing design process. In all of
these applications, the metric used to measure geometrical
differences is crucial and is the subject of our study.

Numerous metrics exist with varying degrees of accu-
racy and computational complexity. Due to the high-
dimensionality of 3D geometric data, each metric may only
compare a few of the geometric properties depending on
the complexity of designs. Hand-crafted geometric feature
vectors based on surface curvature, material distribution
statistics, or spectral descriptors [21] can be used to dis-
tinguish designs. In contrast, data-centric methods—which
are more successful in practice—extract features relevant
to a specific 3D geometric dataset, e.g., PCA (Principal
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Component Analysis) [22] can identify a reduced num-
ber of uncorrelated features that explain the variance in
data. Other dimensionality reduction techniques popular in
the machine learning field can also be used for geometric
feature extraction, e.g., NMF (Non-negative Matrix Fac-
torization) [23], t-SNE (t-distributed Stochastic Neighbor
Embedding) [24], or UMAP (Uniform Manifold Approx-
imation and Projection) [25]. More sophisticated meth-
ods based on deep learning networks exist too—Qi et al.
[26] use PCAE (Pointcloud Autoencoder) to learn fea-
tures from a pointcloud obtained by sampling points on
the surface of the design. The reduced representation has
an additional benefit of associating geometric features to
a design like any other performance measure. Though, it
is not clear if the Euclidean distance with the reduced
representation is as meaningful as the reference metrics
such as voxel distance. So, we propose a novel method
to validate the Euclidean distance by comparing its simi-
larity with reference metrics commonly used in 3D object
classification.

In this paper, we quantitatively compare different metrics
of geometrical differences based on criteria that are
important when analyzing topologically complex design
datasets obtained using structural optimization. The criteria
considered in this work are as follows:

• The metrics should be sensitive to geometrical dif-
ferences in size, shape, topology, and orientation in
a design space. Invariance to rotation, reflection, and
translation operations is considered as an advantage in
3D design classification, but not for TO designs, where
the configuration relative to the boundary conditions is
important.

• The metrics should allow the identification of clusters
of similar designs even in topologically complex
datasets. This allows the recommendation of diverse
designs using clustering methods.

• Metrics that use vectors of geometric features associ-
ated with designs are preferred since the feature vec-
tors enable 2D visualization of the complete dataset
using manifold learning techniques [18, 24], easing data
exploration. Furthermore, such features can be com-
bined with performance features directly. However, in
this case, we need to ensure that the Euclidean distance
in the space of geometric features is still meaningful.

In what follows, Section 2 discusses different geometric
representations, such as voxel and pointcloud represen-
tations, of 3D geometric data, which are used by some
intuitive reference distance metrics of geometrical differ-
ences (Section 3). Section 4 introduces a few dimensionality
reduction techniques to extract geometric features which
are used to derive new metrics. In Section 5, we present
methods to evaluate metrics based on different proper-
ties. Section 6 describes the datasets used to evaluate the
metrics. The results of the evaluation are shown in Section 7.
Using simple datasets, we verify if the features capture
our intuition on geometrical differences. With topologically
complex design sets, the properties of different metrics are
highlighted. Since our final goal is to identify geometrically
similar design classes in a dataset, we compare different fea-
ture extraction methods based on the clustering performance
with the use of a challenging dataset. Finally, in Section 8,
we explore topologically optimized designs using geometric
features. Section 9 concludes this study with the key results
and an outlook for further research.

2 Geometric representation

The geometric representation of a design determines the
available metrics and feature extraction methods. In this
study, we consider two geometric representations: voxel and
pointcloud representation (Fig. 2). The former is a natural

Fig. 2 Geometric representations of TO results
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representation in TO since the design domain is generally
discretized into voxels [1], while the latter is a compact and
expressive representation popular in 3D object recognition,
classification, and segmentation [26, 27].

Voxel representation A 3D domain containing the design
is discretized into voxels using a regular grid. The voxel
representation of the design is a vector of values x ∈
{0, 1}n, where n is the number of voxels. Each component
xi corresponds to a specific voxel in the design domain. If
the design occupies the voxel i, xi = 1, otherwise, xi = 0.
For voxels that are only partially occupied by the design,
we assign xi = 1 when the majority volume of the voxel is
occupied. The vector x can be large since the design space
may be finely discretized to resolve the complexity of the
design. This representation is convenient for TO designs
which are generally optimized in a voxelized domain [1]. An
interesting research question is how well the dimensionality
reduction techniques, currently popular in the machine
learning field, can identify underlying design patterns and
extract relevant features from the voxel representations of
TO designs.

Pointcloud representation Compared to the voxel repre-
sentation, a pointcloud is a compact representation since it
only samples the points on the surface of a design. Geomet-
ric learning methods using this representation [26, 27] are
interesting since they can identify different classes of shapes
in publicly available datasets such as ShapeNet [28].

Other geometric representations include octrees, 3D
meshes, and multi-view projections. The octree-based
representation [29] alleviates the high memory usage of
a voxel representation by using a higher resolution of
voxels only when it is required, e.g., near the surface of
a design. 3D meshes, similar to pointcloud representations
are compact. They represent the surface of a 3D geometry
using a set of polygon faces. A graph representation
can also be used to represent 3D meshes. Due to the
high computational cost of these representations, there is
an increasing interest among researchers to work with

low-dimensional pointcloud representations [30]. For our
initial analysis of TO designs, we consider metrics provided
by voxel and pointcloud representations.

3 Reference distancemetrics

In this section, we describe a few intuitive metrics used
to measure geometrical differences between designs. These
metrics serve as a reference to compare with the metrics
that are derived from dimensionality reduction techniques
as explained in the next section.

Voxel distance Voxel representations of two designs can be
compared when the voxel arrays have the same size and
correspond to the same regular grid in the 3D domain. The
Euclidean distance in the voxel representation is equal to the
square root of the number of non-overlapping voxels that
are occupied by only one of the designs. A disadvantage of
this metric is that it is insensitive to the position of non-
overlapping voxels. For two designs without any overlap,
the metric is invariant to their relative position in the design
domain, so long as there is no overlap and the voxel grid in
the domain does not change.

Chamfer distance (CD) A pointcloud is a compact represen-
tation obtained by sampling points on the surface of a 3D
geometry. The CD [26, 27] is a metric used to measure
the difference between two pointclouds, say S1, S2 ⊂ R

3

(Fig. 3). It is defined as follows:

CD(S1, S2) =
∑

a∈S1

min
b∈S2

‖a − b‖2
2 +

∑

a∈S2

min
b∈S1

‖a − b‖2
2, (1)

where a, b ∈ R
3.

Earth mover distance (EMD) Similar to CD, EMD [27]
is calculated on a pointcloud representation. It solves an
optimization problem to find a mapping Ψ : S1 → S2

between the points of the pointclouds such that the objective

Fig. 3 Pointcloud Autoencoder
(PCAE)
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∑
a∈S1

‖a − Ψ (a)‖2 is minimized. We use an approximate
but fast algorithm for EMD calculation proposed by
Achlioptas et al. [27]. Still, EMD is computationally more
expensive than the CD.

The metrics—voxel distance, CD, and EMD—are
sensitive to any changes in configuration relative to the
boundary conditions, e.g., due to rotation, translation,
or reflection. The voxel distance compares very high-
dimensional voxel representations. CD and EMD are
functions defined with two designs as input. Other metrics
such as Wasserstein distance [31] are not considered here
since we only need a few reference metrics to demonstrate
our metric evaluation method. As discussed previously, the
emphasis of this study is to evaluate metrics based on
dimensionality reduction techniques, the benefits of which
will be discussed later.

4Metrics based on dimensionality
reduction techniques

Dimensionality reduction techniques identify the under-
lying patterns in a dataset, summarizing each data point
with a lower-dimensional feature vector. These methods
are applied to reduce the high-dimensional 3D geomet-
ric data to yield a feature vector, referred to as geometric
features in this work. Euclidean distance between these low-
dimensional feature vectors, when meaningful, can be used
as a metric of geometrical differences. In the later sections,
we investigate if such derived metrics are indeed meaningful
by comparing them with the reference distance metrics.

In this study, we investigate the use of dimensionality
reduction methods such as PCA [22], NMF [23], t-SNE
[24], UMAP [25], and PCAE [27]. Although this is not
an exhaustive study, these methods are representative and
widely used in different fields. PCA extracts non-redundant
features using linear transformations [22, 32]. t-SNE and
UMAP are nonlinear dimensionality reduction techniques
used in machine learning to visualize high-dimensional
data. PCAE is an effective feature extractor for pointcloud
representation used in object classification [26, 27].

Principal component analysis PCA projects a set of n data
points each with d features, Xd×n = {xi | xi ∈ R

d , i =
1, ..., n}, to a new set of orthonormal basis vectors: {bi | bi ∈
R

d , i = 1, ..., min(n, d)}. Each data point xi = ∑
pkbk

can be identified with the new coordinates pk . The new
basis is constructed such that the new coordinates pk are
uncorrelated. The dataset Xd×n has the highest variance
in the first principal component and the variance in the
components pi decreases as the order i increases [33]. It
is often sufficient to consider only a few of the principal
components to explain the variance in data, resulting in

the dimensionality reduction. For a voxel representation as
input, d is the number of voxels in the design domain and n

is the number of designs.

Non-negative matrix factorization NMF [34] factorizes the
input data Xd×n = Wd×p Hp×n where W, H have non-
negative entries. In general p � min(n, d), which means
that each data point xi (column i of X) can be expressed
as a linear combination of columns of W , i.e., xi = Whi ,
where hi (column i of H ) is the reduced dimensional
representation. Since W and H have non-negative entries,
data such as images or voxels are decomposed into
interpretable components.

t-distributed stochastic neighbor embedding t-SNE [24] is
a method to embed high-dimensional data in 2D or 3D. The
method is especially useful when visualizing clusters in data
because similar data points are kept close in the reduced
coordinates with high probability.

Uniform manifold approximation and projection UMAP,
similar to t-SNE, is a method to visualize high-dimensional
data. McInnes et al. [25] argue that UMAP preserves
the inter-cluster distance better than t-SNE. Empirical
studies using t-SNE [24] and UMAP [25] show how
high-dimensional data can be embedded into 2D without
losing the cluster structure. For example, 2D image data
of handwritten digits can be reduced to 2D clusters, where
images of different digits are separated clearly.

Pointcloud autoencoder An autoencoder is an unsuper-
vised learning method used to reduce the dimensions of
an input representation. Umetani et al. [35] parameterize
the surface of a shape, which is assumed to be approx-
imately convex. The parameters defined to generate the
surface mesh are used as the input vector to an autoencoder.
Recent studies on 3D datasets [26, 27, 36] use autoen-
coders to extract features from pointcloud representations of
designs and identify everyday objects such as chairs, cars,
and airplanes. In this study, we use pointcloud representa-
tions as input to build a pointcloud autoencoder (PCAE).
Pointclouds are simpler to compute and have no additional
assumptions on the shape.

For PCAE, we use the neural network architecture pro-
posed by Achlioptas et al [27]. Schematically, the archi-
tecture comprises two stacks of neural network layers:
encoding and decoding layers. Encoding layers reduce the
dimension of the input pointcloud to result in a latent code
that is used by the decoding layers to reconstruct an output
pointcloud similar to the input. At the start of the training
process, the weights used by the network are randomly ini-
tialized and the reconstruction is inaccurate. By measuring
the difference between output and input pointclouds using
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a loss function, the autoencoder learns to adjust the weights
of the network to reconstruct the input accurately. Since the
latent code has fewer dimensions than the input represen-
tation, the PCAE achieves dimensionality reduction. Rios
et al. [37] demonstrate that a pointcloud autoencoder allows
the identification of nonlinear subregions in the design
space, each preferentially occupied by a subclass of designs.
This explains the usefulness of the latent code in object clas-
sification. In this study, we use the CD as the loss function
instead of EMD to train the PCAE since CD is computation-
ally cheaper than EMD and is found to be sufficient for our
application. It provides meaningful geometric features and
clusters similar designs in the test datasets (Section 7).

Each dimensionality reduction technique yields a geo-
metric feature vector for a design. If the Euclidean distance
in geometric features captures the geometrical differences,
they can be treated as any other performance feature. An aggre-
gate vector with geometric and performance features can be
used to find similar designs. For example, this would help
to highlight designs with a similar geometrical structure but
with different performance values and vice versa.

To verify if the Euclidean distance in geometric features
is meaningful, they should be compared with the reference
metrics (Section 3) which are designed to measure
geometrical differences. We propose a method to do this in
the next section.

5Methods for evaluatingmetrics

In this section, we propose two methods to evaluate the
different target metrics. The first method compares a given
target metric (TM) with a reference metric (RM) which
is known to capture at least some aspects of geometrical
differences. The second method evaluates the metrics by
measuring their clustering performance.

5.1 Metric correlations

It is difficult to define geometrical differences between any
two 3D geometries objectively. The problem is simplified if
the two designs differ only in a simple geometric property.
For example, consider a simple set of designs that are

obtained by rotating a template design. The angle between
any two designs can then serve as an RM. Although such
metrics are not generally applicable, we can use them to
evaluate more general TMs. If RM is a reasonable metric for
a specific dataset, the distances measured by a more general
TM should be at least similar to that of RM for the given
dataset. We discuss here how to measure this similarity
between any two metrics (e.g., TM and RM).

Consider a set of N geometries G = {Ge | e =
1, ..., N} and a collection of its geometry pairs: P =
{pi = (Gm, Gn) | m �= n}. A metric, M, measures
distance between geometries of a pair (pi). The collection
of distances measured by the metric is given by DM =
{M(pi) | pi ∈ P}. To measure the similarity between the
metrics, RM and TM, we find the correlation between DRM

and DTM. A high correlation between the measured values
indicates that the metrics are similar. Figure 4 shows the
proposed workflow to compare a TM with an RM.

Correlation measure Pearson correlation (ρp) [38] mea-
sures the linear correlation between any two input variables.
It ranges between -1 and +1. If the variables have a positive
linear correlation, we expect the correlation to be near +1. In
our case, the two variables are DRM, DTM. In general, the
values of DRM, DTM may not be linearly related. But if they
have a monotonic relation, the metrics can distinguish geome-
tries equally well. So, from hereon, we rely on Spearman corre-
lation (ρs) [38], rather than Pearson correlation (ρp), to com-
pare metrics. When the correlation between the distances
measured by two metrics is high, i.e., ρs , we say that the
two metrics correlate well or the metric correlation is high.

The proposed method can empirically determine if a TM
can quantify geometrical differences at least as good as
the RM. We complement this evaluation by investigating
whether the metrics are also good at clustering similar
designs in a topologically complex dataset.

5.2 Comparison based on clustering performance

One of the objectives of this study is to identify groups of
designs that look geometrically similar. Since geometries
in a TO dataset have no pre-determined class labels, we
concentrate on unsupervised object classification methods.

Fig. 4 Workflow to measure
similarity between two metrics
RM and TM. Note that for each
pair of geometries, we obtain
two different distance measures
by RM and TM. The correlation
between the distances measured
indicates the degree of similarity
between the metrics
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In addition to the clustering method chosen, the metric
used for clustering leads to different clusters of designs.
It is difficult to verify the performance of the different
clusterings using unlabeled datasets, even though this is
the target application. So, we use labeled test datasets for
evaluating our method.

Relabeling using themajority labelmethod Each design Di

in the labeled dataset has a ground-truth label gi according
to its class and a cluster label ci obtained from clustering.
Each cluster Ck in the dataset is a set of designs with a
common cluster label k: Ck = {Di | ci = k}. If the
clustering is successful in identifying the subclasses, then all
or most of the designs in a cluster have a common ground-
truth label. For example, Fig. 5 shows how a dataset with
three subclasses can be assigned arbitrary cluster labels,
even if all the subclasses are accurately identified by the
clustering algorithm. In practice, when the clustering is not
perfect, a cluster can have designs with different ground-
truth labels but a majority of them may have a single
ground-truth label that can be used to remap cluster labels
(Fig. 5). This allows for the use of standard measures
of classification performance where predicted labels and
ground-truth labels are compared. One of the measures,
called precision, finds the proportion of designs that differ in
ground-truth and predicted (cluster) labels. We also use the
weighted average of F1-score [39] which takes into account
both the precision and recall scores for each label and then
weighs the score by the number of samples in each cluster.

Fig. 5 Clusters of designs: Ground-truth labels are different from
labels (shown beside clusters) obtained by clustering. The label
matching method maps the ground-truth labels 1,2,3 with cluster labels
2,3,1 respectively

In addition to F1-score and precision, we report adjusted
mutual information score (AMI) [40], one of the state-
of-the-art methods to measure multi-label classification
accuracy. AMI is invariant to permutations of the labels
and doesn’t need the relabeling step discussed previously.
It is adjusted for the chance which ensures that the
random labeling gets a zero score. However, AMI is not as
intuitive as the classification measures discussed previously.
Furthermore, by analyzing the F1-score and precision of
individual cluster labels, one can identify which design
classes are mislabeled.

For evaluating the metrics, the designs available in the
public domain such as ShapeNet [28] are topologically not
as complex as the designs obtained in TO. So, we generate
complex topologies with well-defined subclasses, which are
described in the next section.

6 Design generation

In this section, we present the datasets used to evaluate
different metrics. The first part of the section covers
simple datasets where the geometrical difference is easier
to quantify. This is followed by more complex truss-like
designs, which resemble structures created using TO.

6.1 Ellipsoidal designs

We generate three datasets where geometrical differences
between the designs in a dataset can be easily quantified.
Within a dataset, designs are obtained by translation, rotation,
or elongation of a reference design. Although these datasets are
simple, we can evaluate if our targetmetrics capture geometri-
cal differences that arise from these simple transformations.

The reference geometry for these datasets is an ellipsoid,
which can be represented using a Moving Morphable Compo-
nent (MMC) with a form factor m = 2 [41]. We use these
datasets to illustrate our method and draw initial observa-
tions, while more sophisticated datasets are presented later.
The reference MMC ellipsoid, also called beam here, can
be transformed by varying the position of the center of mass
(C ∈ R

3), lengths along the three principal axes (L ∈ R
3),

and Euler angles (E ∈ R
3) representing the orientation.

The resulting geometry is defined using a level set
function Φ : R

3 → R: the surface of the object is given
by {x ∈ R

3 | Φ(x) = 0}. The interior of the object is
given by {x ∈ R

3 | Φ(x) > 0}. The level set formulation is
convenient to construct the voxel and pointcloud representa-
tions used in this study. As described in Section 2, to construct
a voxel representation, a common domain containing the
designs is split into voxels. To construct the voxel
representation of a design, occupied voxels can be found by
evaluating the condition Φ(xi ) ≥ 0 at the centers xi of the
i-th voxel. Using the marching cubes algorithm [42, 43],
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Fig. 6 Beam-rotation dataset: An ellipsoidal beam is rotated by different angles to create different designs

the volumetric representation is converted to a triangulated
surface mesh. For pointcloud representation, points are
uniformly sampled on the surface mesh, while ensuring
uniform distribution in each triangular face [44, 45].

Beam-rotation dataset For this dataset, an ellipsoidal beam
is rotated by different angles along a fixed axis to get new
designs (Fig. 6). The difference in the rotated angle then
serves as the reference metric. The rotation angle is kept
below 90◦ due to the polar symmetry of the object. For
rotations above 90◦, the difference in angle is not a good
metric. For example, consider a beam B1 rotated by angles
θ and 180◦ − θ to give beams B2 and B3 respectively. Due
to polar symmetry, B2 and B3 fully overlap, but the angular
difference indicates that B1 is more similar to B2 than B3.
This dataset contains 20 designs.

Beam-elongation dataset For this dataset, an ellipsoidal
beam is elongated by different lengths along a fixed
principal axis to get new designs (Fig. 7). The difference in
lengths along this axis then serves as the reference metric.
This dataset contains 20 designs.

Beam-translation dataset For this dataset, an ellipsoidal
beam is translated to different locations along a fixed axis
to get new designs (Fig. 8). The difference in the position

of the center of mass C then serves as the reference metric.
This dataset contains 20 designs.

6.2 Topologically-complex designs

A more complex set of truss-like designs can be generated
by combining multiple MMCs. Furthermore, we can use
MMCs as a basis to generate labeled test datasets with
well-defined subclasses.

MMC framework and similar feature mapping tech-
niques are increasingly used in TO [46–49] since they can
be used to construct complex geometries using a few design
variables. Zhang et al. demonstrate the generation of arbi-
trarily curved beams by overlapping ellipsoids [46]. With
a relatively small number of MMCs, MMC-based feature
mapping techniques are able to generate complex topologies
that are comparable to designs obtained by state-of-the-art
density-based TO [50, 51]. Even for highly nonlinear crash
TO problems, it is found that the optimal structures are
usually composed of interconnected beams [3]. So, it is rea-
sonable to assume that a topologically optimized design can
be represented using MMCs.

The interior of a geometry comprising multiple MMCs,
say n MMCs, is defined by max

i=1,...,n
Φi . As discussed

previously, this allows for a conversion to voxel, surface

Fig. 7 Beam-elongation dataset: An ellipsoidal beam is elongated to different lengths to create different designs
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Fig. 8 Beam-translation dataset: An ellipsoidal beam is translated by different amounts to create different designs

mesh, and pointcloud representations. A similar set of
designs have been used by us [18] to demonstrate a method
for design exploration. Since we investigate the effect of
topology rather than the effect of the shape, which is
extensively studied in the literature [26, 27, 36], we use
m = 2 to generate ellipsoidal MMCs.

Since we need complex topologies with well-defined
subclasses as a test dataset, we propose to generate a
connected truss-like design using a 3D geometric graph as
a template. The nodes and edges of the graph are points
and line segments in a 3D Euclidean space respectively. A
design containing multiple beams is generated by aligning
each beam, using one of its principal axes, along a distinct
edge in the graph (Figs. 9, 10). We define a basegraph to
generate a labeled test dataset, i.e., a set of designs with a
subset of geometrically similar designs assigned a common
subclass label. The basegraph is used to generate connected,
distinct subgraphs which are used as a template to generate a
subclass of similar designs. A subgraph can lead to multiple
designs by varying the thickness of beams positioned along
the edges of the graph.

In this study, we use three datasets using two different
basegraphs with an increasing amount of complexity: a
three cube (three back-to-back cubes) and a single cube, as
shown in Figs. 9 and 11 respectively. For variations within

a subclass, we change the thickness of an MMC using a
uniform random distribution.

Three cube trusses This set of 150 designs is based on
the basegraph shown in Fig. 9. Using different subgraphs,
6 subclasses are generated of which two are based on
subgraphs as shown in Fig. 9. Samples from six of the
subclasses are shown in Fig. 10. Note that the center of mass
changes significantly from subclass to subclass.

Single cube trusses This set of 275 designs is based on the
basegraph shown in Fig. 11. As discussed, each subclass
in the dataset is restricted to a connected subgraph. Eleven
different subgraphs generate the subclasses. Samples from
six of the subclasses are shown in Fig. 12. Note that the
designs from different subclasses differ in orientation if they
have the same topology.

Randomized topologies This topologically more com-
plex dataset challenges the classification performance
(Section 5.2) of the clusters obtained by using different met-
rics. The dataset consists of 50 subclasses with 20 designs
per class. Having a sparse number of designs per class chal-
lenges the deep learning method, which works better with
more data. Each subclass of designs is based on a subgraph

Fig. 9 Three cube basegraph
and subgraphs: Each subclass of
designs is restricted to a
subgraph of the basegraph.
Hidden edges in the basegraph
are shown as dashed lines in the
basegraph and subgraphs
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Fig. 10 Three cube truss dataset: Samples from 6 different subclasses are shown

of the three-cube basegraph discussed previously. A sub-
class of designs is constructed using the following steps,
which change not only the thickness of the beams in a design
but also the length along the edge:

1. Define a subgraph for each subclass. The subgraph
forms a template to construct different designs in the
subclass.

(a) Pick a subset of three-cube vertices (Fig. 9) of size
between 5 to 10 randomly.

(b) Construct an edge for each possible combination of
vertices.

2. Mutate the thickness and the length of the beams which
are placed along the edges of the subgraph to get a
new design in the subclass. Care is taken such that the

Fig. 11 Single cube basegraph
and subgraphs: Each subclass of
designs is restricted to a
subgraph of the basegraph.
Hidden edges in the basegraph
are shown as dashed lines in the
basegraph and subgraphs
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Fig. 12 Single cube truss dataset: Samples from 6 different subclasses are shown

resultant designs in a given subclass are similar to each
other compared to designs from other subclasses.

(a) Vary the thickness of beams by sampling from
a uniform distribution in [1.5, 4]. Note that the
edge length of each cube in the base graph is 10
units.

(b) Remove a few randomly chosen beams. Sample
a random variable s from uniform distribution
U(0, 1). Whenever s ≤ 0.2, remove the beam.

(c) Shorten few randomly chosen beams (s ≤ 0.2). A
cut beam can occupy a fraction between [0.5, 1] of
the original length.

Variations in a subclass are controlled in a conservative
way such that the designs still belong to the same subclass.
All random values are picked using uniform distribution in
the specified ranges. When not specified, the range is [0,
1]. Three samples of three of the subclasses are shown in
Fig. 13.

6.3 Topologically optimized designs

This dataset comprises 1500 designs obtained using TO
[1]. The design domain is restricted to a unit cubic domain
with an optimization objective to minimize structural com-
pliance. At the early stages of designs, the exact boundary
conditions to be applied to the design may not be known.
With the advances in high-performance computing, it is
now possible to generate a large set of feasible design
layouts for an engineering component by considering dif-
ferent design constraints. In our dataset (Fig. 14), we arbi-
trarily vary the position of the fixed boundary and the two
loads, simulating an extreme use case where the boundary
conditions are not known. In practice, only a fixed set of
configurations for boundary conditions may be perturbed
slightly for a given design task [10]. Nevertheless, we use
this dataset to demonstrate our design exploration approach.

Different boundary conditions are generated as follows:

– We prescribe zero displacement for the nodes in an
arbitrary patch in the fixed boundary face x = 0 (green

914 N. Dommaraju et al.



Fig. 13 Randomized topologies: Each row shows designs from a subclass. With low probability, beams are cut or removed from the underlying
basegraph

Fig. 14 TO in a unit cube: Two
possible configurations of
boundary conditions. The
objective is to minimize
structural compliance under
radial loads F1 and F2 (centered
around the points c1 and c2)
given an arbitrary rectangular
boundary patch B in a fixed face
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area in Fig. 14). The rectangular patch is defined by its
bounds along the y- and z-axes parallel to the face. The
bound [bmin, bmax] along an axis is randomized such
that 0 ≤ bmin ≤ bmax ≤ 1 and bmin, bmax ∈ U(0, 1).

– Two radial loads of unit magnitude are applied at
randomly chosen centers within the cube. The load is
distributed in a radius of 0.1 units. Each coordinate
of the center is sampled from U(0, 1) such that the
center is within the domain. The load vector is similarly
calculated but its magnitude is normalized.

The density-based TO, SIMP [1], is used to optimize
designs under static load for structural compliance, mea-
sured using internal energy stored in each element. A lin-
ear elastic material with the following properties is used:
density (7.83 · 10−9 ton/mm3), Young’s modulus (2.07 ·
105 MPa), and Poisson ratio (0.33).

The dataset has no prescribed subclasses or simple
parameters that can capture geometrical differences, unlike
the previous datasets. However, the dataset is representative
of TO designs obtained in practice. Since the analysis of TO
datasets is our intended application, we use this dataset to
qualitatively evaluate a metric.

7 Evaluation on design datasets

In this section, we evaluate different metrics using the methods
described in Section 5 on the datasets from Section 6.

7.1 Naming convention

A metric can be composed of other metrics starting with geo-
metric representation and dimensionality reduction techniques

Table 1 Abbreviations used in naming metrics. For example, a metric
M: (Voxel, PCA, ED) means the voxel data is reduced using Principal
Component Analysis (PCA). Euclidean distance (ED) in the reduced
components gives the measured value (DM )

Description Abbreviation

MMC parameters MMC par

Voxel representation Voxel

Principal Component Analysis PCA

Non-negative Matrix Factorization NMF

t-distributed Stochastic Neighbor Embedding t-SNE

Uniform Manifold Approximation and Projection UMAP

Latent code of PCAE AE code

Euclidean distance ED

Chamfer distance CD

Earth mover distance EMD

if used. So, to avoid ambiguity, we choose the follow-
ing naming convention using a tuple: (Representation,
Dimensionality reduction techniques, Metric). Each compo-
nent may use a short name for corresponding objects as in
Table 1. The tuple represents the operation pipeline (met-
ric pipeline) used to define the metric. For example, (Voxel,
ED) means that Euclidean Distance (ED) is applied over
voxel representation (Voxel).

7.2 Hyperparameters

For the voxel representation of each design, we use a com-
mon resolution of 25 × 25 × 25. PCA and NMF use 10
components to reduce the voxel representation, which is
found to be satisfactory for our datasets. As expected, t-SNE
and UMAP use 2 components which enables the visualiza-
tion of the dataset in 2D. Each design is represented with
a pointcloud of 2048 points, which is used as the input to
train the autoencoder. By default, the dimension of PCAE
code is 128, except for the last dataset with TO designs,
where 500 dimensions are needed to capture the increased
complexity.

7.3 Metric correlations

For different datasets, we compare different metrics
using the correlation coefficients (ρ) as discussed in
Section 5. Recall that values measured by a metric M are
denoted by the variable DM. We measure the correlation
between distances measured by a given target metric
(TM) with a reference metric (RM) which is known to
be useful in capturing geometrical differences. Using the
metric correlations, we discuss the deficiencies of a TM,
if any.

Beam-rotation dataset The metric correlations for this
dataset are shown in Fig. 15. RM is the Euclidean distance
in MMC parameters which for any two designs in this
dataset is the angular difference in their orientations.
Figure 15a shows that the voxel distance correlates well
with the RM. So, voxel distance agrees with our intuition
of geometrical difference. Since the relation between the
measured distances is nonlinear, the ρp is worse, as
expected.

Similarly the TMs, CD and EMD, correlate well with
the RM (Fig. 15b, c). However, for certain values of DRM,
DTM takes multiple values, which results in a vertical seg-
ment of dotted points (for both DCD, DEMD). The reason for
this is that the designs for this dataset are obtained by rotat-
ing a reference ellipsoid in steps of a constant angle, i.e.,
the orientations of designs are equispaced. As a result, mul-
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tiple pairs of designs have the same value for DRM since
within such pairs the relative location of geometries is the
same. Yet, DTM can take different values for the same pairs
due to the deficiency of a TM. For the pointcloud based
metrics such as CD and EMD, this effect occurs because
the surface points are randomly sampled and may result in
some variation in the relative location of points. The effect
is observed to a lesser extent with the voxel distance as
well (Fig. 15a). This is due to the discretization error of
the voxel representation. Even if the relative angle between
the two designs is held constant, the actual voxel repre-
sentation depends on the absolute orientation in the design
domain.

Figure 15d-h show TMs based on different dimension-
ality reduction techniques. The metric based on PCAE, the
TM in Fig. 15d, correlates very well with the RM (ρs =
0.96). The slight deterioration is also apparent from the
spread of points along the y-axis. PCA reduction (Fig. 15e)
with just 10 components is equally good, even if the origi-
nal dimension of voxel representation ≈ 1.5 · 104 is large.
t-SNE, the TM in Fig. 15g, has the worst correlation.
This is expected since it is designed only for the visual-
ization of clusters, if any, in the high-dimensional data.
However, UMAP in Fig. 15h, although designed for the
same application as t-SNE, shows a much better correlation.
Figure 15f shows NMF with slightly worse performance
than PCA, possibly due to the additional non-negativity con-
straints on the reduced components. In summary, PCA and
autoencoder-based metrics have a good correlation with the
RM.

Beam-elongation dataset For this dataset, results are
shown in Fig. 16. The RM measures the difference in
lengths along the axis of elongation. The results are
very similar to those with the beam-rotation dataset
(Fig. 15).

Beam-translation dataset For this dataset, the results are
shown in Fig. 17. The RM, Euclidean distance in MMC
parameters, measures the difference in the location of
design for this dataset. Figure 17a, with voxel distance as
TM, shows a difference in the behavior compared to beam-
rotation and beam-elongation datasets. The voxel distance
does not change when the positional difference is more
than a threshold (x = 4). This is because the designs stop
overlapping for this range and the sum of voxel differences
(DTM) is constant (= total number of voxels in the two
designs). So, voxel distance is disadvantageous as a metric
for TO designs since the position of the non-overlapping
material in the design domain of TO is relevant. Other

metric comparisons are very similar to those obtained with
the beam-rotation dataset (Fig. 15).

The three datasets discussed here use an MMC beam
with a form factor m = 2. It is interesting to see if
using other MMC shapes similar to bipyramids (m = 1)
or cuboids (m = 6) affect the results. So, we repeated
each of the experiments above with m ranging from 1
to 6. For a given m value, the results are reasonably
similar for a given transformation type. The correlation
between CD and EMD is very high (ρs ≥ 0.99). The
autoencoder-based metric also agrees well with CD (ρs ∈
[0.96, 1]). As expected, voxel distance is similar to CD
(ρs ∈ [0.98, 1]) for these datasets. Other than t-SNE, using
dimensionality reduction techniques on voxel representation
doesn’t significantly reduce the metric correlation with CD
(ρs ∈ [0.95, 1]). With t-SNE, the metric correlation is quite
low (ρs ∈ [0, 0.3]) even for the simple datasets described
here. Given the consistency of results with different MMC
form factors, we expect similar results with any other
shapes.

Single cube truss dataset For the datasets based on single
cube, three cubes, and random topologies, the geometrical
differences cannot be captured by differences in simple
shape parameters. So, we compare metrics with chamfer
distance (Pointcloud, CD) as reference (RM), which is
popular in 3D object recognition [27]. Metric correlation
study indicates that the voxel distance has almost no
correlation (ρs = 0.14) with RM while EMD is very
similar to CD even for complex datasets. Since CD is
cheaper to compute, one may prefer it to EMD. The latent
code of PCAE (AE code) used in this study is trained
with chamfer distance (CD) as the loss function and hence
shows a very high correlation with it (ρs = 0.96). Other
metrics based on dimensionality reduction of voxel data
show improvement in accuracy ρs ∈ [0.4, 0.6] compared
to voxel distance ρs = 0.14. So, for complex designs, it is
beneficial to reduce the dimensions by removing redundant
features.

Three cube truss dataset The metric correlations for this
dataset are similar to the results obtained for the single
cube truss dataset. Voxel distance has a very low correlation
with CD (ρs = 0.55) which is improved by using
dimensionality techniques (ρs ∈ [0.6, 0.8]). The highest
improvement is obtained with Autoencoder (ρs = 0.93)
using the AE code. The correlations are higher than the
single cube dataset where the design changes are more
complex.
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Fig. 15 Metric correlations for
the beam-rotation dataset: Voxel
distance and Pointcloud based
metrics correlate well with
differences in orientation
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Fig. 16 Metric correlations for
the beam-elongation dataset:
Voxel distances and Pointcloud
based metrics correlate well
with differences in design length
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Fig. 17 Metric correlation for
beam-translation dataset:
Pointcloud based metrics
correlate well with the
differences in position
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Fig. 18 Metric correlations for
random topologies dataset with
1000 designs. Each graph
consists of nearly 5 × 105

pairwise distance measures

921Evaluation of geometric similarity...



Random topologies This dataset has the most diverse
topologies among the synthetic datasets. Figure 18 shows
the correlations between the metrics. As expected, voxel
distance doesn’t correlate well with CD. EMD is similar
to CD (ρs = 0.94) even for the complex topologies. It
is interesting to see that the dimensionality reduction of
voxels doesn’t result in any improvement in correlation with
CD whereas the dimensionality reduction of point clouds
using PCAE (AE code) is very useful (ρs = 0.83). The
results indicate that AE code has successfully learned the
loss function, CD, it is trained on.

Summary The metric comparisons on datasets obtained by
rotation, translation, and scaling show the deficiencies of
the voxel distance and the metrics based on dimensionality
reduction techniques. CD and EMD outperform these
metrics in capturing simple geometric differences. Of the
dimensionality reduction techniques, Euclidean distance in
the AE code shows the best correlation with RM. From
the results on metric correlations, CD, EMD, and Euclidean
distance in AE code are the top choices for the metrics on
geometry. Since the test datasets have complex topologies
with strong variations in size and orientation, we expect
similar results with TO designs.

7.4 Using clustering performance

To evaluate the classification accuracy of different metrics,
we consider the randomized topologies dataset of 50
subclasses with strong variations in topology, where each
subclass has 20 designs. Metrics mentioned in Section 3
are used with the naming convention from Table 1. For
example, the metric: (Voxel, PCA, ED) means that the
voxel representation of the geometries is transformed
using PCA into a low-dimensional vector. Finally, the
Euclidean distance (ED) in the reduced space is the
resultant metric. Different metrics are used to cluster the
topologies and the corresponding accuracy measures are
reported.

Table 2 shows the classification accuracy of different
metrics using k-means clustering with a prescribed number
of clusters (k = 50), the same as the number of class labels.
Note that since this is a labeled test set, the class labels
are known beforehand. PCA (with 10 components) is better
compared to NMF (with 10 components) for this dataset.
The pointcloud metric (AE code, ED), UMAP, and t-SNE
based metrics can identify all the subclasses accurately.
The high precision of UMAP and t-SNE indicates that
they can be used to visualize the clusters in the dataset
(Fig. 19). Note that CD and EMD metrics are not used

since k-means requires an input feature vector and cannot
handle pairwise distance matrices provided by CD and
EMD.

Table 3 shows the classification accuracy of different
metrics using OPTICS, which is more general than the k-
means algorithm and can handle pairwise distance matrices.
OPTICS identifies the appropriate number of clusters
automatically. However, for this dataset, the clustering
accuracy is lower compared to the k-means method. The
order of the derived metrics using NMF, Voxels (Voxel,
ED), PCA, UMAP, AE code is the same as in Table 2.
In contrast, t-SNE performs worse than PCA-based metric,
which is outperformed by UMAP. CD and EMD perform
better than UMAP, but Autoencoder latent code results in
the best metric for classification and is better than the loss
function (CD) it is trained on.

8 Engineering application

From our experiments discussed in Section 7, we find that
the AE code obtained by PCAE reduction can identify
similar designs in a topologically optimized, complex
dataset. It also extracts geometric features, which are easy
to cluster since they are low-dimensional.

Figure 20 shows the clusters in designs as visualized
in UMAP with clusters identified using k-means algorithm
with AE code as the input data. Since UMAP preserves the
intra-cluster distances, the relative location in the 2D cluster
plot is meaningful.

Figure 21 compares each of the cluster representatives
with three different designs: two designs closest to it and
one design farthest from it in terms of Euclidean distance
in AE code. The most similar designs seem to share similar
material distribution while the load conditions seem to be
different. The most dissimilar designs (column d) seem
to have completely different topology compared to the

Table 2 Classification accuracy of different metrics with k-means
clustering (k = 50)

Metric Precision F1 score AMI score

(Voxel, NMF, ED) 0.88 0.86 0.92

(Voxel, ED) 0.96 0.95 0.98

(Voxel, PCA, ED) 0.97 0.96 0.98

(Voxel, UMAP, ED) 1.00 1.00 1.00

(Voxel, t-SNE, ED) 1.00 1.00 1.00

(AE code, ED) 1.00 1.00 1.00
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Fig. 19 Visualizing design clusters in the AE code data using UMAP. Each cluster is a set of 2D points with each point representing a design. The
dataset contains 50 clusters, numbered from 0 to 49. The inset shows a selected cluster and three sample designs in it

representative. The figure also shows the relative distances
in terms of AE code and CD from each design (column b-
d) to the representative (column a). For a given metric, a
measured distance is normalized using the farthest distance
measured from the representative to yield the relative
distance. According to these metrics, the closest designs
to each representative are only dissimilar by 0.2 to 0.3
units compared to the farthest design, whose distance is
normalized to 1 unit. As expected, AE code mimics the

Table 3 Classification accuracy of different metrics with OPTICS as
the clustering method

Metric Precision F1 score AMI score

(Voxel, NMF, ED) 0.60 0.68 0.61

(Voxel, ED) 0.66 0.64 0.80

(Voxel, t-SNE, ED) 0.69 0.77 0.67

(Voxel, PCA, ED) 0.72 0.78 0.75

(Voxel, UMAP, ED) 0.74 0.82 0.68

(Pointcloud, CD) 0.86 0.88 0.90

(Pointclouds, EMD) 0.86 0.88 0.90

(AE code, ED) 0.94 0.95 0.95

chamfer distance quite closely even for the complex TO
dataset.

We recommend using the PCAE followed by a UMAP
reduction for intuitive and accurate visualization of design
clusters. This is an improvement to the design explo-
ration method proposed by us for Pareto-optimal designs
using voxel representation and PCA [52]. Furthermore,
the geometric features obtained by PCAE can be com-
bined with performance measures. The aggregate vec-
tor can be used directly for design exploration based
on geometry and performance. Since the Euclidean dis-
tance in the geometric features is meaningful, the simi-
larity control in TO [20] can be easily implemented as
well.

Table 4 summarizes the advantages and disadvantages
of using different metrics. In terms of clustering accu-
racy, the pointcloud based metrics perform the best. t-
SNE and UMAP perform well even with raw voxel data,
although it is better to use them with the reduced data.
By the high quality of geometric features, we mean that
the Euclidean distance in the extracted features, if any, is
meaningful. The latent code of the PCAE, which gives the
most meaningful geometric features, can be thought of as
a means to improve the pairwise distance metrics (CD in
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Fig. 20 Clusters in TO designs
are visualized in 2D using
UMAP. The k-means clustering
algorithm identifies the 4
clusters, labeled 0-3, based on
the AE code. The representative
design for each cluster is shown
as well. k-means clustering
identifies the subclasses of
designs even if the clusters are
not separated, which is often the
case with engineering data

our case) they are trained on, which do not extract any
features. From computation ease, voxel distance is simple
to calculate relative to the other metrics based on dimen-
sionality reduction such as PCA or AE code since there
are no additional data processing steps. CD and EMD are
moderately expensive since they involve some analysis of
pointclouds before comparing. This analysis is only valid
if the metrics are not used often for a specific dataset.
With repeated calculations, the reduced dimensional rep-
resentation significantly speeds up the metric calculation,
once the initial data processing is complete. From cluster-
ing effort, the metrics based on simple feature vectors are
easier to compute. CD and EMD which require the construc-
tion of pairwise distance matrices can be very expensive.
For exploring TO designs, the AE code might be a good
compromise. It has high clustering accuracy with the extrac-
tion of meaningful geometric features. The moderate effort
needed for training a PCAE model might be worth the
benefits.

9 Conclusion

In this work, we address the problem of finding geometric
features that can be used to explore topologically optimized
structures and identify diverse designs based on geometrical
properties such as topology, size, shape, and orientation in
a design space. Extracting features in an automated fashion

using popular unsupervised machine learning techniques
improves the usability of topology optimization (TO) and
other design generation methods in the engineering design
process.

The challenge is to choose a feature extraction method
from several methods available: PCA (Principal Com-
ponent Analysis), NMF (Non-negative Matrix Factoriza-
tion), t-SNE (t-distributed Stochastic Neighbor Embed-
ding), UMAP (Uniform Manifold Approximation and Pro-
jection), or PCAE (Pointcloud Autoencoder), a geometric
deep learning method for pointcloud representation. We
propose to choose the geometric features based on two prop-
erties: the ability to capture geometrical differences and to
identify similar designs. The former property is evaluated
using a novel method to compare with reference distance
metrics, while the latter is measured using state-of-the-art
methods for evaluating clustering performance. The pro-
posed test datasets comprise topologically more complex
designs than publicly available datasets such as ShapeNet
[28].

For clustering geometrically similar designs, PCA can
extract better features compared to the voxel representation.
t-SNE and UMAP, which are visualization techniques for
high-dimensional data, as expected, perform even better.
The performance improvement of t-SNE and UMAP comes
at a cost that the distances in the reduced representation
may not reflect the geometric differences, as shown
in our experiments with even simple datasets. PCAE,
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Fig. 21 TO designs similar to cluster representatives found using AE
code (Fig. 20). The first column (a) contains the four design represen-
tatives. For each representative, three designs are shown in a row with
decreasing similarity along the columns b-d. For each design, we show

the corresponding loads as brown arrows. In each row, we measure the
relative distance from the representative (a) to each design in columns
b-d using AE code (AD) and chamfer distance (CD)
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Table 4 Advantages and disadvantages of different metrics. For each
attribute column, values are put into three categories: low (L), medium
(M), and high (H). Since the actual values depend on the computational

hardware, this categorization may be more useful. Since the metrics
CD and EMD do not yield or use geometric features, they are ranked
low in this attribute (third column)

Metric Clustering accuracy Quality of geometric features Metric calculation ease Clustering ease

(Voxel) L L H H

(Voxel, NMF) M M M H

(Voxel, PCA) M M M H

(Voxel, t-SNE) H L M H

(Voxel, UMAP) H M M H

(Pointcloud, CD) H L L L

(Pointcloud, EMD) H L L L

(AE code, ED) H H M M

in contrast, performs well in both scenarios: measuring
similar distances as reference metrics and identifying
geometrically similar designs. Empirically, we observe
that the PCAE creates a feature vector with distances
correlated to the loss function it is trained on. This allows
conversion of any reasonable metric, which is defined
as a pairwise function of geometries, to a Euclidean
distance in a feature vector (latent code). Since the latent
code is better suited for integrating geometric features
with performance features, one can simultaneously explore
designs based on geometry and performance. This analysis
shows the need for our proposed method, along with
the clustering performance measures, to validate if the
geometric features are as meaningful as the reference
metrics.

With an effective geometric feature vector such as the
latent code of a PCAE, we can now combine geometric
features with performance features for design exploration.
It would be interesting to see if this can discover
design clusters with unique properties, either geometric- or
performance-wise, in real-world engineering applications.
Furthermore, one can identify distinct concepts in a design
database. This would considerably improve the applicability
of topology optimization in the product development
process.
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